

Wasserbedarf, Abwasseranfall Abwasseranfall = Trinkwasserauslieferung - Verluste in den Leitungen - Bewässerung von Gärten - Verbrauch (Landwirtschaft, Bau, Brunnen, ...) + Eigenförderung der Industrie + Fremdwasser + Regenwasser - Versickerung - Verluste von Kanälen

$\label{eq:masserwitschaft} \begin{tabular}{ll} Maßgebliche Abflussgrößen für Bemessung \\ \hline & Trennsystem \\ & Schmutzwasserkanal: \\ & Q_{ges} = Q_t + Q_{r,T} \\ & - Regenwasserkanal \\ & Q_{ges} = Q_r \\ \hline & Mischsystem \\ & Q_{ges} = Q_m = Q_t + Q_r \\ \hline \\ Stedlungswasserwitschaft \\ \hline & Kap. 4 Siedlungsertwässerung \\ \hline \end{tabular}$

Häusliches	Schmutzwa	asser O.	
riadoriorios	COMMICE	23301 Q _n	
Siedlungs-	täglicher	Spitzenabflussdauer	stündlicher
größe	Schmutz- wasseranfall	zum Erreichen des	Spitzen- abfluss
(1000 E)	(I/(E·d))	Tageswertes	(I/(s·1000E))
(1000 E)	(I/(E·u))	(h)	(I/(S-1000E))
< 5	150	8	5,2
5 – 10	180	10	5
10 – 50	220	12	5,1
50 – 250	260	14	5,2
> 250	300	16	5,2
			(ATV A118)
Siedlungswasserwirtschaft	Kap.	Siedlungsentwässerung	PK, 2005 - Seite 7

Einrichtung	(I/d)	
Krankenhaus, je Tag und Bett	250 - 600	
Hallenbad, je Besucher	150 - 180	
Freibad, je Besucher	150 - 200	
Schulhaus, je Schüler und Tag	10 - 50	(Sportanlagen, Dusche)
Bürohaus, je Beschäftigten	40 - 60	
Kaserne, je Person	250 - 350	
Schlachthof, je Stück Großvieh	300 - 400	
Kaufhaus, je Beschäftigten	100 - 1000	(Restaurant, Klimaanlage)
Gaststätte, je Gast	15 – 20	
Hotel, je Gast	200 - 600	

Fremdwasser Q_f

- Grundwasserinfiltration
- Drainage und Sickerwasser
- Quell- und Bachwasser
- Brunnenwasser
- Kühlwasser und Wasser aus Wärmepumpen
- Überlaufwasser aus Reservoirs
- → Das Fremdwasseraufkommen ist variabel

Grobe Abschätzung

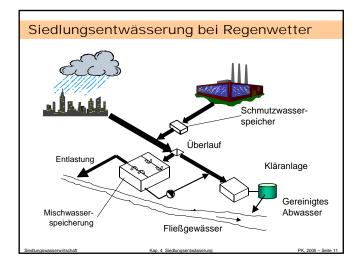
$$Q_f = (0.3 \div 0.4) \cdot Q_s$$

 $Q_f = A_{red} [ha_{red}] \cdot (0.05 \div 0.15) [1/(s \cdot ha_{red})]$

Siedlungswasserwirtschaft

Siedlungsentwässerung PK. 2005 – Se

Abwasserströme: Regenwetter


Bedeutung von Regenereignissen

- Regenwasserabfluss \rightarrow maßgebend für Kanaldurchmesser
- Regenwasser nach Oberflächenabfluss kontaminiert
- Wegen Regenwasser wird Schmutzwasser entlastet
- Kanalsedimente werden erodiert
- Kläranlagenbetrieb wird über das Regenereignis hinaus gestört

Siedlungswasserwirtschaft

Kap. 4 Siedlungsentwässerung

PK. 2005 - Seite 10

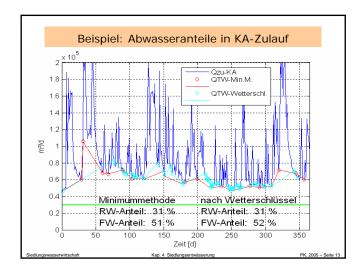
Kapazität der Kläranlage

Mischwasserzufluss zur Kläranlage

$$Q_m = n \cdot Q_s + Q_f$$
 n: 2...6

Mischwasserbecken ("Regenüberlaufbecken")

- ullet Speicherung ullet verzögertes Ableiten zur Kläranlage
- Partielle Reinigung → Überlauf


Mischwasserentlastung

- Direkt aus Kanalisation → Kanalentlastung
- Aus Mischwasserbecken → Beckenüberlauf
- Unterschiedliche Beschaffenheit je nach Phase und Ereignisverlauf

dlungswasserwirtschaft

o. 4 Siedlungsentwässerung

PK, 2005 - Seite

2 Grundlagen zur Systembeschreibung

4.2 Parameter zur Beschreibung der Abwasserbeschaffenheit

vasserwirtschaft Kan 4 Siedlungsentwässerung PK 2005 – Seite

Gase

O, Sauerstoff

- · einfache Messung
- Verbrauch bei Abbau organischer Substanz und oxidativen Prozessen (→ Belüftung für aeroben Abbau)

CO₂ Kohlenstoffdioxid

- Stoffwechselprodukt
- · Einfluss auf Kalk-Kohlensäure-Gleichgewicht, pH

H₂S Schwefelwasserstoff

- aiftic
- in niedrigen Konzentrationen sehr geruchsintensiv
- Vorkommen bei anaeroben Bedingungen

lungswasserwirtschaft

Kap. 4 Siedlungsentwässerung

PK, 2005 - Se

Partikuläre Stoffe

TSS totale suspendierte Stoffe (total suspended solids)

- Filter mit Porengröße 0.45 μm
- Tendenz zum Absetzen

GV Glühverlust (VSS, volatile suspended solids)

- Glühen der TSS bei 650°C
- der verglühte Anteil entspricht ~ organischer Substanz
- Maß für die Biomasse
- · zentrale Bedeutung für die Sauerstoffzehrung

TSS - VSS Glührückstand

• mineralische Stoffe

Kap. 4 Siedlungsentwässerung PK. 2005 – Seit-

Summenparameter: Sauerstoffzehrung

BSB₅ biochemischer Sauerstoffbedarf in 5 Tagen (BOD₅)

- 5 Tage, 20°C, dunkel → Reduktion O₂-Gehalt
- · biologisch abbaubare organische Stoffe
- Verdünnung m. O₂-reichem Wasser, animpfen Biomasse

CSB chemischer Sauerstoffbedarf (COD)

- vollständige Oxidation org. Stoffe bis zu CO₂ und H₂O → wie viel O₂ ist nötig
- Oxidationsmittel Kalium-Dichromat (K₂Cr₂O₇) in kochender und stark saurer Lösung
- Fast alle org. Stoffe, also nicht nur biologisch abbaubare
- CSB lässt sich bilanzieren → Elektronenübergang

lunnswassanuirtschaft Kan 4 Siedlunnsantwissanun PK 2005 -

Stickstoff

N₂ elementarer Stickstoff

- gasförmig
- NO₂ Hauptanteil an Gasen der Atmosphäre
- schlecht löslich
- Endprodukt der Denitrifikation $NO_3^- \rightarrow N_2$

TKN totaler Kjeldahl Stickstoff

- Summe (org. N + Ammonium-N)
- org. N in Eiweißen und Proteinen
- org. N durch chemische Oxidation als Ammonium freigesetzt → Messung

edlungswasserwirtschaft

Kan 4 Siedlungsentwässerung

PK, 2005 - Seite 1

Stickstoff

NH₄⁺ Ammonium und NH₃ Ammoniak

- die Summe wird gemessen
- Gleichgewicht temperatur- und pH-abhängig
- Temp. und pH höher → NH₃ -Anteil größer
- Abbau organischer Stoffe → NH₄⁺ wird freigesetzt
- Nitrifikation zu Nitrat → Sauerstoffzehrung

NO₃ Nitrat und NO₂ Nitrit

- $(NH_4^+ + NH_3) \rightarrow NO_2^- \rightarrow NO_3^-$
- · Nitrit ist ein starkes Fischgift
- · Nitrat im Grundwasser (vorrangig durch Landwirtschaft)
- · Nitrit ist besser messbar als Nitrat

Siedlungswasserwirtschaft

Van 4 Siadhungsantuitesanung

K 2005 - Saita 19

Kohlenstoff und Phosphor

TOC totaler organischer Kohlenstoff

DOC gelöster organischer Kohlenstoff

- Alle organischen Verbindungen
- Messung (→ CO₂) aufwendig, teuer, genau

TP, P_{tot} totaler Phosphor

GP gelöster Phosphor

PO₄-P Ortho-Phosphat

- org. P Bestandteil von DNA, RNA
- Ortho-Phosphate in Salzen der Phosphorsäure $(H_3PO_4, H_2PO_4, HPO_4, PO_4)$
- Analytik: org. P wird mineralisiert, das dadurch entstehende Ortho-Phospat wird gemessen

ingswasserwirtschaft Kap. 4 Siedlung

PK, 2005 - Seite 2

Metalle

Fe Eisen und Al Aluminium

• Einsatz als Fällungs- und Flockungsmittel

As Arsen, Cd Cadmium Cu Kupfer sowie weitere SM

- toxisch
- Vorkommen geogen und anthropogen bedingt
- · Eintrag mit häuslichem Abwasser und Regenwasser

dlungswasserwirtschaf

Kap. 4 Siedlungsentwässerung

PK. 2005 – S

Mittlere Schmutzfracht eines Einwohners

Parameter	Fracht [g/(E d)]		bei 150 L/(E d) g/L]
		ohne Q _f	mit $Q_f = 0.5 Q_s$
TSS	75	500	333
VSS	40	267	178
BSB ₅	60	400	267
CSB	120	800	533
TKN	11	73	49
P gesamt	1,8	12	8

Imhoff, 1999, Stier et al., 2003

edlungswasserwirtschaft

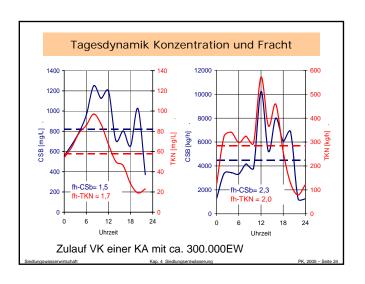
Kap. 4 Siedlungsentwässerung

PK. 2005 - Seite 2

Zusammensetzung von Urin

pН	8.9
TR	30 g/l
LF	18-23 mS/cm
CSB	4 300 mg/l
TOC	3 400 mg/l
TN	4 300 mg/l
К	1 350 mg/l
Na	2 100 mg/l

Р	410 mg/l
PO ₄ 3-	1 250 mg/l
CI-	3 450 mg/l
Fe	2 mg/l
Cu	25 mg/l
Pb	131 μg/l
Mg	0.2 mg/l
Ca	7 mg/l

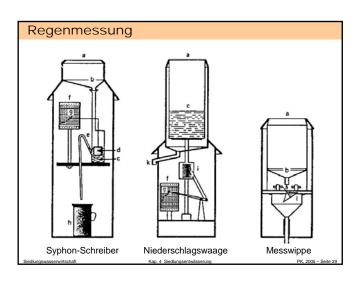

Anteile im kommunalen Abwasser:

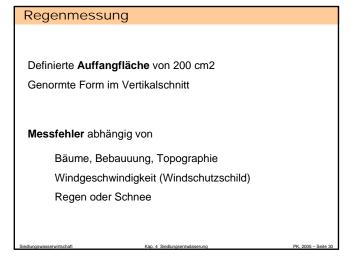
- 80 90% des TKN, 50% des P
- Arzneimittelrückstände, SM

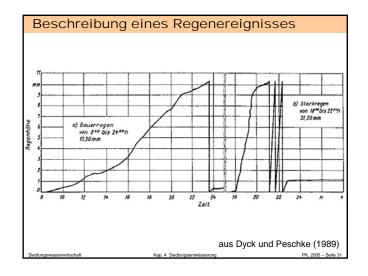
Otterpohl, 2000, Tettenborn et al., 2005

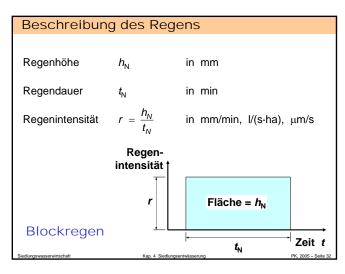
dlungswasserwirtschaft Kap. 4 Siedlungswasserwirtschaft

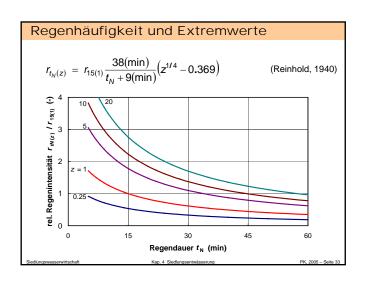
PK 2005 - Seit

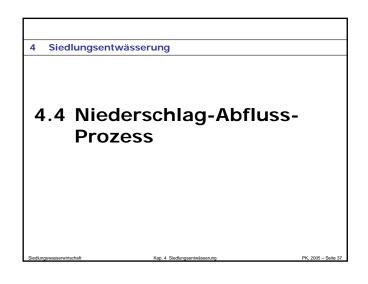


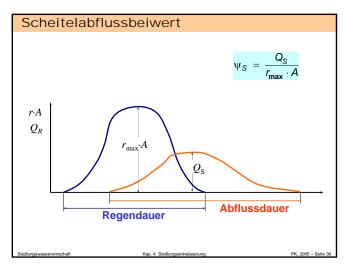

4.3 Regencharakterisierung


Siedlungswasserwirtschaft Kap. 4 Siedlungsertwässerung PK, 2005 – Seite 26

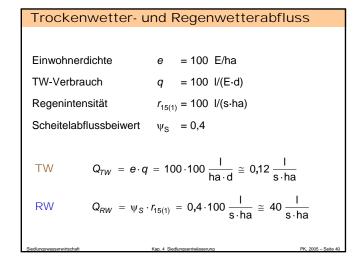

Niederschlag-Ab	fluss-Proz	ess
Niederschlag	$\rightarrow \rightarrow \rightarrow$	Abfluss
nicht vorhersagbar		systematischen Verän derungen unterworfe
statistisch erfassbar		statistisch nicht erfassba
	Modelle	
Messungen		Dimensionierun

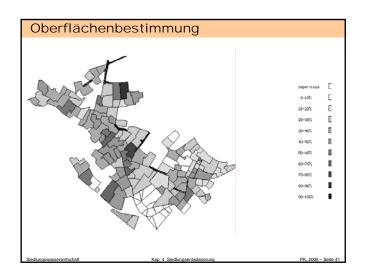

Regenwasserabfluss → maßgebend für Kanaldurchmesser Regenwasser nach Oberflächenabfluss kontaminiert Wegen Regenwasser wird Schmutzwasser entlastet Kanalsedimente werden erodiert Kläranlagenbetrieb wird über das Regenereignis hinaus gestört

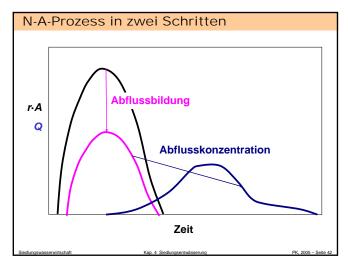


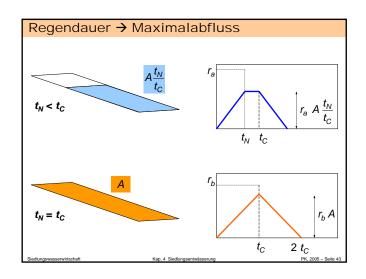


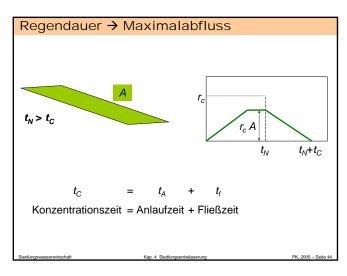
Bezugsregeni	nten	sität r 15(1) in I	/(s⋅ha)	
Baden-Baden	120	Göttingen	98	Oldenburg	108
Berlin	94	Hamburg	99	Osnabrück	150
Bonn	108	Hannover	100	Passau	123
Bremen	108	Köln	97	Saarland	135
Dortmund	120	Konstanz	150	Stuttgart	126
Dresden	102	Krefeld	112	Tübingen	200
Essen	96	Lübeck	106	Ulm (Donau)	140
Flensburg	100	Mainz	117	Wetzlar	122
Frankfurt/Main	120	München	135	Wilhelmshaven	85
Garmisch-Patenkirchen	200	Münster	100	Wolfsburg	112
Siedlungswasserwirtschaft		ap. 4 Siedlungsentwässerung			5 – Seite 34

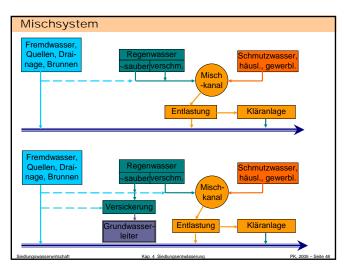

		Kostr	a-At	:las de	es DV	VD		
- Rast - Dau - Wied	erstufe	n rsinter	/all	5 n	km x nin. – a – 1	. –	n	
Т		0.5 a		1 a		2 a		5 a
D	hN	RN	hN	RN	hN	RN	hN	RN
	[mm]	[L/(s ha)]	[mm]	[L/(s ha)]	[mm]	[L/(s ha)]	[mm]	[L/(s ha)]
5 min	4.7	158.2	7.3	244.6	9.9	331.1	13.4	445.4
10 min	6.1	102.2	9.2	153.3	12.3	204.5	16.3	272.1
15 mii	7.1	79.0	10.5	116.7	13.9	154.3	18.4	204.0
20 min	7.9	65.8	11.5	96.1	15.2	126.4	20.0	166.4
30 min	9.2	50.9	13.2	73.1	17.2	95.4	22.5	124.8
45 min	10.6	39.3	15.0	55.6	19.4	72.0	25.3	93.7
60 min	11.8	32.7	16.5	45.8	21.2	59.0	27.5	76.4
90 min	13.6	25.3	18.7	34.7	23.8	44.1	30.6	56.6
	15.1	21.0	20.5	28.5	25.9	35.9	33.0	45.

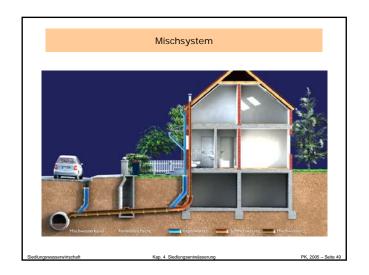

Wiederkehrperiode zur Kanaldin	nensionierung
Gebiet	Jährlichkeit z (a)
Allgemeine Bebauungsgebiete	1 – 2
Stadtzentren, wichtige Gewerbe- und Industriegebiete	1 – 5
Straßen außerhalb bebauter Gebiete	1
Straßen-, Autobahnunterführungen, U-Bahn-Anlagen	5 – 20
Siedlungswasserwinschaft Kap. 4 Siedlungsentwässerung	PK, 2005 - Seite 36

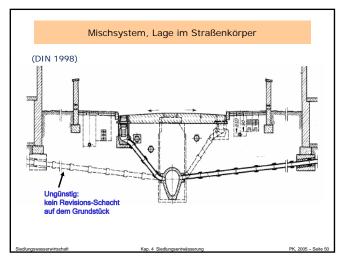


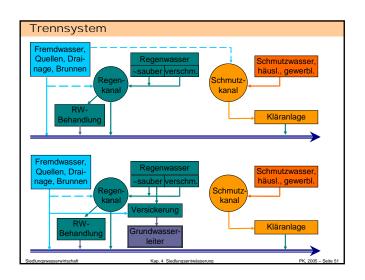


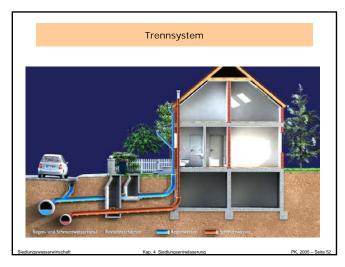

Oberfläche	$\alpha_{_{ m S}}$	Bebauung	Ψs
Metall- und Schieferdächer	0,95		
Dachziegel und Dachpappe	0,90	Bauklasse I	
Holzzement-, Flachdächer	0,50-0,70	bei ca. 350 E/ha	0,8
Asphaltstraßen, -fußwege	0,85-0,90	Bauklasse II	0.00 0.05
Pflaster	0,75 - 0,85	bei ca. 250 E/ha	0,60 - 0,65
Reihenpflaster (offen)	0,25-0,60	Bauklasse III	0.40 0.50
Schotterstraßen	0,25-0,60	bei ca. 150 E/ha	0,40 - 0,52
Kieswege	0,15-0,30	Bauklasse IV	0.05 0.40
Unbefestigte Flächen	0,10-0,20	bei ca. 100 E/ha	0,25 - 0,46
Rasengittersteine	0,15	Bauklasse V	0.05 0.05
Park- und Gartenflächen	0,05-0,10	ohne Bebauung	0,05 – 0,35
Wiese, Wald	0		

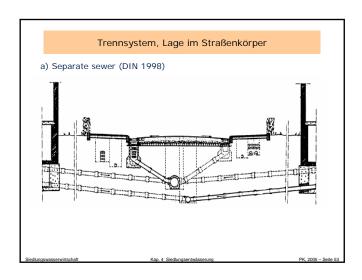


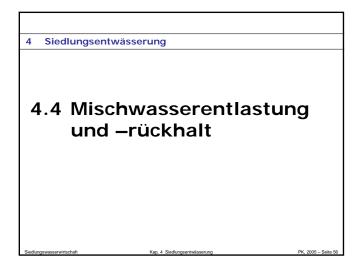


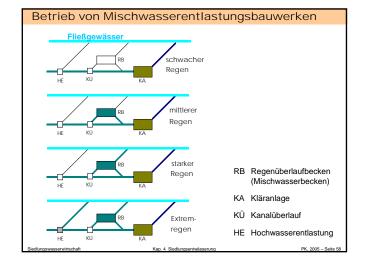

Maßgebende Regendauer bei fehlenden Berechnungsgrundlagen Gruppe Gefälle befestigter Anteil t_N < 1% ≤ 50% 15 min 1 > 50% < 1% 2 1% - 4% > 50% 10 min 3 4% - 10% > 50% > 10% ≤ 50% 5 min > 10% > 50% 4

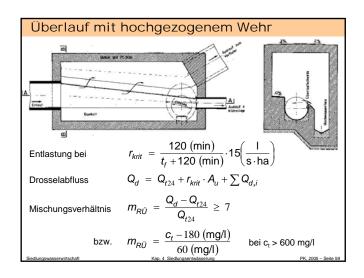

Anwendungsbereich von N-A-Modellen Zeitbeiwertverfahren → Maximalabfluss → Extremregen als Input → Dimensionierung von Kanalquerschnitten Detaillierte numerische Simulationen → Abfluss als Funktion der Zeit an allen wichtigen Punkten → Gemessene Regenereignisse als Input → Überprüfung der Funktion des Kanalnetzes → Optimierung des Betriebs und der Steuerung → Abschätzung der Gewässerbelastung

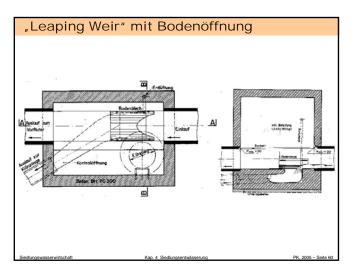






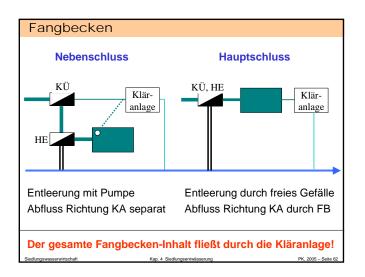


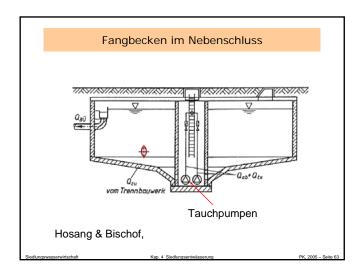

Vergleich	von Misch- und Trenn	ısystem (I)
Randbed.	Mischsystem	Trennsystem
Kläranlage	BelastungsschwankungenRegenbecken erforderlichHöhere Bemessungswerte,	 gleichmäßigere Belastung in Bezug auf Volumenstrom und Fracht
Vorfluter	Entlastung von Mischwasser und damit teilweise des Schmutzwassers	Regenwasser wird ungeklärt eingeleitet Kein Schmutzwasseranteil
	 Durch Mischwasserbecken Verzögerung der Einleitung 	Ohne Retention schnellere Einleitung
Kanalnetz	Geringere Baukosten großer Platzbedarf im Bereich von Mischwasser- becken	Zwei Kanäle, höhere Baukosten größerer Platzbedarf im Baugrund Keine Mischwasserbecken
Siedlungswasserwirtschaft	Kap. 4 Siedlungsentwässerung	PK, 2005 – Seite 54

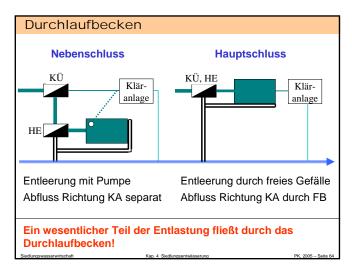

Randbed.	Mischsystem	Trennsystem
Ablagerungen	Spülwirkung bei RegenwetterGefälle kann geringer sein	 Schmutzwasserkanal anfällig rel. Hohes Gefälle nötig
Unterhalt	weniger Reinigungsaufwandgute Lüftung	Mehr Reinigungsaufwand gesamte Kanallänge größer
Hausanschluss	keine Fehlanschlüsse Kellerrückstau	Problem Fehlanschlüsse kein Kellerrückstau
Pumpen	große Pumpenleistung nötig, die nur selten genutzt wird	häufig nur Pumpen für Schmutzwasser nötig

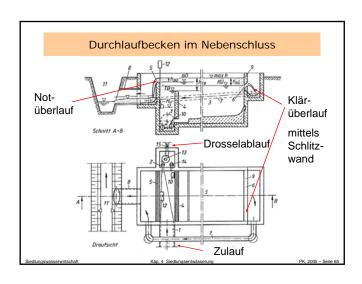
Elemente der	Regenwasserbe	handlung			
Funktion	Element	Verwendung			
Entlastung	Hochwasserentlastung Kanalüberlauf	Mischsystem			
Regenüberlaufbecken (Mischwasserbecken)	Fangbecken Durchlaufbecken Verbundbecken Stauraumkanal	Mischsystem			
Regenklärbecken		Trennsystem			
Regenrückhaltebecken		vor Mischsystem, Trennsystem			
Schmutzstoffrückhalt	Schmutzwasserspeicher Gully	Vor Mischsystem Misch-, Trennsystem			
Siedlungswasserwirtschaft	Kap. 4 Siedlungsentwässerung	PK. 2005 – Seite 5			

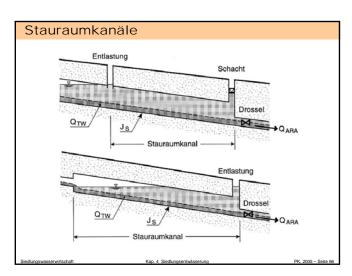
Fangbecken

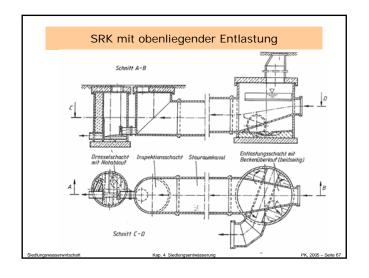

Schmutzstoß
kurze Konzentrationszeit (< 15 min)
mittleres Gefälle

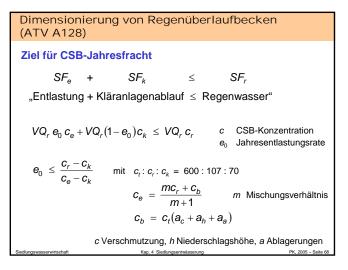

Durchlaufbecken

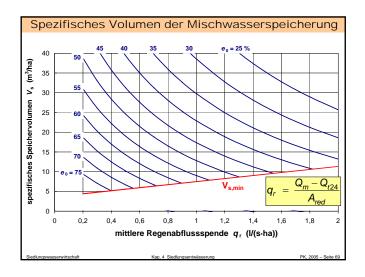

kontinuierliche Klärung bzgl. suspendierter
Stoffe

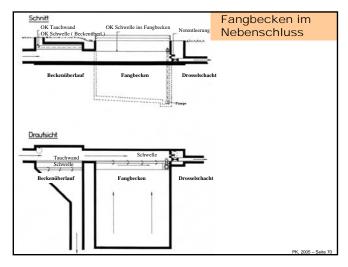

Verbundbecken

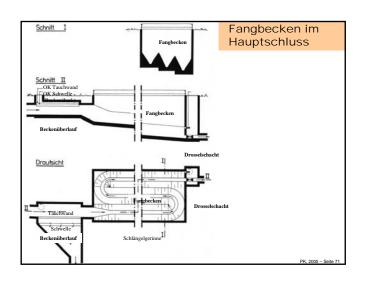

Kombination
Fangteil plus Klärteil

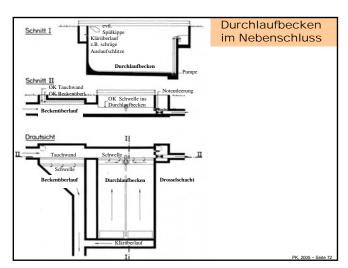


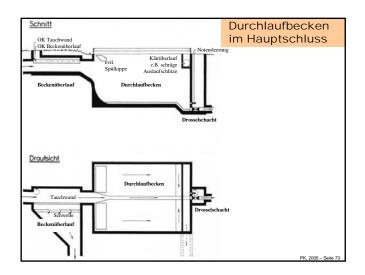


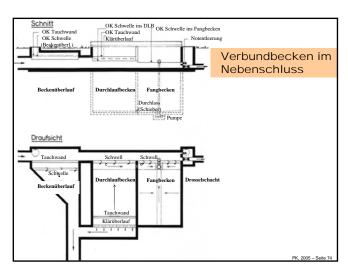


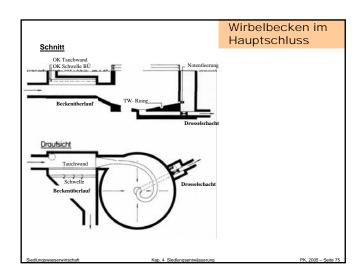


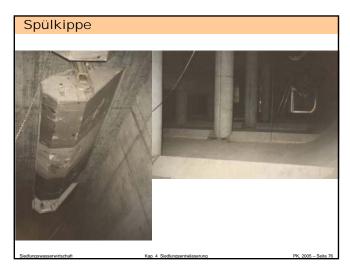


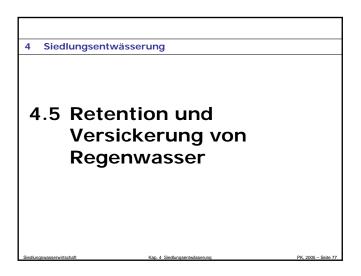


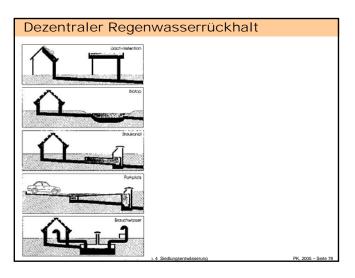


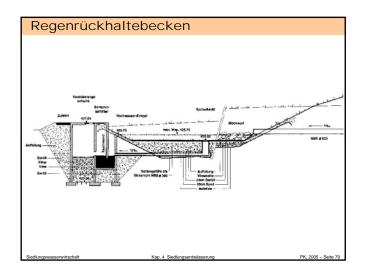


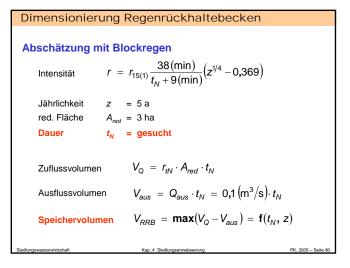


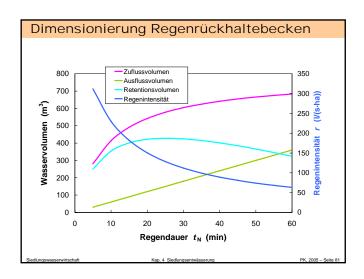












Versickerung

Mittel

Entsiegeln von Oberflächen

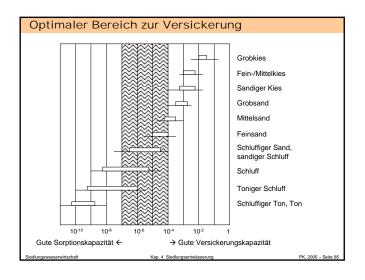
Ableiten von z.B. Dachwasser in eine Versickerungsanlage

Bedingungen

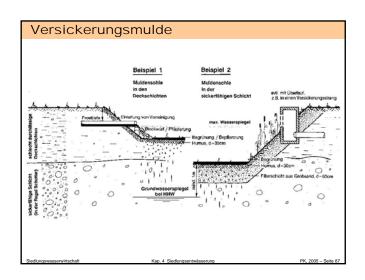
Nutzung des entsprechenden Teileinzugsgebietes

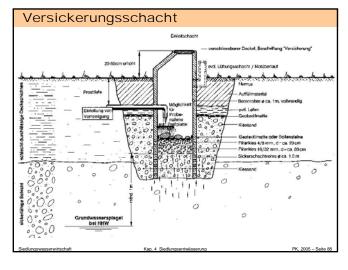
Beschaffenheit des Bodens

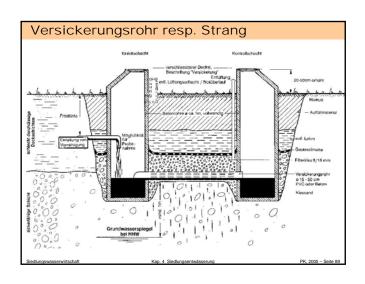
Distanz zur Trinkwasserfassung

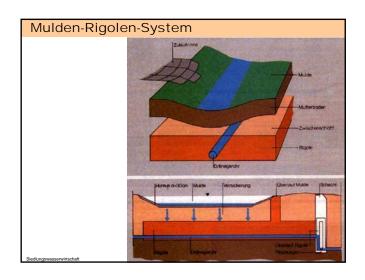

Effekt

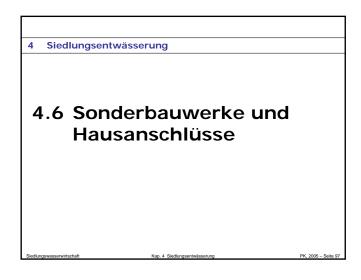
Verminderung des Abflusses

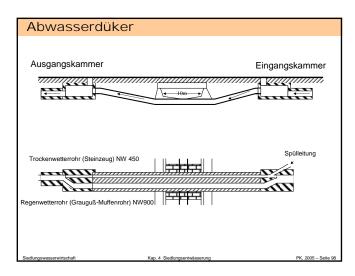

Verminderung von Frachten in Mischwasserentlastungen

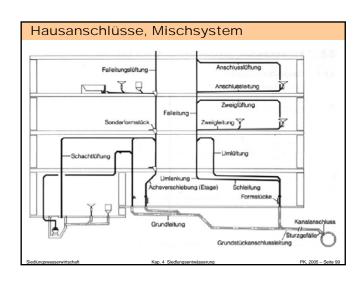

Speisung des Grundwasserleiters

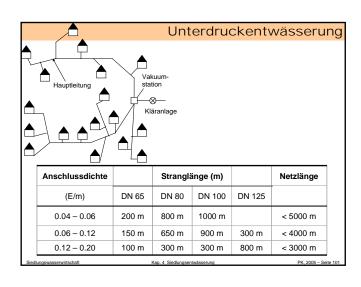

iedlungswasserwitschaft Kan 4 Siedlungsentwässerung PK 2005 – Seite 84











4 Siedlungsentwässerung

4.9 Kanalnetzentwurf

Siedlungswasserwirtschaft

Van 4 Siedlungsentwikseerung

DK 200E Solto

Schritte der Entwurfsbearbeitung

- 1. Wahl des Entwässerungssystems (A 105)
- 2. Abstimmung des Generalentwässerungsplans
- 3. Einzeichnen des Leitungsverlaufs im Lageplan
- 4. Bestimmung der Gebietsparameter
- 5. Maßnahmen zur Verminderung des Abwasseranfalls
- 6. Unterteilung des Entwässerungsgebietes
- 7. Dimensionierung der Rohrleitungen
 - Bestimmung des Durchflusses
 - Dimensionierung
 - Sohlhöhe der Schächte → Gefälle
 - Profil und Dimension
 - Abflussverhältnisse (Wasserstand, Geschwindigkeit)
- 8. Entwurf von Sonderbauwerken
- 9. Detaillierte Entwurfszeichnungen (Grundriß, Längsschnitt, Details)

Siedlungswasserwirtschaft

ap. 4 Siedlungsentwässerung

PK 2005 - Saite 10

Kriterien zur Wahl des Entwässerungssystems

- Vorhandenes Entwässerungssystem:
 - Typ, baulicher Zustand, hydraulische Leistungsfähigkeit
- Fließgewässer: räumliche Lage, Hydraulik (Jahresgang von Q, Wasserstand; Sensitivität)
- Abwasserzusammensetzung: Gefahrstoffe
- Infrastruktur: Versiegelungsgrad, Bevolkerungsdichte,...
- Bodenverhältnisse: Infiltrationskapazität, Bodenklasse
- Schutzgebiete Wasserschutzzonen, Überflutungsgebiete
- Topographie, Grundwasserverhältnisse
- Kläranlage: Typ, Kapazität, Lage
- Koster

lungswasserwirtschaft Kao. 4 Siedlungsentv

PK. 2005 – Seit

Abstimmung des Entwässerungskonzepts

- Zulässige Belastung des Fließgewässers (Einlaufstellen, max. Q, Frachten, Konzentrationen,...)
- Leitungsverlauf
- Art und Lage von Einzelelementen
 - Kläranlage
 - Regenüberläufe, RÜB, RRB
 - Pumpstationen
 - Infiltrationsanlagen
- Weitere Maßnahmen
 - z.B. Ausgleichsmaßnahmen, Reduzierung von Beeinträchtigungen benachbarter Wohngebiete

iedlungswasserwirtschaft

Kan 4 Siedlungsentwässerung

PK. 2005 - Seite 10

Bestimmung der Gebietsparameter

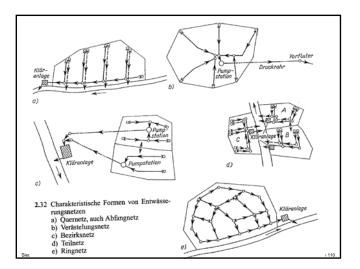
Leitungsverlauf

- Ziel: Minimierung von Invest- und Betriebskosten durch intelliegente Nutzung der Topographie und vorhandener oder geplannter Infrastruktur
- kurze Leitungslängen
- · Minimale Verlegetiefe
- Minimale Nutzung von Fremdenergie
- Vermeidung von Sedimentbildung, Geruch, Korrosion
- Zugänglichkeit für KN-Reinigung, TV-Inspektion, Baufahrzeuge
- → KN-Planung immer in Abstimmung mit komm. Entwicklungsplan
- → Zusammenarbeit von Raumplaner und KN-Planer

Siedlungswasserwirtschaft

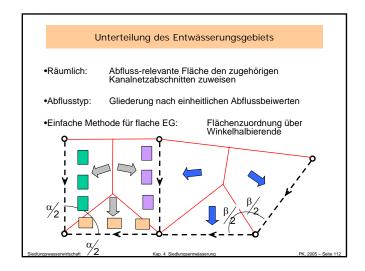
Kap. 4 Siedlungsentwässerung

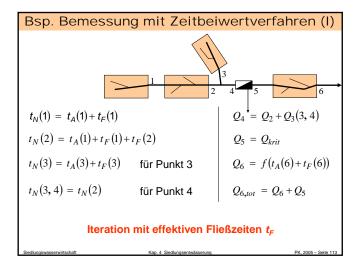
PK, 2005 - Seite 108


18

Leitungsverlauf

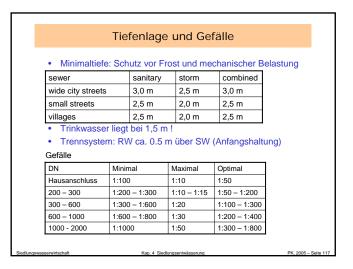
Prinzipien:

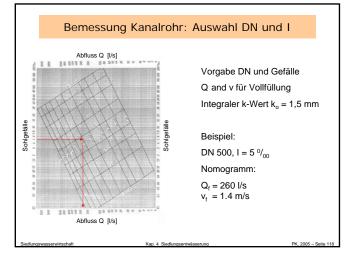

- KN und Straße folgen Talverlauf oder virtueller Verbindung von Senken
- Wasserscheiden zwischen den Sammlern
- Keine Umwege für den Wasserfluss Kanäle neben Straßen (Fußwege, Radwege)
- Kanäle in öffentlichem Baugrund (ansonsten Leitunsrechte sichern)
- Schächte bei:
 - Richtungswechsel
 - Querschnittswechsel
 - Gefällewechsel

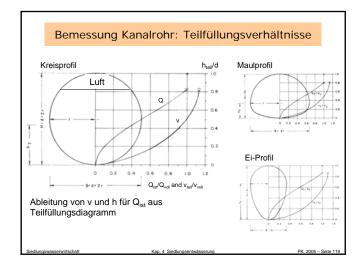

 - Einmündung von Seitenkanälen (nicht bei Hausanschlüssen, Straßeneinläufen)
 - Abstand < 100 m

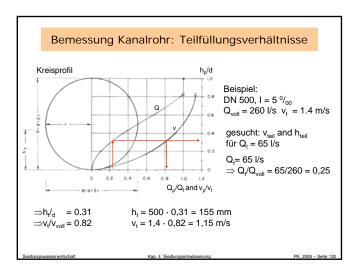
Hinweise zur Unterteilung des Entwässerungsgebiets

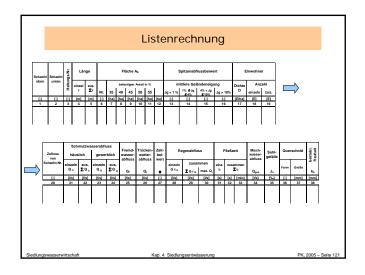

- Topographie → Fließrichtung des Wassers
- Natürliche und künstliche Abfluss- oder Bauhindernisse (Pläne, Luftbilder, GIS, Laser-Scan, Begehung)
- Abfluss wird berechnet über Bevölkerungsdichte
- Nur industrielle (gewerbliche) Einleiter und Einzelgrundstücke werden als Einzelabfluss gerechnet
- Abfluss wird der gesamten Leitungslänge zugewiesen (obwohl Q erst am Leitungsende erreicht wird) → Sicherheit
- Teilgebiete bzw. Leitungsabschnitte <= 200 300 m (DN-Gruppen möglichst nicht überspringen)

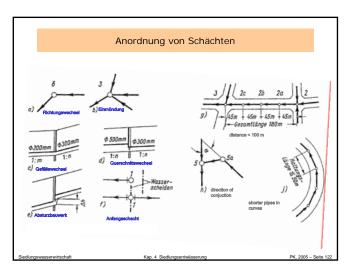


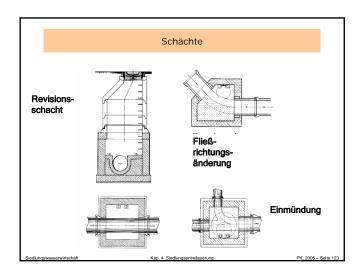



Querschnitt	1	2	3	4	5	6	Bem.
L Kanal (m)	120	180	60			180	
v (m/s)							
Fließzeit (min)							
$t_N = t_A + t_F \text{ (min)}$							$t_A = 5 \text{ min}$
$r(t_N, z)$ (l/(s·ha))							R (Reinhold, 1940)
A _i (ha)	2	3	1			3	
ψ _S (-)	0,4	0,6	0,6			0,5	
A _{red,i} (ha)							
$\Sigma A_{red,i}$ (ha)							
Q_R (m ³ /s)							$Q_R = r \cdot \Sigma A_{red,i}$
konst. Q (m3/s)							
Q _{R,tot} (m ³ /s)							
Q_t (m ³ /s)	0,015	0,02	0,008				
Q_m (m ³ /s)							


Zeitbeiwertverfahren (II) $z = 2$, $r_{15(1)} = 102$ I/(s·ha)							
Querschnitt	1	2	3	4	5	6	Bem.
L Kanal (m)	120	180	60			180	
v (m/s)	1	1	1			1	
Fließzeit (min)	2	3	1			3	
$t_N = t_A + t_F (\min)$	7	10	6	10		8	$t_A = 5 \text{ min}$
$r(t_N, z)$ (l/(s-ha))	199	167	212	167	30	187	R (Reinhold, 1940)
A _i (ha)	2	3	1			3	
Ψ _S (-)	0,4	0,6	0,6			0,5	
A _{red,i} (ha)	0,8	1,8	0,6			1,5	
$\Sigma A_{red,i}$ (ha)	0,8	2,6	0,6	3,2	3,2	1,5	
Q_R (m ³ /s)	0,16	0,43	0,13	0,53		0,28	$Q_R = r \cdot \Sigma A_{red,i}$
konst. Q (m ³ /s)					0,1		
Q _{R,tot} (m ³ /s)						0,38	
Q_t (m ³ /s)	0,015	0,02	0,008			0,003	Q _s + Q _f
Q_m (m 3 /s)	0,175	0,45	0,138	0,581	0,1	0,383	Q _R + Q _t
Siedlungswasserwirtschaft		Kaj	p. 4 Siedlungse	entwässerung			PK, 2005 - Seite 115

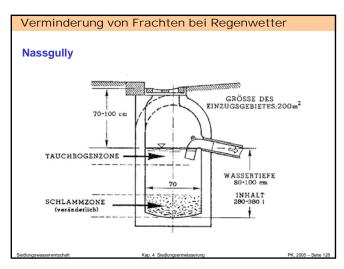








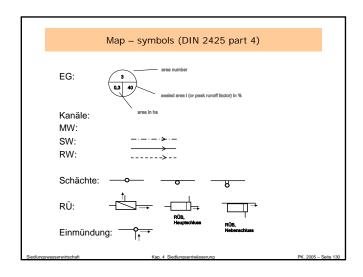


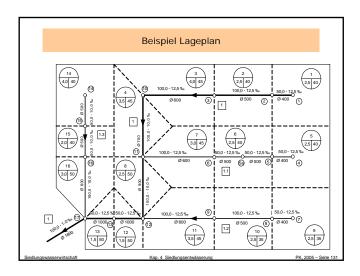


Straßeneinläufe

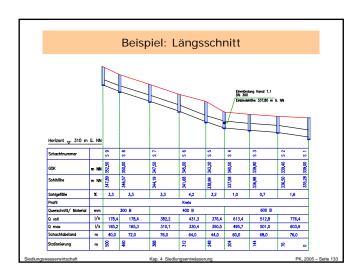
- Zweck: schnelle Aufnahme des Niederschlagswassers von Straßen
- Teilreinigung
- Bemessung:
 - Richtlinien für die Anlage für Straßen,
 Teil: Entwässerung RAS-Ew
 - Herstellerangaben
- Ausführung als Linien oder Punktentwässerung

dlunnswasserwirtschaft Kan 4 Siedlunnsentwässerunn PK 2005 – Seite 126





Leitungsplan


- Maßstab: 1:2000 1:500Kanäle mit Fließrichtung
- Profil, DN, Länge, Gefälle, (Material)
- Sonderbauwerke
- Kläranlage
- Auslaufbauwerke
- Nummerierung von Haltung und Schacht
- Teil-EG: Nr., A, A_{red} (oder Abflussbeiwert)
- Legende, Maßstabsangabe
- Symbole: DIN 2425

swasserwirtschaft Kap. 4 Siedlungsentwässerung PK, 200

Längsschnitt - Höhenmaßstab zehnfach überhöht - Sohlhöhe [m NN] - GOK [m NN] - DN - Material - Gefälle - Max. Q - Q (TK: Q_r bzw. Q_s MW: Q_t und Q_m) - Schächte und Sonderbauwerke - Haltungslänge - sewer conjunctions (arrows) - station

