Vorkommen

hohe Reaktivität ⇒ nur in gebundener Form

Konz. in Erdkruste Vorkommen

F 544ppm (13.)

Fluorit CaF₂, Kryolith Na₃AlF₆,

Fluorapatit Ca₅(PO₄)₃F

Cl 126ppm (20.) NaCl, 1.9% der Ozeane sind Cl

Br 2.5ppm (46.) Ozeane: 65mg/L, Totes Meer: 4g/L

I 0.46ppm (60.) $Ca(IO_3)_2$, Ozeane: nur 0.05mg/L,

in Japanischen Solen: 100mg/L

Darstellung

F₂: Schmelzelektrolyse von KF + wasserfreier HF (1:2) bei $\approx 90^{\circ}$ C (Kohleanode, Stahlkathode):

große Schwierigkeiten: hoher HF-Dampfdruck, aggressives F_2 , $H_2 + F_2$ hochexplosiv

Transport: mit N_2 (1) ummantelt

 Cl_2 : Elektrolyse: $2NaCl + 2H_2O \implies H_2 + 2NaOH + Cl_2$

Deacon-Verfahren: $4HCl + O_2 \Rightarrow 2H_2O + 2Cl_2$ {430°C, CuCl₂}

im Labor: HCl + MnO₂, KMnO₄ oder CaCl(OCl)

 Br_2 : Oxidation von Br^- : $2Br^- + Cl_2 \Rightarrow Br_2 + 2Cl^-$

 I_2 : a) $2I^- + Cl_2 \Rightarrow I_2 + 2Cl^-$

b) $2IO_3^- + 6HSO_3^- \Rightarrow 2I^- + 6SO_4^{2-} + 6H^+$ $5I^- + IO_3^- + 6H^+ \Rightarrow 3I_2 + 3H_2O$

Eigenschaften

Zweiatomige Elemente X₂; leichtflüchtig

Isolatoren; I₂ zweidimensionaler Halbleiter, bei 350kbar Leiter

stabile Isotope: ¹⁹F, ³⁵Cl, ³⁷Cl (76:24%), ⁷⁹Br, ⁸¹Br (51:49%), ¹²⁷I

	F_2	Cl_2	Br_2	${ m I}_2$
	farblos	grünlich-gelb	dunkelrot	schwarz-violett
K_p :	-188°C	-34°C	60°C	185°C
1			$(F_p: -7^{\circ}C)$	114°C)
X—X	1.43Å	1.99Å	2.28\AA	2.66\AA
EN	4.1	2.8	2.7	2.2 (Allred&Rochow)
IE	1680	1260	1140	1010 kJ/mol
EA	333	349	325	296 kJ/mol
ΔH_{Diss}	159	243	193	151 kJ/mol

Fluor

Reaktionsfähigstes Element: $Xe + F_2 \Rightarrow XeF_2$ (400°C \vee hv) geringe Dissoziationsenergie von F_2 (MO-Schema: <u>Steudel, 107</u>) hohe Stärke der Element-Fluor-Bindungen

äußerst starkes Oxidationsmittel ⇒ Bildung von F-, HF

- + H₂: Explosion schon im Dunkeln bei RT
- + S₈, P₄: Lebhafte Reaktion bei -196°C

HF-Bildung:
$$+8H_2S \Rightarrow S_8$$
; $+2NH_3 \Rightarrow N_2$; $+2H_2O \Rightarrow O_2$

Überführung der Elemente in ungewöhnlich hohe Oxidationszahlen: AgF₂, KAg(III)F₄, BiF₅, PtF₆, IF₇

F wie Elemente der 1. Periode kein typischer Vertreter der Gruppe:

- a) Atome klein
- b) Elektronen fest gebunden \Rightarrow geringe Polarisierbarkeit
- c) keine tiefliegenden, für Bindungen verfügbare d-Orbitale

schlecht heilende Wunden: giftig, verbrennend, ätzend

Chlor

25°C: 6,5g/L H_2O löslich = Chlorwasser: Zersetzung durch Licht 0°C: grünlich-gelbe Kristalle $Cl_2\cdot 7,25H_2O$ (Clathrat, Z_p 9,6°C)

starkes Oxidationsmittel:

Metalle verbrennen (fein-verteilt) unter Feuer zu Chloriden,

 NH_3 entzündet sich ($\Rightarrow N_2 + HCl$)

in Lösung: $Cl_2 + H_2S \Rightarrow 1/8 S_8 + 2HCl$; $Cl_2 + HI \Rightarrow I_2 + 2HCl$

 $2Fe + 3Cl_2 \Rightarrow 2FeCl_3$ (nur feuchtes Cl_2 reagiert!)

⇒ in Stahlflaschen (7bar bei 25°C) im Handel

Chlorknallgasreaktion durch lokales Erhitzen oder Licht:

$$Cl + H_2 \Rightarrow HCl + H; H + Cl_2 \Rightarrow HCl + Cl$$
 (Radikale)

$$HC \equiv CH + Cl_2 \Rightarrow 2C + 2HCl; CH_4 + Cl_2 \Rightarrow CH_3Cl + HCl$$

 $H_2C \equiv CH_2 + Cl_2 \Rightarrow ClH_2C \oplus CH_2Cl$

$$SO_2 + Cl_2 \Rightarrow SO_2Cl_2$$
; $CO + Cl_2 \Rightarrow COCl_2$ (Phosgen)

Brom

25°C: ≈ 34g/L H₂O löslich = Bromwasser: Zers. im Sonnenlicht

<6°C: Clathrat Br₂·8,6H₂O

bei RT flüssig (K_p 60°C; sonst nur Hg); rotbraune Dämpfe mischbar mit CS₂, CCl₄

starkes Oxidationsmittel:

Metalle verbrennen (fein-verteilt) unter Feuer zu Bromiden: gegen feuchtes Br₂ nur Pt und Ta beständig gegen trockenes Br₂ auch Ag, Pb; nicht aber Fe (vgl. Cl₂!)

Br₂(1) führt zu schmerzhaften, tiefen Hautwunden 0,0001 Vol.-% durch Nase wahrnehmbar

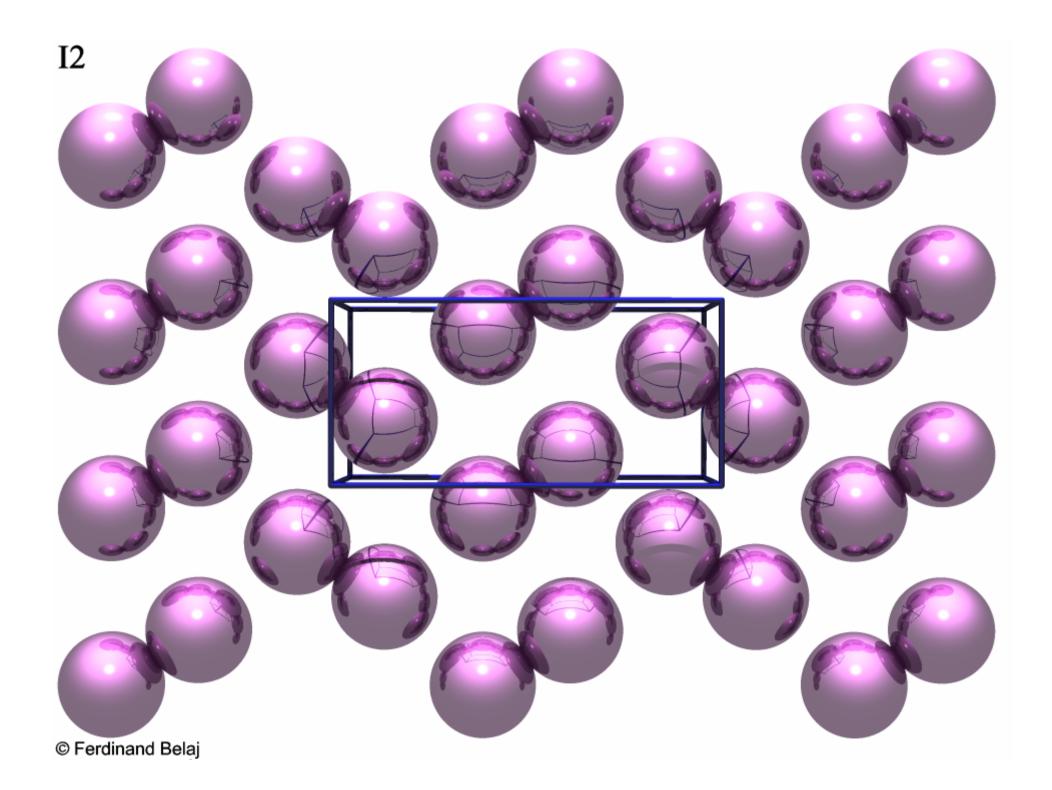
Reaktivität der Halogene: F₂ > Cl₂ > Br₂ > I₂

Oxidationszahlen nehmen ab: ReF₇, ReCl₆, ReBr₅, ReI₄

Iod bei RT fest, aber merklich flüchtig, leicht sublimierbar grauschwarz, metallisch-glänzende Schuppen: Halbleiter

 F_p 114°C: braune leitende Flüssigkeit: $3I_2 \iff I_3^+ + I_3^-$

K_p 185°C: violetter Dampf


Löslichkeit (25°C): nur 0.33g/L H_2O = Iodwasser (gelbbraun) leicht löslich in KJ-Lösungen oder in Iodwasserstoffsäure: $KI + I_2 \Rightarrow KI \cdot I_2 \Rightarrow KI_3$; $HI + I_2 \Rightarrow HI \cdot I_2 \Rightarrow HI_3$ (braun)

in Alkohol ("Jodtinktur"), Ether, Dioxan, Aceton: braun in Benzol, Toluol, andere aromatische KW: rot

in Schwefelkohlenstoff, Chloroform, CCl₄: violett

im Festkörper:

	r_{X-X}	r_{xx}
$\overline{F_2}$	1.49Å	3.24Å
$\overline{\text{Cl}}_2$	1.98\AA	3.32Å
Br_2	2.27Å	3.31Å
I_2	2.72\AA	3.50Å

Verwendung

```
F_2: 75% \Rightarrow UF<sub>6</sub> (235U-Anreicherung für Kernreaktoren)
```

SF₆ (Dielektrikum)

Fluorierungsmittel ClF₃, BrF₃, IF₅

WF₆, ReF₆ (Metallabscheidung aus der Gasphase)

Cl₂: 70% für Chlorierung org. Verbindungen

20% zum Bleichen (Papier, Textilien)

10% für HCl, AlCl₃, SiCl₄, PCl₃, PCl₅, POCl₃, SOCl₂, TiCl₄,...

Br₂: AgBr (Fotografie), Pestizide, Flammschutzmittel, Sedativa

I₂: KI, Pharmazeutika, Farbpigmente, Fotografie

Halogenwasserstoffe

HF: 99.5% in Stahlflaschen im Handel

Darstellung aus "Fluorit" = "Flußspat": $CaF_2 + H_2SO_4$ conc. $\{220^{\circ}C\} \Rightarrow CaSO_4 + 2HF$

farblose, ätzende, stechend riechende, rauchende Flüssigkeit:

 $K_p = 20$ °C \Rightarrow starke H-Brücken (vgl. HCl: -84°C) aber geringe Viskosität; mit Wasser in jedem Verhältnis mischbar

schwache Säure: $pK_S = 3,2$

in HF(g): 6HF \Leftrightarrow (HF)₆

in HF(s): zickzackförmiges, planares Kettenpolymer (wie alle HX)

Verwendung als nichtwässriges Lösungsmittel:

 $3HF \iff H_2F^+ + HF_2^- \qquad (K = 8.10^{-12}; vgl. H_2O: 1.10^{-14})$

Kohlenhydrate, Aminosäuren, Proteine gut löslich sogar in H₂O unlösliche Faserproteine sind löslich

HF:

Reaktionen:

```
Chloride, Oxide, Hydroxide, Carbonate + HF \Rightarrow Fluoride
SB-Reaktionen: 2HF + AsF<sub>5</sub> \Rightarrow H<sub>2</sub>F<sup>+</sup>AsF<sub>6</sub> (+Lewis-Säure)
HF + BrF<sub>3</sub> \Rightarrow BrF<sub>2</sub><sup>+</sup>HF<sub>2</sub> (+Lewis-Base)
BrF<sub>2</sub><sup>+</sup>HF<sub>2</sub> + H<sub>2</sub>F<sup>+</sup>AsF<sub>6</sub> \Rightarrow BrF<sub>2</sub><sup>+</sup>AsF<sub>6</sub> + 3HF
```

Elektrofluorierung (anodische Oxidation):

$$NH_4F \Rightarrow NF_3$$
, HNF_2 , FNH_2
 $H_2O \Rightarrow OF_2$
 SCl_2 , $SF_4 \Rightarrow SF_6$
org. Chemie: $NMe_3 \Rightarrow (CF_3)_3N$; $MeCN \Rightarrow CF_3CN$, $C_2F_5NF_2$

Verwendung:

Darstellung von synthetischem Kryolith Na_3AlF_6 Glasätzen (TV-Röhren, Glühbirnen): $SiO_2 + 4HF \Rightarrow SiF_4 + 2H_2O$ Herstellung von mikroelektronischen Schaltkreisen früher: Darstellung von FCKWs (=Fluor-Chlor-KohlenWasserstoffen)

HCl:

```
Darstellung: früher: 2NaCl + H_2SO_4 \Rightarrow Na_2SO_4 + 2HCl
      jetzt größtenteils aus organischer Chemie:
      ClCH_2CH_2Cl \{500^{\circ}C\} \Rightarrow CH_2=CHCl (Vinylchlorid) + HCl
      für hochreines HCl: H_2 + Cl_2 \Rightarrow 2HCl
farbloses, stechend riechendes Gas (K<sub>p</sub> -85°C)
in H<sub>2</sub>O sehr gut löslich (43% bei 25°C), gut auch in Ethanol, Ether
      Hydrate H<sub>3</sub>O<sup>+</sup>Cl<sup>-</sup>, H<sub>5</sub>O<sub>2</sub><sup>+</sup>Cl<sup>-</sup>, H<sub>7</sub>O<sub>3</sub><sup>+</sup>Cl<sup>-</sup>, H<sub>9</sub>O<sub>4</sub><sup>+</sup>Cl<sup>-</sup>, H<sub>13</sub>O<sub>6</sub><sup>+</sup>Cl<sup>-</sup>
             (F_p: -15^{\circ}C -18^{\circ}C -25^{\circ}C)
                                                                                -70°C)
sehr starke Säure: pK_S \approx -7 (vgl. HF: pK_S = 3.2)
      HCl + H_2O \implies H_3O^+ + Cl^-
      HCl + NH_3 \Rightarrow NH_4^+ + Cl^-
                                                                         (Salmiak-Nebel)
Verwendung: Großteil als Salzsäure (rauchende = conc. = 38% HCl)
      Reinigung und Beizen von Metallen
      Darstellung von Metallchloriden
```

HBr:

```
Darstellung: Bromid + nichtoxidierende Säure
      [KBr + H_2SO_4 \Rightarrow Br_2 + SO_2 + H_2O]
     3KBr + H_3PO_4 \implies K_3PO_4 + 3HBr
     PBr_3 + 3H_2O \implies H_3PO_3 + 3HBr
     technisch: H_2 + Br_2 \Leftrightarrow 2HBr {Aktivkohle bei \approx 200^{\circ}C}
farbloses Gas (K<sub>p</sub> -67°C); in H<sub>2</sub>O noch etwas besser löslich als HCl
HBr(aq): sehr starke Säure (pK<sub>S</sub> \approx -9; HI: pK<sub>S</sub> \approx -9.5)
      stärkeres Reduktionsmittel als HCl:
                         2HBr + Cl_2 \Rightarrow 2HCl + Br_2
Verwendung: AgBr (Fotografie)
```

© Ferdinand Belaj

HI:

Darstellung:
$$PI_3 + 3H_2O \Rightarrow H_3PO_3 + 3HI$$

$$8I_2 + 8H_2S \implies 16HI + S_8$$

technisch: $H_2 + I_2 \Leftrightarrow 2HI$ {Platinschwamm bei $\approx 500^{\circ}C$ }

farbloses, stechend riechendes Gas (K_p -35°C)

Löslichkeit in H₂O vergleichbar mit HCl

HI(aq): sehr starke Säure (pK_S \approx -9.5):

$$M + 2HI \implies MI_2 + H_2$$

noch stärkeres Reduktionsmittel als HBr:

$$2HI + Br_2 \Rightarrow 2HBr + I_2$$

$$4HI + O_2 \Rightarrow 2H_2O + 2I_2$$
 (Licht-katalysierte Braunfärbung)

Verwendung: AgI (für besonders empfindliche Filme)

VSEPR (= Valence Shell Electron Pair Repulsion)

Für Moleküle oder Ionen AX_n bzw. AX_nE_m:

- n...Zahl der bindenden Elektronenpaare (Mehrfachbindungen werden zunächst wie Einfachbindungen behandelt)
- m...Zahl der einsamen (= freien = nichtbindenden) Elektronenpaare
- a) Coulomb-Abstoßung, Pauli-Verbot (Spin) \Rightarrow Geometrie = $f(\Sigma(n+m))$ (Steudel 78, Steudel 77)
- b) Raumbedarf: freie e⁻-Paare > Doppelbindung > Einfachbindung: z.B. SOF₂: OSF 106.8°, FSF 92.8°
- c) Raumbedarf einer Einfachbindung ist kleiner für elektronegativere Substituenten ⇒ kleinere Winkel: z.B. PCl₄F, PCl₃F₂: F besetzt axiale Positionen
- d) Abnahme der EN in einer Gruppe ⇒ freie Elektronenpaare breiten sich aus ⇒ kleinere Winkel (Steudel 79)