
THE SAS® MACRO FACILITY
Maria Nicholson, ORI, Inc.

Bob Pulgino, ORI, Inc.

1. Introduction

1. 1. Abstract

Oneofthe most common questions asked bySAS programmers who
are just beginning their introduction to the macro facility is: "Why
use macro ... what's it for?". This tutorial attempts to demonstrate
the advantages that macro can offer and the motivations that a SAS
programmer who uses macro will have. Starting with an example
SAS program that uses no macro; features are added which demon­
strate the common uses of macro and the exceptional power it can
give the SAS programmer.

1.2. What Is the Macro Facility?

To understand how the macro facility works and how to best use it~
you first must completely understand what it is and how it fits into
a conceptual model of the SAS System as a whole.

Themacro facility can best be thought of as a separate languagethat
works with the standard SASlanguage. Itcontainsmanyofthesame
type of programming statements and functions as the SAS DATA­
step language. While the standard SAS language provides instruc­
tions on how to manipulate and process data in the form of SAS
datasets, the macro facility provides instructions for processing the
text of yourSAS program itself. Ittreats the text ina program filethat
make up other SAS statements as its data, and can perform many of
the same operations on this text that DATA-step code can perfonn
on the contents of SAS datasets.

This is often the most difficult concept for new macro programmers
to grasp, but it is the single fundamental concept that must be
understood in order to use macro effectively. The diagram in Figure
1 shows a model of how aSAS program without any macro code is
processed. The lines of code in the program are stored in a tempo­
rary region called the Input Stack. The SAS processor reads the text
from the input stack, one word at a time, until it has a complete SAS
DATA or PROC step. The programming statements defining this
step are checked for errors, and if none are found, the step is
compiled and executed. This process is repeated for all the DATA
and PROC steps in the program.

Input
---. / SAS Program I Stack

Standard
SAS
Code

SAS Processor

Figure 1. SAS code flow diagram. wHhout macro

When the SAS program contains macro variables or programming
statements, however, the program code is processed. differently, as
shown in Figure 2. As the program is read from the input stack,
macro statements will not be sent to the SAS processor, but to the
macro processor instead. Here the macro statements are evaluated,
any logic defined by the macro's programming language will be
executed, and the results of the evaluations - program text - will
bereprocessedasifitwerepartoftheoriginalSASprogram.lnother
words, the macro code in your program is used to generate SAScode
that will be substituted in place of the macro code before the SAS
processor sees it.

Input

Stack -
• / SAS Program /

aid
S

Stand
SA
Cod8

Macro
Cod8

+
SAS Processor

Macro Processor

I
"Processed~

SAS
Cod8

Figure 2. SAS code flow diagram with macro

1.3. Macro Pragrammlng Techniques

In this paper we will study the macro facility by example; we will
take a simple program and apply catagorical macro programming
techniques so that the example can be adapted to fit various chang­
ing requirements.

Keep in mind as you evaluate the specific advantages & capabilities
offered by eachadaptationr that very few real SAS programs will be
this simple and small. Examine each coding example .shown and
picture its benefits in tenns of the relative scope of your applications.

Also, keep in mind that we are limited to briefly discussing a very
complex and sophisticated topic. The purpose of the paper is to
bring a general introduction of this topic to an audience that has little
or no experience with it. Use these examples as a foundation upon
which to build yourunderstandingof the macro facility and itsmany
uses.

1293

2. SymbOlic Substitution

2.1. Using Symbolic SubsHtulion

Symbolic substitution is a term used to describe the process of using
macros or macro variables as "symbols" that mark parts of your
program that you wish to change. Rather than using a text editor to
locate these symbols and change them manually, the macro facility
can do the substitution when the program is run.

The re-written version of our REPORTS macro, which uses a pa­
rameter instead of a regular macro variable for symbolically refer­
encing the input data set name (DATASET) is shown in Figure 12.

%MACRO REPORTS (DA'l'ASET =);

PROC PRINT DATA = &DATASET SPLIT _ "*" DOUBLE;
BY SAIES _ REP;

SUM SALES PROFIT COMMISSION;
SUMBY SALES_REP;

TITLE "Sales Listing Report for Dataset: &DATASET";
RUN;

PROC FREQ DATA = &DATASET;

TABLES SALES_REP * SALES;
TITLE "Sales Frequency Report for Dataset:&DATASET";

RUN;

%MEND REPORTS;

%REPORTS(~ = SALES.QTRl}

%REPORTS (D1crASE'l' = SAIES. QTR2)

Figure 12. USing a parameter with the reporting macro

This fonn of macro parameter definition is referred to as a keyword
parameter, since the name of the parameter is used as a keyword
when the macro is called to assign it a value. Analtemative to the
keyword fonn is the positional parameter definition, which does not
use the parameter name when the macro is called. For more
infonnation on the differences between these types of macro para­
meters, see reference 1.

3. Conditional Substitution

3.1. What is Cond~ional Substitution logic?

Conditional substitution is the term used to describe the technique of
using macro logic to determine if a specific segment of code is to be
substituted into your program, based on the value of a macro
variable or parameter, or some other logical test. This is the first
example of a technique that uses the macro programming state­
ments as a part ot the boay ot your macro. Just like the LJA TA step
language allows you to use thelF /THEN/E15E statement structure
to conditionally execute sections of code in a DATA step, the macro
language allows you to use %IF/%THEN/%ELSE to conditionally
substitute text in the body of a macro.

The general syntax of the macro's %IF/%THEN/%ELSE statement
structure is shown in Figure 13. As you can see, it is very similar to
the DATA step language version; the %IF keyword is followed by
a boolean expression that should evaluate to a value of true or false.
If the expression evaluates to true, the macro statement or text to be
substituted following the % THEN keyword is executed or substi­
tuted. If the %ELSE statement is used, and the boolean expression
on the %IF statement is false, the macro statement or text to be
substituted following the %ELSE keyword is executed or substi­
tuted. If you wish to follow the %THEN or %ELSE with multiple
macro statements or text containing semi-colons (or a combination),
you can use the %DO/%END structure to contain them, just as with
the OAT A step language.

Syntax:

%IF (expression) %THEN macro-statement or text

%ELSE macro-statement or text ;

Figure 13. %IF statement syntax

3.2. A MuHiple-Choice Reporting Program

Lets assume that our REPORTS macro program has been working
fine - each time it is called in a program it dutifully generates the
code for printing both reports for the dataset specified with the
DATASET parameter, and all our non-programming users have
become very comfortable with its use. Several of our users have
mentioned, however, that they often run the program and get both
reports,even at times when they only really want to see one of them<
How can we modify our REPORTS macro so that the users can
indicate which report of the two they want to tum Hoff', or prevent
from being generated by the macro, when they use it? Figure 14
shows one way of rewriting our macro that uses %IF/%THEN to
control whether the code for each of the two reports will be substi­
tuted. -Two new parameters (REPORT1 and REPOR12) are defined
to allowtheuserto set the values that are tested by the %IF/%THEN
statements.

1294

%MACRO BEFORTS (DATASET=, REPoo.Tl=YES, REPORT2:::'mS);

tIl' UlEPOO.'l'l. ... YES %THEN %DO;
PROC PRINT DATA - &DATASET SPLIT = "*,, DOOBLE;

BY SALES_REP;
SUM SALES PROFIT COMMISSION;

SUMBY SALES_REP;
TITLE
"Sales Listing Report for Dataset: &DATASET";

IWN;

%END;

%IF ~2 = YES %THEN %DO;
PROC FREQ DATA = .&DATASET;

TABLES SALES_REP * SALES;
TITLE
"Sales Frequency Report for Dataset: &DATASET";

RUN;
%END;

%MEND REPORTS;

%BEFORTS (DATASET=SALES .QTRl, REroRTl=NO);

Figure 14. Using conditional execution

Each of the two reporting steps in the macro have been enclosed in
a %DO/%END structure preceded by an %IF/%1HEN control
statement. The text for each step will only be substituted when the
macro is called if the conditional expression on the %IF statement is
true.

The conditional expression for each %IF statement is a test to see if
the associated parameter (REPORT1 or REPORT2) has a value of
YES. Since the two parameters are defined with a default value of
YES, all the user has to do to "tum off" one of the reports for a given
call of the macro is ovenide this default value and assign tht.~
parameter some other value such as NO.

At the bottom of Figure 14, we see such a case where the user wishes
to see only the second report of the two. Therefore~ when the macro
is caUed, the REPORT1 parameter is assigned the value NO. This
results in the conditional expression on the first %IF statement to be
false, and therefore the code for the first report is never generated by
the macro and substituted into the program.

PROC FREQ DATA = SALES.QTR1; !

TABLES SALES_REP I< SALES; 1
TITLE "Sales Frequency Report for Dataset:SALES.QTR1";

RUN;

Figure 15. Resolution of the macro call

Syntax:

%LET macrovar = string

or

%LET macrovar = %EVAL(expression) ;

Figure 7. %lET statement syntax

Figure7showsthesyntaxrulesforthe%LETs~tementintwoforms.
The first form is used when the value we wish to assign is a simple
character string. The string can include other macro variable refer­
ences (symbolic substitution can be used on macro statements as
well as standard SAS statements) and one or more of the special
macro functions used to enable powerful manipulation of stringsl in
the same way DATA-step string functions are used (these macro
functions are documented in references 1 and 2).

One very important macro function is shown in the second fonn of
the %LET statement syntax: the %EVAL function. Recall from our
earlier discussion the importanfctistinction of the macro facility: it
is designed to process text strings as its data. Numeric expressions
are usually not the concern of the macro processor, and it does not
bother to look for and recognize them. The %EV AL function is used
to point out a numeric expression that is to be resolved, and replaced
in the assignment statement with its evaluated result

Let's try to clarify all this using the examples shown in Figure 8.

STATEMENT VALUE ASSIGNEO TO X

[lJ %-LET X = Hello there!; Hello there!

[2J %-LET X - 4+2*5; 4+2*5

[3J %-LET X ... %EVAL(4+2*5) ; 14

[4J %LET Y = 4;

%-LET X '" &Y+2*5; 4+2*5

[5] %-LET X .,. %EVAL(&Y+2*5); 14

Figure 8. Macro variable assignment examples.

In example (11r we see a simple case of assigning the string "Hello
there!" to the macro variable named #X". The maqo facility does not
need any quoting for the string constant since it only works with text
strings - it knows that the expression starts following the equal­
sign, and ends immediately before the semi-colon; that variables in
the expression will begin with an ampersand, and that macros and
macro-functions such as %EV AL will begin with a percent-sign.
Everything else in the string expression must be treated as constant
text, so the variable "X" receives its value as shown.

In example 12], we see what at first appears to be a numeric expres­
. sion" and one without the benefit of our discussion to this point
might think. that "X" will be assigned the value "14." As we now
know, however, macro doesn't recognize this string as a numeric
expression; instead, it will dutifully assign the string "4+2*5" to X.
In order to force the macro facility to evaluate the numeric expres­
sion and assign the result to X. we must use the %EV AL function, as
shown in example {3].

Example {4] demonstrates the use of symbolic substitution in a
macro assignment - using the value of one macro variable to
determine the value of another. Here, we've assigned the string "4"
toamacrovariablenamed "Y". In theassignmentforX, we reference
the value of Y by including it in the expression with a preceding
. ampersand (See if you can detennine what the value of X would be
if we used Y without the ampersand). Again, since we did not use
the %EV AL function, the unevaluated string is assigned to X. In
order to use the value of Y as part of a numeric expression whose
result would be assigned to X, we need to use the %EV AL function
as shown in example {51.

1295

2.2. Defining Macros

2.2.1. What is a Macro?

In its simplest form a macro is, much like a macro variable, a way of
assigning a name to a piece of text in your SAS program. Once a
macro has been defined (analogous to assigning a value to a macro
variable), they can be referenced symbolically in yourSAS program
to substitute their text values in place in your program.

Unlike macro variables, however, macros themselves can use pro­
gramming logic to modify the strings they refer to. We wiU see
examples of how they can use the values of macro variables in the
same way that a DATA step uses dataset-variable values to change
the result of the functions they perform.

2.2.2. the %MACROJ%MEND Statement

Macros are defined by using the %MACRO and %MEND state­
ments. The syntax for using these statements is shown in Figure 9.

Synlax:

%MACRO macroname (parameter definitions)

text to be substituted and/or
macro prograrrwing .statements.

%-MEND macronarne;

Figure 9. %MACRO statement syntax

The definition of the macro always begins with the %MACRO
statement, which is used to declare the name of the macro that we
will use in our program to reference its contents. The %MACRO
statement can optionally also be used to define one or more macro
parameters, special macro variables that are used when the macro is
referenced (we will discuss macro parameters in more detail
shortly).

Following the %MACRO statement in the macro definition is what
we will call the "body" of the macro. The macro body can be
-comprised of text that we want to substitute into our SAS program
when we reference, or "call" the macro, macro programming state­
ments that will perform logical processing on text, macro variables,
or other macros, or a combination of the two. Examples of macro
definitions that should clarify this will be presented .

The text that could make up the body of a macro could be parts of
SAS keywords, complete keywords, parts of statements, complete
statements, parts of DATA or PROC steps, or complete DATA and
PROCsteps.

Finally, the end of the macro definition is marked by the %MEND
statement. 1hls statement should include the name of the macro,
exactly as it is spelled on the corresponding %MACRO statement
that started the macro definition {theSASSystemallows you to omit
the macro name on the %MEND, but good programming style
demands that it be included).

2.2.3. Using Macros for Symbolic Subslitufion

Why would one want to use macro for symbolic substitution when
we have seen how nicely macro variables work for this purpose?
First of all, macro variables cannot make use of the macro program­
ming statements we mentioned. But even if we have no need for
logical processing of the text, the macro definition provides us with
a cleaner and more readable way to define a symbolic name for a
large block of code that makes up a Significant portion of our
program, and that may reqUire symbolic substitution within itselfin
order to be useful.

As an example, let's return to our simple reporting program, and
ponder a common problem. Our use of macro variables for symbolic
substitution is a fine solution to our need to run the program against
different datasets each time. What if the need arose to run the same
reports against different datasets at the same time? In order to
accomplish this with our program as it is currently written. we
would have to either run a separate job for each input dataset, or to
duplicate the entire block of code within the program file, once for
each dataset.

Usingmacro, however, we can let the SASSystemdo the duplication
for us. By defining a macro that contains the code for generating the
reports as its body, we could symbolically substitute as many copies
of this code into our program as we needed, simply by referencing
the macro by name. Figure 10 shows how we would rewrite our
programasa macro, and how we would thengeneratethereport for
two datasets.

%MAatO REPORTS;

PROC PRINT DATA = &DATASET SPLIT = "*" DOUBLE;
BY SALES_REP;

SUM SALES PROFIT COMMISSION;
SUMBY SALES_REP;

TITLE "Sales Listing Report for Dataset: &DATASET";
RUN;

PRQC FREQ DATA = &DATASET;

TABLES SALES_REP * SALES;
TITLE "Sales Frequency Report for Dataset: &DATASET";

RUN;

%MEND REPoo.TS;

%LET DATASET = SALES.QTRl;
%REPORTS

%LET DATASET = SALES.QTR2;
%REPORTS

Figure 10. A macro definHion for the reporting program

Notice that the body of the macro (we chose the name REPORTS)
contains the complete text of our original program, except the %LET
statement Once this code is read, starting at the %MACRO state­
ment through the %MEND statement, the macro processor knows
that whenever the symbolic reference %REPORTS is encountered in
the program, the text in the body of this macro is to be substituted.

1296

Following the macro definition, we see the familiar %LEf statement
we use to define the name of the dataset that we wish to use as input
for our reporting step. Then we see the symbolic reference to the
REPORTS macro - the macro processor will read this statement,
and substitute all the text from the body of the REPORTS macro into
the top of the input stack. As this text is read, each occurance of the
symbolic reference to the DAT ASETmacro variable will be replaced
by the variable's value, just as before. So these two lines of code are
replaced by a complete copy of our reporting program, with the
dataset name SALES.QTRI inserted at the appropriate places. The
last two lines of code repeat this process for a different value of DA­
T ASET - the name of the second dataset we wish reports for. The
complete program resulting from macro processing, as seen by the
standard SAS processor, is shown in Figure 11.

PROC PRINT DATA = SALES.QTRI SPLIT = "*" DOUBLE;

BY SALES_REP;
SUM SALES PROFIT COMMISSION;
SUMBY SALES_REP;
TITLE "Sales Listing Report for Dataset:SALES.QTRl";

RUN;

PROC FREQ DATA - SALES.QTRl;
TABLES SALES_REP * SALES;
TITLE "Sales Frequency Report for Dataset: SAI.ES. QTRl ";

RUN;

PROG PRINT DATA = SALES.QTR2 SPLIT = "*" DOUBLE;

BY SALES_REP;
SUM SALES PROFIT COMMISSION;
SUMBY SAIES_ BEP;
TITLE "Sales Listing Report for Dataset: SALES.QTR2";

RON;

PROC FREQ DATA = SALES.QTR2;

TABLES SALES_REP * SALES;
TITLE "Sales Frequency Report for Dataset:SALES.QTR2"';

RUN;

Figure 11. lhe reporting macro resolved

2.2A. Macro Parameters

Our example program can be simplified further through the use of
macro parameters. As mentioned above, macro parameters are
special macro variables that are intended to be used with a specific
macro, are defined at the same time as the macro, and are assigned
a value when the macro is called. In theexamplereportingprograrn,
you can see that the macro variable DATASET is used specifically by
the REPORlS macro; its value is assigned immediately before the
macro is called, and its value is only needed inthebodyofthe macro.
Under these conditions, you should define the macro variable as a
parameter.

There are several reasons why using parameters is usually prefer­
able to using regular macro variables, most of which are beyond the
scope of this paper. The most obvious and. relevant to our example
is the way it simplifies the use of the macro and makes the program­
ming easier to read.

To create a macro parameter, we simply add its definition to the
%MACRO statement. Following the name of the macro (but before
the semi-colon), we add a pair of parentheses. Within the parenthe­
ses, we give the name of the parameter, followed by an equal-Sign.
Thiscan optionally be followed by a default value, one that we wish
to be assigned to the parameter whenever the macro is called in a
program and an explicit value is not given.

A common use for this technique is to enable a given program to be
run using a different dataset as its source of input on different
occasions. Theexamplein Figure 3definesan example of a two-step
reporting program that could make use of thesymboHc substitution
technique.

PROC PRINT DATA = SALES.QTR1 SPLIT = "*" DOUBLE;
BY SALES_REP;
sOM SALES PROFIT COMMISSION;
SUMBY SALES_REP;

TITLE "Sales Listing Report for Dataset:SALES.~";
RUN;

PROC FREQ DATA = SALES.QTRl;
TABLES SALES_REP * SALES;
TITLE "'Sales Frequency Report for Dataset:SALES.Q'l'Rl";

RUN;

Figure 3. Simple reporting program

In order to change this program so that a dataset other than
SALES.QTRI will be used as the basis of the reports, a programmer
would havetosearch the program to locate aU four occurances of the
dataset name and recode them to refer to the name of the new
dataset. Notabigchoreforthissimpleexample,butinalarger,more
complicated program, it could be a very time-consuming and error­
prone- task. By changing the program to take advantage of the
symbolic-substitution capabilities offered by macro, we can reduce
the number of places in the rode that the dataset name needs to be
changed to one.

ChangingaSAS program to use symbolic substitution requires three
steps. First, we must locate all the explidt references to thecode that
will change from run to run in the program. We have already done
this by showing the dataset name references in bold-face in Figure 3.

Second, we need to choose a "symbol" (macro variable) name that
will be used to indirectly reference this code in the revised program,
and substitute this name, preceded by an ampersand (" &") for each
occurance of the explicit references. This revision to our reporting
exatnpleisshown inFigure4 (we chose the name JJDAT ASET" to use
as our symbol).

PROC PRINT DATA ~ &DATASET SPLIT = "*" DOUBLE;
BY SALES_REP;
SUM SALES PROFIT CCMMISSION;

SUMBY SALES_REP;
TITLE "Sales Listing Report for Dataset: &DATASET";

RUN;

PROC FREQ DATA = &DATASET;

TABLES SALES_REP * SALES;
TITLE "Sales Frequency Report for Dataset: &~";

RUN;

Figure 4. Using a macro-variable symbof

The final step in changing our program to use symbolic substitution
is to devise a mechanism for assigning a value to our macro-variable
"symbol" - a means of telling the macro facility that we want the
name of the dataset that we are interested in using for the reports
substituted in place of each occurance of "&DATASET" in the
program before the standard SASprocessorsees the program. There
are many ways to approach this,dependingon the ways in which we
choose to use the many other features of the macro facility (all of the
macro programming techniques we will be discussing in this paper
use macro-variable values in one way or another).

The simplest way to assign a value to a macro variable is to use the
macro facility's assignment statement, '¥oLET. This statement as­
signs values to a macro variable by simply following the %LET
keyword with the name of the macro variable, an equals-sign e'="),
and the string value to be assigned. Using this approach, our
co~pleted example is shown in Figure 5.

1297

%-LET DATASEt = SALES.Q'llU;

PROC PRINT DATA = -&DATASET SPLIT - "*H DOUBLE;

BY SALES_REP;
SUM SALES PROFIT COMMISSION;
SUMBY SALES_REP;
TITLE "Sales Listing Report for Dataset: &DATASET";

RUN;

PRClC FREQ DATA = &DATASET;

TABLES SALES_REP, * SALES;
TITLE "Sales Frequency Report for Dataset: &DATASET";

RUN;

Figure 5. Assigning a value to the symbol

Let's stop and study what will happen when this job is submitted
and processed by the macro and SAS processors that make up the
SASSystem. First, the entire program isstored in the memory region
we referred to astheinput stack. Each word of code will be read from
this region in tum and processed by the appropriate processor.
When the first word is read, "%LET", the SAS System is able to
recognize it as a keyword for a statement that the macro processor is
supposed to handle, so the statement is sent there. The macro
processor then executes the statement, making a note that the
symbol "&DATASET" should be replaced with the value
"SALES.QTR1".

As the next line of code is read, each standard SAS keyword is sent
to the standard SAS processor for handling. When the symbol
"&DATASET" is encountered, however, theSASSystem recognizes
it as a word that the macro processor must handle, because it starts
with an ampersand. Themacroprocessor,revicwingitsnotethatthe
symbol "'&DATASET" is to be replaced with the value
"SALES.QTR1", generates this string and sends it back tothe input
stack, so that "SALES.QTR1" will be,thenext word read by the SAS
System for processing. When this word is read, because it does not
beginwithanampersand(&)orpcrcent-sign(%),itwillbesenttothe
standard SAS processor, where it will be considered a part of the
PROC PRINT statement. Thus, the value of our symbol "&DA­
TASET" has been substituted in place of its name in the statement.

This process of SAS code processing and symbolic substitution
continues for the rest of our program. The completed program, as
the standard SAS processor sees it, is shown in Figure 6.

PRClC PRINT DATA = SALES.Q'l'Rl. SPLIT = "*" DOUBLE;
BY SALES REP;
SUM SALES PROFIT COMMISSION;
SUMBY SAIES _REP;
TITLE "Sales Listing Report for Dataset:SAIBS.QTRl";

RUN;

PROC FREQ DATA = SALES.Q'llU;

TABLES SALES_REP * SALES;
TITLE "Sales Frequency Report for Dataset:SAIES.QTR1";

RUN;

Figure 6. ResuHs of the symbolic substitution

4. Iterative Substitution

4.1. What is Herative Subslitufion Logic?

Iterative substitution is the term used to describe the technique of
using macro logic to repeat a segment ofSAS code in your program,
so that when combined with symbolic substitution, a sirnilarprocess
can be performed on many data entities or with changing parame­
ters without unnecessary redundencies in your program. This
technique usually makes use of the %DO/%END statement struc­
ture inoneof its manyfonns. Figure 16 shows the syntax ofthethree
fonns that this statement can have in the macro facility language.

Syntax:

%00 %WHlLE (expression);

text to be iteratively-substituted

%-END;

or

%DO %-UNTIL (expression);

text to be iterativaly-substituted

%-END;

or

%00 macro-var = start-value %-TO end-value
[%-BY increment];

text to be iteratively-substituted

%END;

Figure 16. Heralive %DO/%END statement syntax

All three of these syntax forms have equivalent forms with the DOl
END statement structure of the DATA-step language. The firstfonn
uses a "while" clause to control the number of times the text in the
body of the structure is to berepeated. Thisclausecontainsa boolean
expression that is evaluated at the start of each repetition, and if the
expression evaluates to "true", the text in the body will be substi·
tuted and repetition will continue. If it evaluates to a "false"
however, the body of the structure will not be substituted, and the
looping will stop. The manner in which the code reads - liDO the
following program text WHILE this condition is true" - portrays its
functioning very well.

The second form is very similar to the first, in that it also uses a
boolean expression to control the number of times the structure will
repeat itself in the program. The "until" clause specifies that looping
should continue only if the expression is NOT true - "00 the
following program text UNTIL this condition is true". Another
subtle difference between the WlllLE and UNTIL forms is that the
WHILE loop tests its condition at the start of each iteration, and the
UNTIL loop tests at the end. What tros means is that if the expression
is false at the start of the first cycle of a WHILE loop, the loop's
contents will never be substituted. An UNTIL loop will always be
executed at least once, however, since its test is performed after the
loop is performed..

The third fonnof the %DO/%END structure uses a macro variable
as a counter, to perform the repetition as the variable takes on a set
of ordinal, discretely-spaced values. The values used for the start·
value, end-value, and the optional increment (if the %BY increment
component of the statement is not used, %BY 1 is assumed), are all
used to detennine the number of times the loop will repeat and what

1298

the value of macro-var will be during each cycle. The first time
through the loop, macro-var will have the value of start-value. At the
start of each successive cycle of the loop, the value of macro-var will
be increased by the amount of increment. If the new value of macro­
var is greater than end-value, the loop will not be repeated again.

4.2. A Year-End Reporting Program

How can we make use of this iterative substitution technique to
improve our reporting program example? Let's assume that our
users have been taking advantage of the %REPORTS macro for some
time and are very happy with the convenience it prOvides, but that
the end of the fiscal year for our company is almost upon us. Wecan
anticipate the need to generate reports for the entire year based on
the final, updated contents of each of the quarterly-sales datasets.
There will still be times when we will want to limit the scope of the
Teport request to one report format or the other. Can we use macro
to make this task easier, to eliminate the need to repeat calls to our
%REPORTSmacro,and to rriake the same parameter changes to each
one in the program? Figure 17 shows how we would have to code
a request for the PROC PRINT using the macro we have defined so
far.

%REPORTS (DATASET=SAIES. QTRl, REPORT2=NO)

%REPORTS(DATASET-SALES.QTR2, REPORT2-NO)

%REPORTS (DATASET=SAIES. QTR3, REPORT2=NO)

%REPORTS (DATASET-SAIES. QTR4, REPORT2=NO)

Figure 17. MuHiple reports wffhoul fferafive substitution

As you can see, each line of code is exactly the same except for the
dataset-name reference, and that is only different by the last charac­
ter,a number that steps from the value 1 to the value4 with each line
of code. Since we just discussed a form of the %DO/%END
structure that will enable us to repeat code as we increment a macro­
variable from some starting value to an ending value, it may occur
to you that we could use this structure to generate the repetitive
code.

Figure18showsamacrothatcandojustthatforus. The%ALLQTRS
macro is defined with the REPORT1 and REPORT2 parameters just
as our previous macro was, so that we can "tum off" one report or
the other for all of the quarterly data as a group. It uses the %DO
statement to define a loop that will repeat its contents in our SAS
program as the macro·variable INDEXstepsin value from 1 t04. The
contents of this loop is our familiar %REPORTS macro, which will
itself be processed by the macro, and generate its defined. SAS code,
for each cycle of the %00 loop. Each time %REPORTS is processed,
its parameters REPORT1 and REPORT2 will take on the same value
of the %ALLQTRS' parameters that happen to have the same name,
since we are using symbolic substitution on the %REPORTS call to
assign these values.

%MACRO AL1QTRS(REPORT1=NO, REPORT2~NO);

%-DO INDEX = 1 %-TO 4;

%REPORTS{DATASET=SALES.QTR&INDEX,

REPORTl=&REPORTl, REPORT2~&REPORT2)

%-END;

%MEND ALLQTRS;

Figure 18. Macro to generate reports lor all quarters

Look very closely at the assignment of the DA TASEr parameter on
the %REPORTS call in the %00 loop. Part of the value assigned to
this parameter is constant text ("SALES.QTR"). Also part of the
assigned value, however, is a symbolic substitution of our %00
loop's macro-variable INDEX. When the loop is on its first cycle,
INDEX has the value 1, so the DATASET parameter will have the
value SALES.QTR, followed immediately by this value of 1, or
SALES.QTRl,thenameofourfirst-quartersalesdataset. Thesecond
time through, INDEX has the value 2, so DATASET will be assigned
the value SALES.Q1R2, and so on.

By combining the iterative substitution technique with the others
such as symbolic substitution, redundant processing can be reduced.
toaminimumnumberoflinesofcodeinyourprogramfile. Since the
"common" code is not repeated in your source file, changes that will
inevitably have to be made only need to be made once.

5. Summary

Effective use of theSAS macro facility requires a basic understand­
ing of its intended purpose and howit worksinconjunction with the
rest of the SAS System. The macro facility provides a separate
language that is used to create and modify standard SAS programs
bysymbolically,conditionally,oriterativelysubstitutingtextwithin
the body of the program when the macros or macro variables are
referenced. Proper use of this capability will enable you to write
program systems that are smaller, more readable, and reuseable in
similar applications. The benefits that these characteristics provide
will be directly measurable in the time you save in maintaining and
rewriting your programs as the users needs change.

The authors can be contacted at:

ORI, Inc.
601 Indiana Avenue, NW, Suite 1000
Washington, DC 20004
(202) 737-2666

SAS is a registered trademark of SAS Institute, Inc.

1299

6. References

1. SAS Institute, Inc., SAS Users' Guide: Basics. Version 5
Edition. Cary, NC: SAS Institute, inc., 1985.

2. SAS Institute, Inc., SAS Guide to Macro Processing. Version
5 Edition. Cary, NC: SAS Institute, Inc., 1986.

3. Phillips,Jeff, "TheSAS Macro Facility," Proceedings of the
Twelfth SAS Users' Group International Conference. Cary,
NC: SAS Institute, inc., 1987.

4. Phillips~ Jeff, 'The Use of the Macro Facility in a Systems
Development Environment/' Proceedings of the Eleventh
SAS Users' Group International Conference. Cary, NC: SAS
Institute, Inc., 1986.

5. Merlin, Ross, "Sample Utility Macros," Proceedings of the
EleventhSAS Users' Group International Conference. Cary,
NC: SAS Institute, Inc., 1986.

6. Pulgino, Robert, "User Interface Tools and the Design of
Interactive Systems," Proceedings of the Twelfth SAS
Users' Group International Conference. Cary, NC: SAS
Institute, Inco, 1987.

