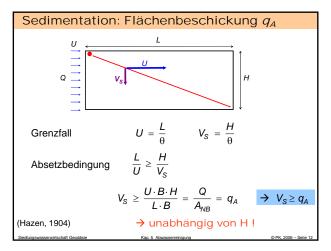
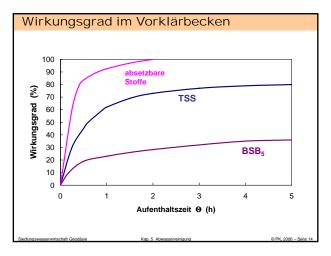


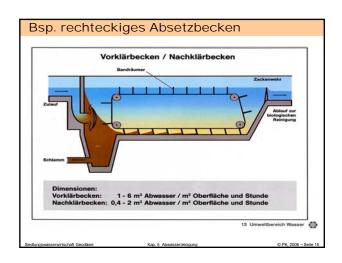
Abwasserreinigung in Deutschland Ende 2000 sind mehr als 10.000 kommunale Kläranlagen in Betrieb Größenklasse Anzahl Ausbaugröße in mio EW > 100.000 272 83,1 10.000 - 100.00056,1 1.817 2.000 - 10.0002.617 12,3 50 - 2.0005.677 3,2

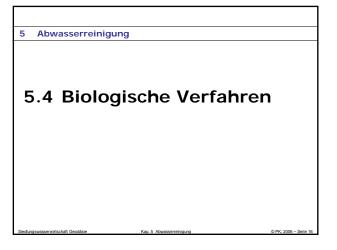
	Größenklasse	CSB (mg/l)	BSB ₅ (mg/l)	NH ₄ -N (mg/l)	N* (mg/l)	P _{ges} (mg/l
1	< 1000 EW 60 kg BSB ₅ / d	150	40	-	-	-
2	< 5000 EW 300 kg BSB ₅ / d	110	25	-	-	-
3	< 10000 EW 600 kg BSB ₅ / d	90	20	10	-	-
4	< 100000 EW 6000 kg BSB ₅ / d	90	20	10	18	2
5	> 100000 EW 6000 kg BSB ₅ / d	75	15	10	13	1

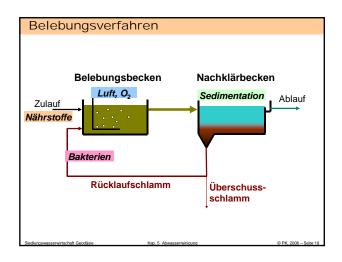


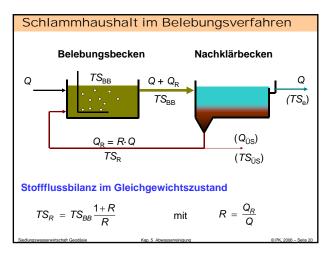


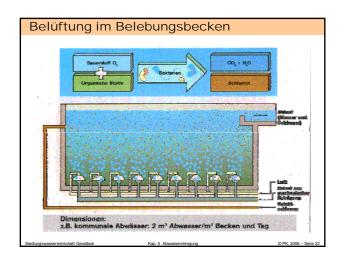

Rechenart	Durchlassweite	Spezifischer Anfall (m³/(E·a))		
	(mm)	ungepresst (8% TS)	gepresst (25% TS	
Grobrechen	50	0,003	0,001	
Feinrechen	15	0,012	0,004	
Sieb	3	0,022	0,007	

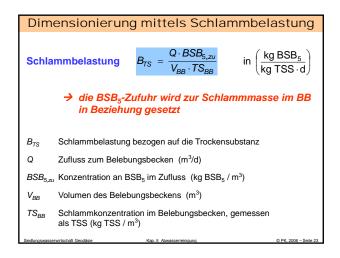


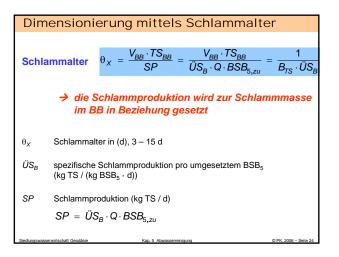







Biologische Verfahren Suspendierte Biomasse → Belebtschlammverfahren • Durch Turbulenz in Schwebe gehalten • Schlammflocken 0,1 – 1 mm Durchmesser • Abbau spezifisch bezogen auf Biomasse → suspendierte Biomasse aufkonzentrieren Sessile Biomasse → Biofilmverfahren • Als Biofilm auf einer Aufwuchsfläche • Bakterien werden nur vereinzelt erodiert • Abbau spezifisch bezogen auf Bewuchsfläche → Spezifische Oberfläche erhöhen


Wesentlich	Wesentliche mikrobiologische Prozesse					
Wachstum	von Biomasse					
Zerfall	wenn zu wenig externe Nährstoffe					
Hydrolyse	schwer → leicht abbaubare Stoffe, durch Enzyme					
Aerober Abbau	organischer Stoffe $CH_2O + O_2 \rightarrow CO_2 + H_2O$					
Nitrifikation	$NH_4^+ + 2 O_2 \rightarrow NO_3^- + H_2O + 2 H^+$					
Denitrifikation	5 CH ₂ O + 4 NO ₃ ⁻ + 4 H ⁺ → 2 N ₂ + 5 CO ₂ + 7 H ₂ O					
Einbau	Von C, N, P in die Biomasse					
Siedlungswasserwirtschaft Geodäsie	Kap. 5 Abwasserreinigung © PK, 2006 – Seite 18					



Fließschema Belebungsverfahren Hydraulische Verdrängung des Schlamm-Abwasser-Gemisches in das Nachklärbecken → der Schlamm muss ins Belebungsbecken zurückgeführt werden Der belebte Schlamm wird 20 – 50 mal im Kreis geführt → Biomassekonzentration im Belebungsbecken wird erhöht Der Überschussschlamm wird aus dem System abgezogen → entspricht der Schlammproduktion Bei erhöhter hydraulischer Belastung (bei Regenwetter) wird Schlamm ins Nachklärbecken verlagert

Nährstoffbedarf von Mikroorganismen

Stickstoff $i_N = 0.04 - 0.05 \text{ (g N/g BSB}_5)$ Phosphor $i_P = 0.01 - 0.02 \text{ (g P/g BSB}_5)$

→ Elimination von Nährstoffen

Abwasserzusammensetzung im Zulauf 300 (g BSB_5/m^3) 60 (g TKN/m^3) 12 (g TP/m^3)

Ablaufwerte bei 100%-igem Abbau von BSB₅

TKN_{Ab} = TKN_{ZU} -
$$i_N$$
·BSB_{5,Zu} = $60 - 0.045 \cdot 300 = 46,5$ (g N / m³)

 $TP_{Ab} = TP_{ZU} - i_p \cdot BSB_{5,ZU} = 12 - 0.015 \cdot 300 = 7.5 (g P/m^3)$ → Weitergehende Verfahren für Nährstoffelimination!

ierdinnoswasserwirtschaft Georfäsie Kan 5. Ahwasserreininunn © PK 2006

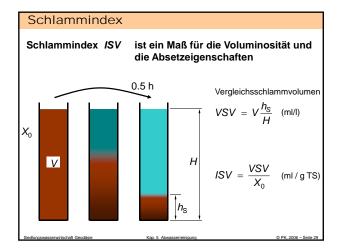
Weitergehende Verfahren zur Nährstoffelimination

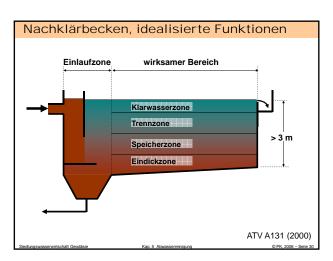
- Nitrifikation: NH₄⁺ + 2 O₂ → NO₃⁻ + H₂O + 2 H⁺
 - Chemo-litho-autotroph wachsende Bakterien
 - Sehr langsames Wachstum → hohes Schlammalter erforderlich (> 5 Tage)
- Denitrifikation: $5 \text{ CH}_2\text{O} + 4 \text{ NO}_3^- + 4 \text{ H}^+ \rightarrow 2 \text{ N}_2 + 5 \text{ CO}_2 + 7 \text{ H}_2\text{O}$
 - Heterotrophe Bakterien
 - Vorausetzung: org. C-Quellen, kein gelöstes O₂
- P-Fällung: PO₄³⁻ + Fe³⁺ → FePO₄
 - Dosierung von Eisen- oder Aluminium-Salzen
 - Überstöchiometrisch: ca. 1,5 Mol Fe³⁺/Mol PO₄³⁻
 - Abzug des gefällten P mit Überschussschlamm

Kon E Abunggargaiginung (S. P. H. 17 2014 Seite 26

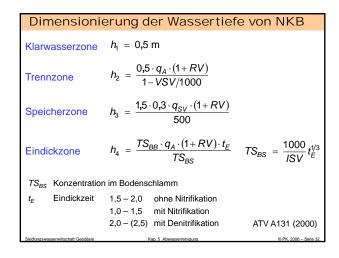
5 Abwasserreinigung

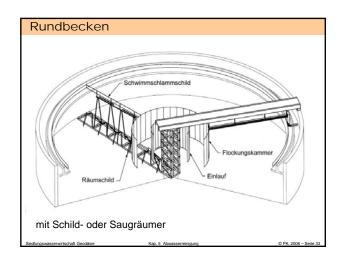
5.5 Nachklärung

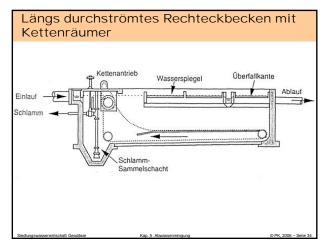

Trennen von Schlamm und gereinigtem Abwasser durch Sedimentation

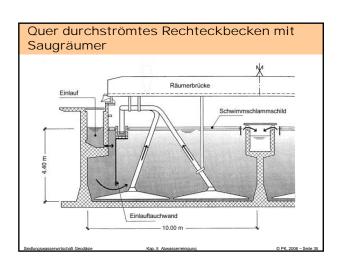

Klären → möglichst niedrige Ablaufkonzentration

Speichern des aus dem Belebungsbecken verlagerten Schlamms, insbesondere bei Regenwetter

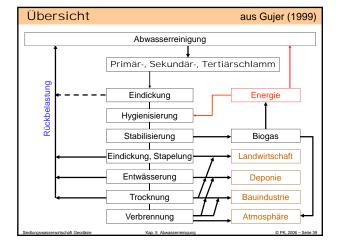

Eindicken → möglichst hohe Rücklaufkonzentration


Bauformen • Rund, von innen nach außen durchströmt
• Rechteckig, längs durchströmt
• Rechteckig, quer durchströmt
• Vertikal, von unten nach oben durchströmt

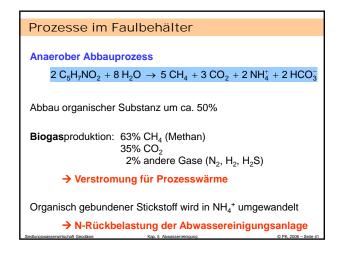


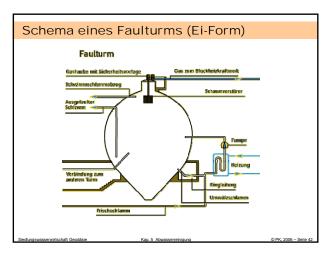


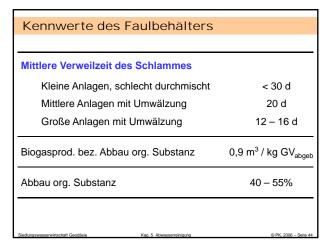
Dimensionierung der C	berfläche	von NKB				
Flächenbeschickung	$q_A = \frac{q_{SV}}{VSV} :$	$= \frac{q_{SV}}{TS_{BB} \cdot ISV}$				
Schlammvolumenbeschickung $q_{SV} = q_A \cdot TS_{BB} \cdot ISV$						
Grenzwerte						
	$oldsymbol{q}_{\scriptscriptstyle A}$	q_{sv}				
	(m/h)	(l/(m ² ·h)				
Horizontal durchströmte NKB	1,6	500				
Vertikal durchströmte NKB	2,0	650				
		ATV A131 (2000)				



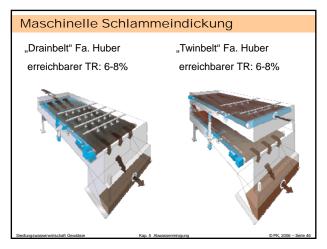
Zusammensetzung des Klärschlamms


- → Die aus dem Abwasser entnommenen Stoffe, die nicht abgebaut werden, finden sich im Klärschlamm wieder
- Vorwiegend Wasser
- Mikroorganismen
- Viren, Krankheitserreger, allg. Keime
- Organische Feststoffe, die sich biologisch verändern lassen
- Organische Verbindungen, die sich im Schlamm einlagern
- Schwermetalle
- Mikroverunreinigungen, Arzneimittelrückstände, endokrin wirksame Substanzen


diversimple and Condition Key E Abundance in the Condition (CDV 2005)




Faulreaktor Erwärmung auf 33 – 37°C → Prozesse laufen schneller ab Inhalt des Faulreaktors wird umgewälzt → Schlamm und Wasser haben eine ähnliche Aufenthaltszeit Stapelbehälter nicht geheizt → wenig biologische Prozesse nicht umgewälzt → Trennung von Schlamm und Faulwasser, das in die Abwasserreinigung geleitet wird → aufgepasst mit Steuerung der Rückbelastung, Größenordnung 10% der N-Belastung Eindickung



Verwertung in der Landwirtschaft → Recycling der Nährstoffe, aus ausgefaultem Schlamm Schlammbehandlung Düngerart* P- und N-Dünger Flüssiger Klärschlamm P-Dünger, N als Depot Entwässerter Klärschlamm Getrockneter Klärschlamm P-Dünger * Beschränkung der Überdüngung durch Vorgabe $\leq 5~(t_{mT}/3a)$ **Probleme** • Generelle Akzeptanz • Schwermetalle, organische Spurenstoffe • Rechtlicher Regelungsrahmen: AbfKlärV, DüMV, freiwillige weitergehende Anforderungen

Kompostierung

→ Aerober biologischer Abbau organischer Inhaltsstoffe

Voraussetzungen Stabilisierung

Entwässerung Hygienisierung

Verfahren

• Strukturmittel: gehäckselter(s) Strauchschnitt, Stroh, Holz Sägemehl, -späne

• Mischung ca. 1:1

• Wassergehalt des Rottegemisches ca. 0,65

Sindh manunnn anuirteabalt Condinia

@ DK 0000 0-4-

Verbrennung

Nutzung des Energieinhalts, aber nicht der Nährstoffe

Monoverbrennungsanlagen (d.h. ohne Zuschlagsstoffe)

- bei ausreichend hohem Heizwert des Schlamms → höherer Heizwert, wenn dem Schlamm kein Biogas entzogen wurde
- bei ausreichendem Wassergehalt (keine Volltrocknung)
- Wirbelschichtofen Verbrennung bei 800 950°C im in Schwebe gehaltenen Sandbett
- Teuer!

Mitverbrennung

- in Kohlekraftwerken
- in Müllverbrennungsanlagen
- in Zementwerken, Asche wird in den Werkstoff eingebunden

Mary F. Abronaustations

@ DV 2000 Co