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�Logical operation and Truth Table
�Tautology
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�Equivalence

INTRODUCTIONS

Many proof in mathematics use logical 
expressions such as “ if ….. Then ……”      or 
“If ….. And …….Then …….or ……..”

It is therefore necessary to know the cases in 
which these expressions are either true or false 
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PROPOSITIONS
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LOGICAL OPERATIONS

Truth table 
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Truth table 
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Truth table 
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Many statements in mathematic are of the form  if p  then   q .such statements 
are called  implications, and denoted by p ⇒ q, or  p → q.

IMPLICATIONS

Truth table 
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BIIMPLICATIONS

Another common statements in mathematics are of the form “ p if and only if 
q”. Such statements are called biimplications and are denoted by p ⇔ q , 
or   p ↔q.

Truth table 
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TAUTOLOGY

Example :
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Consider the truth table :

Proposition –(p & -q ) can be true or false, but 
proposition p ∨ - p always true in any conditions. 
Propositions that that are always true in any conditions  
are called tautology.
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Contradiction

Propositions that are always false in any conditions 
are called contradiction.
For example, consider the truth table :
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Equivalence 
Two propositions P(p,q,…) and Q(p,q,….) are said to be 
equivalent , denoted by  P ≡Q if they have identically truth table
Example :

So, - (p & q ) ≡ -p ∨ -q
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� Algebra of propositions
� Inference
� Consistency of Premises
� Indirect proofs( RAA)
� Constant and Variabel
�Quantifiers 

PART 2

Algebra of Propositions
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� Main rules:
1. Law of Dethacment ( modus ponendo ponens)

P
p ⇒ q
∴q

INFERENCE
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2. Modus tollendo tollens

p ⇒ q
-q
∴-p
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3. Syllogism

p ⇒ q
q ⇒ r

∴p ⇒ r
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4. Law of Simplification

p & q

∴p

p & q

∴q
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5. Law of Addition

p 

∴p ∨ q
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6.Law of Absurdity

p ⇒ q&-q

∴-p
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Example :
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Consistency of Premises.
A set of premises is inconsistent if the premises cannot be true together. 
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REDUCTIO AD ABSURDUM ( RAA)
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Constant and Variabel
Constant :- well- determined meaning

- unchanged throughout the course of the  
consideration

For example : “number” such as “zero(0)”, “one(1)” in arithmatic.

variabel :- do not possess any  meaning by themselves
- can be changed

For example : x +5 = 7. Here, x is variabel.
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Quantifiers 
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Example : Find the truth set Tp of each propositional function p(x) defined 
on the set P = {1, 2, 3, …}
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Universal Quantifier
Simbol :∀
Consider the expression:

The expression p(x) by its self is open sentence, therefore  has no 
truth value.

Example :
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Simbol : ∃
Consider the expression :

Existential Quantifier

p(x) preceded by the existential quantifier 
doesn’t have a truth value.
Example :
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Write Using Quantifier
Let A = { 2,3,5} and p(x) be the sentence “ x is prime  “
The proposition “two is prime  and three is prime and five is prime “can be 
denoted :
p(2) & p(3) & p(5)   or   (∀ a ∈A , p(a)

Similarly , the proposition: two is prime or three is prime or five is prime, can be 
denoted :
P(2)  ∨ p(3) ∨ p(5)
Which equvalent to:
“ at least one number in A is prime” or
(∃a ∈A) p(a).
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Negation 

And 
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Example :
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PART 3
� Set : Definition and Notations
� Set Operations
� Algebra of Set



definition and notation
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Example :
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Relation between two set
1. Subset 

Set A is called subset of B  , if every element of A is contain 
in B. this relationship is written
A ⊆ B or B ⊇A.

2. Equality 
Two set  A and B are equal if A ⊆ B  &  B ⊆ A.

3. Disjoint Set
two set A and B are disjoint if they have no elements in 
common.
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Note :
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Set operations
1. Intersection 
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2. Union 
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Example :
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3. Complement 
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4. Difference and Symmetric Difference

HOME

Algebra of set
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PART 4
� Relations
� Type of Relations
� Equivalence Relations
� Functions
� Compositions of Functions
� Type of Functions

Relation on Set
Introduction 
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Example :
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Type of Relations
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Examples :
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Solutions :
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Equivalence Relations
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Examples :
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Partitions 
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Examples :
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FUNCTION 
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Examples :
1.

2.

3.
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COMPOSITION OF FUNCTION
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Examples :
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Type of Function 

1. one-to-one function / injective

1. Onto function / surjective
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3. one-to-one correspondence/bijective

4. Invertible 
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Example :
Consider function f1: A →B, f2 : B → C , f3: C → D , and f4 : D → E defined by  
figure below : 

Note :
� f1 is one-to- one but not onto
� f2 is onto and  one-to- one, hence invertibel
� f3 is onto but not one-to-one
� f4 is neither one-to- one nor onto
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� Introduction
� Equipotent Set
� Infinite Set
� Denumerable and Countable Set
� Real Number
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Introduction 



Equipotent Set

Examples :



Infinite Set
A set S is infinite if it has same cardinality as a proper subset of itself. Otherwise S is 
finite.

Example :

� A set D is said to be denumerable or countably infinite if it 
has same cardinality as N ( natural number)

� A set is countable if it is finite or denumerable
� A set is nondenumerable if it is not countable

Denumerable and Countable Set

Examples :



Note :

� Not every infinite set is countable
� Example :
the unit interval I = (0,1) is nondenumerable.

Proof:

Real Number



Definition :

Cardinal Number



Definition 

Definition :

Examples :


