SPE in Commercial Buildings

SPE Technology Days

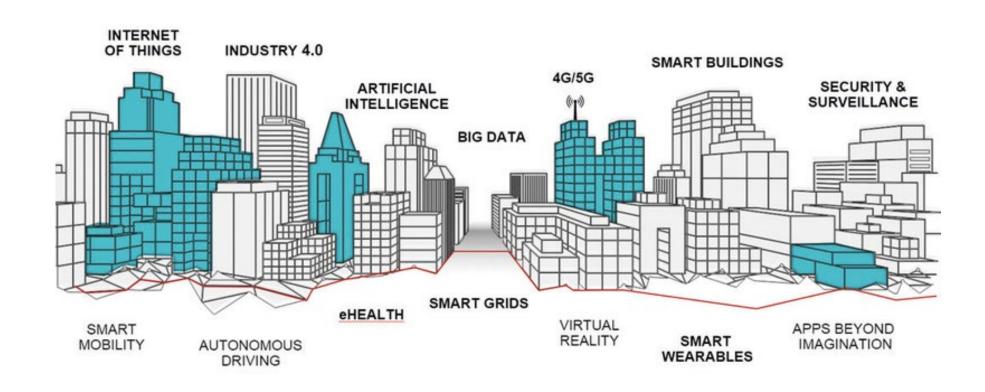
Wendelin Achermann

Dätwyler Cabling Solutions AG

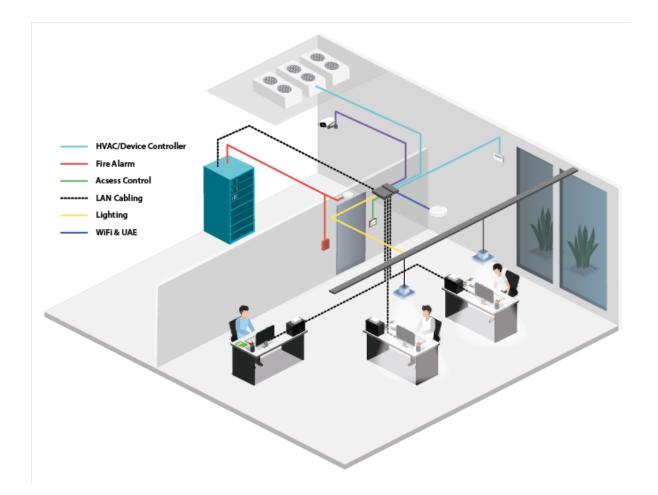
Presenter

Wendelin Achermann

Product Manager Data Cabling **Dätwyler Cabling Solutions AG**Gotthardstrasse 31


6460 Altdorf / Schweiz

T: +41 41 875 13 97


E-mail: wendelin.achermann@datwyler.com

info.cabling.ch@datwyler.com

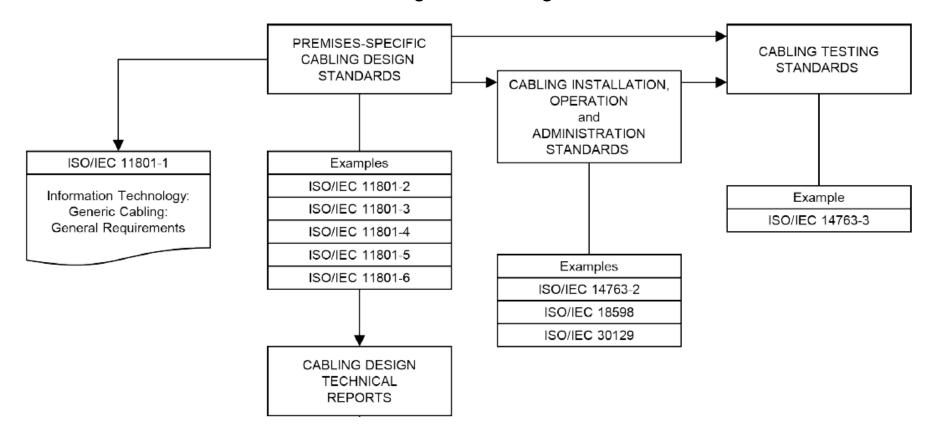
Information is key

Data Communication in Buildings

- ARCNET Deterministischer, echtzeitfähiger Feldbus, eingesetzt in den Bereichen Automotive, Industrieautomatisierun Medizintechnik
- ARINC 629 Schneller Avionik-Bus, der Firma Arinc, eingesetzt in der Boeing 777
- · AS-Interface (Aktuator-Sensor-Interface) zum Anschluss von Sensoren und Aktuatoren
- · BACnet Building Automation and Control Networks für Gebäudeleitechnik, aber auch teilweise bis zur Feldebene hinu
- BITBUS
- . CAN z. B. im Automotive-Bereich
- CANopen (CAN-basierendes, h\u00f6heres Protokoll) Standard f\u00fcr die Aufzugstechnik, Automatisierungstechnik, Fahrzeug Schiffselektronik. Gepflegt von CAN in Automation (CIA)
- . CC-Link im asiatischen Raum verbreiteter Bus für industrielle Applikationen
- ControlNe
- DALI für Beleuchtungen in der Gebäudeautomatisierung
- . DeviceNet (CAN-basierendes, höheres Protokoll)
- EIB Europäischer Installationsbus Hauptsächlich Hausinstallation, Vorgänger von KNX
- · EtherCAT Ethernet-basierender Feldbus in der Automatisierungstechnik
- Ethernet Powerlink Ethernet-basierender Feldbus für den Maschinen- und Anlagenbau
- EtherNet/IP (Ethernet-basierendes, höheres Protokoll), zumindest ersteres vor allem in den USA
- . FAIS-Bus, ein japanischer Feldbus-Standard
- . Foundation Fieldbus (FF) der Fieldbus Foundation (Prozessautomation)
- . FIP-Bus, französischer und italienischer Feldbus-Standard, Konkurrent zu Profibus
- . FlexRay-Bus Im Automotive-Bereich (X-by-Wire)
- Hart Communication für industrielle Feldgeräte
- . INTERBUS Maschinenbau, Anlagenbau in Sonderausführung für Sicherheitstechnik
- KNX-Standard für Gebäudeautomatisierung, Nachfolger von EIB
- . LCN Local Control Network Universelles Gebäudeleitsystem
- . LIN-Bus Im Automotive-Bereich
- LocoNet f
 ür Modelleisenbahnen
- LON hauptsächlich für Gebäudeautomation
- . M-Bus (Feldbus)
- MIL-STD-1553 hauptsächlich in der militärischen Luftfahrt
- · Modbus Industrie
- . MOST-Bus Im Automotive-Multimedia-Bereich
- MVB (Multifunction Vehicle Bus) Schienenfahrzeuge IEC 61375
- . P-NET Der P-NET Feldbus
- . PROFIBUS (Varianten: DP & PA), PROFINET: Roboter, Maschinenbau, Anlagenbau, Prozessautomation
- · SafetyBUS p sicherheitsrelevante Anwendungen
- . SERCOS interface Motion Control, CNC, Roboter, Maschinenbau, Anlagenbau
- SmallCAN Integratives low-cost/low-power System, hauptsächlich für Gebäudeautomatisierung (aber auch allgemeine
- . SMI Standard Motor Interface zur Ansteuerung von elektronischen Antrieben, z. B. für Jalousien oder Rollläden
- Spacewire
- T-Bus Hauptsächlich eingesetzt in Landwirtschaft, Bewässerungstechnik und Umwelt-Monitoring
- . Time-Triggered Protocol (TTP)
- . VARAN Ethernet-basierender Feldbus für die Automatisierung von Maschinen und Anlagen

Standards Landscape "Building"

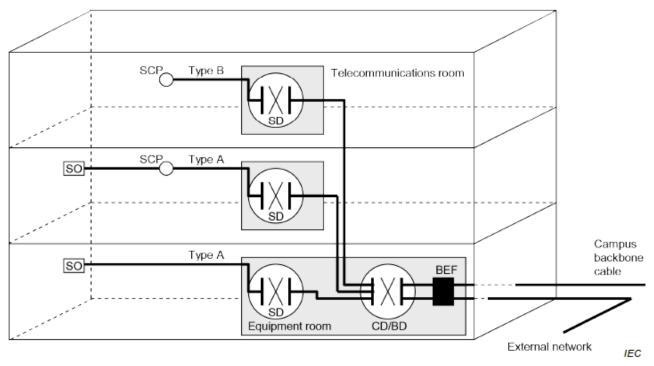
WIEEE	International Organization for Standardization IEC INTERNATIONAL ELECTROTECHNICAL COMMISSION	CEN CENELEC	ANSI American Michael Standards Institute TIAN APPLICAGE GORAL GEOMATICATIONS		
Transmission Protocol "Ethernet" : Global	Cabling: Global	Cabling: Europe	Cabling: Americas (Global)		
Fiber: SM & MM IEEE 802.3	Cabling: Architecture Performance, Testing	Cabling: Architecture Performance, Testing	Cabling: Architecture Performance, Testing		
Copper: 2-4 Pairs IEEE 802.3	Cabling: Architecture Performance, Testing	Cabling: Architecture Performance, Testing	Cabling: Architecture Performance, Testing		
Copper: 1 Pair IEEE 802.3	Cabling: Architecture Performance, Testing	Cabling: Architecture Performance, Testing	Cabling: Architecture Performance, Testing		
Wireless: IEEE 802.11	Referenced	Referenced	Referenced		
PoE / PoDL IEEE 802.3	Implementation Reference (Best Practice)	Implementation Reference (Best Practice)	Implementation Reference (Best Practice)		


Ethernet Protocols for SPE

IEEE project	Description /	Reach						
icce project	Application	15 m	40 m	100m	1000 m			
802.3bp	1000Base-T1 Automotive, Industrial, IoT	Type A Screened and unscreened channel	Type B screened channel					
802.3bw	100Base-T1 Automotive	unscreened channel						
802.3ch	MultiGigBase-T1 (2.5/5/10 Gb/s)	Screened						
802.3cg	10Base-T1 Industrial	T1-S Screened and unscreened channel			T1-L Screened and unscreened channel			
IEEE 802.3 bu	Power over Data Line (PoDL)							

ISO/IEC 11801-1

Standardisation of Communication Cabling in a building



Cabling Classes ISO/IEC 11801-1

Class	Subclas	Description BW /	Channel-Reach					
	S	IEEE Application	100 m	250 m	400 m	1000 m		
T1-A	-1000 -400	20 MHz 802.3cg 10Base-T1			Cables acc. to IEC up to 10 co			
T1-A	-250 -100	20 MHz 802.3cg 10Base-T1	Cables acc. IEC 61156-13 /-14; up to 5 connections					
T1-B	100	600 MHz / 802.3bw 100Base-T1 up to 15m 802.3bp 1000Base-T1 up to 40m	61156 -11/-12; Max. 4 con. compatible to T1-A- 100					
T1-C	100	1250 MHz (ffs .) / depending on IEEE 802.3ch						

Cabling Structure

SCP service concentration point

SD service distributior (~ floor distributor)

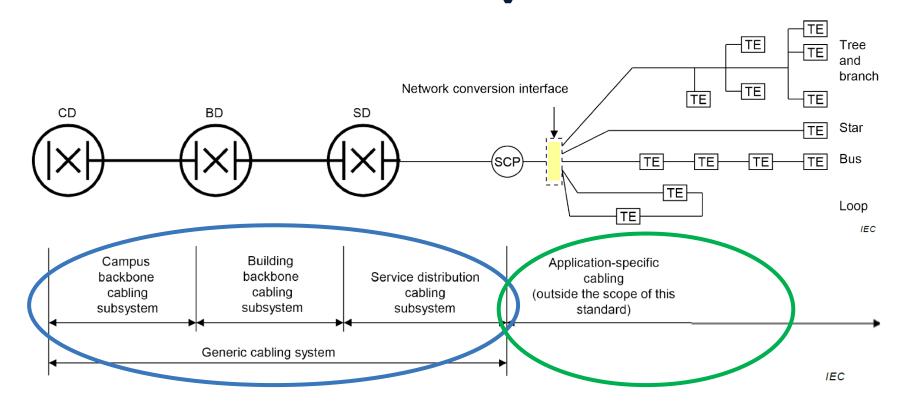
SO service outlet

CD/BD campus distributor / building distributor

BEF building entrance facility

Type A :

 at SCP no transmission equipment (no Switch / Gateway)



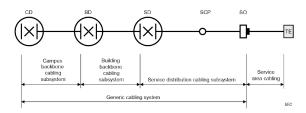
Type B :

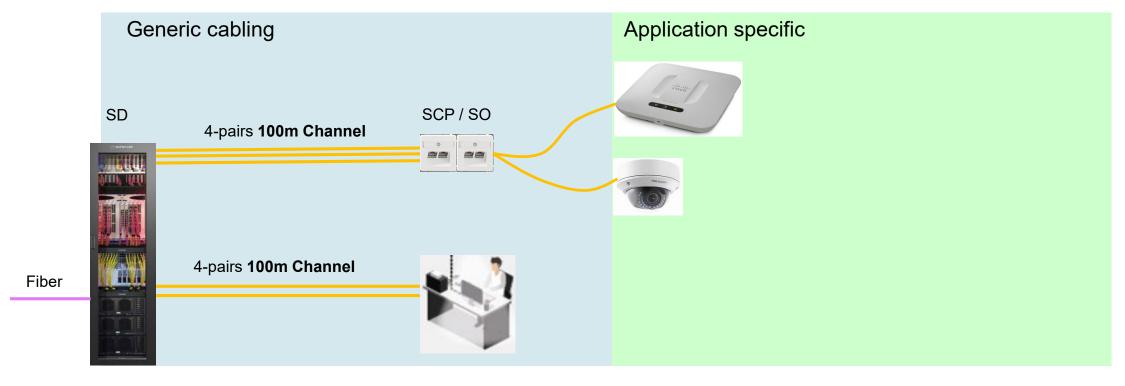
 Transmission Equipment may be used at SCP (with Switch / Gateway)

Generic cabling system

In scope of ISO/IEC 11801

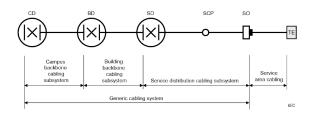
Out of scope ISO/IEC 11801

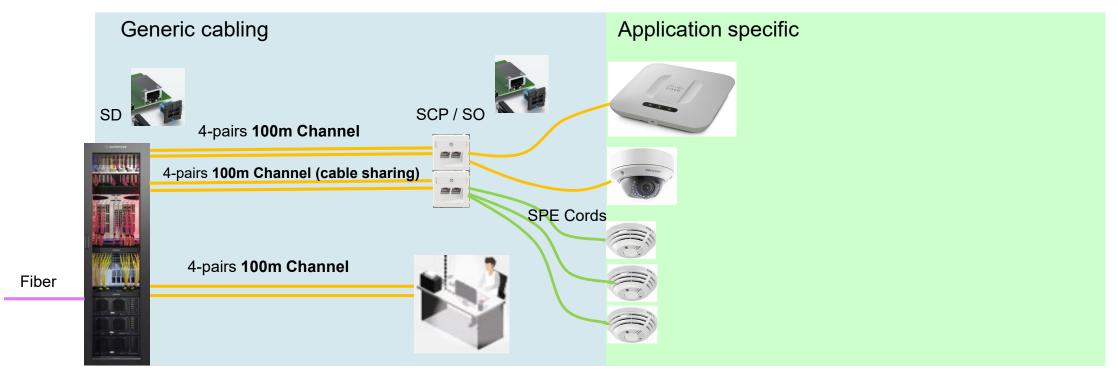

SCP service concentration point
SD service distributior (~ floor distributor)


SO service outlet
CD campus distributor
BD building distributor
BEF building entrance facility

Service Distribution Type A

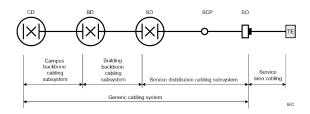
4-pair generic cabling

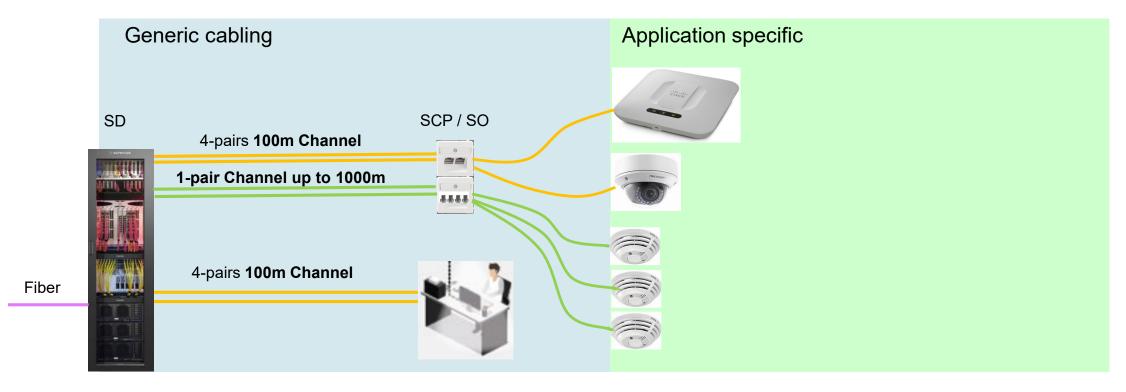

SCP service concentration point


SD service distributior (~ floor distributor)

Service Distribution Type A

4-pair and 1-pair generic cabling (cable-sharing)

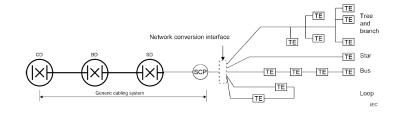


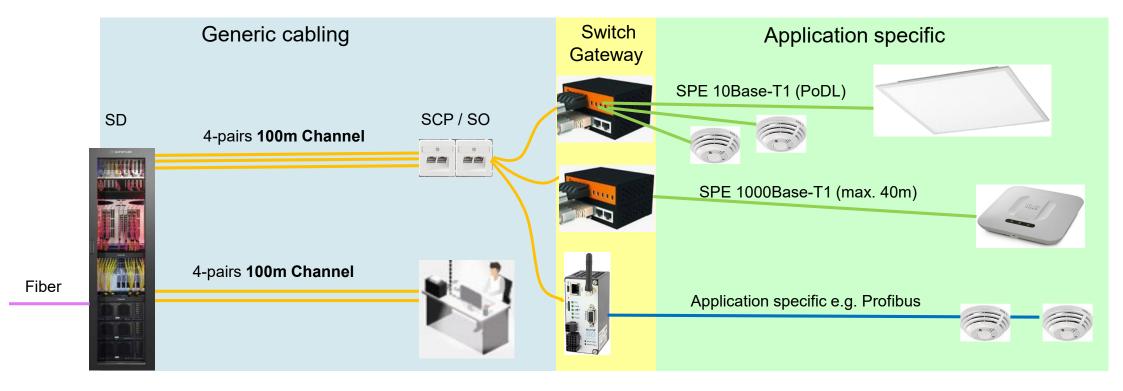

SCP service concentration point

SD service distributior (~ floor distributor)

Service Distribution Type A

4-pair and 1-pair generic cabling




SCP service concentration point

SD service distributior (~ floor distributor)

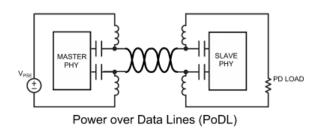
Service Distribution Type B

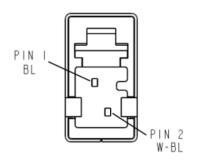
4-pair generic cabling + Gateway (Switch SPE)

SCP service concentration point

SD service distributior (~ floor distributor)

SPE Connectors


IEC 63171-1	IEC 63171-2	IEC 63171-4	IEC 63171-5	IEC 63171-6	****
					Building backbone cabling subsystem Service distribution cabling subsystem Generic cabling system
 LC-Copper Selected by 11801 and TIA for MICE1 Mentioned by IEEE for MICE1 MDI 	• MSP-MICE1 Compatible to 63171-5	 MMC3000-1P Proprietary design by BKS 	 MSP-MICE3 Compatible to 63171-2 Only real M8 compatibility 	 Harting T1 Selected by 11801 and TIA for MICE3 Mentioned by IEEE for MICE 3 MDI 	 ISO/IEC 11801-6 (MICE1) SO Service outlet: RJ45 or LC-Copper Application specific: free choice of connector
• Promoted by Commscope	• Promoted by R&M	 Promoted by BKS 	Promoted by Phoenix Contact	 Promoted by Harting 	(out of scope of ISO/IEC 11801)



PoDL Power over Data Line

Table G.1 – Remote powering information for single pair balanced cabling

PoDL Class	Min Voltage	Loop resistance at 20° C cable temperature	Loop resistance 65° C cable temperature	Loop resistance at 80° C	Max power available	Max current	Comments
	V	Ω	Ω	Ω	W	А	
10	20	51,2	65	ffs	1,2	0,09	Low voltage
11	20	19,7	25	ffs	3,2	0,24	Low voltage
12	20	7,5	9,5	ffs	8,4	0,62	Low voltage
13	50		65	ffs	7,7	0,23	
14	50		25	ffs	20	0,60	
15	50		9,5	ffs	52	1,58	

Pin Number	Signal	Remote Power
1	TX+	+
2	TX-	-

Cable Impact on PoDL

PoDL Class	Min Voltage	Loop Resistance at 65°C	Max. Power at PD	Max. Current	Loop Resistance AWG18	Loop Resistance AWG22	Loop Resistance AWG26	Max. Reach AWG18	Max. Reach AWG22	Max. Reach AWG26
	V	Ohm	W	A	(65°C) Ohm/km	(65°C) Ohm/km	(65°C) Ohm/km	m	m	m
10	20	65	1.2	0.09	54	150	376	1200	430	170
11	20	25	3.2	0.24	54	150	376	460	165	65
12	20	9.5	8.4	0.62	54	150	376	175	63	25
13	50	65	7.7	0.23	54	150	376	1200	430	170
14	50	25	20	0.60	54	150	376	460	165	65
15	50	9.5	52	1.58	54	150	376	175	63	25

Multi-storey car park

- Traffic guiding system (Smart City)
- Park space indicator (empty spaces per deck) (KNX)
- Dimmed light bright light, when used; move detection (KNX/Dhali)
- Elevator management (CAN), Elevator cabin arrives when person arrives in front of Elevator
- Emergency escape guiding lights based on triggering event (Smoke, Fire) Parking meter system (proprietary system)
- Parking meter system (proprietary system)
- Building management system (TCP/IP)

SPE in Commercial Buildings

Summary:

- SPE enables an information highway sensor to cloud (1-Pair → 4-Pair → MM Fiber → SM Fiber)
- SPE enables transparent and flexible communication within a building
- PoE / PoDL enables powering of sensors without additional battery management
- Service Distribution Type B (with Switch) 4-pair RJ45 Cabling at SO is recommended (15m/40m restriction of many XBASE-T1 protocols)
- With RJ45 at SO, best matching SPE connector can be used for distributed building services

Thank you for your attention

