Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Bivariate Statistik M. Kresken.

Ähnliche Präsentationen


Präsentation zum Thema: "Bivariate Statistik M. Kresken."—  Präsentation transkript:

1 Bivariate Statistik M. Kresken

2 Wertepaare, Punktwolke
M. Kresken

3 Wertepaare, Punktwolke
Werden an mehreren Beobachtungseinheiten je zwei stetige Merkmale gemessen, so lässt sich jedes Wertepaar durch einen Punkt in einem Koordinatensystem darstellen (Punktwolke) Messwerte Merkmal 1 Messwerte Merkmal 2 M. Kresken

4 Regression von y auf x M. Kresken

5 Zusammenhang zwischen n Wertepaaren (xj,yj)
M. Kresken

6 Regression von y auf x Das Problem einer Regression von y auf x liegt vor, wenn für das Merkmal x fest vorgegebene Werte xj (z.B. Dosen oder Zeitpunkte) und für das Merkmal y zugehörige yj (z.B. Serumkonzentration eines Arzneistoffes) erhoben werden. Häufig kann eine graphisch erkennbare Beziehung zwischen zwei Merkmalen (x und y) näherungsweise durch eine Gerade „gut“ beschrieben werden. Aber was bedeutet „gut“ ? M. Kresken

7 Regression von y auf x Berechnung einer Geraden, die sich aus der Summe der quadrierten Abstände ermittelt wird Methode der kleinsten Quadrate x y M. Kresken

8 Regression von y auf x Die so aus den Abständen der einzelnen Messpunkte (xj,yj) zu der Geraden parallel zur y-Achse eindeutig bestimmte Gerade heißt Regressionsgerade von y auf x: byx wird Regressionskoeffizient genannt und beschreibt den Anstieg der Regressionsgeraden. Der Regressionskoeffizient gibt an, um wie viel sich y im Durchschnitt ändert, wenn x um eine Einheit erhöht wird. Der Parameter ayx bezeichnet den Schnittpunkt mit der y-Achse. y = byxx + ayx M. Kresken

9     ( ) (  Regression von y auf x ( ) ( ) ( ) ( ) ( ) )
byx und ayx ergeben sich aus folgenden Formeln: byx = syx sxx , falls sxx = 0 _ y – byx x ayx = n j=1 _ ( yj - y ) _ 1 n - 1 syx = sxy = ( ) xj - x n j=1 n j=1 ( xj ) n j=1 ( yj ) 1 ( _ 1 n ) = ( xjyj ) n - 1 = 1 n - 1 ( n j=1 xjyj ) _ n x y M. Kresken

10   Regression von y auf x ( ) ( ) 1 n - 1 sxx = sx = xj - x _ _ 1
2 2 _ 1 n - 1 n j=1 = ( xj ) - n x 2 M. Kresken

11 Regression von y auf x _ _
Die Größe sxy heißt Kovarianz und beschreibt die gemeinsame Streuung der x- und y-Werte, d.h. die Ausdehnung der Punktwolke. Der Punkt (x, y) heißt Schwerpunkt der Punktwolke und ist ein Lagemaß für das Zentrum der Wertepaare. In manschen Situationen lässt sich eine lineare Beziehung erst nach Transformation der x- oder y-Werte erkennen. Folgen z.B. die (x,y)-Werte einem exponentiellen Verlauf (y = ex), so wird sich nach Logarithmierung der y-Werte ein linearer Zusammenhang ergeben. Mit den transformierten Werten wird dann eine Regressionsrechnung durchgeführt. _ _ M. Kresken

12 Abbau der Adrenalinkonzentration in der Leber
Nr. Zeit nach Adrenalingabe [min] Adrenalin [mg/l] 1 6 30,2 2 18 9,8 3 30 4,7 4 42 1,8 5 54 0,8 M. Kresken

13 Zusammenhang des Abbaus der Adrenalinkonzentration in der Leber über die Zeit
Adrenalin (mg/100ml) Zeit [min] M. Kresken

14 Regression von y auf x Es liegt die Vermutung nahe, dass die Adrenalinwerte mit der Zeit exponentiell abfallen. Wegen der graphisch erkennbaren Beziehung werden deshalb statt der Werte selbst die Logarithmen für die Regressionsrechnung verwendet, wobei die logarithmierten Werte mit y bezeichnet werden. Bei der Berechnung werden also nicht die ursprünglichen Messwerte (Zeit, Adrenalin), sondern die transformierten Messwerte (Zeit, log(Adrenalin)) = (x,y) benutzt. M. Kresken

15 Zeit nach Adrenalingabe
Abbau der Adrenalinkonzentration in der Leber (Originalmesswerte und logarithmierte Adrenalinwerte) Nr. Zeit nach Adrenalingabe [min] Adrenalin [mg/l] log (Adrenalin) 1 6 30,2 2 18 9,8 3 30 4,7 4 42 1,8 5 54 0,8 M. Kresken

16 Zeit nach Adrenalingabe
Abbau der Adrenalinkonzentration in der Leber (Originalmesswerte und logarithmierte Adrenalinwerte) Nr. Zeit nach Adrenalingabe [min] Adrenalin [mg/l] log (Adrenalin) 1 6 30,2 1,48 2 18 9,8 0,99 3 30 4,7 0,67 4 42 1,8 0,26 5 54 0,8 -0,10 M. Kresken

17 Punktwolke und Regressionsgerade für den Abbau der logarithmischen Adrenalinkonzentration über die Zeit log Adrenalin (mg/100ml) Zeit [min] y = byxx + ayx M. Kresken

18 Punktwolke und Regressionsgerade für den Abbau der logarithmischen Adrenalinkonzentration über die Zeit y = byxx + ayx Benötigte Formeln M. Kresken

19 Abbau der Adrenalinkonzentration in der Leber (Originalmesswerte und logarithmierte Adrenalinwerte)
Nr. Zeit x Adrenalin [mg/l] log (Adrenalin) y xy x2 y2 1 6 30,2 1,48 2 18 9,8 0,99 3 30 4,7 0,67 4 42 1,8 0,26 5 54 0,8 -0,10 M. Kresken

20 Abbau der Adrenalinkonzentration in der Leber (Originalmesswerte und logarithmierte Adrenalinwerte)
Nr. Zeit x Adrenalin [mg/l] log (Adrenalin) y xy x2 y2 1 6 30,2 1,48 8,88 36 2,1904 2 18 9,8 0,99 17,82 324 0,9801 3 30 4,7 0,67 20,10 900 0,4489 4 42 1,8 0,26 10,92 1764 0,0676 5 54 0,8 -0,10 -5,40 2916 0,0100 150 3,30 52,32 5940 3,6970 M. Kresken

21 Zusammenhangsmaße M. Kresken

22 Zusammenhangsmaße Maßzahlen, mit deren Hilfe sich der Zusammenhang zwischen zwei Merkmalen beschreiben lässt. Keines der Maße dient dazu, einen sachlogischen oder kausalen Zusammenhang nachzuweisen. M. Kresken

23 Korrelationskoeffizient
Der Korrelationskoeffizient r nach Pearson ist ein quantitatives Maß für die Beziehung zwischen zwei stetigen Merkmalen und beschreibt die lineare Komponente des Zusammenhangs. r = syx sxx · syy , falls sxx = 0 und syy = 0 Der Korrelationskoeffizient r kann nur Werte von –1 bis +1 annehmen. Der Korrelationskoeffizient ist eine einheitslose Größe. M. Kresken

24 Zusammenhang zwischen Punktwolken und Korrelationskoeffizienten
M. Kresken

25 Berechnung des Korrelationskoeffizienten r
Korrelationskoeffizient zwischen der logarithmischen Adrenalinkonzentration und der Zeit Berechnung des Korrelationskoeffizienten r M. Kresken

26 Bestimmtheitsmaß Im Zusammenhang mit der Regressionsrechnung gibt man häufig statt des Korrelationskoeffizienten das so genannte Bestimmtheitsmaß an. Das Bestimmtheitsmaß ist gleich dem Quadrat des Korrelationskoeffizienten. Es beschreibt, welcher Anteil an der Gesamtvarianz durch das Regressionsmodell bzw. die Regressionsgerade erklärt wird. M. Kresken

27 Rang-Korrelationskoeffizient
Ist ein alternatives Maß, um Zusammenhänge zwischen Merkmalen zu beschreiben (Spearman Rang-Korrelationskoeffizient). Wird auf der Basis der Ränge der Messwerte berechnet: (R (x1), R (y1)), (R (x2), R (y2)),....., (R (xn), R (yn)). Der kleinste Messwert erhält den Rang 1, der größte Wert den Rang „n“. Mit den mittleren Rangzahlen lässt sich analog zum Korrelationskoeffizienten nach Pearson der Rang-Korrelationskoeffizient berechnen. R(X) = 1 n j=1 R(xj) R(Y) = 1 n j=1 R(yj) M. Kresken

28 Rang-Korrelationskoeffizient
Die Berechnung erfolgt analog zum Korrelationskoeffizienten nach Pearson unter Verwendung der Rangzahlen. syx r = sxx syy M. Kresken

29 Rang-Korrelationskoeffizient
Bei ordinalen Merkmalen beobachtet man häufig die Übereinstimmung der Messergebnisse mehrerer Beobachtungseinheiten. In solchen Fällen werden den übereinstimmenden Messergebnissen mittlere Ränge zugeordnet. Dass die Originalmessergebnisse nur über ihre Position in den jeweiligen Ranglisten, d.h. indirekt in die Berechnung des Rang-Korrelationskoeffizienten einfließen, bedeutet eine Informationsreduktion. Auf der anderen Seite können dadurch nichtlineare Zusammenhänge beschrieben werden. Der Rang-Korrelationskoeffizient liefert Werte von –1 bis +1. M. Kresken

30 Abbau der Adrenalinkonzentration in der Leber (Originalmesswerte und logarithmierte Adrenalinwerte)
Nr. Zeit x Ränge R(x) Adrenalin [mg/l] R(y) R(x) R(y) R(x)2 R(y)2 1 6 30,2 2 18 9,8 3 30 4,7 4 42 1,8 5 54 0,8 M. Kresken

31 Abbau der Adrenalinkonzentration in der Leber (Originalmesswerte und logarithmierte Adrenalinwerte)
Nr. Zeit x Ränge R(x) Adrenalin [mg/l] R(y) R(x) R(y) R(x)2 R(y)2 1 6 30,2 5 25 2 18 9,8 4 8 16 3 30 4,7 9 42 1,8 54 0,8 15 35 55 M. Kresken

32 Interpretation der Ergebnisse der Regressions- bzw
Interpretation der Ergebnisse der Regressions- bzw. Korrelationsrechnung Eine Extrapolierung der Regressionsgleichung über den Bereich der Punktwolke hinaus ist nicht zulässig. Ein Korrelationskoeffizient nahe null bedeutet nicht, dass kein Zusammenhang zwischen den betrachteten Merkmalen besteht. Einzelne extreme Wertepaare können sowohl den Korrelationskoeffizienten als auch die Regressionsgleichung erheblich beeinflussen. Eine beobachtete Korrelation bedeutet nicht ohne weiteres einen sachlogischen Zusammenhang zwischen diesen beiden Merkmalen. M. Kresken


Herunterladen ppt "Bivariate Statistik M. Kresken."

Ähnliche Präsentationen


Google-Anzeigen