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Summary 

Tomato is one of the most important crops worldwide. In Egypt, it occupies the largest 

cultivated area of vegetable crops. There are numerous insect pests attacking tomato crops in 

Egypt and they cause significant yield loss. The main tomato insect pests in Egypt are the 

Egyptian cotton leafworm Spodoptera littoralis (Boisduval), the black cutworm Agrotis ipsilon 

(Hufnagel), the cotton bollworm Helicoverpa armigera (Hübner), the Tomato leaf miner, Tuta 

absoluta (Meyrick), and the whitefly Bemisia tabaci (Gennadius). The mentioned insect 

species form a widespread complex which commonly attacks tomato crop in open fields and 

greenhouses, often more or less concurrently. Nowadays, the main control strategies are 

based on chemical insecticides with all known negative effects. Therefore, this thesis aimed to 

introduce a biological control system based on Entomopathogenic nematodes (EPNs) to be 

utilized against the “Egyptian Tomato insect Pest Complex” (ETPC) in order to have an 

environmentally sound alternative. 

The work started by screening 15 EPN isolates against the four lepidopteran pests 

(Chapter II). The objective of the performed screening was to find EPN isolates able to infect 

all ETPC effectively. The target insect species have many similarities such as their feeding 

behavior, the destructive stage, and the time of attack. Therefore, standard sand bioassays 

were performed at four doses against larvae of the target species. Based on the obtained 

results, the most virulent isolates were Steinernema carpocapsae BA2, S. feltiae Sf, S. abbasi 

abb, and S. carpocapsae J7. The second step was testing the efficacy of the selected isolates 

against the whitefly B. tabaci (Chapter III). The isolate S. feltiae Sf was the most efficient one 

against 2nd nymphal instars of the whitefly.  

The efficacy of the selected four EPN isolates was tested against T. absoluta in sand 

and tomato leaf bioassays (Chapter IV). T. absoluta was selected as the key target among 

ETPC because of its economic importance. Limited differences were recognised among the 

isolates when exposed directly in the sand bioassay. In leaf bioassays, all the tested isolates 

were capable of attacking T. absoluta larvae inside and outside the mines. The calculated LC50 

values were 44 IJs/ml for S. carpocapsae BA2, 82 IJs/ml for S. abbasi abb, 103 IJs/ml for S. 

carpocapsae J7, and 112 IJs/ml for S. feltiae Sf. 

The next step was to find suitable EPN concentrations and adjuvants to increase their 

efficacy against T. absoluta larvae on tomato plants (Chapter V). The four isolates were 

applied at several concentrations and sprayed once or twice within 24 h on infested tomato 

plants. Applying the nematode suspensions twice resulted in significantly higher mortalities of 

T. absoluta larvae than sprayed once with double concentration. Except S. abbasi abb, EPN 

isolates were able to cause high larval mortality. When different formulations of S. 

carpocapsae BA2 were tested, the adjuvants Xanthan, Nemaperfect®, or Chitosan resulted in a 

significant increase in the larval mortality. These three adjuvants increased mortality from 

70% (water) up to 88% (Xanthan). The adjuvant Nemaperfect® delayed nematode 

sedimentation in the suspension for about one hour. 

In greenhouse experiments, the four EPN isolates were applied twice within 24 h at 

5000 IJs/ml in 0.3% Nemaperfect® as an adjuvant on tomato plants infested by T. absoluta 

larvae (Chapter VI). The highest larval mortality was achieved with the isolate S. carpocapsae 

BA2. There were no significant differences among S. carpocapsae BA2 (85.5%), S. feltiae Sf 
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(80.5%), and S. carpocapsae J7 (76%), whereas S. abbasi abb resulted in significant lower 

mortality (18%). 

Based on the results of this extensive stepwise test program, it was possible to develop 

a biocontrol system against ETPC based on EPNs. Thus, the purpose of the thesis was 

achieved. The proposed system consists of S. carpocapsae BA2, S. feltiae Sf, or S. carpocapsae 

J7 in a concentration of 5000 IJs/ml with 0.3% Nemaperfect® or Xanthan. The application of 

the previous formulation twice within 24 h at dusk or at late afternoon could control T. 

absoluta and the other ETPC effectively. The next step should be the introduction and 

validation of this method in the practice of Egyptian tomato cultivation. 
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Zusammenfassung 

Die Tomate ist eine der wichtigsten Nutzpflanzen weltweit. In Ägypten erreicht sie die 

größte Anbaufläche im Gemüsebau. Es gibt zahlreiche Schadinsekten, die Tomatenkulturen in 

Ägypten befallen und erhebliche Ertragseinbußen verursachen. Die wichtigsten 

Tomatenschädlinge in Ägypten sind der ägyptische Baumwollwurm Spodoptera littoralis 

(Boisduval), die Ypsiloneule Agrotis ipsilon (Hufnagel), der Baumwoll-Kapselwurm 

Helicoverpa armigera (Hübner), die Tomatenminiermotte Tuta absoluta (Meyrick) und die 

Weiße Fliege Bemisia tabaci (Gennadius). Die genannten Insektenarten bilden eine weit 

verbreitete Gemeinschaft, die häufig Tomatenkulturen im Freiland und in Gewächshäusern, 

oft mehr oder weniger gleichzeitig, befällt. Heutzutage basieren die wichtigsten 

Bekämpfungsstrategien auf chemischen Insektiziden mit allen möglichen negativen 

Auswirkungen. Ziel dieser Arbeit ist es daher, ein biologisches Kontrollsystem auf Basis von 

entomopathogenen Nematoden (EPNs) zu entwickeln, welches gegen alle ägyptischen 

Tomatenschädlinge eingesetzt werden kann, um den intensiven Einsatz von chemischen 

Insektiziden in Tomatenkulturen zu reduzieren.  

Die Arbeit begann mit der Testung von 15 EPN-Isolaten auf ihre Wirkung gegenüber 

den vier Schädlingen aus der Ordnung Lepidoptera (Kapitel II). Das Ziel des durchgeführten 

Screenings war es, EPN-Isolate zu finden, die in gleicher Weise diese Schädlinge effektiv 

infizieren. Die Zielinsekten haben viele Gemeinsamkeiten, wie z. B. ihr Fressverhalten, das 

schädliche Entwicklungsstadium und den Zeitpunkt des Angriffs. Daher wurden 

standardisierte Sand-Bioassays mit vier verschiedenen EPN-Dosierungen gegen Larven der 

Zielarten durchgeführt. Basierend auf den Ergebnissen waren die virulentesten Isolate 

Steinernema carpocapsae BA2, S. feltiae Sf, S. abbasi abb, und S. carpocapsae J7. Der zweite 

Schritt war die Prüfung der Wirksamkeit der ausgewählten Isolate gegen die Weiße Fliege B. 

tabaci (Kapitel III). Das Isolat S. feltiae Sf war das effizienteste gegen das zweite 

Nymphenstadium dieses Schädlings. 

Die Wirksamkeit der ausgewählten vier EPN-Isolate wurde gegen den Hauptschädling 

T. absoluta in Sand- und Blatt-Bioassays getestet (Kapitel IV). Bei direkter Exposition im Sand-

Bioassay waren nur geringe Unterschiede zwischen den Isolaten festzustellen. In Blatt-

Bioassays waren alle getesteten Isolate in der Lage, T. absoluta-Larven innerhalb und 

außerhalb der Blattminen zu finden und zu infizieren. Die berechneten LC50-Werte waren 44 

IJs/ml für S. carpocapsae BA2, 82 IJs/ml für S. abbasi abb, 103 IJs/ml für S. carpocapsae J7, 

und 112 IJs/ml für S. feltiae Sf. 

Weiterhin wurde die Wirksamkeit der ausgewählten Nematodenisolate gegen T. 

absoluta-Larven auf Tomatenpflanzen bewertet (Kapitel V). Die Versuche wurden 

durchgeführt, um geeignete EPN-Konzentrationen auszuwählen und um mögliche Hilfsstoffe 

zur Verbesserung der Nematodenwirksamkeit zu testen. Die vier Isolate wurden in 

verschiedenen Konzentrationen angewendet und ein- oder zweimal innerhalb von 24 Stunden 

auf befallene Tomatenpflanzen gespritzt. Die zweimalige Applikation der 

Nematodensuspensionen führte zu signifikant höheren Mortalitäten der T. absoluta-Larven als 

die einmalige Besprühung mit doppelter Konzentration. Außer S. abbasi abb waren alle EPN-

Isolate in der Lage, eine hohe Larvenmortalität zu verursachen. Darüber hinaus bewirkte eine 

Formulierung von S. carpocapsae BA2 mit den Adjuvantien Xanthan, Nemaperfect® oder 

Chitosan zu einer signifikanten Erhöhung der Larvensterblichkeit im Vergleich zur Wasser-
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Variante. Diese drei Hilfsstoffe erhöhten die Mortalität von 70% (Wasser) auf bis zu 88% 

(Xanthan). Der Zusatz von Nemaperfect® verzögerte auch die Sedimentation der Nematoden 

in der Suspension für etwa eine Stunde. 

In Gewächshausversuchen wurden die vier EPN-Isolate zweimal innerhalb von 24 

Stunden mit 5000 IJs/ml in 0,3% Nemaperfect® als Hilfsstoff auf Tomatenpflanzen 

angewendet, die von T. absoluta-Larven befallen waren. Die höchste Larvensterblichkeit 

wurde mit dem Isolat S. carpocapsae BA2 erreicht, doch gab es keine signifikanten 

Unterschiede zwischen S. carpocapsae BA2 (85.5%), S. feltiae Sf (80.5%), und S. carpocapsae 

J7 (76%). Dagegen bewirkte S. abbasi abb eine weitaus geringere Larvensterblichkeit (18%). 

Durch diese umfangreichen Untersuchungen wurde das Ziel der Arbeit erreicht, ein 

auf EPNs basierendes System zur Regulierung der ägyptischen Tomatenschädlinge zu 

entwickeln. Das vorgeschlagene System besteht aus S. carpocapsae BA2, S. feltiae Sf, oder S. 

carpocapsae J7 in einer Konzentration von 5000 IJs/ml mit 0,3% Nemaperfect® oder Xanthan. 

Die Anwendung dieser EPN Formulierung zweimal innerhalb von 24 Stunden in der 

Abenddämmerung oder am späten Nachmittag könnte T. absoluta und die anderen 

Schadinsekten erfolgreich kontrollieren. Der nächste Schritt wäre nun, das Verfahren in 

Freilandversuchen unter Praxisbedingungen zu testen. 
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Aim of this thesis 

The aim of this work is to develop a foliar application system based on 

entomopathogenic nematodes (EPNs) against the Egyptian tomato insect pest complex 

(ETPC). The desired outcome is to introduce these biological control agents as alternatives to 

replace or reduce using chemical insecticides in tomato pest management. 
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Chapter I: General introduction 

I.1. Status of tomato as crop in Egypt 

Tomatoes (Solanum lycopersicum L.) are cultivated and consumed in many countries, thus 

belonging to the most important vegetable worldwide. In Egypt, tomato is the vegetable with 

the largest extension of crop area (ca. 200,000 ha) making up 28% of the total vegetable area 

every year. In 2017, Egypt ranked fifth in world tomato production with a yearly yield of 6.7 

million tons (Fig. I.1) (FAOSTAT, 2018). The major portion of the production is for local 

consumption, whereas only around 200,000 tons are exported every year. Most of the 

Egyptian growers own small fields between 5-30 acres (approximately 2-12 ha) and their 

income depends mainly on the yield of the cultivated crops in this area. These growers 

cultivate tomatoes in open fields during spring and summer. Some growers may own larger 

areas with more than 50 acres. They cultivate tomatoes also in open fields and additionally 

during winter in greenhouses. 

 

 

Figure I.1: Rank of “top-ten country” production of tomatoes around the world according to FAOSTAT (2018).  

 

I.2. Key pests on tomato in Egypt 

The cultivation of tomatoes in Egypt is challenged by the occurrence of a wide spectrum of 

insect pests attacking different parts of the plant. Feeding damage by caterpillars or plant-

sucking pests can be found on leaves, stems, and fruits. Due to favorable weather conditions 

in Egypt, most pest species can develop several generations and occur during the whole 

tomato production season. Native pests of economic importance are the Egyptian cotton 

leafworm Spodoptera littoralis (Boisduval), the black cutworm Agrotis ipsilon (Hufnagel), and 

the cotton bollworm Helicoverpa armigera (Hübner) which all belong to the family Noctuidae 

of Lepidoptera. In recent years, also the invasive Tomato leaf miner, Tuta absoluta (Meyrick) 

(Lepidoptera, Gelechiidae), and the whitefly Bemisia tabaci (Gennadius) (Hemiptera, 

Aleyrodidae) cause massive problems. These species belong to the most serious pests which 

currently cause frequent control interventions, mainly based on chemical insecticides. 
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I.2.1. The Egyptian cotton leafworm Spodoptera littoralis 

The Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), 

is a polyphagous insect pest. This pest is native to Africa but also occurs in many countries in 

southern Europe such as Spain and Italy (Lopez-Vaamonde, 2009). The female moths deposit 

20-1000 eggs in clusters on the low surface of leaves (Fig. I.2) (Khalifa et al., 1982). After 

hatching, larvae feed and develop through six larval instars within about 14 days, and then 

pupate in the soil at depths of 2 to 5 cm. The larvae climb up the plants and feed on leaves 

during the night while hiding in the ground or between the plants during the day. They feed 

on leaves and bore into the fruits as well. Feeding of the last larval instars (from 4th instar on) 

causes significant losses in the crops and the damage becomes economically important. In 

Egypt, this pest attacks tomato crops in greenhouses during early spring and from May to 

October in the open fields. 

 

  

Figure I.2: The Egyptian cotton leafworm, Spodoptera littoralis. Adult moth (A), and the eggs (B). 

 

I.2.2. The black cutworm Agrotis ipsilon (Hufnagel) 

The black cutworm A. ipsilon (Hufnagel) (Lepidoptera: Noctuidae) is a serious 

polyphagous pest that attacks various economic crops in many countries. It is mostly present 

in every country worldwide (Binning et al., 2015). This pest could infest different crops, such 

as corn, soybean, cotton, strawberry, potatoes, and tomatoes throughout the year. The insect 

develops through six larval instars before the pupal stage. The larvae hide during the daylight 

in the ground and forage during the dark hours. The first three larval instars are able to climb 

up the plants. Therefore, younger larvae feed on leaves, but older ones attack the plants 

above the ground surface by cutting the stems off (Fig. I.3). The main crop losses occur 

because of this feeding behavior, especially during the seedling stage (Showers et al., 1983). 

This pest has developed resistance against many active ingredients of pesticides worldwide 

(Yu et al., 2012; Shaurub et al., 2018). Due to the fact that the larvae spend the daylight 

hours hiding in the soil, regular control strategies are not effective in many cases (Capinera, 

2001; Takeda, 2008). 
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Figure I.3: (A) 6th instar larva of Agrotis ipsilon while cutting off tomato seedling near the soil surface. (B) The larval 

feeding effect on tomato seedling. 

 

I.2.3. The cotton bollworm Helicoverpa armigera (Hübner) 

The cotton bollworm H. armigera (Hübner) (Lepidoptera: Noctuidae) is a highly 

polyphagous insect pest, damaging a wide variety of economic crops such as tomatoes, cotton, 

okra, maize, soybeans, and pigeon pea. In tomatoes, H. armigera could cause up to 70% yield 

losses in consequence of fruit boring (Varela et al., 2003). H. armigera exists in every 

continent (Tay et al., 2013; Kriticos et al., 2015). The female moths (Fig. I.4) deposit single 

eggs on the low surface of the leaves near the plant top. The eggs hatch, and the larvae 

develop through six larval instars and pupal stage. The larvae occur on the plants usually 

hidden between leaves, in the flowers, or in the fruits. The insect larvae induce serious losses 

on tomatoes, as they infest the green fruits preventing the development and consequently 

causing fruit falling. Larger larvae could attack older fruits as well. This pest attacks tomato 

crops in Egypt during the period between April and October. The most attractive crop stage 

for this pest is the flowering and fruiting stage, which is the most critical growing period. 

 

 
 

Figure I.4: Adult moth of the cotton bollworm Helicoverpa armigera. 
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I.2.4. The tomato leafminer Tuta absoluta (Meyrick) 

The tomato leafminer T. absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most 

destructive insect pests of tomato. T. absoluta prefers tomato as a host, but it could infest 

other solanaceous crops such as potatoes, eggplants, and tobaccos (EPPO 2005; Brévault et 

al., 2014; Mohamed et al., 2015). This insect is native in Peru and is widespread in the entire 

South America countries. Moreover, T. absoluta was detected in Spain in 2006 (Garzia et al., 

2012), then it invaded many countries in south and central Europe, northern Africa 

(Mohamed et al., 2012), and South Asia (Hossain et al., 2016). In Egypt, T. absoluta was 

detected as an invasive pest for the first time in 2009 (Khidr et al., 2013; Goda et al., 2015).  

T. absoluta is a serious pest as it completes its lifecycle within one month and has about 12 

generations per year in warmer climates (Fig. I.5). The female moths deposit the eggs singly 

on the leaves or on the stems (Fig. I.6). The emerged larvae pass through four instars before 

pupation (Silva et al., 2015). The larval stage period takes between 12-20 days depending on 

the environmental conditions. The last instar larva pupates inside the mine or leaves the 

galleries and pupates on the leaf surface, between the leaves, on the stems, on the soil 

surface, or in the soil at a depth of 1-2 cm (Fig. I.7). T. absoluta larvae attack tomato plants in 

all stages from seedling stage to fruiting and harvest stage. The larvae attack the whole plant 

parts above the ground surface. They prefer the leaves but attack the stems and the fruits as 

well (Fig. I.8). Larvae mine in leaves and feed on the tissues between the leaf surfaces. The 

third and fourth larval instars are responsible for the heaviest damage, as they can leave the 

mine and make new ones in another site on the same leaf or on another one. They also bore 

in the stems feeding internally. Their attack on fruits, either immature or mature, with boring 

and feeding the fruit inside is especially serious. This feeding behavior leads to holes in the 

fruits and subsequently fruit dropping. 

Nowadays, T. absoluta is the most destructive insect pest on the tomato crop in Egypt since 

its first detection in the year 2009 (Khidr et al., 2013; Goda et al., 2015). It infests tomato 

crop grown in open fields during spring and summer, followed by the attack of the tomato 

plants in greenhouses during winter. The impact of the pest comprises yield reduction up to 

100% loss, boosting chemical insecticide applications, and subsequently, raising tomato 

production costs, prohibiting tomato exportation, and increasing tomato price. No adapted 

native and effective natural enemies occur in the invaded regions and therefore population 

growth is rapid and not controlled. Tomato production in Egypt peaked in 2009, but 

gradually started to decline thereafter probably due to negative effects after the invasion of T. 

absoluta (Fig. I.9). New control methods, safe to the environment, producers, and consumers 

are urgently needed to overcome this big drawback in efficient and profitable tomato 

cultivation for Egyptian farmers. 
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Figure I.5: Lifecycle of the tomato leaf miners, Tuta absoluta. Body length: egg=0.2-0.4 mm, larva=0.5-7.5 mm, 

Pupa=5-6 mm, adult=6-7 mm. 

 

  

Figure I.6: Eggs of Tuta absoluta on both tomato leaf sides. (A) On lower leaf surface. (B) On upper leaf surface. 
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Figure I.7: Pupae of Tuta absoluta. (A) On the plant stem near the soil surface. (B) On tomato leaf. 

 

  

  

Figure I.8: The damage effects of Tuta absoluta larvae on different tomato plant parts. (A) On leaf, (B) On fruit, (C) 

On stem, (D) on the whole plant. 
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Figure I.9: Tomato production quantity in Egypt between 1997 and 2017 according to FAOSTAT, peaked in 2009 

and decreased after the invasion of Tuta absoluta. 

 

I.2.5. The tobacco whitefly, Bemisia tabaci (Gennadius) 

The tobacco whitefly, B. tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a pest on many 

important crops such as cotton, potatoes, sweet potatoes, and tomatoes in many countries. In 

Egypt, B. tabaci is a serious pest on tomatoes. It attacks the crop either in greenhouses or in 

open fields from day first to harvest. The most serious attack occurs during the summer 

period. Females lay eggs on the leaves undersides (Fig. I.10). Eggs hatch to the first nymphal 

instar, which is called “crawler” because it is the only mobile nymphal instar. It moves to 

search for an appropriate feeding location and afterwards moults to the second nymphal 

instar, which is immobile and sessile on the leaf underside. Each instar of the first three 

nymphal instars develops within 2-4 days. The fourth nymphal instar is called pupa, which 

develops within 6-7 days to the adult fly. 

B. tabaci causes crop damages by feeding and by transmitting plant pathogenic viruses 

(Brown, 2010). Nymphs and adults locate on the lower leaf surface and feed by sucking the 

sap. Their feeding results in yellow spots which appear on the upper leaf surface. The 

yellowing increases with infestation time. Also, the feeding stages produce honeydew 

excretions that cover the leaf surface and cause reduced photosynthesis and growth of sooty 

mold fungi growth on the leaves and the fruits as well (Stansly and Natwick, 2010). 

Moreover, B. tabaci can transmit some plant pathogen viruses such as Tomato chlorosis virus 

(TCV) and Tomato yellow leaf curl virus (TYLCV). These viruses result in leaf curling, 

mosaics, or yellowing in the infested crops (Czosnek and Laterrot, 1997; Gorovits et al., 

2013). 

The main control programs are based on chemical insecticides. The comprehensive use of 

chemical insecticides against B. tabaci caused resistance of the pest to all active ingredients of 
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insecticides that have been utilized against it (Ahmad et al., 2002; Wang et al., 2010). Its 

ability to develop resistance is a frequent problem, even with newly developed products such 

as insect growth regulators (IGRs) and neonicotinoids (Dennehy et al., 2010). Therefore, 

methods based on biological control agents should be introduced and integrated into the 

control programs against B. tabaci. 

 

 

Figure I.10: Adults and nymphs of the whitefly Bemisia tabaci sucking the sap on the lower surface of a tomato 

leaf. Adult length=0.95-1.12 mm. 

 

I.3. Current management methods of the Egyptian Tomato insect Pest Complex 
(ETPC) 

The mentioned key tomato pests form a widespread complex which commonly attacks 

tomato crop in open fields and greenhouses in Egypt, often more or less simultaneously. 

Therefore, the growers apply chemical insecticides regularly to control the pests attacking 

their basic income source. However, the use of chemical insecticides causes negative 

consequences such as water and soil pollution or negative effects on food chains (Wood and 

Ehui, 2005). Furthermore, their frequent use leads to resistance development in insects (Van 

Bortel et al., 2008). As pests become more and more resistant to many active ingredients, 

farmers use pesticides more frequently and with higher application rates than recommended. 

As a result, the risk of excessive pesticide residues on the crop increases, making the tomato 

fruit unsafe for consumers and not suitable for exportation. Thus, farmers need pest 

management solutions against this “Egyptian Tomato insect Pest Complex” (ETPC) because 

there is no single problem, but many. Using insecticides is the choice between the devil and 

the deep blue sea - applying active ingredients with broad-spectrum does not follow principles 

of integrated production and cause negative side effects on natural enemies and the 

environment; applying many selective ones raises costs and probably also pesticide residues 

on the crop. 

Pest management relying on biological control methods can be effective, but more 

sustainable solution (Lacey et al., 2006). Biological control refers to the utilization of 

antagonists to reduce the pest population. Methods based on microbial or macrobial 

biocontrol agents have become alternatives with a steadily growing market (van Lenteren et 

al., 2018). Biological control agents against pest insects function as predators, parasitoids, or 

pathogens. Predators, such as Macrolophus pygmaeus (Rambur) can consume a large number 
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of T. absoluta eggs and the whitefly nymphs. Parasitoids like Trichogramma spp. parasite eggs 

of H. armigera (El-Wakeil, 2007; El-Heneidy and El-Dawwi 2010) and T. absoluta (Schäfer 

and Herz, 2020). Also, the parasitic wasp Encarsia formosa Gahan (Hymenoptera, 

Aphelinidae) can parasite both the tobacco whitefly B. tabaci and the greenhouse whitefly 

Trialeurodes vaporariorum (Westwood) (Gerling et al., 2001). Pathogens include viruses, 

bacteria, and fungi. They kill their host by causing disease. Insect pathogenic bacteria such as 

Bacillus thuringiensis (Bt) can be used against T. absoluta (González-Cabrera et al., 2011; 

Alsaedi et al., 2017; Jamshidnia et al., 2018), S. littoralis (Abdelkefi-Mesrati et al., 2011), and 

A. ipsilon (Yan et al., 2020). Insect viruses are available to control A. ipsilon (El-Salamouny et 

al., 2003), H. armigera (Eroğlu et al., 2019), T. absoluta (Gómez Valderrama et al., 2018; Ben 

Tiba et al., 2019). Fungi like Beauveria bassiana are applied against B. tabaci (Islam et al., 

2010). The applications of these pathogens require adequate formulation to be effective and 

need particular registration procedures as plant protection products in most countries. On the 

other hand, entomopathogenic nematodes (EPN) are macrobials carrying symbiotic bacteria 

which cause disease and death of host insects after infection. Nematodes can be considered as 

the carrier for these pathogens. EPNs were reported to be effective against S. littoralis and A. 

ipsilon (Abonaem, 2013), H. armigera (Kary et al., 2012), T. absoluta (Batalla-Carrera et al., 

2010), and B. tabaci (Cuthbertson et al., 2007a,b). 

Biological control has many advantages in comparison with insecticides, even though it is 

sometimes costly and needs a lot of time and particular knowledge. Biological control agents 

are environmentally friendly and their use has minor or no adverse consequences on soil, 

water, and the environment. Another benefit is that these natural enemies do not enhance 

developing resistance in insects (De Clercq et al., 2011). Also, it is a sustainable control 

method, if the biological organisms were established successfully in the host insect 

environment.  

Biological control agents are somewhat specific to certain insect groups. For example, 

baculoviruses are very specific: the baculovirus Heliothis armigera nucleopolyhedrovirus 

(HearNPV) which is active against H. armigera is not infective for T. absoluta. The same is 

true for most parasitoids: e.g. the parasitic wasp E. formosa can parasite the whiteflies but not 

the lepidopterans. Among biological control agents, only EPNs can infect a broader range of 

insects, even from different insect orders. For this reason, EPNs are very promising as 

antagonists of various tomato insect pests. They are candidates of the first-choice to test 

against the ETPC as the aim of this work. 

 

I.4. Perspectives for biological control using entomopathogenic nematodes (EPNs) 
for control of the Egyptian Tomato insect Pest Complex (ETPC) 

EPNs are roundworms (Nematoda, Rhabditida) that inhabit the soil and live mutualistically 

with bacteria. The families Steinernematidae and Heterorhabditidae are associated with 

bacteria belonging to the genera Xenorhabdus and Photorhabdus, respectively (Bird and 

Akhurst, 1983). EPNs have some features which make them potent biocontrol agents. They 

can kill their hosts fast, often within 48 h (Grewal and Georgis, 1999; Shapiro-Ilan et al., 

2014). EPNs can move inside the substrate (usually soil), searching for their hosts. EPNs have 

a quite broad host range with susceptible hosts among various insect taxa. Vulnerability and 

susceptibility of hosts are often more dependent on whether EPNs can locate and penetrate 

them than on taxonomic relatedness. Nowadays, EPNs can be produced in vivo and in vitro as 

well, and are commercially available in many countries worldwide (Ehlers, 2001; Grewal et 
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al., 2005; Peters et al., 2017). Moreover, they are quite easy to apply, and their use does not 

require any pre-harvest interval (PHI) and is exempted from pesticide registration in many 

countries. Also, their application is safe for the environment and their effect on non-target 

organisms in the crop systems is limited. 

 

I.4.1. Biology and life cycle of EPNs 

EPNs occur in the soil as infective juveniles (IJs) which are the only free-living stage. IJs 

are the third juvenile instars that keep the cuticle of the second juvenile instars (Fig. I.11). The 

extra cuticle works as a sheath to protect IJs during their movement among the soil particles. 

IJs are the only non-feeding stages; they can survive in the soil without feeding for several 

months, depending on the stored lipids in their bodies as energy reservoirs (Selvan et al., 

1993). In the soil or on plant leaves, they stay waiting (ambushers) or move searching 

(cruisers) for a suitable insect host (Fig. I.12). The nematode IJs locate their hosts by moving 

following the insect cues (Lewis et al., 2006). Once they find an insect host, they invade it 

through the spiracles, the mouth, the anus, or through penetrating the cuticle (only in 

Heterorhabditis spp.). Afterwards, they release the bacterial cells in the insect hemolymph 

(Martens and Goodrich-Blair, 2005). The bacteria multiply and produce exotoxins and 

endotoxins that kill the host through septicemia (Akhurst and Boemare, 1990; Dowds and 

Peters, 2002). Moreover, they produce antimicrobial agents against other contaminants 

(Boemare et al., 1996). In some cases, nematodes release a substance help to inhibit the host 

immune resistance (Götz et al., 1981; Griffin et al., 2005). The proteins produced by the 

bacteria metabolize the cadaver tissues into liquid substances on which the nematodes feed. 

IJs develop into the fourth juvenile instars and subsequently into adult females or males in the 

case of Steinernema or into hermaphrodites in the case of the first generation of 

Heterorhabditis. The adult females or hermaphrodites lay eggs that hatch into juveniles. The 

nematode juvenile develops through four instars into an adult. In the second generation, the 

new juveniles develop into males or females in both nematode genera. The nematodes 

continue feeding and producing offspring through one or more generations. Once the 

available food becomes deficient, the third juveniles keep the previous instar cuticle to 

become IJs and emerge from the insect cadaver searching for new hosts (Poinar, 1990). The 

number of emerged IJs from one cadaver can be more than 100,000 IJs searching for new 

insect hosts (Figure I.13). 
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Figure I.11: Infective juvenile (IJ) of Steinernema carpocapsae. Photo taken with Zeiss Axioscope microscope, 

magnification 100x. IJ length=438-650 µm. 

 

 

Figure I.12: Lifecycle of entomopathogenic nematodes. Presentation of EPN and host larva on different scales, real 

sizes account to in case of IJ=0.4-1.5 mm, in case of Tuta absoluta 4th instar larva=7.5 mm 
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Figure I.13: Entomopathogenic nematode infective juveniles (IJs) migrate from insect host cadaver searching for 

new hosts. IJ length=438-650 µm. 

 

I.4.2. Status quo of research on EPN against the ETPC 

The efficacy of EPNs against insect pests has been proved in the laboratory and open field 

trials by numerous authors (Grewal et al., 2005; Peters et al., 2017). Although many 

laboratory bioassays indicated that EPNs can be highly virulent, results from field trials were 

often variable. Many EPN species have been produced and commercialized to be used against 

several insect species (Shapiro-Ilan et al., 2014; Peters et al., 2017). Also, the potential 

efficacy of EPN against target pests forming the ETPC has already been investigated and the 

results obtained so far are reviewed in the following. EPNs have been used against host 

insects in soil by different methods, but also against foliar or external feeding insects on plant 

parts. In general, soil applications have more prospects, because EPNs are primarily soil-

dwelling organisms, while above-ground applications remain a challenge. When nematodes 

are applied to plant leaves, they are confronted with some factors that can impair their 

effectiveness or viability. The most limiting factors for nematode success are desiccation, 

ultraviolet radiation (UV), and high temperature (Grewal and Georgis, 1999; Shapiro-Ilan et 

al., 2006). In some cases, adding adjuvants that work as humectants, surfactants, or adhesives 

to the nematode suspension reduced the impact of such disturbing factors and increased their 

efficacy (Schroer et al., 2005). 

 

I.4.2.1. EPNs against noctuid pests 

The efficacy of nematodes against S. littoralis, A. ipsilon, and H. armigera was tested in 

many cases. The most efficient concentration of Neoaplectana carpocapsae (=S. carpocapsae 

(Weiser)) was 8000 IJs/ml when tested against all S. littoralis larval instars on castor leaves in 

leaf bioassays (El Kifl, 1980), while another report showed that a Heterorhabditis isolate at a 

dose of 250 IJs/larva obtained 100% larval mortality in S. littoralis in laboratory experiments 

(Shamseldean et al., 2009). The nematode isolates S. carpocapsae (All) and S. carpocapsae 

(S2) were reported to be the most efficient ones against S. littoralis in cabbage leaf disk 

bioassays (Salem et al., 2007). The effect of H. bacteriophora on S. littoralis larvae was higher 

than that of S. riobrave under laboratory conditions (86% and 71% mortality, respectively) 
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(Shairra and Noah, 2014). The most susceptible larval instars of S. littoralis to different dose 

levels of S. carpocapsae were the 3rd and 4th instar larvae (Abdel-Kawy, 1985). In an early 

study, El Kifl (1984) investigated the factors affecting the efficacy of Neoaplectana carpocapsae 

and H. heliothidis Poinar against S. littoralis larvae in pot trials. The dose of 18,000 IJs/pot 

resulted in 100% larval mortality. Under greenhouse conditions, H. heliothidis was more 

virulent than H. bacteriophora Poinar against prepupae and pupae of S. littoralis (Mogahed 

and El Kifl, 1991). Under open field conditions, the nematode application (9*104 IJs/m2 of 

soil surface) against 4th instar larvae of S. littoralis on corn resulted in 100% larval mortality 

with S. carpocapsae isolate (BA2) and 33.6% with H. bacteriophora isolate (S1) (Abonaem, 

2013). 

EPNs were also highly virulent against A. ipsilon in several studies. In laboratory bioassays, 

application of S. carpocapsae (Sc) and H. bacteriophora (Hb) at 100 IJs/ml resulted in 100% 

mortality in larvae and pupae of A. ipsilon (Fetoh et al., 2009), and this finding was confirmed 

by a similar study with another Heterorhabditis isolate (Shamseldean et al., 2009). In 

greenhouse experiments, S. carpocapsae applied at a rate of 240 IJs/ml was able to kill 74% of 

A. ipsilon larvae on canola leaves (Mahmoud, 2014). The infection to A. ipsilon larvae by EPNs 

was lower under field conditions. In strawberry fields, the application of S. carpocapsae (Sc) 

and H. bacteriophora (Hb) at 2000 IJs/ml resulted in 70% and 80% host mortality (Fetoh et 

al., 2009). In corn fields, isolates S. carpocapsae (BA2) and H. bacteriophora (S1) were applied 

against 4th instar larvae of A. ipsilon at a rate of 9*104 IJs/m2 of the soil surface and achieved 

100% and 83.8% larval mortality, respectively (Abonaem, 2013). 

Many EPN species were reported to be pathogenic to H. armigera, such as Heterorhabditis 

sp., S. carpocapsae, S. riobrave Cabanillas, Poinar & Raulston (Tahir et al., 1995), and S. 

glaseri (Steiner) (Patel and Vyas, 1995). In an extensive laboratory screening, 27 nematode 

isolates resulted in larval mortality ranging between 41% and 94% (Seenivasan and 

Sivakumar, 2014). In other laboratory bioassays, the susceptibility of early instars of H. 

armigera to H. indica was higher than that of later instars as indicated by median lethal time 

values (Divya et al., 2010). The infectivity of Steinernema sp. for H. armigera pre-pupa was 

43% under laboratory conditions (Ali et al., 2007). In pot bioassays, five steinernematid 

species showed high infectivity against H. armigera (Ali et al., 2008). The application of the 

species S. masoodi at a concentration of 6*109 IJs/ha (6*105 IJs/m2) resulted in 70% 

mortality in H. armigera on chickpea, Cicer arietinum L. (Hussain et al., 2014). Foliar 

application of Heterorhabditis sp. (100,000 IJs/m2) controlled 32% of H. armigera larvae 

when applied alone and 47% when applied with adjuvants (5% starch mixed with gum 

Arabic) (Vyas et al., 2002). 

 

I.4.2.2. EPNs against the Tomato Leafminer 

Several studies were performed to test EPNs infectivity against T. absoluta under 

laboratory, greenhouse, and even open field conditions after the arrival of this invasive pest in 

various countries. The performance of isolates of S. carpocapsae, S. feltiae (Filipjev), and H. 

bacteriophora was examined against T. absoluta larvae and pupae under controlled laboratory 

conditions by Batalla-Carrera et al. (2010). They found that larvae were susceptible, but 

pupae were resistant. The application of 50 IJs/cm2 on larvae caused mortality between 

86.6% and 100% in Petri dish experiments. The same application on pupae resulted in much 

lower pupal mortality between 1.7% and 8.3%. Surprisingly, soil application of EPNs against 
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larvae that invade the soil to pupate led to high mortality rates under laboratory conditions 

(Garcia-del-Pino et al., 2013). Whereas soil application of S. carpocapsae and S. feltiae did not 

cause noticed mortality in the pupae, the juveniles of S. carpocapsae caused high mortality in 

adults emerging from the soil (Garcia-del-Pino et al., 2013). 

As T. absoluta larvae mine and feed inside galleries on tomato leaves, the nematode ability 

to infect the larvae in tomato leaves was also investigated. According to these studies, EPNs 

can infect T. absoluta larvae inside their mines. Under laboratory conditions, S. carpocapsae 

and S. feltiae obtained high mortality rates in T. absoluta larvae inside their mines in tomato 

leaf disk bioassays (Van Damme et al., 2016). EPNs achieved infection rates between 77.1% 

and 91.7% in T. absoluta larvae in leaf bioassays (Batalla-Carrera et al., 2010). In another leaf 

bioassay, S. monticolum and H. bacteriophora (isolate HP88) caused high mortality rates in T. 

absoluta larvae (80-100% mortality) (Shamseldean et al., 2014). The foliar application of S. 

feltiae at 10,000 IJs/ml against T. absoluta larvae on tomato leaves was as effective as 

Spinosad, a natural biopesticide obtained from the bacterial species Saccharopolyspora spinosa 

(Jacobson and Martin, 2011). In contrast, the study by Türköz and Kaskavalci (2016) 

recorded only 19% larval mortality and 7% pupal mortality when S. feltiae was applied 

against T. absoluta larvae inside the mines and pupae. 

Under greenhouse conditions, the foliar application of EPN against T. absoluta larvae on 

potted tomato plants obtained larval mortalities of 87% for S. carpocapsae and 95% for both 

H. bacteriophora and S. feltiae (Batalla-Carrera et al., 2010). Moreover, the application of four 

EPN species at a rate of 50 IJs/cm2 against T. absoluta larvae on tomato plants in cages 

resulted in 39.3% to 94.3% larval mortality (Gözel and Kasap, 2015). In contrast, a very low 

reduction of leaf mines (12.9%) was obtained after an application of S. carpocapsae (250 

IJs/ml) against T. absoluta on tomato plants under greenhouse conditions in Egypt (Sabry et 

al., 2016). 

In open field applications, T. absoluta larvae were susceptible to four EPN species, but the 

degree of larval susceptibility to infection differed among the EPN species (Gözel and Kasap, 

2015). Another field application of EPNs against T. absoluta larvae resulted in larval mortality 

ranging between 60% and 80% with H. bacteriophora and between 58% and 67% with S. 

monticolum (Shamseldean et al., 2014). Even lower larval mortality (40-50%) was recorded 

after using S. feltiae (1000 IJs/ml) against T. absoluta larvae in tomato fields (Jacobson and 

Martin, 2011). 

 

I.4.2.3. EPNs against the whitefly 

Many EPN species were reported to be infective for the whitefly nymphs and adult stages. 

In general, S. feltiae is considered the most effective species against whiteflies, both B. tabaci 

and T. vaporariorum. Juveniles of S. feltiae were more infective than those of H. bacteriophora 

against adults and second nymphal instars of T. vaporariorum on cucumber and pepper in 

laboratory bioassays. Likewise, in greenhouse trials, S. feltiae was more efficient than H. 

bacteriophora as it obtained the same nymphal mortality with lower concentrations (Rezaei et 

al., 2015). The first three instars of B. tabaci were more susceptible to S. feltiae application 

(10,000 IJs/ml) than the fourth instar on tomato plants (Cuthbertson et al., 2003). 

Nevertheless, adults of the greenhouse whitefly T. vaporariorum were susceptible to S. feltiae 

infection (Laznik et al., 2011). Generally, the second nymphal instar of B. tabaci was the most 
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susceptible developmental stage to S. feltiae and S. carpocapsae infection (Cuthbertson et al., 

2007a,b). 

Many factors could affect the EPN efficacy against the whitefly, for instance, the surface 

and other attributes of the plant species on which nematodes are applied. The efficacy of S. 

feltiae (10,000 IJs/ml) was varied when tested against B. tabaci on five plant species (Head et 

al., 2004). Likewise, the EPN efficacy against T. vaporariorum on cucumber was significantly 

higher than on pepper (Rezaei et al., 2015). The authors suggested that the reason behind the 

significant differences could be the leaf structures such as waxy surfaces or hairs that may 

affect the nematode movement, which reducing the nematode efficacy. Nevertheless, there 

were no significant differences among the mortalities in B. tabaci when treated by S. feltiae on 

different plant leaf types under the ideal environmental conditions for EPNs activity 

(Cuthbertson et al., 2007b). Environmental conditions, especially temperature and humidity, 

are probably more crucial factors affecting the foliar applications of EPNs against B. tabaci 

(Cuthbertson et al., 2007b). Moreover, adding some adjuvants in the foliar application could 

increase the nematode efficacy against the whitefly. Adding the non-ionic surfactant TritonX-

100® to S. feltiae suspension increased the mortality in B. tabaci on tomato plants to 63%, 

while adding the surfactant Agral® (Syngenta) resulted in 50% mortality (Head et al., 2004). 

 

I.5. Current research gaps and objectives of the thesis 

The Egyptian tomato growers currently possess no alternative solutions to chemical 

insecticides to combat tomato insect pests, although so many investigations on possible 

biological control methods were conducted. Among biological control agents, only EPNs may 

provide a single agent against the whole target ETPC. The review of existing research studies 

proved that EPNs were promising and could be used against the target pests. EPNs are applied 

successfully against soil-borne insect pests in many crop systems. However, the economic 

relevant pest stages within the ETPC mainly attack the leaves, so that it is important to target 

them on foliage. The development of suitable techniques for EPN application against pests 

feeding on leaves is much more difficult, especially under Egyptian growing conditions with 

high temperatures and low humidity. Particular formulations and application schedules are 

required to maintain EPNs ability to locate and infect host insects under these conditions. 

Firstly, screening of different nematode species against ETPC is required. Such comprehensive 

screening was not done in previous studies, and it is not clear which nematode species could 

effectively attack all target pests of ETPC. In the next step, the most effective EPN species or 

isolate needs to be further investigated, whether it can also attack the pest in foliar 

applications. Then, potential formulations and application methods must be optimized and 

tested under semi-field conditions towards an economic feasible control system for these 

pests. 

The main aim of this work is to develop a foliar application system based on EPNs against 

the ETPC. The desired outcome is to introduce these biological control agents as alternatives 

to replace or reduce using chemical insecticides in tomato pest management. To achieve this 

goal, it is necessary to select and characterize suitable EPN strains in a step-wise experimental 

design and to elaborate proper application methods for use in the tomato crop system. 

 

To achieve the previous objectives the work was conducted as following (Fig. I.14): 
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1. Screening strains of various EPN species of different origin for their potential to 

control the lepidopteran pests of the ETPC. (Chapter II).  

2. Test the efficacy of the most efficient isolates against the tomato leaf-sucking pest B. 

tabaci a major insect pest attacking tomato crop in Egypt (Chapter III). 

3. Bioassays to investigate the ability of the most efficient isolates according to the 

previous screening to infect T. absoluta larvae as tomato leaf-mining pest in Egypt, on 

sand bioassay and tomato leaf bioassay (Chapter IV). 

4. On plant experiments (Chapter V):  

a. Experiments were conducted to evaluate the efficacy of the selected nematode 

isolates against T. absoluta larvae on tomato plants. This experiment was to find a 

proper concentration to be used against T. absoluta larvae on tomato plants. 

b.  Further experiments were performed for screening adjuvants. In this bioassay, the 

selected concentration based on the previous experiment result was used to select 

one adjuvant that can increase the nematode efficacy against T. absoluta larvae on 

tomato plants. 

5. Greenhouse experiment (Chapter VI): 

The suggested control system was evaluated against T. absoluta larvae artificially 

infested tomatoes under greenhouse conditions in summer. This experiment was 

conducted to assess the control method under natural conditions and high 

temperatures as well. 

 

 
Figure I.14: The schematic representation of the thesis framework. 
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Chapter II: Laboratory screening of entomopathogenic nematodes for efficacy 

against lepidopteran pests of the Egyptian Tomato insect Pest Complex 

 

II.1. ABSTRACT 

The tomato crop in Egypt is attacked by many insect pests. The most economically 

damaging pests are lepidopteran species and there are many similarities among them, such as 

their feeding behavior, the destructive stage, and the attack time. Therefore it is reasonable to 

introduce one active agent suitable for controlling all these pests. Entomopathogenic 

nematodes (EPNs) are potent biological control agents with a wide host range, thus being 

good candidates to control different pests. Screening of 15 EPN isolates was performed 

against four lepidopteran tomato pests in standard sand bioassays. The comparison among the 

different isolates was based on their efficacy at four doses against larvae of the respective 

target species. All tested EPN isolates were able to infect the larvae even at low dose levels. In 

general, isolates of Steinernema were more virulent than those of Heterorhabditis. The most 

efficient isolates within the highest dose (20 IJs/larva) were compared within the lower doses 

(10 and 5 IJs/larva). According to this evaluation, four EPN isolates were determined as most 

efficient against the tested insects and were selected to be evaluated in further bioassays. The 

selected isolates derived all from the genus Steinernema, namely S. carpocapsae BA2, S. feltiae 

Sf, S. abbasi abb, and S. carpocapsae J7. 

 

II.2. INTRODUCTION 

Tomato (Solanum lycopersicum L.) is an important crop and food for people around the 

world. Also in Egypt, this crop is of crucial economic importance for farmers, who cultivate 

tomatoes around the year in open fields or greenhouses. But tomato is a target for many 

insect pests, which cause a significant reduction in yield. The most economic insect pests 

attacking tomato in Egypt include the tomato leaf miner (Tuta absoluta Povolny), the cotton 

bollworm (Helicoverpa armigera (Hübner)), the cotton leafworm (Spodoptera littoralis 

(Boisduval)), the black cutworm (Agrotis ipsilon (Hufnagel)), and the whitefly (Bemisia tabaci 

(Gennadius)). The main control method against these pests is the frequent application of 

chemical insecticides which negatively impacts the safety of farmers, bystanders, and 

consumers. For this reason, biological control methods should be introduced to substitute 

chemical pesticides in tomato cultivation as far as possible. 

EPNs can control many insect species. Several EPN species are commercially available and 

have been used successfully against soil-borne insect pests in various crop systems. Also, foliar 

application of EPNs is possible in special formulations. EPNs have already been tested against 

the previously mentioned insect pests in many studies (Tuta absoluta: Batalla-Carrera et al., 

2010, Jacobson and Martin, 2011; Garcia-del-Pino et al., 2013; Shamseldean et al., 2014; Van 

Damme et al., 2016; Türköz and Kaskavalci, 2016; Spodoptera littoralis: El Kifl, 1980, 

Shamseldean et al., 2009, Salem et al., 2007, Shairra and Noah, 2014; A. ipsilon: Fetoh et al., 

2009, Shamseldean et al., 2009, Abonaem, 2013; H. armigera: Seenivasan and Sivakumar, 

2014; Divya et al., 2010, Ali et al., 2007; Tahir et al., 1995; Patel and Vyas, 1995). Most of 

these studies were conducted under laboratory conditions and included different EPN species 

such as Steinernema carpocapsae, S. feltiae, S. monticolum, S. riobrave, S. glaseri, 
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Heterorhabditis bacteriophora, and H. indica. The efficacy of nematode isolates varied among 

the insect hosts. 

The “Egyptian tomato insect pest complex (ETPC)” mentioned above often occurs 

simultaneously on the crop in Egyptian horticulture and it would be desirable to develop an 

EPN based treatment package against all these pests. Hence, the identification of EPN isolates 

that are most efficient against the whole pest complex is the first step towards developing an 

innovative EPN-based tool for pest management. None of the studies mentioned above have 

considered such an approach, so the need for it still exists. Consequently, the explicit goal of 

this investigation was to find EPNs that are highly effective against all species of the ETPC. 

The screening was started by identifying those candidates from a collection of available 

isolates that showed the highest performance against the lepidopteran species (Noctuidae and 

T. absoluta). Crop damage caused by lepidopteran species is economically very serious, as the 

larvae feed on all green parts of the plant, thus preventing photosynthesis and further plant 

growth. Seedlings are often destroyed completely (especially due to feeding by A. ipsilon). 

Lepidopteran pests also attack the fruits which are the most important part of the plant for the 

tomato producers. On the other hand, noctuid larvae, in particular, show some similarity in 

physiological development and state, feeding behavior, and probably also in susceptibility to 

EPNs, which makes the choice of a common antagonist more likely. Leaf-mining larvae of T. 

absoluta, an invasive species to Egypt, show a completely different feeding pattern and are a 

particular threat to tomato production in Egypt. Therefore, it was very important that the 

screening ensures that selected EPN isolates are definitely effective against this pest. 

Although the whitefly B. tabaci is a very important tomato pest in Egypt, the current 

screening was limited to lepidopteran pests within the ETPC. This allowed using standard 

sand bioassays to test different EPN isolates against target pests in a very comparable test 

design. Sand bioassays are a proven and accepted technique to study direct dose-response 

interactions between the EPNs and the host insect (Glazer and Lewis, 2000; Grunder et al., 

2005). Also, it was proposed to be used as a standard tool for the quality assessment of EPNs 

(Grewal et al., 2005). In principle, they are based on the incubation of host and EPNs in 

conditions favorable for the nematodes’ survival and host searching behavior (moist sand) in 

standardized vials of a certain volume, usually cell culture plates (24 cell well plates). By 

using this type of bioassay, a comparability of the effects of tested EPNs on the different 

lepidopteran hosts was ensured. 

 

II.3. MATERIALS AND METHODS 

 

II.3.1. Insects 

 

II.3.1.1. Rearing of the greater wax moth, Galleria mellonella Linnaeus for 
nematode production 

The greater wax moth was maintained to be used for nematode production “in vivo” at the 

Julius Kühn Institute (JKI) entomological laboratory. G. mellonella is a pest of beeswax in 

beehives and storage (Chandel et al., 2003). The last instar larva of G. mellonella has some 
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biological properties which make it an excellent host for EPN production. The larvae are 

highly susceptible to nematode infection (Ramarao et al., 2012), and insect cadavers provide 

high numbers of nematode progeny (Kotchofa and Baimey, 2019). The wax moth itself has a 

short lifecycle (Jorjão et al., 2018), and easy rearing on different low coast artificial diets is 

possible (Metwally et al., 2012). 

At JKI, the species was permanently mass‐reared using an artificial diet that consisted of 

wheat flour (30%), wheat germ (30%), corn grits (10%), Brewer’s yeast (5%), milk powder 

(5%), honey (5%), and Glycerol (15%). The rearing took place in plastic boxes (25 cm length 

(L) * 20 cm width (W) * 15 cm height (H)) with lids that had a handmade metal screen 

covered opening (Fig. II.1). Larvae were provided by 300 g diet in each box and kept in an 

incubator at 28-30 °C and darkness until pupation. The pupae were transferred to smaller 

plastic boxes (20 cm L * 15 cm W * 10 cm H) to allow the emergence of moths and later 

oviposition. The boxes were closed with their lids, and two tissue paper strips were hanged in 

the lid as oviposition sites (Fig. II.2). The strips were changed every two days. The strips with 

the deposited eggs were placed in new plastic boxes containing 300 g diet as food for the 

hatched larvae. The larvae developed through six larval instars. The last instar larvae were 

collected and stored in an incubator at 10 °C for no longer than two weeks. Afterwards, the 

larvae were used for producing the nematodes in vivo, as described later in this chapter. 

  

Figure II.1: Rearing boxes for Galleria mellonella larvae. 

  

Figure II.2: Oviposition boxes for Galleria mellonella moths contain two tissue paper strips hanged in the lid as 

oviposition sites. 
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II.3.1.2. Rearing Noctuidae species as target pests for bioassays 

Pupae of the black cutworm (Agrotis ipsilon) were obtained from Andermatt Biocontrol 

AG, Grossdietwil, Switzerland. The cotton bollworm (Helicoverpa armigera) was received from 

Bayer AG, Leverkusen, Germany, and the cotton leafworm (Spodoptera littoralis) was 

provided by colleagues from the Department of Bioorganic Chemistry, Max Plank Institute for 

Chemical Ecology, Jena, Germany. These Noctuid moths are not native to Germany and were 

therefore reared under containment conditions. They were reared following the same 

procedure. 

The larvae were maintained in plastic boxes (20 cm L * 15 cm W * 10 cm H) containing 

250 g artificial diet at 22-25 °C and long-day conditions (16 h light: 8 h dark). The diet was 

prepared as described by Ivaldi Sender (1974) (Table II.1). The formed pupae were moved to 

oviposition cages consisted of plastic cylinders (10 cm diameter and 30 cm height) covered 

with a cotton cloth till the moths emerge (Fig. II.3). The moths were provided with pieces of 

cotton wool moistened with 10% honey solution. Tissue papers were hanged inside the 

cylinders as oviposition sites. The laid eggs on the tissue papers were moved to new plastic 

boxes containing a fresh diet. The 3rd instar larvae were used in the bioassays. 

 

Table II.1: Ingredients of the artificial diet used for rearing larvae of Agrotis ipsilon, Spodoptera littoralis, and 

Helicoverpa armigera according to Ivaldi-Sender (1974). 

Ingredient Amount 

Water 2400 ml 

Benzoic acid in alcohol  9 g 

Nipagin in alcohol 9 g 

Agar-Agar 64 g 

Corn grits 220 g 

Wheat germ 320 g 

Brewer´s yeast 220 g 

Ascorbic acid in water 25 g 

 



 

21 

 

  

Figure II.3: The oviposition sites for Agrotis ipsilon moths. 

 

II.3.1.3. Rearing of Tomato leaf miner (Tuta absoluta) 

Tuta absoluta could not be produced on artificial diets, and it was reared on tomato plants 

in a quarantine room. Tomato plants (Tomato Alissa F1, Nunhems Netherlands BV, Nunhem, 

Netherlands) were grown in a greenhouse at 22-28 °C and 16 h light: 8 h dark. The tomato 

seedlings were cultivated in plastic pots containing a suitable amount of growing substrate of 

67% compost and 33% sand (v/v). T. absoluta rearing was established after obtaining T. 

absoluta eggs on tomato plants from Hochschule Geisenheim University, Geisenheim, 

Germany. The tomato plants infested with eggs were placed in Insect Rearing Tents 

(BugDorm-2120F, MegaView Science Education Services Co., Taiwan) (60 cm L * 60 cm W * 

60 cm H) (Fig. II.4). Hatched larvae fed in mines on the tissue of tomato leaves. The larvae 

were regularly provided with fresh tomato plants. The larva developed to pupa through four 

larval instars. Pupation took place inside the mine, on leaves, on stems, on soil surface, or in 

soil. The adults emerged, mated, and the female moths started to lay eggs on fresh tomato 

plants, which were constantly added to the rearing cages. The rearing room was under 

controlled conditions at 25 °C and 16 h light: 8 h dark cycle. 
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Figure II.4: A plastic tent used for Tuta absoluta rearing. 

 

II.3.2. Production of EPNs 

The nematodes were produced in vivo using the last instar larvae of G. mellonella 

following a production protocol described by Kaya and Stock (1997). G. mellonella larvae 

were added to Petri dishes lined with two filter paper discs contaminated with infective 

juveniles (IJs) of a particular nematode isolate. After 48 hours, the dead larvae were 

transferred to so-called “White traps” described by Kaya and Stock (1997). The trap was 

introduced by White (1927). It consists of an inverted smaller Petri dish inside another bigger 

Petri dish. A piece of muslin was used to cover the inverted Petri dish, and its edges reach the 

bottom of the large Petri dish. Amount of Water (50 ml) was added to the Petri dish to 

moisten the piece of muslin and collect the emerged nematodes. 

The dead larvae were placed on the wetted piece of muslin. The Petri dishes were covered 

with their lids and incubated at 25 °C (Fig. II.5). After 6-10 days, the new IJs migrated from 

the cadavers over the muslin and settled in the water. The nematodes were harvested by 

collecting the water from the Petri dishes. The collected EPNs suspension was cleaned to 

exclude the non-infective nematode stages and the dead host tissues. This was done by adding 

water to the nematode suspension, leaving it for about 10 min until the living nematodes 

settled down and then pouring out the excess water with any debris. The previous step was 

repeated twice. After that, the nematodes were stored in Petri-dishes at 12 °C. 
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Figure II.5: Dead Galleria mellonella larvae infected with Steinernema carpocapsae placed on White trap to collect 

nematode infective juveniles migrating through muslin piece into water in Petri dish. 

 

II.3.3. Screening of EPNs efficacy against lepidopteran larvae in sand bioassays 

Sand bioassays were conducted in which larvae of the target pests (T. absoluta, A. ipsilon, 

S. littoralis, and H. armigera) were exposed to 15 different EPN isolates (Table II.2). The 

bioassays were carried out in 24-well cell culture plates (Greiner bio-one GmbH, 

Frickenhausen, Germany). At first, sand was sieved through a sieve (2 mm) to remove big and 

other particles and sterilized at 60 °C for 24 h. Afterwards, the sand was distributed uniformly 

(1.5 gm/cell-well) into the wells of a plate to prepare the test vial. After settling of the sand, 

nematode IJs of a particular EPN isolate were applied in 300 µl water on sand per cell-well. 

The nematodes were applied at four doses with one, five, ten, or 20 IJs per cell-well. The 

correct number of IJs was picked up from a homogenous suspension of IJs in a Petri dish, 

using a micropipette and controlled by viewing through a stereomicroscope (Nikon SMZ745). 

Afterwards, larvae of one selected target pest were added singly to the cell-wells and were 

provided with a tomato leaf disc (7 mm diameter) (Fig. II.6). Only 20 out of 24 cell-wells per 

plate were occupied. Also, a control was included by preparing plates the same way except 

that only water without IJs was used. The plates were closed by their lids and incubated at 25 

°C for 72 h in darkness. Subsequently, the number of living and dead larvae was recorded, 

and the larval mortality achieved by the particular EPN dose per larva was calculated. The 

target insect stage was the 3rd larval instar of the noctuid species and the 4th instar larvae of T. 

absoluta. Each nematode dose was applied on 40 larvae of each insect species, using two 

plates with 20 occupied cell-wells. 
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Figure II.6: 24-well cell culture plate used in Sand bioassay to test the efficacy of Steinernema carpocapsae (20 

IJs/larva) on Tuta absoluta larvae. 

 

Fifteen isolates from different regions were tested on the target insect species (Table II.2). 

The first eight isolates were introduced from the laboratory of Entomonematology, Pests and 

Plant Protection Department, National Research Centre, Giza, Egypt. These isolates were 

collected from different regions and maintained in vivo for more than seven years in the 

previously mentioned laboratory. The next two isolates were obtained from e-nema GmbH, 

Germany. The last five isolates were isolated at the beginning of this study in April 2015. The 

isolates were extracted from 15 soil samples collected from two different apple orchards 

located in the near of Rossdorf, Hesse, Germany. Each sample (750-1000 g soil) was taken 

using a sterilized hand shovel at a depth of 15-30 cm from two sides around apple trees. The 

soil samples were collected in plastic bags marked with each sample detail (the exact location 

and the collection date). Subsequently, the collected samples were kept at 15 °C in a cool box 

while transporting them to the laboratory. The samples were examined for containing EPNs 

following the insect-baiting method described by Bedding and Akhurst (1975). The soil was 

moistened by spraying water with a Hand-sprayer and was mixed carefully. Afterwards, the 

soil was divided and placed with 10 G. mellonella last instar larvae. The cups were covered by 

the lids. Small ventilation holes were made in the lids. The cups were incubated at 25 °C. 

After four days, the cups were checked, and the dead larvae were collected. The dead larvae 

were individually rinsed in water and placed in modified White traps (White, 1927). The 

nematode progeny (nematode IJs) that emerged after 10 days were collected and rinsed by 

adding water and let them settle down before removing the excess water. The isolated 

nematodes were tested for pathogenicity against G. mellonella last instar larvae to fulfill 

Koch’s postulates (Kaya and Stock, 1997). The emerged nematode IJs were maintained in vivo 

in G. mellonella larvae. 

All fifteen isolates were tested in bioassays on the lepidopteran target pests (A. ipsilon, H. 

armigera, S. littoralis, and T. absoluta) at different times. From these results, the four most 

promising EPN isolates were selected and subsequently tested on B. tabaci in leaf bioassay 

(Chapter III) and 4th instar larvae of T. absoluta in sand bioassay and leaf bioassay (Chapter 

IV). 
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Table II.2: List of the nematode isolates used in laboratory screening against larvae of four lepidopteran insects. 

 Nematode isolate Code Origin 

1 Steinernema carpocapsae BA2 South Sinai, Egypt 

2 S. carpocapsae S2 South Sinai, Egypt 

3 Steinernema glaseri Sg New Jersey, USA 

4 Steinernema riobrave Sr Texas, USA 

5 Steinernema feltiae Sf Germany, e-nema GmbH 

6 Steinernema. abbasi abb The Sultanate of Oman 

7 Heterorhabditis marelatus mar Oregon, USA 

8 Heterorhabditis bacteriophora HP88 Utah, USA 

9 S. carpocapsae Scen Germany, e-nema GmbH 

10 S. feltiae Sfen Germany, e-nema GmbH 

11 Steinernema sp. J2 Rossdorf, Hessen, Germany 

12 Steinernema carpocapsae J7 Rossdorf, Hessen, Germany 

13 Heterorhabditis sp. J10 Rossdorf, Hessen, Germany 

14 Heterorhabditis sp. J12 Rossdorf, Hessen, Germany 

15 Heterorhabditis sp. J13 Rossdorf, Hessen, Germany 

 

II.3.4. Data analysis 

The objective of the screening was to identify those EPN strains, which are highly active 

against all lepidopteran target pests. Bioassays with the highly related lepidopteran larvae 

were considered replicates, irrespective of their species classification, to facilitate the 

identification process. Thus, four replicates (one based on A. ipsilon, one on H. armigera, one 

on S. littoralis, and one on T. absoluta) were obtained for EPN isolate and dosage. Each 

replicate consists of 40 larvae the number of dead and live tested larvae. The differences 

among the nematode isolates were analyzed within each dose separately. The statistical 

analysis and graphical presentation of results were performed using R software version 

“3.4.2” (R Core Team, 2017). Data of proportion were considered (the number of dead larvae 

versus the number of living larvae in each replicate) and consequently analysis of Deviance, 

assuming a general linear model (GLM) was applied. One GLM with binomial data 

distribution (Crawley, 2012) was fitted with EPN isolate as an explanatory variable and the 

number of present dead and living larvae as a response variable for each dosage. Model 

residuals were visually checked out, and dispersion was checked as well. The package 
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‘emmeans’ (Lenth, 2019) was used to calculate the estimated marginal means, posthoc tests at 

0.05 significant level by the Tukey method, and 95% confidence intervals. 

II.4. RESULTS 

Bioassays against lepidopteran larvae 

In all cases, the GLM fitted to the data revealed that mortality of lepidopteran larvae was 

affected by the EPN isolate used dosage: 20 IJs/larva: GLM: ~ isolate; F=6.49, df=14, 

P < 0.0001; 10 IJs/larva: GLM: ~ isolate; F=4.36, df=14, P < 0.0001; 5 IJs/larva: GLM: 

~isolate; F=4.56, df=14, P < 0.0001; 1 IJs/larva: GLM: ~ isolate; F=2.07, df=14, P = 0.03. 

The larval mortality was due to the nematode present, as there was no mortality recorded in 

the control treatment. There were highly varying infectivity levels achieved by the screened 

EPN isolates within the same applied dose (Fig. II.7.A). The tested EPN isolates evoked at 

least 68% mortality in the tested insect larvae at the high dosage of 20 IJs/larva. At this 

dosage level, eight isolates caused above 90% larval mortality. They all belonged to 

Steinernema species (isolates abb, BA2, J2, J7, S2, Scen, Sf, and Sr). Seven isolates out of the 

previous ones infected more than 90% of the larvae at the dosage of 10 IJs/larva (Fig. II.7.B). 

They also achieved the highest larval mortality among the tested isolates when applied at a 

dose of 5 IJs/ml (Fig. II.7.C). Four isolates (abb, BA2, J7, and S2) killed at least 50% 

(median) of the treated larvae (Fig. II.7.D), even when applied with only one IJ per larva. 

According to these results, four isolates were selected from the listed ones (Table II.1) to 

be considered in further evaluations of EPN isolates against the ETPC. From the three S. 

carpocapsae isolates, the most efficient one (S. carpocapsae BA2) was selected. Furthermore, S. 

abbasi abb, S. feltiae Sf, and S. carpocapsae J7 were chosen to consider a range of different 

species and origins. 

 

Figure caption see page 28 
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Figure II.7: Comparison of the efficacy of different nematode isolates (Table II.1) at different dosages (panel A: 20 

IJs/larva; panel B: 10 IJs/larva; panel C: 5 IJs/larva; panel D: 1 IJ/larva) against larvae of four lepidopteran insect 

species (boxplot, n=4). Small black dots display replicates per isolate. The median is displayed by the horizontal line 

inside the boxplot. The estimated marginal mean is displayed by the red dot. The letters at the top indicate 

significant differences among the tested isolates according to Tukey test (p < 0.05). 

 

II.5. DISCUSSION 

Fifteen different EPN isolates, covering a range of species and origins, were evaluated 

against four lepidopteran pests attacking tomato crops in Egypt and other countries in this 

laboratory screening. Larvae of these species show a somewhat similar feeding pattern, as 

they attack leaves, stems, and fruits of tomato. Furthermore, these insects damage the plant 

over the entire growing season, and they often occur together. Therefore, this study aimed to 

find isolates with high virulence against all these target hosts, so that an equal optimal control 

can be achieved when applied in the field. 

EPNs are known to exhibit different virulence and efficacy against potential host insects as 

a consequence of several internal and external factors. There are three features in some 

Steinernema nematodes that could explain their high virulence in comparison with 

Heterorhabditis. Firstly, most Steinernema nematodes use the ambusher strategy (sit and wait) 

to find a host. Moreover, some Steinernema nematodes showed the ability to use cruiser and 

ambusher strategies together, which increases their chances to find the host. Secondly, they 

have nictation behavior in which IJ stands on its posterior part and moves its body in all 

directions, searching for a host (Campbell and Gaugler, 1993). Thirdly, they have the ability 

to make a loop while standing and then jumping, which could help it reach and attach to a 

host (Campos-Herrera, 2015). All the previous characteristics could enhance the capability of 

Steinernema nematodes to reach, attach to, and infect their hosts. Furthermore, all the 

previous three features have not been recognized in the nematodes of Heterorhabditis genus 

D  
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(Lewis et al., 2006). On the other hand, IJs of Heterorhabditis nematodes have a dorsal tooth 

that could be used to penetrate the insect cuticle between the segments (Griffin et al., 2005). 

Different efficacy levels of EPNs were reported by many authors (Sharma et al., 2011, and 

Biondi et al., 2018). This emphasizes the need for screening and selecting the most efficient 

EPN isolate against the target insect pest. 

The EPN isolates screened in this experiment were from different species and isolates from 

different origins. The results reported by Seenivasan and Sivakumar (2014) showed virulence 

differences among the strains within the nematode species. The virulence of 27 EPN strains 

was evaluated against the cotton leafworm Spodoptera litura (Fabricius), the spotted 

bollworm Earias vittella (Fabricius), and H. armigera. The tested strains consisted of 16 S. 

carpocapsae, one S. monticolum (Stock, Choo, & Kaya), three Steinernema siamkayai (Stock, 

Somsook & Reid), and seven H. bacteriophora. The virulence of the applied strains differed 

significantly against the target insects’ larvae. H. bacteriophora and S. carpocapsae were more 

virulent than S. monticolum and S. siamkayai on S. litura, E. vittella, and H. armigera. 

Nevertheless, the virulence rates differed among the seven H. bacteriophora strains and 16 S. 

carpocapsae strains. The larval mortalities achieved by the strains of S. carpocapsae were 38.9-

88.9% of S. litura, 31.5-92.7% of E. vittella, and 42.4-87.8% of H. armigera. Similar variations 

were detected among the strains of H. bacteriophora. The reported results suggested that 

virulence differs among the strains and not unique within a particular species. The authors 

found that the invaded IJ numbers of the more virulent EPN strains were significantly more in 

comparison with the less virulent strains. Therefore, evaluating the efficacy of different 

isolates within one species was important. 

The general finding that all four target host species were susceptible to EPN infection 

confirmed previously published results. Fetoh et al. (2009) showed that A. ipsilon larvae were 

successfully infected by both species S. carpocapsae and H. bacteriophora. Heterorhabditis 

isolates killed all larvae of A. ipsilon when applied at 100 IJs/larva (Shamseldean et al., 

2009). In the early study, El Kifl (1980) found that all larval stages of S. littoralis were 

successfully infected by Neoaplectana carpocapsae (=S. carpocapsae) in leaf bioassays on 

castor leaves, whereas Abdel-Kawy (1985) stated that the 3rd and 4th instar of S. littoralis 

larvae were the most susceptible ones. Salem et al. (2007) reported that the nematodes of S. 

carpocapsae S2 and S. carpocapsae All were the most efficient isolates among the tested 

nematode isolates against S. littoralis using cabbage leaf disks bioassay. Shamseldean et al. 

(2009) reported that Heterorhabditis isolate obtained 100% larval mortality in S. littoralis 

when applied at a dose of 250 IJs/larva in the laboratory. 

In case of H. armigera, Tahir et al. (1995) reported that S. carpocapsae, Heterorhabditis 

sp., and Steinernema riobrave were pathogenic to H. armigera larvae. Many studies have also 

confirmed the pathogenicity potential of EPNs on T. absoluta larvae under laboratory, 

greenhouse, or open field conditions. Larvae were susceptible to S. carpocapsae, S. feltiae, and 

H. bacteriophora under laboratory controlled conditions as reported by Batalla-Carrera et al. 

(2010). They applied the nematodes at a dose of 50 IJs/cm2 on Petri dishes. These 

applications resulted in larval mortality ranged between 86.6% and 100%. Also, Garcia-del-

Pino et al. (2013) reported that EPNs application on soil against the larvae that go into the 

ground to pupate caused high mortality rates under controlled laboratory conditions. 

Furthermore, Van Damme et al. (2016) reported high mortality in T. absoluta larvae inside 
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their mines after applying S. carpocapsae and S. feltiae on tomato leaf disks under laboratory 

conditions. 

Nematode isolates, which showed high virulence against all target hosts, all belong to the 

genus Steinernema: S. carpocapsae, S. abbasi, S. riobrave, and S. feltiae. Similarly, Abonaem 

(2013) also found that S. carpocapsae was more effective than H. bacteriophora on either S. 

littoralis or Agrotis ipsilon 4th instar larvae on corn plants in the open field. Here, S. 

carpocapsae infected all larvae of S. littoralis and A. ipsilon, whereas H. bacteriophora killed 

only 33.57% of S. littoralis larvae and 83.81% of A. ipsilon larvae. Steinernema species and 

isolates were also more effective than Heterorhabditis against T. absoluta (Batalla-Carrera et 

al., 2010). At a dose rate of 25 IJs/cm2, the mortality in T. absoluta larvae was 100% with S. 

feltiae, 85.7% with S. carpocapsae, and 78.6% with H. bacteriophora. In another study, 

nematodes of S. feltiae and S. carpocapsae caused similar mortalities in T. absoluta larvae at 

the applied inoculation rates while the efficacy of H. bacteriophora was lower (Türköz and 

Kaskavalci, 2016). Also, Van Damme et al. (2016) obtained better results with S. carpocapsae 

and S. feltiae than with H. bacteriophora against the same host insect. 

Effects found for the included five Heterorhabditis isolates were comparatively lower than 

for Steinernema isolates at all tested dosages. Heterorhabditis is probably less effective at such 

low dose rates as applied in the current study against lepidopteran pests (maximum 20 

IJs/larva). Shamseldean et al. (2009) found similar results when they tested three 

Heterorhabditis isolates against S. littoralis and A. ipsilon larvae in the laboratory. They 

applied the nematodes at doses of 5, 50, 100, 250, 500, and 1000 IJs/larva. Isolates of 

Heterorhabditis caused larval mortality of 100% only at doses of 100 IJ (against A. ipsilon), or 

250 IJ/larva (S. littoralis) or higher. But one report stated that the efficacy of H. bacteriophora 

was relatively higher than S. riobrave against S. littoralis larvae under laboratory conditions 

(86% and 71% mortality, respectively) (Shairra and Noah, 2014). One possible explanation of 

the low efficacy of Heterorhabditis nematodes, that their IJs are cruisers. The applied IJs may 

move deeply in the sand column and do not meet the target larva on the soil surface. In the 

bioassay, the nematodes were added to the sand before adding larva. By bringing it all 

together, when the nematodes are applied at a low dose rate, IJs enter into the soil, and there 

are no sufficient IJs to infect larva on the soil surface. 

Comparable levels of high efficacy were found for S. feltiae and S. riobrave within the 

different dosages at the present study. The commercial availability or suitability for mass 

production was taken into consideration to select one of them for further experimentation. In 

contrast to S. riobrave, isolates of S. feltiae are available from several companies worldwide 

(e.g. e-nema GmbH, Schwentinental, Germany), and even the selected isolate S .feltiae Sf, is 

produced commercially. Although S. riobravae has already been tested in several studies 

against many pests, it has not yet been widely produced for commercial use. Furthermore, this 

species is only known from North America and would therefore be more difficult to consider 

for field application in many countries as a non-native species. Therefore, the nematode 

species of S. feltiae was selected instead of S. riobrave. 

Two isolates (BA2 and J7) of the species S. carpocapsae were selected, mainly due to the 

high efficacy demonstrated in this screening. Besides this, BA2 was collected in Sinai region in 

Egypt, therefore promising good adaptation to environmental conditions in Egypt as a native 
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organism of this target country. On the other hand, isolate S. carpocapsae J7 was found in 

Germany during the present work. It achieved high mortality even at the lowest dose and may 

offer other capabilities not yet known, as this candidate was not studied before. In addition, 

also S. abbasi performed well in the conducted screening and was chosen due to its origin 

from the Sultanate of Oman with semi-arid tropic conditions which are comparable to the 

Egyptian environment. 

The objective of the screening study was to establish a feasible “shortlist” of potential 

candidate EPN isolates for control of the ETPC. These candidates were subject to more 

detailed studies in the following against B. tabaci (Chapter III) and T. absoluta (Chapter IV till 

Chapter VI). 
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Chapter III: Efficacy of selected entomopathogenic nematodes to control the 

Whitefly Bemisia tabaci under laboratory conditions 

 

III.1. ABSTRACT 

The Whitefly Bemisia tabaci is one of the most destructive insect pests on tomato crops in 

Egypt. Four nematode isolates found to be efficient on lepidopteran pests in a previous study 

were tested against the whitefly to create a unique nematode-based control system against the 

Egyptian tomato insect pest complex (ETPC). The isolates Steinernema carpocapsae BA2, 

Steinernema feltiae Sf, Steinernema abbasi abb, and S. carpocapsae J7 were applied at three 

concentrations (1000, 2000, and 4000 IJs/ml) in 0.3% Tween 80 suspensions on tomato 

leaves which had been infested with 2nd nymphal instars of the whitefly before. All tested 

isolates were able to infect the target host stage successfully. The nematodes of S. feltiae were 

significantly the most efficient within the concentrations of 2000 and 4000 IJs/ml. The 

nymphal mortality obtained by S. carpocapsae BA2 was not significantly different from that 

obtained by S. feltiae Sf within the concentration of 1000 IJs/ml. 

 

III.2. INTRODUCTION 

The tobacco whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a highly 

polyphagous pest that attacks many important crops such as cucumber, sweet potatoes, 

cotton, potatoes, and tomatoes. It is a serious pest in almost all the countries around the 

world. In Egypt, B. tabaci is a major pest on tomatoes cultivated either under greenhouses or 

in open fields. It attacks the crop during all growth stages until harvest. This insect causes 

huge losses to the crop between April and November (ElGindy, 1997). 

The whitefly life cycle starts when the female flies lay eggs on the underside of the leaves. 

Eggs hatch to the first nymphal instars, which are crawlers and are the only mobile nymphal 

instar. It moves to find a suitable feeding site and molt to the second nymphal instar, which is 

immobile and sessile on the underside of the leaf. Each instar of the first three nymphal 

instars develops within 2-4 days, depending on the environmental conditions. The fourth 

nymphal instar is called pupa, which develops within 6-7 days to the adult fly. 

B. tabaci causes direct damages to the crop by feeding and indirect damages by 

transmitting plant pathogenic viruses (Brown, 2010). The nymphs and the adults feed on the 

lower surface of the leaf, inserting their mouthparts and sucking the plant sap. Their feeding 

causes yellow spots on the upper surface of the leaf, which further extend during the 

infestation. All feeding stages produce honeydew that covers the leaf surface. It can impede 

photosynthesis and induces sooty mold fungi growth on the leaves and the fruits as well 

(Stansly and Natwick, 2010). Furthermore, B. tabaci is a vector for some plant pathogen 

viruses that cause significant losses in the infested crops. The most common viruses are 

Tomato chlorosis virus (TCV) and Tomato yellow leaf curl virus (TYLCV). These viruses cause 

some symptoms such as Leaf curling, mosaics, or yellowing (Czosnek and Laterrot, 1997; 

Gorovits et al., 2013). 
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Growers use chemical insecticides to control or eradicate this serious pest. As a 

consequence of extensive use of chemical insecticides, B. tabaci developed resistance to nearly 

all groups of insecticides (Ahmad et al., 2002; Wang et al., 2010) and even novel active 

ingredients quickly lose their effectiveness against this pest (Dennehy et al., 2010). For this 

reason, other control methods based on biological control agents need to be developed and 

integrated into pest management programs against B. tabaci. Parasitoids, predatory mites 

(Cuthbertson, 2014), and entomopathogenic agents such as nematodes (Cuthbertson et al., 

2003, 2007a,b) and fungi (Cuthbertson and Walters, 2005; Cuthbertson et al., 2005, 2012;) 

were shown to be possible tools in B. tabaci control. The laboratory experiments described in 

this chapter aimed to prove the ability of particular EPN isolates to infect the whitefly B. 

tabaci. The selected isolates had been shown to be highly virulent for different lepidopteran 

pest species attacking tomato crops in Egypt, such as Helicoverpa armigera, Spodoptera 

littoralis, Agrotis ipsilon, and Tuta absoluta (Chapter II). Due to their broad host spectrum, 

EPNs are particularly interesting when it comes to developing a biological control strategy not 

only against the whitefly but also against as many other important pests on tomatoes as 

possible. The whitefly is a significant member of the so-called Egyptian Tomato insect Pest 

Complex (ETPC). However, life history, susceptible stages, and especially feeding and 

damaging pattern of the whitefly significantly differs from that of lepidopteran members of 

the ETPC. All stages of the whitefly occur only on leaves; they feed by sucking the sap and 

they are very small in size. Rapid development of multiple generations takes place, so that 

also vulnerable stages are available only for short times, but occur frequently. All insect stages 

could occur at the same time on the plant or even on the same leaf. 

The general approach of the investigation focuses on the identification of suitable EPN 

isolates which can successfully tackle the whole ETPC. Sand bioassay is a perfect and 

standardized test procedure to check the effectiveness of EPN isolates with different 

characteristics and behaviors on larval stages of various insect orders (Glazer and Lewis, 

2000; Grunder et al., 2005), but they are unsuitable for testing EPNs against phloem sap 

feeders like whiteflies. This made the screening of EPNs on the whole ETPC in one bioassay 

inappropriate and EPN isolates selected from primary screening against lepidopteran pests 

were tested for efficacy on immobile 2nd nymphal instar on tomato leaves. 

 

III.3. MATERIALS AND METHODS 

 

III.3.1. Rearing of the Whitefly (Bemisia tabaci) 

B. tabaci nymphs were obtained from Bayer AG, Leverkusen, Germany. The insects 

were reared on tomato plants in Insect Rearing Tents (BugDorm-2120F) (60 cm L * 

60 cm W * 60 cm H) (MegaView Science Education Services Co., Taiwan) at 25 °C, 

50-70% RH, and 16 h light: 8 h dark cycle (Fig. III.1). New tomato plants were added to 

the rearing cages every week to maintain the culture. The 2nd instar nymphs were 

used on the bioassays to assess the nematode efficacy. 
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Figure III.1: Insect rearing tents used for rearing the whitefly Bemisia tabaci on tomato plants. 

III.3.2. Infestation of tomato plants 

Specific infestation of host plants was performed by distributing about 100 adults of B. 

tabaci on five tomato plants (six leaves old) in an Insect Rearing Tents (BugDorm-2120F) (60 

cm L *60 cm W *60 cm H) to allow a period of 48 h for oviposition (Fig. III.1). Tents were 

placed in a controlled rearing chamber at 25 °C, 50-70% RH, and 16 h light: 8 h dark cycle. 

After exposure, the plants were cleaned from adult whiteflies, moved to new tents, and kept 

for further 12 days at the same conditions till the emergence of the 2nd nymphal instars. Then, 

infested leaflets were collected and used in the bioassay. 

 

III.3.3. Set up of the bioassay 

Tomato leaflets infested with at least five B. tabaci 2nd nymphal instar were collected to be 

treated with nematode suspensions (Fig. III.2). The EPN isolates S. carpocapsae BA2 & J7, S. 

feltiae Sf, and S. abbasi abb were applied at three concentrations (1000, 2000, and 4000 

IJs/ml) in water suspensions, containing 0.3% Tween 80 as an adjuvant. Each concentration 

was prepared in a volume of 250 ml before the application. Of this, a volume of 50 ml of the 

nematode suspension was put into a hand sprayer (50 ml) and sprayed on 10 tomato leaflets 

one after the other until runoff. Immediately after the application, each leaflet was placed in a 

plastic box (15 cm L * 10 cm W * 5 cm H). The leaflets were placed with the underside facing 

up. Leaflet petioles were stuck into moistened peat moss to keep them fresh. Thereafter, the 

boxes were covered by lids and incubated at 25 °C, 16 h light: 8 h dark cycle. The previous 

application was performed four times on different days and, in total, 40 leaflets were obtained 

for each concentration of each nematode isolate. Other 40 leaflets, serving as control, 

received only 0.3% Tween 80 without nematodes. After 72 h incubation, the leaflets were 

checked under a binocular microscope, and dead and living nymphs were counted. 
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III.3.4. Data analysis 

The objective of the bioassay was to investigate the efficacy of four nematode isolates 

against B. tabaci 2nd instar nymphs. The comparison among isolates and different 

concentrations was assessed. Each concentration had four replicates. Each replicate consisted 

of the number of dead and living nymphs on ten tomato leaflets, which had been treated at 

the same time by the nematode suspension. The statistical analysis and graphical presentation 

of results were performed using R software version “3.4.2” (R Core Team, 2017). Numbers of 

dead and living B. tabaci 2nd instar nymphs in response to different EPN isolates and applied 

concentrations were compared to estimate the efficacy of these EPN isolates. Data of 

proportion were considered (number of dead nymphs versus the number of living nymphs in 

each replicate) and consequently analysis of Deviance, assuming a general linear model 

(GLM) was applied. One GLM with binomial data distribution was fitted with EPN isolate, 

concentration, and the two-way interaction between isolate and concentration as explanatory 

variables and the number of present dead and living nymphs as a response variable. Model 

residuals were visually checked out, and dispersion was checked as well. The package 

‘emmeans’ (Lenth, 2019) was used to calculate the estimated marginal means, posthoc tests at 

0.05 significant level by the Tukey method, and 95% confidence intervals. 

  

 

Figure III.2: Plastic box containing a tomato leaflet infested with Bemisia tabaci 2nd nymphal instar and treated with 

Steinernema carpocapsae BA2. 

 

III.4. RESULTS 

All the tested isolates successfully infected the whitefly nymphs (Fig. III.3). No nymphs 

died in the control treatment, and statistical comparison was restricted to EPNs treatments. 

Thereby, nymphal mortality was affected by isolate, concentration, and the interaction of 

these explanatory variables (GLM: Probit (cbind (dead, living)) ~ Isolate * Concentration: 

LRT=887.36, df=12, p<0.001). The isolate S. feltiae Sf consistently achieved the highest 

mortality (80%) in B. tabaci nymphs at each concentration level (Fig. III.4), although not 
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significantly so compared to S. carpocapsae BA2 at lower concentrations of 1000 or 2000 

IJ/ml. Application of S. feltiae at a concentration of 4000 IJ/ml caused 80% mortality in B. 

tabaci nymphs and was significantly higher compared to the other isolates and concentrations 

(Fig. III.4). The isolates S. abbasi abb and S. carpocapsae BA2 or J7 elicited similar effects (but 

less than 50% mortality) when applied at 4000 IJs/ml. At the lowest concentration of 1000 

IJs/ml, BA2 was similarly effective to S.feltiae, but mortality was generally low. 

 

   

Figure III.3: Whitefly nymphs (A) alive, (B) and (C) infected by Steinernema feltiae. The length of whitefly 2nd 

nymphal instar=0.29-0.38 mm. 

 

Figure III.4: Comparison among four EPN isolates Steinernema abbasi abb (abb), S. carpocapsae BA2 (BA2) and J7 

(J7), and S. feltiae Sf (Sf) applied at three different concentrations (1000 IJs/ml, 2000 IJs/ml, and 4000 IJs/ml), and 

their effect on the mortality of the whitefly, Bemisia tabaci 2nd nymphal stages in leaf bioassay. Boxplots are shown 

with individual observed values (n=4) as jittered points. The median is displayed by the horizontal line inside the 

boxplot. The estimated marginal means are displayed by the red dots estimated from the fitted model. The letters 

at the top indicate significant differences among the tested treatments (Isolates and concentrations) according to 

posthoc tests (p < 0.05). 

 

A B C 
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III.5. DISCUSSION 

The objective of these experiments was to determine if EPN isolates, which have been 

shown to be effective against ETPC lepidopteran species in a previous screening, could cause 

sufficient mortality of whitefly nymphs. Appropriate leaf bioassays were used to evaluate the 

nematode efficacy, but also to ensure whitefly survival in the control treatment. The target 

stage was the 2nd nymphal instar because this stage was the most susceptible to nematode 

infection according to other publications (e.g. Cuthbertson et al., 2003; Cuthbertson et al., 

2007a,b). Bioassays were conducted two weeks after oviposition and incubation period of 

infested plants, because then 2nd nymphal instars occur (Cuthbertson et al., 2007b).  

According to this study, S. feltiae Sf proved to be the most effective of four test isolates 

against B. tabaci 2nd nymphal instars. Also, Cuthbertson et al. (2003) investigated S. feltiae 

activity against the four nymphal instars of B. tabaci on tomato and verbena. They applied the 

nematode at the high concentration of 10,000 IJs/ml, formulated in 0.02% Agral (non-ionic 

wetting agent), at 20 °C and found that the second nymphal instar was the most susceptible 

larval stage. They concluded that S. feltiae applications can reduce about 65% of B. tabaci 2nd 

nymphal instars on both tomato and verbena foliage. In another study, the efficacy of S. feltiae 

and H. bacteriophora was evaluated against the greenhouse whitefly Trialeurodes 

vaporariorum on cucumber and pepper (Rezaei et al., 2015). The susceptibility of adults and 

second nymphal instars to the two nematode species was tested at different rates (0, 25, 50, 

100, 150, 200, and 250 IJs/cm2) under laboratory conditions. Afterwards, experiments 

against 2nd nymphal instars were conducted on pepper and cucumber plants under 

greenhouse conditions. The adjuvant Triton X-100 (0.1%) was added to the nematode 

suspension for enhancing nematode activity. Both nematode species were able to infect both 

adults and nymphs, but, according to LC50 values, S. feltiae was more effective than H. 

bacteriophora in the laboratory bioassays. Furthermore, S. feltiae achieved the same nymphal 

mortality as H. bacteriophora in the greenhouse experiments, but already at lower 

concentrations. Application of S. feltiae at a dosage of 250 IJs/cm2 gained the highest 

mortality in T. vaporariorum 2nd nymphal instars (49±1.23%) on cucumber under greenhouse 

conditions. In general, the efficacy of EPNs against T. vaporariorum on cucumber was 

significantly higher than on pepper, indicating that also the host plant of the whitefly may 

play an important role. 

Whiteflies are difficult targets for EPNs compared to lepidopteran pests, because even high 

concentrations of IJs result in relatively low mortalities, at least under greenhouse or semi-

field conditions. Nevertheless, mortality rates of up to 80% were observed in the current leaf 

bioassays by application of the EPN isolate S. feltiae Sf. The other EPN species also achieved 

mortalities above 50% when applied at high concentrations. These results proved that EPN 

isolates that are effective against lepidopterans of the ETPC can also successfully attack 

whiteflies. Clearly, whiteflies were found to be less susceptible to infection by EPNs than 

lepidopteran hosts, but this claim needs to be proven in further experiments. 
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Chapter IV: Screening of entomopathogenic nematodes against the tomato leaf 

miner, Tuta absoluta, an invasive tomato pest in Egypt. 

 

IV.1. ABSTRACT 

Since its introduction in 2009, tomato leafminer, Tuta absoluta has become the most 

dangerous pest on tomatoes in Egypt. Therefore, it was selected as the key target among the 

Egyptian tomato insect pest complex (ETPC) to develop a biocontrol system based on 

Entomopathogenic nematodes (EPNs). Four EPN isolates (Steinernema carpocapsae BA2, S. 

feltiae Sf, S. abbasi abb, and S. carpocapsae J7) were tested against T. absoluta larvae in sand 

and leaf bioassays under laboratory conditions. These EPNs were found to be the most 

efficient among 15 isolates in a previous screening against four lepidopteran species (Chapter 

II). All isolates successfully infected T. absoluta larvae when exposed directly in the sand 

bioassay. There were limited differences among the isolates at the doses applied. All isolates 

were capable of attacking T. absoluta larvae on tomato leaves inside and outside the mines, as 

shown by the leaf bioassay. The calculated LC50 values ranged between 112 IJs/ml (S. feltiae 

Sf), 103 IJs/ml (S. carpocapsae J7), 82 IJs/ml (S. abbasi abb), and 44 IJs/ml (S. carpocapsae 

BA2), suggesting that S. carpocapsae BA2 is the best candidate for Tomato leafminer control. 

 

IV.2. INTRODUCTION 

Tomato is the most cultivated vegetable crop in Egypt and it is a target for continuous pest 

infestation from the first day in the field to the last day of harvest. Nowadays, the invasive 

tomato leafminer moth, Tuta absoluta (Meyrick) (Lepidoptera, Gelechiidae) is the most 

destructive insect pest on tomatoes in Egypt. This insect was introduced to Egypt in 2009, 

coming from Spain through Libya (Khidr et al., 2013; Ata and Megahed 2014; Goda et al., 

2015; Darbain et al., 2016). Since then, it has displaced the whitefly Bemisia tabaci 

(Gennadius) from the top of most important insect pests on tomatoes. The seriousness of this 

pest is caused by the short generation time (on average one generation per month), followed 

by the establishment of many generations per year, leading to pest outbreaks and permanent 

impact on the crop. Furthermore, the larvae attack the plant leaves, stems, and fruits, 

resulting in an immense loss in the yield quantity and quality. T. absoluta infestation can 

cause up to 80-100% losses if the pest is not controlled (Desneux et al., 2010). Standard 

control methods against this pest are currently based on chemical insecticides, so it is 

important to introduce new alternative methods based on biocontrol agents. Some alternative 

approaches, using beneficial insects such as Trichogramma sp. (Schäfer and Herz, 2020) or 

insect viruses (Ben Tiba et al., 2019), are promising, but are not available everywhere and - 

especially in the case of microbials - require registration as plant protection products. On the 

other hand, the use of entomopathogenic nematodes (EPNs) as antagonists could be an 

excellent option. They have some advantages such as their ability to kill their hosts quickly 

within only 48 h, they can control several host species simultaneously and they can be easily 

applied using the usual application tools, also on a larger scale. Besides that, EPNs can be 

produced in vivo and in vitro, and they do not cause any hazard to vertebrates or plants. EPNs 

have been used against many insect pests on different crop systems (Grewal et al., 2005). The 



 

39 

 

majority of applications take place against soil-dwelling pests, but there are also some 

examples of uses against target pests above ground or on foliage such as Diamondback moth, 

Plutella xyllostella Linnaeus (Lepidoptera: Plutellidae) (Schroer et al., 2005; Sáenz et al., 

2020). Because T. absoluta larvae feed on the foliage, the foliar application is demanded. 

There already exist some studies on EPNs efficacy against T. absoluta larvae on tomato leaves. 

Batalla-Carrera et al. (2010) conducted a leaf bioassay under laboratory conditions and 

recorded high infection levels in T. absoluta larvae inside their galleries. Also, the applications 

of S. feltiae, S. carpocapsae, and Heterorhabditis bacteriophora resulted in high mortality rates 

in T. absoluta larvae inside their mines on tomato leaf disks under laboratory conditions (Van 

Damme et al., 2016). Moreover, Türköz and Kaskavalci (2016) tested S. feltiae against T. 

absoluta larvae inside the mines but these trials resulted in low mortality. 

T. absoluta is now a big problem in Egyptian tomato production and can be the dominant 

species of the Egyptian Tomato insect Pest Complex (ETPC). Those EPNs that have shown 

promising activity against lepidopteran pests of the ETPC (Chapter II) were assayed against 

this insect as well. General activity against T. absoluta was explored in the standard sand 

bioassay. Then, it was tested whether the EPNs were able to reach T. absoluta larvae on leaves 

by entering mines and infecting larvae therein. 

 

IV.3. MATERIALS AND METHODS 

 

IV.3.1. Rearing of Tomato leaf miner (Tuta absoluta) 

Tomato plants (Tomato Alissa F1, Nunhems Netherlands BV, Nunhem, Netherlands) were 

grown in a greenhouse at 22-28 °C and 16 h light: 8 h dark cycle. The tomato seedlings were 

cultivated in plastic pots containing a suitable amount of growing substrate of 67% compost 

and 33% sand (v/v). Rearing of T. absoluta was performed on tomato plants in insect Rearing 

Tents (BugDorm-2120F) (60 cm L * 60 cm W * 60 cm H) (MegaView Science Education 

Services Co., Taiwan). The rearing room was under controlled conditions at 25 °C and 16 h 

light: 8 h dark cycle. 

IV.3.2. Production of Entomopathogenic nematodes 

EPN isolates of S. carpocapsae BA2 (Hussein and Abou El-Souud 2006), S. feltiae Sf, S. 

abbasi (Elawad et al., 1997, isolate abb), and S. carpocapsae J7 were used in this study. These 

isolates had been selected as the most efficient isolates among 15 isolates against the 

lepidopteran tomato pests Agrotis ipsilon, Spodoptera littoralis, Helicoverpa armigera, and Tuta 

absoluta (Chapter II). 

The first three isolates were obtained from the collection of the Insect nematology group, 

Pests and Plant Protection Department, National Research Centre, Giza, Egypt. The fourth 

isolate, Steinernema carpocapsae J7, was isolated from soil samples collected from an apple 

orchard in Rossdorf, South-Hessia, Germany in the year 2015. The isolate was identified as 

Steinernema morphologically and molecular identification, based on the ITS2-marker, 

suggests that it is a S. carpocapsae species (Ruoff, JKI, Darmstadt working group virology, 

unpublished). The nematode isolates were maintained as in vivo cultures in Galleria mellonella 
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last instar larvae at 25 °C (Chapter II). Infective juveniles (IJs) were collected within three 

days of emergence from host cadavers and stored in water at 12 °C and darkness for not more 

than 10 days until using. 

 

IV.3.3. Sand-Bioassay 

The sand bioassay was conducted to prove any differentiation among the four top-ranked 

EPN isolates from the previous screening in efficacy versus T. absoluta larvae. The nematodes 

were applied at four doses (1, 5, 10, or 20 IJs/larva/cell-well) against T. absoluta 4th instar 

larvae. Each dose was applied on 40 separate larvae in two 24-Cell-Well plates. The method 

was as described in the previous bioassay (Chapter II). Also, a control was included by 

preparing plates the same way, except that only water without IJs was used. In total, the 

bioassay was independently replicated three times at different time points. 

IV.3.4. Leaf-Bioassay 

It was necessary to obtain larvae of a particular instar within mines on tomato leaves for 

the leaf bioassay. About 100 newly emerged T. absoluta moths were placed together with ten 

tomato plants (six leaves old) in a tent (60 cm L * 60 cm W * 60 cm H) to allow oviposition at 

25±1 °C, 40-70% RH, and 16 h light: 8 h dark cycle. Plants with eggs were transferred into a 

clean plastic cage 48 h later, supplied regularly with water, and maintained under the same 

temperature and light conditions. Eggs hatched, and the larvae developed within two weeks 

into the fourth instar, ready for use in the trials. Then, infested leaflets were collected (Fig. 

IV.1). They contained, on average, three 4th instar larvae in their mines. 

 

Figure IV.1: Tomato leaflets infested with Tuta absoluta larvae to be used for the bioassay.  

 

EPNs were applied as IJs at seven concentrations: 15, 30, 60, 125, 250, 500, and 1000 

IJs/ml in water. The nematode suspension of each concentration was prepared in 300 ml 
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water before the applications. Afterwards, a volume of 50 ml from the prepared suspension 

was sprayed on 10 tomato leaflets using a hand sprayer (volume: 50 ml). The application was 

performed by holding a single leaflet in one hand and spraying the nematode suspension on 

both sides of the leaflet till runoff. The application was done four times for each concentration 

(50 ml EPN-suspension on 10 leaflets * 4 times). Water without nematodes was sprayed on 

40 leaflets as a control treatment. Thereafter, each leaflet was placed singly in a plastic box 

(10 cm L * 6 cm W * 6 cm H) with their petioles placed into moistened Peat Moss to keep the 

leaf fresh (Fig. IV.2). All plastic boxes were incubated at 25 °C for 72 h (Fig. IV.3). 

Subsequently, the leaflets were examined to determine dead and living larvae per leaflet, and 

their numbers in the ten leaflets treated with the 50 ml EPN suspension were counted 

together to form one replicate (on average 30 larvae/replicate). The whole experiment was 

repeated three times at different time points during the years 2016 and 2017. 

 

 

Figure IV.2: Plastic box with a tomato leaflet infested with Tuta absoluta 4th instar larvae inside mines. The leaflet 

was treated with a suspension containing Steinernema carpocapsae BA2. 

 

 

Figure IV.3: Plastic boxes containing tomato leaflets infested with Tuta absoluta 4th instar larvae treated with 

Steinernema carpocapsae BA2. 
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IV.3.5. Statistical data analysis 

IV.3.5.1. Sand bioassay 

The objective of the bioassay was to investigate the efficacy of four nematode isolates 

against T. absoluta larvae. The comparison among isolates within different application doses 

was assessed. Each application dose had three replicates. Each replicate consisted of the 

number of dead and living larvae which had been treated at the same time by the nematode 

suspension. The treated larvae were 40 larvae per replicate. The statistical analysis and 

graphical presentation of results were performed using R software version “3.4.2” (R Core 

Team, 2017). The differences among the nematode isolates and doses were analyzed. Analysis 

of variance (ANOVA) was applied using function “aov”. Models were simplified and selected 

by using the Akaike's Information Criterion (AIC) and drop1 function with “F” test. The fitted 

model was with EPN isolate and trial as explanatory variables and larval mortality (%) as a 

response variable. In the case of both doses of 10 and 20 nematodes/larva, one model was 

fitted with EPN isolate as explanatory variable and larval mortality (%) as a response variable. 

In the case of doses of one and five nematodes/larva, one model with EPN isolate, trial, and 

the interaction between EPN isolate and trial as explanatory variables and larval mortality 

(%) as a response variable. Model residuals were visually checked out, and dispersion was 

checked as well. The package ‘emmeans’ (Lenth, 2019) was used to calculate the estimated 

marginal means, posthoc tests at 0.05 significant level by the Tukey method, and 95% 

confidence intervals. 

 

IV.3.5.2. Leaf bioassay 

The objective of the bioassay was to compare the concentration-mortality response among 

four isolates and to select the most efficient one on T. absoluta larvae on tomato leaves. The 

statistical analysis and graphical presentation of results were performed using R software 

version “3.4.2” (R Core Team, 2017). Data of proportion were considered (number of dead 

larvae versus the number of living larvae in each replicate) and consequently analysis of 

Deviance, assuming a general linear model (GLM) was applied. One GLM with binomial data 

distribution and a logit link was fitted with EPN isolate, log (concentration), trial, and the 

interaction among isolate, log (concentration), and trial as explanatory variables and number 

of present dead and living larvae as a response variable. Model suitability was visually 

checked by plotting the standardized residuals versus the fitted values, and dispersion was 

checked as well. Likelihood-Ratio-Test (LRT) was used following the model simplification to 

test the significance of the explanatory variables. Lethal concentrations causing 50% and 90% 

larval mortality (LC50 and LC90) and their confidential limits for the four isolates were 

calculated using the “MASS” package (Venables and Ripley, 2002). The dose-response curves 

were plotted using ‘ggplot2’ package (Wickham, 2016). 
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IV.4. RESULTS 

 

IV.4.1. Sand Bioassay 

The four isolates most efficient against lepidopteran larvae were explored in sand 

bioassays on T. absoluta. No larval mortality was recorded in the control. There were 

significant differences among the tested isolates at the application dose of 20 IJs/larva (Table 

IV.1) (aov (Mortality ~ Isolate): df=3, F value=18.13, p<0.001). All the tested isolates were 

highly virulent against T. absoluta larvae in this bioassay, as they achieved above 90% larval 

mortality. The larvae were also highly susceptible when treated with the lower dose of 10 

IJs/larva with significant differences occurred among the tested isolates (Table IV.1) (aov 

(Mortality ~ Isolate): df=3, F value=6.22, p=0.017). At the dose of 5 IJs/larva, the trial time 

has an influence on the larval mortality according to the fitted model (aov (Mortality ~ 

Isolate * Trial)) (isolate: df=3, F value=36.87, p=0.002, Trial: df=1, F value=25.6, 

p=0.007, isolate: trial: df=3, F value=12.53, p=0.016). S. abbasi abb caused the highest 

mortality in T. absoluta larvae (Table IV.1). Using one nematode on one larva caused lower 

larval mortality, but the effect of the isolates was not significantly different (Table IV.1) (aov 

(Mortality ~ Isolate * trial: F=0.7, df=3, p>0.05). These results suggest that all the selected 

isolates were efficient against T. absoluta larvae by direct exposure in the sand bioassay. 

Table IV.1: Mortality (mean±SD, %) of Tuta absoluta (4th instar) after exposure to different doses of four EPN 

isolates in standard sand bioassay. BA2, J7: Steinernema carpocapsae, Sf: S. feltiae, abb: S. abbasi. *Mean values 

followed by different letters in the same column are statistically different for each application dose according to 

Tukey's test (p < 0.05).  

 

EPN 

Isolate 

Nematode dose (IJ/larva) 

1 5 10 20 

Mean±SD* 

(%) 

Mean±SD* 

(%) 

Mean±SD* 

(%) 

Mean±SD* 

(%) 

BA2 34.1±22.2 a 73.3±9.4 b 94.1±2.2 ab 100 a 

Sf 25.8±14.4 a 72.5±1.6 b 94.1±3.8 ab 98.3±1.1 a 

abb 45.83±3.8 a 93.3±2.2 a 100 a 100 a 

J7 52.5±10 a 83.3±5.5 c 88.3±2.2 b 91.6±2.2 a 

 

IV.4.2. Leaf bioassay 

All tested isolates successfully infected T. absoluta larvae on tomato leaves, whether inside 

or outside their mines (Fig. IV.4). The nematode efficacy was evaluated by calculating the 

lethal concentrations of applied IJs. The values of LC50 ranged between 44 IJs/ml for EPN 

isolate S. carpocapsae BA2 to 112 IJs/ml for S. feltiae Sf (Table IV.1). In Figure IV.5, the 

relationship between the concentration of IJs/ml (log-transformed) and death probability 

(larval mortality (%)) including confidence intervals (95%) indicated that the isolate BA2 
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achieved the highest larval mortalities and was significantly separated from the other three 

isolates. To reach 90% mortality of 4th instar larvae (LC90 values), the application of 305, 

1179, 714, and 3624 IJs/ml for nematodes of BA2, Sf, abb, and J7, respectively, was 

necessary (Table 1). Corresponding confidence intervals ranged between 338 and 392 for 

BA2, 885 and 1570 IJs/ml for Sf, 511 and 997 for abb, and 2374 and 5532 for J7. Again, BA2 

was clearly separated from the other isolates and achieved highest mortality on the 4th instar 

larvae of T. absoluta. 

   

Figure IV.4: Tuta absoluta larvae infected by Steinernema carpocapsae BA2 infective juveniles applied on tomato 

leaves. (A) Infected larva inside the mine. (B) Infected larvae outside the mines. 

 

Table IV.2: The lethal concentrations causing 50% and 90% larval mortality (LC50 and LC90) and the confidence 
intervals of four nematode isolates (Steinernema carpocapsae BA2 (BA2), S. feltiae (Sf), S. abbasi (abb), and S. 
carpocapsae J7 (J7)) tested against Tuta absoluta 4th instar larvae in leaf bioassay. LCL=lower 95% confidence limit, 
UCL=upper 95% confidence limit. 

 

Nematode 

isolate 

Lethal 

concentration 

(Mean±SE) 

(IJ/ml) 

LCL 

(IJ/ml) 

UCL 

(IJ/ml) 

Number of 

treated insects 

BA2 LC50 43.58±1.08 36.88 51.50 2158 

LC90 305.18±1.13 237.63 391.92 

Sf LC50 112.46±1.07 98.34 128.60 2599 

LC90 1178.72±1.15 885.07 1569.79 

Abb LC50 82.40±1.08 69.60 97.54 1978 

LC90 713.78±1.18 510.90 997.22 

J7 LC50 102.73±1.12 81.61 129.33 2193 

LC90 3623.71±1.24 2373.55 5532.34 

 

A B 
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Figure IV.5: The relationship between the nematode concentrations and the Tuta absoluta larval mortality rate 

caused by the tested four nematode isolates in leaf bioassay. 

 

IV.5. DISCUSSION 

In the current investigation, the most efficient EPN isolates from a previous screening 

against lepidopteran larvae (Chapter II) were tested again and more profound against T. 

absoluta larvae in replicated sand and leaf bioassays. The tomato leafminer T. absoluta is the 

prevailing and most destructive pest on tomato in Egypt and was accordingly selected as the 

target pest to develop a control system against ETPC. T. absoluta larvae are smaller in size in 

comparison to Noctuid larvae, and develop through only four larval instars before pupation. 

In the previous screening (Chapter II), four EPN isolates were selected as top candidates, as 

they were highly virulent against all target insects. In the current study, the efficacy of these 

EPN isolates was confirmed once more on T. absoluta larvae under similar conditions. 

According to the obtained results, all the selected isolates were efficient against T. absoluta 

larvae under controlled conditions by direct exposure in the sand bioassay. Under these 

conditions, there were no significant differences among the tested isolates. Nevertheless, the 

efficacy of EPNs was proven against T. absoluta larvae under laboratory conditions by other 

studies (Batalla-Carrera et al., 2010; Garcia-del-Pino et al., 2013; Van Damme et al., 2016). 

High mortality levels were recorded by S. carpocapsae (86.6%) and S. feltiae (100%) when 

applied 50 IJs/cm2 against T. absoluta larvae in Petri dishes filled with sand under laboratory 

conditions (Batalla-Carrera et al., 2010). In the same direction, high control levels of 52.3% 

for S. feltiae, 100% for S. carpocapsae, and 96.7% for H. bacteriophora were obtained by 

applications of 50 IJs/cm2 on soil surface inside plastic boxes against T. absoluta larvae that 
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drop to the soil for pupation (Garcia-del-Pino et al., 2013). According to the obtained current 

results and the previously reported results, EPNs are highly virulent against T. absoluta larvae 

on soil under optimized laboratory conditions to ensure high nematode performance. 

In leaf bioassays, the efficacy of four nematode isolates was tested against T. absoluta 

larvae on tomato leaves. These bioassays were conducted under controlled laboratory 

conditions to test the nematode ability to infect the insect larvae on tomato leaves. Testing the 

nematodes against the insect on leaves revealed to be a necessary step between sand 

bioassays and experiments on plants. Also, using the whole tomato leaflet instead of leaf disks 

as done in other studies (Van Damme et al., 2016) made the conditions more challengeable 

for the nematodes to find the larvae by allowing the insect larvae to escape, as it occurs under 

natural conditions. 

All the tested nematode isolates were able to infect T. absoluta larvae inside their galleries. 

Similar observations were made in leaf bioassays conducted by Batalla et al (2010). They 

recorded high infection levels (77.1-91.7%) in T. absoluta larvae inside the galleries after 

treated by S. carpocapsae, S. feltiae, and H. bacteriophora in comparable leaf bioassays. Also, 

H. bacteriophora (HP88), and Steinernema monticolum (Stock, Choo & Kaya) caused high 

mortality (80-100%) of T. absoluta larvae in laboratory leaf bioassays performed by 

Shamseldean et al. (2014). In contrast, Türköz and Kaskavalci (2016) found that the 

application of S. feltiae against T. absoluta larvae inside the mines resulted in low larval 

mortality (19%). 

The lethal concentrations were calculated to select the most virulent nematode isolate 

among the tested isolates against T. absoluta larvae. The results showed that S. carpocapsae 

BA2 was the most efficient isolate as it obtained the lowest LC50 value among the tested 

isolates. The values of LC90 supported the previous results as it showed that S. carpocapsae 

BA2 is the most efficient isolates against T. absoluta larvae. The results are in agreement with 

the results from Van Damme et al (2016) who tested three nematode isolates (S. carpocapsae, 

S. feltiae, and H. bacteriophora) and found that S. carpocapsae was the most efficient isolate 

against T. absoluta 4th instar larvae. Also, S. carpocapsae and S. feltiae obtained higher larval 

mortality levels than the nematode of H. bacteriophora but with no significant difference 

(Batalla et al., 2010). There was no overlap between the confidence interval curves of S. 

carpocapsae BA2 and the other isolates. The results pointed to S. carpocapsae BA2 isolate as 

the most efficient isolate among the tested isolates on T. absoluta larvae in leaf bioassays. 

Therefore, the isolate of S. carpocapsae BA2 was selected to be used in further experiments to 

examine application methods (Chapter V). 

The results of both bioassays showed that the significant differences among the nematode 

isolates appeared only when the conditions were more challengeable. The isolate of S. 

carpocapsae BA2 was more virulent than the other three isolates under leaf bioassay 

conditions. The performed bioassay conditions created a permanent film of water on the 

leaflets, which might be contributed to the significant differences in the achieved mortality 

rates. Moreover, the differences in host-seeking behavior and mobility on leaf surfaces among 

the tested isolates could affect their efficacy under these conditions. 
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Collectively, these results confirmed that the selected EPN isolates are able to infect T. 

absoluta larvae on tomato leaves. Also, the foliar application using these isolates against ETPC 

is possible. On the other hand, this creates new challenges: to know more about optimized 

applications, e.g. by formulation and application schedules is required. In the following 

chapter, further investigations will be conducted on optimizing application strategy against 

the target pest on tomato plants. 
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Chapter V: Optimizing foliar application of entomopathogenic nematodes against 

the Tomato leafminer, Tuta absoluta 

 

V.1. ABSTRACT 

The tomato leafminer moth, Tuta absoluta is a serious pest on tomatoes. The larvae attack 

the above-ground parts of the plant. Foliar application of entomopathogenic nematodes 

(EPNs) was investigated towards an effective biological control method for this pest. The 

trials were conducted to select suitable EPN concentrations and adjuvants to improve the 

efficacy and persistence of EPNs in foliar applications on tomatoes. Four isolates (Steinernema 

carpocapsae BA2, S. feltiae Sf, S. abbasi abb, and S. carpocapsae J7) were applied in several 

concentrations and sprayed once or twice on infested tomato plants within 24 h. Applying the 

nematode suspensions twice caused higher mortalities of T. absoluta 4th instar larvae than 

sprayed once with a double concentration. EPN isolates were able to cause above 80% larval 

mortality within the highest concentration (20000 infective juveniles (IJs) twice); only S. 

abbasi abb evoked here low mortality of only 32.5%. As the next step, different formulations 

were explored based on a suspension of S. carpocapsae BA2 in a concentration of 5000 IJs/ml 

and various adjuvants and applied twice on infested tomato plants. The adjuvants Xanthan, 

Nemaperfect®, or Chitosan in EPN suspensions significantly increased the mortality in T. 

absoluta larvae. The previous three adjuvants increased mortality from 70% (water control) 

up to 88% (Xanthan). If it is available and economically affordable, adding adjuvants can be 

recommended to improve foliar applications of EPN against T. absoluta on tomato. 

 

V.2. INTRODUCTION 

EPNs are soil-dwelling organisms so that the free-living developmental stages - the IJs - 

naturally search and infect insect hosts in soil. For that reason, EPNs have mainly been used 

as bio-pesticides against insect pests inhabiting the soil or spending part of their life in the 

soil. Nevertheless, applications of EPNs on upper parts of the plant, e.g. stems and leaves, 

have also been tested against a range of pests in several studies (Baur et al., 1997; 

Brusselman et al., 2012; Mason et al., 1998; Schroer and Ehlers, 2005).  

In particular, foliar application of EPNs showed potential success for control of some 

insect pests such as Spodoptera littoralis and Agrotis ipsilon (Abonaem, 2013), S. littoralis and 

Helicoverpa armigera (Navon et al., 2002), S. exigua and Plutella xylostella (Mahmoud, 2014) 

and also against leafminers such as Liriomyza trifolii (LeBeck et al., 1993; Tomalak et al., 

2005) and Liriomyza huidobrensis (Williams and Walters, 2000) (Diptera: Agromyzidae), and 

T. absoluta (Batalla-Carrera et al., 2010). 

The success of EPNs foliar application depends mainly on the nematode’s infectivity and 

their persistence on plant foliage. Infectivity depends on the nematode species and their 

ability to invade and kill the target insect pest. Persistence (survival, mobility) of EPNs on 

foliage experiences limiting factors such as desiccation, UV radiation, and high temperature 

(Koppenhöfer, 2000; Georgis et al., 2006; Lewis et al., 2015). Therefore, different 

formulations were investigated in some research efforts by adding adjuvants to the nematodes 
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suspension before the foliar application (Head et al., 2004; Schroer and Ehlers, 2005). The 

adjuvants increase EPNs persistence by serving as humectants, surfactants, and adhesions. 

The humectant adjuvants decrease evaporation and keep a film of water on the leaf surface, 

making EPN mobility for host searching possible. The surfactants reduce the surface tension of 

the applied suspension droplets and improve wetting. Adhesions stick the nematode 

suspension on the leaf surface and reduce droplets runoff. 

Several studies have examined different formulations and application techniques against 

foliar insect pests. Adding the antidesiccants Glycerol or Folicote® with S. feltiae against H. 

armigera resulted in 75% and 95% larval mortality (Glazer and Navon, 1990). In another 

study, a formulation consisting of S. feltiae and calcium-alginate gel caused 89% mortality in 

S. littoralis and H. armigera larvae on tomato under greenhouse conditions (Navon et al., 

2002). Further trials were conducted using surfactant-polymer-formulation (0.3% Rimulgan® 

together with 0.3% xanthan) to increase EPNs persistence on cabbage leaves to control the 

diamondback moth larvae Plutella xylostella (Schroer and Ehlers, 2005). Moreover, adding 

Barricade® (a sprayable fire-gel, which is originally used to protect houses or trees from fires) 

to S. carpocapsae suspension improved their efficacy against the lesser peachtree borer, 

Synanthedon pictipes (Grote & Robinson) (Shapiro-Ilan et al., 2010). Furthermore, adding the 

sprayable fire-gel with EPN applications enhanced their efficacy against the codling moth, 

Cydia pomonella (L.) in apple tree trunks (Lacey et al., 2010). In another trial, a formulation 

of S. carpocapsae with chitosan was applied against the red palm weevil, Rhynchophorus 

ferrugineus (Olivier) (Llacer et al., 2009). Trials using EPNs with or without adjuvants were 

applied on T. absoluta as well. Adding 0.05% Addit® to nematode suspensions achieved 87-

95% mortality of this pest on potted tomato plants under greenhouse conditions (Battalla et 

al., 2010). The adjuvants SilwetL-77® and Addit® improved the control ability of EPNs against 

T. absoluta larvae even on hanged tomato disks (Van Damme et al., 2016). Field trials were 

conducted using EPNs against T. absoluta in different countries (Gözel and Kasap, 2015; 

Shamseldean et al., 2014) with variable results according to EPN species and season. But in 

general, these studies demonstrated partial success against foliar insect pests, if appropriate 

conditions were met. 

The following experiments focused on the selection of suitable concentrations of effective 

EPN isolates and improvement of their infectivity by adding adjuvants. Sufficient prolongation 

of their persistence on tomato foliage is needed to control T. absoluta and other tomato pests 

in Egyptian crop growing conditions. First, it was necessary to find a suitable dosage that 

achieved at least 50% mortality of T. absoluta larvae on tomato plants, and then to elaborate 

an even higher effect by optimizing application frequency. Subsequently, a further increase in 

efficacy was to be achieved by testing and selecting an appropriate adjuvant. 

 

V.3. MATERIALS AND METHODS 

V.3.1. Preparation and infestation of tomato plants 

Tomato plants (Tomato Alissa F1, Nunhems Netherlands BV, Nunhem, Netherlands) were 

grown as described in the previous chapters. Two different methods were used to create a 

standard infestation. The first method allowed the T. absoluta moths to deposit eggs 



 

50 

 

simultaneously on 35 tomato plants (six leaves old). The plants were placed in an Insect 

Rearing Tents (BugDorm-2120F) (60 cm L * 60 cm W * 60 cm H) with about 200 freshly 

emerged T. absoluta moths for two days at 24-26 °C, 16 h light: 8 h dark cycle. Then, plants 

with eggs were transferred into a new Tent and held at the same conditions until eggs had 

hatched and developed into 4th instar, usually after two weeks, to be ready to use in the trials. 

On average, there were about 30 larvae per plant. The second infestation method was 

performed by placing 30 larvae (3rd instar) on the top side of the leaves on each tomato plant 

(six leaves old). The larvae started to mine and fed on the tissues of the leaves. Experimental 

conditions were as described above, but here larvae had developed into the 4th instar after 

two days and the plants were used in the bioassays. 

 

V.3.2. Experiment 1: EPN concentration and application frequency on tomato foliage 

The EPN isolates S. carpocapsae BA2 and J7, S. feltiae Sf, and S. abbasi abb had been 

shown to be most effective against larvae of the leafminer moth in previous bioassays 

(Chapter IV). The nematodes were applied at concentrations of 2500, 5000, 10,000, and 

20,000 (IJs)/ml in water. A control treatment was performed by applying only water. Plants, 

infested by the 4th larval instar of T. absoluta, were treated once or twice within 24 h. 

Treatment was done by spraying a volume of 200 ml of each EPN concentration or water on 

four infested plants until runoff, using a hand sprayer (volume 500 ml). The four plants were 

treated one after another until the sprayer was empty. The nematode suspension was applied 

on the whole plant and leaves were treated from both sides as well. Each EPN concentration 

was applied once on four plants or, as an alternative treatment, the same amount of 

nematodes was applied on other four plants in two sprayings within 24 h. The plants were 

placed on a table in a controlled room at 25 °C and long-day conditions for 72 h. Thereafter, 

leaves were examined to count dead and live T. absoluta larvae per plant. This bioassay was 

performed four times in case of BA2 (the most efficient EPN in previous trials) and twice in 

case of other isolates, each at different time points. 

 

V.3.3. Experiment 2: Optimizing the EPN formulation by adjuvants 

Seven adjuvants were investigated to improve the effect of EPN applications on T. absoluta 

larvae (4th instar) on tomato plants. The nematode isolate used in this experiment was the 

most efficient isolate according to the results of the previous experiments. The tested 

adjuvants are listed in Table V.1. Nematode suspension in water only was used as a control 

treatment. The formulation of each adjuvant and the nematode suspension were prepared just 

before the application. For that, formulations were prepared in a volume of 250 ml. First, the 

double concentration of each adjuvant was prepared in 125 ml, and then 125 ml EPN 

suspension at a concentration of 10,000 IJs/ml was added. The final suspension was a volume 

of 250 ml containing 5000 IJs/ml and the suggested adjuvant concentration. 

Tomato plants were prepared as described above. The plants (eight leaves old) were 

infested by adding T. absoluta 3rd instar larva (on average 30 larvae per plant) two days 

before the experiment. The larvae became 4th instars by the day of the experiment. Nematodes 
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of isolate S. carpocapsae BA2 were applied in a concentration of 5000 IJs/ml in a volume of 

200 to 250 ml on four or five tomato plants, respectively. Each group of plants was treated 

again after 24 hours by the same formulation. The plants were placed in a controlled room at 

25 °C, long-day conditions, for 72 h. Air humidity was not controlled. Then, plants and their 

pots were carefully examined and numbers of dead and living larvae were counted. The entire 

experiment was performed three times at different time points during 2017 and 2018. At first, 

each formulation was applied on five plants in 2017, whereas four plants were used for each 

formulation during the second and the third time in 2018. 

 
Table V.1: List of the tested adjuvants. 

Commercial 

name 

Material Function and 

common use 

Producer Concentration 

(%) 

Squall® Polymer Adhesive and 

anti-drift 

GreenA B.V. 0.5 

Addit® undisclosed 

surfactant + 

vegetable oil 

Surfactant Koppert 0.25 

Nemaperfect® Surfactant+Polymer Emulsifier, 

Thickener 

E-nema 0.3 

Xanthan gum Fermentation‐derive

d biopolymer from 

the bacterium 

Xanthomonas 

campestris 

Humectant, 

Thickener 

Spinnrad 

GmbH 

0.3 

Chitosan A polymer of 

glucosamine sugars 

Thickener, 

Adhesive 

ChiPro 

GmbH 

0.3 

CMC Carpoxymethelcellel

ouse 

Thickener, 

Adhesive 

 0.3 

Sorbitol Sorbitol Humectant  0.3 
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V.3.4. Data analysis 

V.3.4.1. Experiment 1: EPN concentration and application frequency on tomato 
foliage 

The bioassay aimed to select an appropriate application method of four nematode isolates 

against T. absoluta larvae on tomato plants. The nematode efficacy at different concentrations 

and different application times was analyzed. Each concentration was applied on four tomato 

plants infested with about 30 larvae. The numbers of dead and living larvae per plant were 

counted, and larval mortality (%) was calculated. Each plant was considered as one replicate. 

The nematodes were applied once or twice within 24 h. In case of S. carpocapsae BA2, the 

experiment was conducted four times at different time points. However, in case of the other 

three isolates, the experiment was conducted only twice at different time points. The 

statistical analysis and graphical presentation of results were performed using R software 

version “3.4.2” (R Core Team, 2017). Analysis of variance (ANOVA) was applied using 

function “aov”. Models were simplified and selected by using the Akaike's Information 

Criterion (AIC) and drop1 function with “F” test. Model suitability was visually checked by 

plotting the standardized residuals versus the fitted values, and dispersion was checked as 

well. Shapiro-Wilk’s normality test (Shapiro and Wilk, 1965) was used to assess the normal 

distribution, and Levene’s test (Fox and Weisberg, 2011) was used to test homogeneity of 

variances. The residuals were normally distributed (p>0.05), and the homogeneity of 

variances was present (p>0.05). The package “emmeans” (Lenth, 2019) was used to calculate 

the estimated marginal means, posthoc tests at 0.05 significant level by the Tukey method, 

and 95% confidence intervals. The results were plotted using ‘ggplot2’ package (Wickham, 

2016). 

 

V.3.4.2. Experiment 2: Optimizing the EPN formulation by adjuvants 

The aim of the bioassay was to test different adjuvants added to nematode suspension 

against T. absoluta larvae on tomato plants. The nematode efficacy with different adjuvants 

was analyzed. Seven different adjuvants were tested and compared with nematodes in water 

only. Each nematode suspension was applied on four tomato plants infested by about 30 

larvae. The nematodes of S. carpocapsae BA2 were applied at a concentration of 5000 IJs/ml 

twice within 24 hours. The experiment was conducted three times at different time points. 

The numbers of dead and living larvae per plant were counted and larval mortality (%) was 

calculated. Each plant was considered as one replicate. The statistical analysis and graphical 

presentation of results followed the same procedures as described for experiment 1 (V.3.4.2). 
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V.4. RESULTS 

 

V.4.1. Experiment 1: EPN concentration and application frequency on tomato foliage 

Bioassays aimed to determine the effects of concentration and frequency of application on 

the efficacy of each EPN isolate separately, therefore the results were analyzed and presented 

one by one. The application of water without nematodes as a control did not result in larval 

mortality in T. absoluta. Therefore, the control was not included in the statistical analysis. 

V.4.1.1. Steinernema carpocapsae (BA2) 

Nematode IJs successfully infected T. absoluta larvae on the tomato plants, even inside 

their galleries (Fig. V.1). The nematode application at different concentrations resulted in 29-

81% larval mortality. Significant differences were found when applying EPNs once and twice 

with the same concentration (Fig. V.2) and, more important, that the two-fold application 

reached higher mortality than one application of the two-fold concentration. Applying the 

concentration of 2500 IJs/ml twice resulted in 58.71% larval mortality, whereas applying the 

concentration of 5000 IJs/ml once caused 39.92% larval mortality. The application of 5000 

IJs/ml twice caused 65.4% larval mortality, at the same time applying 10,000 IJs/ml once 

caused 53.97% larval mortality. Using 10,000 IJs/ml twice caused 74.74% larval mortality, 

and using 20,000 IJs/ml once caused 69.6% larval mortality. 

 

 

Figure V.1: Infected Tuta absoluta larvae treated with Steinernema carpocapsae IJs on tomato plants. 
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The results for the mortality of T. absoluta larvae analyzed using ANOVA, showed 

significant differences among the applied concentrations (Fig. V.2). The fitted model was 

(Model = aov (Mortality ~ Concentration + Application + Trial + Concentration: 

Application)) (Table V.2). There were significant differences among the four concentrations 

when applied once. In contrast, there were interactions between the concentrations when 

applied twice. No significant difference was noted between 2500 and 5000 IJs/ml when 

applied twice. Also, there was no significant difference in the mortality between the 

concentrations of 5000 and 10,000 IJs/ml when applied twice. The larval mortality caused by 

applying the nematodes in a concentration of 10,000 or 20,000 IJs/ml twice was not 

significantly different. 

The mortality of T. absoluta larvae showed no significant difference among the 

concentrations of 5000 IJs/ml twice, 10,000 IJs/ml twice, and 20,000 IJs/ml once (Fig. V.2). 

Only the highest application rate (20,000 IJs/ml twice) resulted in significantly higher larval 

mortality level than 5000 IJs/ml twice. As a consequence, the application of 5000 IJs/ml 

twice was used in the next experiment to select an adjuvant. 

 

Figure V.2: Larval mortality (%) of Tuta absoluta in relation to treatment of Steinernema carpocapsae BA2 applied 

in different concentrations once or twice. Boxplots are shown with individual observed values (n=16) as jittered 

points. The median is displayed by the horizontal line inside the boxplot. The estimated marginal means are 

displayed by the red dots and 95% confidence intervals estimated from the fitted mixed model. The letters at the 

top indicate significant differences among the tested treatments according to posthoc tests (p < 0.05). 
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Table V.2: The significant explanatory variables affecting Tuta absoluta larval mortality (%) obtained by 

Steinernema carpocapsae BA2 according to the fitted ANOVA model in R. 

Variables Df F value Pr(>F) 

Concentration 3 71.934 <0.0001 

Application 1 182.381 <0.0001 

Trial 3 62.576 <0.0001 

Concentration:Application 3 5.047 0.00253 

 

V.4.1.2. Steinernema feltiae Sf 

The application of S. feltiae resulted in larval mortality of T. absoluta ranged between 

38.04±10.08% and 83.67±4.6% (Fig. V.3). The results indicate that dividing the number of 

nematodes and applying it twice within 24 hours is better than applying the same nematodes 

amount once (Fig. V.3). The fitted model was (Model = aov (Mortality ~ Concentration + 

Application + Trial + Concentration: Trial + Application: Trial)) (Table V.3). The achieved 

larval mortalities by the application of 5000 IJs/ml twice (67.46%) and 20,000 IJs/ml once 

(66.91%) were statistically equal but significantly higher than that achieved by 10,000 IJs/ml 

once (52.61%). The larval mortality increased significantly when the nematode concentration 

was 10,000 IJs/ml twice (79.42%) and 20,000 IJs/ml twice (83.67%). The results of S. feltiae 

Sf clearly support the results of S. carpocapsae BA2 on tomato plants. 

 

 

 

Figure V.3: Larval mortality of Tuta absoluta in relation to treatment of Steinernema feltiae Sf applied in different 

concentrations once or twice. Boxplots are shown with individual observed values (n=8) as jittered points. Other 

explanations see Fig. V.2. 
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Table V.3: The significant explanatory variables affecting Tuta absoluta larval mortality (%) obtained by 

Steinernema feltiae Sf according to the fitted ANOVA model in R. 

variables Df F value Pr(>F) 

Concentration 3 36.233  < 0.0001 

Application 1 117.175 < 0.0001 

Trial 1 408.6 < 0.0001 

concentration:Application 3 6.363 0.0008 

Application:Trial 1 13.353 0.0005 

 

V.4.1.3. Steinernema abbasi abb 

The results showed that S. abbasi abb has poor efficacy against T. absoluta larvae on 

tomato plants (Fig. V.4). The mean mortality in T. absoluta larvae ranged between 6.83±5.31 

and 32.51±11.02%. The highest mortality was achieved by application of 20,000 IJs/ml twice 

but was not significantly different from 5000 and 20,000 IJs/ml once. The fitted model was 

(Model = aov (Mortality ~ Concentration * Application * Trial)) (Table V.4). Nearly all 

applied concentrations resulted in low mortality compared to other results, and the statistical 

differences among them were limited. In general, this nematode isolate did not perform well 

against T. absoluta larvae on tomato plants, even with high concentrations. 

 

 

Figure V.4: Larval mortality of Tuta absoluta in relation to treatment of Steinernema abbasi abb applied in different 

concentrations once or twice. Boxplots are shown with individual observed values (n=8) as jittered points. Other 

explanations see Fig. V.2. 
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Table V.4: The significant explanatory variables affecting Tuta absoluta larval mortality (%) obtained by 

Steinernema abbasi abb according to the fitted ANOVA model in R. 

variables Df F value Pr(>F) 

Concentration 3 17.492 < 0.0001 

Application 1 15.522 0.0002 

Trial 1 0.715 0.40 

concentration: Application 3 3.378 0.02 

concentration: Trial 3 1.549 0.21 

Application: Trial 1 0.633 0.43 

concentration: Application: Trial 3 2.833 0.04 

 

 

V.4.1.4. Steinernema carpocapsae J7 

The mean of T. absoluta larval mortality ranged between 30.14±4.43% and 86.59±2.1%. 

The fitted model was (Model = aov (mortality ~ concentration + Application + Trial + 

Application: Trial)) (Table V.5). The statistical analysis shows that dividing the amount of 

nematodes and applying it twice within 24 h did not significantly differ from applying the 

same nematodes amount once (Fig. V.5). Applying the nematodes in a concentration of 5000 

IJs/ml twice did not significantly differ from applying it in a concentration of 10,000 IJs/ml 

once. The application of 10,000 IJs/ml twice did not give significant better results than the 

application of 20,000 IJs/ml once. The results show that increases the nematode amount 

increased the nematode efficacy significantly. The nematode application of 2500 IJs/ml twice 

or 5000 IJs/ml once differs significantly from 2500 IJs/ml once. 
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Figure V.5: Larval mortality of Tuta absoluta in relation to treatment of Steinernema carpocapsae J7 applied in 

different concentrations once or twice. Boxplots are shown with individual observed values (n=8) as jittered points. 

Other explanations see Fig. V.2. 

 
Table V.5: The significant explanatory variables affecting Tuta absoluta larval mortality (%) obtained by 

Steinernema carpocapsae J7 according to the fitted ANOVA model in R. 

variables Df F value Pr(>F) 

Concentration 3 34.354 < 0.0001 

Application 1 38.111 < 0.0001 

Trial 1 30.720 < 0.0001 

Application:Trial 1 5.198 0.0264 

 

V.4.2. Experiment 2: Optimizing the EPN formulation by adjuvants 

The added adjuvants reduced the surface tension of sprayed water (Fig. V.6). Efficacy of 

EPN against T. absoluta larvae increased by adding any of the adjuvants to the nematodes 

suspension (5000 IJs/ml of isolate S. carpocapsae BA2) compared with the nematodes in 

water only (Fig. V.7). The highest larval mortality was 87.88% caused by nematodes applied 

with Xanthan. The lowest mortality (69.54%) was recorded by the application of EPNs in 

water only. 

The fitted statistical model was (Model= aov (Mortality ~ Adjuvant * Trial)) (Table V.6). 

The analysis of the results obtained using ANOVA and post hoc tests showed that there were 

no significant differences among Addit®, CMC, Sorbitol, squall, and water (Fig V.7). The 

adjuvants of Xanthan, Nemaperfect®, and Chitosan increased the nematode efficacy 
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significantly in comparison with the nematodes in water. There were no significant 

differences among the nematode efficacy levels with the previous additives. The recorded 

mortality in T. absoluta larvae were 87.88, 85.41, and 81.42%, respectively. Based on visual 

observation, Nemaperfect® was the best adjuvant to keep the nematodes away from 

sedimentation in the suspension for the longest time. Based on the previous note, the 

application of nematodes in Nemaperfect® was chosen to be used in the greenhouse 

experiment. 

  
 

Figure V.6: Tomato leaves treated with Steinernema carpocapsae in water (left) and with 0.3% Nemaperfect® as 

adjuvant (right). 

 

 

Figure V.7: Larval mortality (%) in Tuta absoluta 4th instars treated by Steinernema carpocapsae BA2 5000 IJs/ml 

twice within 24 h with different adjuvants on tomato plants. Boxplots are shown with individual observed values 

(n=13) as jittered points. Other explanations see Fig. V.2. 
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Table V.6: The significant explanatory variables affecting Tuta absoluta larval mortality (%) obtained by 

Steinernema carpocapsae BA2 with different adjuvants on tomato plants, according to the fitted ANOVA model in 

R. 

variables Df F value Pr(>F) 

Adjuvant 7 10.889 0.0001 

Trial 2 22.242 0.0001 

Adjuvant:Trial 14 2.286 0.0109 

 

V.5. DISCUSSION 

Sufficient prolongation of EPN persistence on tomato foliage is desired to control T. 

absoluta and other tomato pests under Egyptian crop growing conditions. EPNs should be 

applied in sufficient, but affordable amounts on the plants and adjuvants could help to keep 

costs low while ensuring sufficient effectiveness. The four tested EPN isolates had already 

shown their ability to infect T. absoluta larvae inside their galleries in previous tomato leaf 

bioassays. Among them, isolate S. carpocapsae BA2 was the most efficient one, but all of them 

were highly virulent against T. absoluta larvae following direct exposure to mines of infested 

tomato leaflets. In the current study, their efficacy was explored under more challengeable 

conditions on plants with the aim to identify required concentrations and application levels. 

Dividing the nematode amount and applying it twice within 24 h resulted in mortality levels 

higher than applying the same amount once. Repeating the application within 24 h boosted 

the mortality level significantly in most of the tested isolates. The time of application is 

important to increase the chance of making contact between the nematode and the target 

insect. EPNs survive only for a few hours on the plant leaves (Wright et al., 2005). For the 

previous reason, the adjuvants are essential to increase the nematode persistence on leaves. 

Not only the adjuvants but also repeating the application increased the efficacy of EPNs. The 

second step was screening different formulations to increase the nematode efficacy on foliar 

application. As S. carpocapsae BA2 was always showing high virulence, so that it was selected 

to be used in the suggested screening, but at a lower dosage (5000 IJ/ml) to allow 

differentiation in effectiveness after adding adjuvants. The tested adjuvants were selected 

based on the lack of harmful effects on mammals, plants or EPNs. Most of them are additives 

in food or health care products. Based on a preliminary test, no effect was observed on EPN 

viability (data not shown). Furthermore, they did not cause noticed toxic effects on the 

treated plants in comparison with the control. The results showed that all the tested adjuvants 

were able to increase the nematode efficacy in comparison with water only. The nematode 

efficacies with the adjuvants of Xanthan, Nemaperfect®, and Chitosan were significantly 

higher than the other adjuvants. The applications of nematodes in Xanthan and Nemaperfect® 

recorded 87% and 85% larval mortality, respectively. Similar results were observed when 

applications of nematodes in 0.3% xanthan together with 0.3% Rimulgan® recorded the 

highest control levels above 90% larval mortality in the diamondback moth larvae (DBM) 

(Schroer et al., 2005). In leaf disc bioassays, the use of 0.3% xanthan caused a significant 

increase in the nematode efficacy against DBM (Schroer, 2005). The efficacy of S. carpocapsae 

in a chitosan formulation was about 80% in a curative bioassay and around 98% in a 
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preventative bioassay against the red palm weevil, R. ferrugineus on palms (Llacer et al., 

2009). A combination formulation of 0.1% Carboxy-methyl-cellulose (CMC), 0.1% Tween 80, 

and 0.1% Corn oil was used with S. carpocapsae BA2 and H. bacteriophora BA1 in foliar 

application against S. littoralis and A. ipsilon larvae on corn plants in an open field (Saleh et 

al., 2015). 

Based on visual observations, the adjuvant of Nemaperfect® delayed the nematodes 

sedimentation before the application. Same results were observed with using 0.3% guar gum, 

0.1% alginate, or 0.05% xanthan as they kept the nematodes without sedimentation for 1 h. 

In another sedimentation test, the nematode sedimentation was delayed when 0.3% xanthan 

was added to the nematode suspension (Beck et al., 2013). Without stirring, EPNs sediment 

rapidly on the bottom of the sprayer tank (Brusselman et al., 2010). Adding humectant or 

dispersant adjuvants to the spray suspension can avoid the rapid sedimentation (Schroer et 

al., 2005). Adding humectant or adhesion adjuvants to the suspension may reduce spray 

droplets runoff from the leaves (Schroer et al., 2005). 

For further tests, two criteria are decisive: 1. The adjuvant needs to increase the EPNs 

efficacy significantly. 2. Sedimentation of EPNs in containers before application should be 

avoided or at least delayed. Taking these criteria into consideration, Nemaperfect® is the most 

promising adjuvant to be introduced into the EPN based system to control ETPC. Therefore, it 

was selected for further experiments under greenhouse conditions. The importance of the 

greenhouse experiment is to give real results. The results of laboratory experiments or under 

controlled conditions are not always comparable with the results in open fields or 

greenhouses. 

S. feltiae was the most efficient species among four nematode species applied against T. 

absoluta larvae on tomato plants under closed cages and in field conditions (Gözel and Kasap, 

2015). These authors reported also high pest mortality (90.7% and 94.3%) through two 

seasons, even though no adjuvants were added. The application rate was reported to be 50 

IJs/cm2, but no concentration was given. In contrast, S. carpocapsae caused only 43% target 

mortality under the same conditions (Gözel and Kasap, 2015). Field efficacy of H. 

bacteriophora ranged between 60% and 80%, whereas the efficacy of S. monticolum ranged 

between 58% and 67% (Shamseldean et al., 2014). 

Obviously high concentrations of EPNs, combined with adjuvants, are really needed to 

infect the tomato leafminer in the galleries. Field trials using S. feltiae (1000 IJs/ml) without 

any added adjuvants against T. absoluta larvae on cultivated tomato crop resulted only in 40-

50% larval mortality (Jacobson and Martin, 2011). The application of S. carpocapsae (250 

IJs/ml) against T. absoluta on tomato plants under greenhouse conditions resulted in 12.9% 

mine reduction (Sabry et al., 2016). When applying S. feltiae against T. absoluta larvae inside 

the mines or pupae, the recorded mortality in the larvae inside mines was 19% and in the 

pupae 7% (Türköz and Kaskavalci, 2016). These results support our results of using high 

nematode concentrations to obtain an acceptable control level. 

The high control levels could be a result of the combination of the nematode species, high 

concentration, the added adjuvant, and the repeating of the application after 24 h. Also, the 

application time is important to avoid daylight and high temperature by applying before the 

sunset or in the early morning. 
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Chapter VI: Efficacy of EPN isolates against the Tomato leafminer moth, Tuta 

absoluta, under simulated greenhouse conditions  

 

VI.1. ABSTRACT 

The tomato leaf miner, Tuta absoluta is a destructive pest on tomatoes. It has a great 

negative impact on tomato production in Egypt. T. absoluta attacks the tomato crop in open 

fields and greenhouses in Egypt. Biological control against T. absoluta should be introduced to 

tomato production to increase food and environment safety. Entomopathogenic nematodes 

(EPNs) are promising biological control agents. The efficacy of four nematode isolates was 

tested against T. absoluta larvae on tomato plants under greenhouse conditions. The 

nematodes were applied in 0.3% Nemaperfect® as an adjuvant. The highest larval mortality 

was 85.5% achieved by the isolate Steinernema carpocapsae BA2. However, there were no 

significant differences among larval mortalities recorded after the application of S. 

carpocapsae BA2, S. feltiae Sf, and S. carpocapsae J7. Only the fourth nematode isolate, S. 

abbasi abb, was significantly less effective, as its application resulted in 18% larval mortality. 

VI.2. INTRODUCTION 

Tomato crop is the largest vegetable crop cultivated in Egypt. Egypt is ranked fifth in 

tomato production worldwide with 6.7 million tons of tomatoes produced annually 

(FAOSTAT, 2018). The crop occupies about 22% of the cultivated crop area. In Egypt, 

tomatoes are cultivated in open fields and greenhouses. The crop is planted in winter under 

greenhouses for exportation, and growers are mainly targeting the European market. For 

exporting tomatoes to Europe, the growers must fulfill the requirements regarding food 

safety. The European Union has determined maximum residue levels (MRLs) for chemical 

pesticides in food products. For this reason, the use of pesticides on tomatoes in greenhouses 

is limited. The main management techniques are based on natural enemies. Tomato 

production under greenhouse conditions was under efficient biocontrol conditions until T. 

absoluta appeared in 2009 (Khidr et al., 2013; Goda et al., 2015). 

The tomato leaf miner Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is a serious pest 

on tomato crop. T. absoluta is originally native to South America. Also, it is present as an 

economic pest in many countries, especially the main producer’s countries such as China, 

India, Turkey, Spain, and Egypt (Desneux et al., 2011; Guedes and Picanço, 2012; 

Sankarganesh et al., 2017; Biondi et al., 2018; Mansour et al., 2018). The moths of this pest 

were firstly detected in Egypt in 2009 (Khidr et al., 2013; Goda et al., 2015). Since then, it 

has become the most destructive pest on the tomato crop in Egypt. T. absoluta larvae result in 

a significant reduction in tomato yield. The tomato yield decreases yearly since 2009 

(FAOSTAT, 2018). 

This pest has some features that make it an economic pest in the invaded areas. T. 

absoluta has high reproduction ability as one female moth can lay more than 250 eggs during 

its life span (Uchoa-Fernandes et al., 1995; Duarte et al., 2015). Moreover, the insect can 

complete its lifecycle within 25 days and has about 12 generations per year. The previous 

facts make T. absoluta capable to adapt to new occupied areas. Also, it can develop resistance 

to chemical insecticides. The insect has four larval instars, and the most economic are 3rd and 
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4th instars. The larvae feed on the above-ground parts of tomato plants. The most favorable 

parts are leaves, then stems, and fruits. The losses in yield could reach 100% on tomatoes 

(Desneux et al., 2010, 2011; Biondi et al., 2018). 

The main management tactics used against this pest are based on chemical insecticides 

due to the unavailability of other effective options (Biondi et al., 2018). Using chemical 

insecticides on tomatoes has some negative effects on food safety and the environment as 

well. The extensive use of insecticides can make the insect populations develop resistance to 

insecticides (Campos et al., 2015; Roditakis et al., 2018). Therefore, integrated pest 

management (IPM) systems based on natural enemies of T. absoluta are essential to minimize 

the negative outcomes of using chemicals. Recently, there were some attempts to use 

management tactics based on biological control agents. Also, sex pheromone traps play roles 

in monitoring T. absoluta infestation in tomato fields. Some reports showed promising results 

using parasitoids, predators, and pathogens. Based on laboratory screening, three 

Trichogramma strains were promising for biological control against T. absoluta in Europe 

(Schäfer and Herz, 2020). Application a combination consists of Bacillus thuringiensis 

Berliner, the predator Macrolophus Caliginosus, and the parasitoid T. achaeae significantly 

reduced T. absoluta mines in tomato plants under greenhouse in Egypt (Kortam et al., 2014). 

Moreover, the combination of B. thuringiensis var. Kurstaki, T. evanescens Westwood, and 

pheromone mass trapping resulted in a significant reduction of T. absoluta larvae densities on 

tomatoes in open-field (Khidr et al., 2013). Furthermore, Bacillus thuringiensis and spinosad 

were efficient against T. absoluta larvae on tomato crops in open fields in Egypt (El-Aassar et 

al., 2015). Another study reported that some isolates of Phthorimaea operculella granulovirus 

were pathogenic to T. absoluta larvae under laboratory conditions (Ben Tiba et al., 2019). 

Also, EPNs were reported as promising against T absoluta in some studies (Batalla-Carrera et 

al., 2010; Garcia-del-Pino et al., 2013; Van Damme et al., 2016). 

EPNs have some advantages comparing to the other biocontrol agents. Their management 

effect is fast only within 48 hours. Also, their ability to infect different insect species makes it 

suitable to control other tomato insect pests. Therefore, in this work, EPNs efficacy will be 

tested against T. absoluta larvae on tomatoes. EPNs are soil-inhabit animals that attack insect 

stages in soil. For foliar applications of EPNs, suitable formulations should be used against 

insect stages on foliage. Therefore, the aim of this work was to test a promising management 

system based on EPNs with an adjuvant against T. absoluta. Formulations of four nematode 

isolates for foliar application were tested against T. absoluta larvae on potted tomato plants 

under greenhouse conditions. The tested formulations were elaborated before through 

different bioassays. The experiment was conducted in the summer under simulated 

greenhouse conditions as they mostly appear in Egypt (e.g. no control of temperature or 

humidity). The aim is to test whether the good performance of the four isolates with the 

selected adjuvants under optimal conditions tests can be transferred to the challenging 

environment conditions. 
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VI.3. MATERIALS AND METHODS 

VI.3.1. Infestation method 

Thirty larvae of T. absoluta (2nd instar) were placed on the top side of the leaves on each 

tomato plant (eight leaves old). The larvae mined and fed on the leaves tissues at 25 °C. After 

one day, the larvae became 3rd instars, and the plants were used in the bioassay. 

VI.3.2. The bioassay method 

In this experiment, the efficacy of four nematode isolates S. carpocapsae BA2, S. feltiae Sf, 

S. abbasi abb, and S. carpocapsae J7 was evaluated against T. absoluta 3rd instar larvae on 

potted tomato plants under greenhouse conditions. Each isolate was applied in a volume of 

250 ml on four potted tomato plants infested with T. absoluta 3rd instar larvae. The nematode 

suspensions were applied in a concentration of 5000 IJs/ml in 0.3% Nemaperfect® (e-nema 

GmbH). The applications were repeated after 24 h on the same plants. The applications were 

performed before the sunset. The suspensions were sprayed using a 500 ml hand-sprayer on 

four plants together till runoff. The plants in the untreated control received a solution of 

Nemaperfect® 0.3% instead of nematode suspensions. The pots were placed separately on a 

shelf in a complete randomized block design. Sticky glue was used to make borders at 

distances of 50 cm between the plants to avoid the escape of the larvae. The plants and the 

borders were checked after four days, and the dead and living larvae were counted. During 

the experiment period, the temperature range was 17-40 °C with an average of 27 °C, 

whereas the relative humidity ranged between 14 and 90% with an average of 51%. The dew 

point range was 3.2-19.5 °C, and the average was 14 °C. The entire experiment was 

performed three times at different time points during July 2018 in the greenhouses of JKI. 

 

VI.3.3. Statistical analysis 

The aim of the experiment was to compare the efficacy of the four nematode isolates 

applied against T. absoluta larvae on tomato plants under greenhouse conditions. Each isolate 

was applied on four tomato plants infested with about 30 larvae. The numbers of dead and 

living larvae per plant were counted, and larval mortality (%) was calculated. Each plant was 

considered as one replicate. The experiment was conducted three times at different time 

points. The nematode efficacy at different application times was analyzed. The statistical 

analysis and graphical presentation of results were performed using R software version 

“3.4.2” (R Core Team, 2017). Analysis of variance (ANOVA) was applied using function “aov”. 

Models were simplified and selected by using the Akaike's Information Criterion (AIC) and 

drop1 function with “F” test. The fitted model was with EPN isolate and trial as explanatory 

variables and larval mortality (%) as a response variable. Model suitability was visually 

checked by plotting the standardized residuals versus the fitted values, and dispersion was 

checked as well. The package ‘emmeans’ (Lenth, 2019) was used to calculate the estimated 

marginal means, posthoc tests at 0.05 significant level by the Tukey method, and 95% 

confidence intervals. The results were plotted using ‘ggplot2’ package (Wickham, 2016). 
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VI.4. RESULTS 

All applied EPN isolates were able to infect T. absoluta larvae on tomato leaves inside or 

outside the galleries (Fig. VI.1), but with a different impact on target pest mortality. The 

nematode isolate S. carpocapsae BA2 recorded the highest mortality in T. absoluta larvae 

(85.54%), but it was not significantly different from the isolates S. feltiae Sf and S. 

carpocapsae J7 which resulted in 80.45, and 76.17%, respectively (Fig. VI.2). The nematodes 

of S. abbasi abb achieved 18.27% larval mortality, which was significantly lower than the 

other isolates. 

The experiment was performed thrice under the greenhouse during the summer of 2018. 

The statistical fitted model was Model = aov (Mortality ~ Isolate + Trial). The model showed 

significant influences of both nematode isolates (df=3, F value=137.8, p<0.0001) and Trial 

(df=2, F value=3.7, p=0.032). However, applying the nematodes of S. carpocapsae BA2, S. 

feltiae Sf, or S. carpocapsae J7 at different time periods was not significantly different. The 

significant difference was noted only in the application of S. abbasi abb (Fig. VI.2). The 

highest recorded temperature during the application times was 40.1 °C and the average was 

27 °C (Table VI.1). The applications were carried out before the sunset when temperatures 

gradually decreased. The nematode efficacy ranged between 83.67 and 87.59% for S. 

carpocapsae BA2, 78.06 and 82.17% for S. feltiae Sf, 70.50 and 80.31% for S. carpocapsae J7, 

and 6.30 and 30.75% for S. abbasi abb. 

 

 

Figure VI.1: Tuta absoluta larvae infected with Steinernema carpocapsae BA2 applied in 5000 IJs/ml twice within 24 

h on tomato plants in greenhouse. 
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Figure VI.2: Larval mortality of Tuta absoluta in relation to treatment of four nematode isolates, Steinernema 

abbasi abb (abb), S. carpocapsae BA2 (BA2), S. carpocapsae J7 (J7), and S. feltiae (Sf), applied in 5000 IJs/ml twice 

within 24 hours. Boxplots are shown with individual observed values (n=12) as jittered points. The median is 

displayed by the horizontal line inside the boxplot. The estimated marginal means and 95% confidence intervals 

estimated from the fitted mixed model are displayed by the red color. The letters at the top indicate significant 

differences among the tested isolates according to posthoc tests (p < 0.05). 
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Table VI.1: The greenhouse conditions recorded during the experiment in July 2018 and the recorded larval 

mortalities (%) achieved by applications of four nematode isolates. 

Time point Conditions Min. Average Max. Larval mortality (%) achieved 

by nematode isolates 

BA2 Sf J7 abb 

04.07.2018 Temperature (°C) 16.8 26.6 39.5 87.59 81.11 80.31 30.75 

Relative humidity 

(%) 

13.3 51.5 93.3 

Dew point (°C) 3.2 14.0 19.5 

17.07.2018 Temperature (°C) 17.8 26.1 38.1 85.37 82.17 70.50 6.30 

Relative humidity 

(%) 

15.5 50.9 87.1 

Dew point (°C) 7.3 13.2 19.5 

22.07.2018 Temperature (°C) 18.3 28.7 40.1 83.67 78.06 77.70 17.77 

Relative humidity 

(%) 

18.4 46.6 87.0 

Dew point (°C) 9.7 14.5 19.4 

 

VI.5. DISCUSSION 

EPNs naturally occur in the soil and infect soil inhabiting insects. Therefore, EPNs are 

applied on soil applications against insect pests that spend part of their life cycle in soil. In 

some cases, EPNs were applied against insect pests in above-ground applications (Batalla-

Carrera et al., 2010; Gözel and Kasap, 2015). The foliage application is very challenging, 

especially under high temperatures. However, the foliar application is recommended in some 

cases to protect the crop by targeting the most susceptible insect stage. In the current study, T. 

absoluta larvae are the economic stage and occur only on above-ground parts of tomato 

plants. Moreover, the larvae are the most susceptible stage to EPNs (Batalla-Carrera et al., 

2010). For the previous reasons, the target stage was the 3rd instar larvae of T. absoluta in the 

current study. The tested EPNs were able to reach and infect T. absoluta larvae on tomato 

leaves even inside leaf galleries. The same results were reported by Batalla-Carrera et al. 

(2010), Van Damme et al. (2016), and Ndereyimana et al. (2019). 

While the effectiveness of S. abbasi abb was surprisingly low, the three isolates of S. 

carpocapsae and S. feltiae resulted in high mortality levels in T. absoluta larvae in the present 

study. Various reports displayed high control rates of EPN species against T. absoluta (Batalla-

Carrera et al., 2010; Garcia-del-Pino et al., 2013; Gözel and Kasap, 2015; Van Damme et al., 

2016). In contrast, other reports displayed low efficacy levels of EPN species against T. 

absoluta larvae on tomato plants (Gözel and Kasap, 2015; Van Damme et al., 2016; Sabry et 
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al., 2016). In pot experiments, applications of S. carpocapsae and S. feltiae (1000 IJs/ml) 

twice within 24 hours resulted in high levels of efficacy (87 and 95%) against T. absoluta 

larvae on potted tomato plants (Batalla-Carrera et al., 2010). In open field trials, S. feltiae was 

the most efficient species with 90.7-94.3% mortality in T. absoluta larvae, whereas S. affine 

was the least efficient species with 39.3-43.7% larval mortality (Gözel and Kasap, 2015). 

Under greenhouse conditions, an application of S. carpocapsae All (250 IJs/ml) against T. 

absoluta larvae resulted in 12.9% of mine reduction (Sabry et al., 2016). 

There are some challenges that may hamper the success of EPN foliar application. High 

temperatures and desiccation are the main factors that could limit EPNs control efficacy. 

Therefore, applying EPNs before sunset helps to avoid high temperature effects and fast 

desiccation. During the experiment time, the highest temperature degree was 40 °C and 

decreased gradually before sunset and at night. Some studies recommended applying the 

nematodes at dusk (Gözel and Kasap, 2015) or late afternoon (Mahmoud et al., 2016). Also, 

the use of a humectant adjuvant like Nemaperfect® with the application suspension could 

provide EPNs by moisture needed to reach the larvae of T. absoluta on leaves. In laboratory 

bioassays, two added adjuvants Addit® and Silwet L‐77® increased the efficacy of the applied 

nematodes (Van Damme et al., 2016). The addition of surfactant-polymer adjuvant increased 

nematode mobility and larval mortality of the diamondback moth, Plutella xylostella (L.) 

(Schroer et al., 2005). Another study recommended using an adjuvant like Silwet L-77® or 

Penterra® (wetting agent) with EPNs application (Portman et al., 2016).  

The application technique of EPNs is a crucial factor as well. The applied concentration 

levels are not fixed among the different studies. Also, the obtained results differ. In the 

current study, the application rate was 5000 IJs/ml (5*109 IJs/ha) applied twice within 24 

hours (in total 10*109 IJs/ha). The recommended application volume for insecticides is 400 

litre/acre (10,000 liters/ha). According to commercial products of e-nema Company 

(Schwentinental, Germany), the recommended EPNs application rate is 50 IJs/cm2 of soil 

surface (5*109 IJs/ha) against soil-borne insects. In pot experiment under greenhouse 

conditions, S. carpocapsae and S. feltiae in 1000 IJs/ml (1*109 IJs/ha) applied twice within 24 

hours (in total 2*109 IJs/ha) gained 87% and 94% mortality in T. absoluta larvae (Batalla-

Carrera et al., 2010). In another pot experiment under greenhouse conditions, S. carpocapsae 

at a rate of 50 IJs/cm2 (5*109/ha) resulted in a 50% reduction in T. absoluta (Kamali et al., 

2018). The nematode efficacy was evaluated by determining the number of emerged T. 

absoluta adults per plant within 15 days after treatment (Kamali et al., 2018). An application 

of S. carpocapsae at a concentration of 250 IJs/ml (250*106 IJs/ha) reduced 12.9% of leaf 

mines produced by T. absoluta larvae on tomato plants under greenhouse conditions in Egypt 

(Sabry et al., 2016). In open field experiments in Turkey, application of S. carpocapsae and S. 

feltiae in a concentration of 50 IJs/cm2 (5*109 IJs/ha) resulted in 49% and 94% mortality in 

T. absoluta larvae on tomato plants grown individually under cages (50 cm L * 50 cm W * 50 

cm H), which were covered with organza (Gözel and Kasap, 2015). 

In conclusion, the results demonstrate the potential of EPNs foliar application to control T. 

absoluta larvae on tomato crops under greenhouse conditions. The isolates of S. carpocapsae 

and S. feltiae resulted in high larval mortalities, and they were reliable in all three repetitions.  
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Chapter VII: General discussion  

 

Many Egyptian farmers rely on tomato growing as their main income. Their joint efforts 

have also made Egypt one of the most important tomato-producing countries in the world. 

However, tomato growers face major challenges in crop management, especially due to the 

constant threat of various pests. Insects in particular directly damage various parts of the 

plant, such as leaves, stems, or fruits, or transmit diseases. There is always the risk of 

enormous crop losses, which is why farmers are more and more using chemical insecticides, 

with predictable negative effects on the environment and human health (Wood and Ehui, 

2005; Van Bortel et al., 2008). In addition, sustainable crop protection in Egypt is also 

endangered by increasing insect resistance to many active ingredients of pesticides - and 

furthermore by the emergence of invasive pests such as the tomato leaf miner Tuta absoluta 

since the year 2009. 

In view of this critical situation, the major goal of the research presented in this thesis was 

to elaborate a biological control method based on entomopathogenic nematodes (EPNs) as an 

effective and environmentally safe alternative for tomato cultivation in Egypt. Biological pest 

control has many positive features that make it a perfect option for efficient crop protection 

(Lacey et al., 2006). In many cases, it has achieved amazing success in agronomic practice 

and also opens up a thriving market for biocontrol suppliers and organically grown 

agricultural produce (van Lenteren et al., 2018). Among biological control agents, EPNs 

combine several advantages, making them first-choice candidates to solve the tomato pest 

problem in Egypt. In contrast to viruses or bacteria, they are not too host-specific and can 

attack a broader range of hosts, even belonging to different insect orders. This attribute is of 

great significance in the considered system, because several insect species belonging to 

Lepidoptera or Hemiptera (especially the whitefly Bemisia tabaci) occur in several generations 

and throughout the season on tomato in Egypt. These insects form the so-called Egyptian 

Tomato insect Pest Complex (ETPC) and the first challenge to solve in the thesis was to find a 

suitable EPN isolate, which can tackle all of them. As a result of this research, it was possible 

to compile a shortlist of four very potent EPNs (S. abbasi (abb), S. carpocapsae (BA2), S. 

carpocapsae (J7), and S. feltiae (Sf)) out of a collection of fifteen isolates by thorough 

screening at various dosages on the four lepidopteran target pests Agrotis ipsilon, Helicoverpa 

armigera, Spodoptera littoralis, and T. absoluta) in a standard sand bioassay. While many 

studies exist that have evaluated different isolates against individual host species (El Kifl, 

1980; Tahir et al., 1995; Fetoh et al., 2009; Shamseldean et al., 2009; Batalla-Carrera et al., 

2010; Garcia-del-Pino et al., 2013; Van Damme et al., 2016), the approach here was novel to 

select such isolates that are sufficiently effective against all relevant lepidopteran pests. Since 

these pests occur together on the above-ground parts of the tomato plant and feed there, the 

goal of optimal and cost-effective regulation can thus be realized much better. In addition, the 

grower does not have to carry out several treatments based on different biological control 

agents, as would be the case, for example, monophagous antagonists. 

The whitefly B. tabaci is a plant sap-sucking insect and due to this different feeding 

behavior, another bioassay based on EPN-treated tomato leaves was necessary. Whiteflies are 

difficult targets for EPN compared to lepidopteran pests, as even high concentrations of IJs 
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resulted in relatively low mortality rates in other studies (Cuthbertson et al., 2003; 

Cuthbertson et al., 2007a,b). Nevertheless, the current study showed that the selected EPN 

isolates are able to invade this host. Especially high mortality rates of up to 80% were 

observed by application of the EPN isolate S. feltiae Sf against the immobile 2nd instar nymphs, 

indicating that this species is appropriate to combat this pest. The other EPN species also 

achieved mortality rates of over 50% when applied in high concentrations. These results 

proved that EPN species that are effective against lepidopterans could also successfully infest 

whiteflies. Thus, the first milestone of the work to find those EPNs that attack all targets of 

the ETPC was reached. 

Another benefit of EPNs is the fact that they are able to kill their host very quickly (usually 

within 48 h), which is mainly an attribute of symbiotic bacteria (Griffin et al., 2005). In the 

present study, the EPN isolates that showed high virulence against all target hosts all 

belonged to the genus Steinernema (S. carpocapsae, S. abbasi, S. riobrave, S. feltiae), which is 

associated with bacterial strains of the genus Xenorhabdus. Heterorhabditis isolates carrying 

bacteria of the genus Photorhabdus also caused some mortality of ETPC targets, but not at the 

high level achieved by the Steinernema-Xenorhabdus combination. It was not within the scope 

of the present work to study in detail the mode of action on these host insects, but it certainly 

deserves further investigations to uncover the bacterial part (certain toxins, enzymes, etc.) in 

the successful breaking of resistance in these different host species. In general, the fast killing 

effect of EPN infection is a major advantage over many other biological control agents, such 

as koinobiont parasitoids, plant extracts, and slow-acting entomopathogens where the 

attacked hosts survive longer and even feed, causing further damage to the plant. 

Nowadays, the invasive T. absoluta is the prevailing and most destructive pest on tomatoes 

in Egypt and was accordingly selected as the lead target pest to develop a control system 

against ETPC. Furthermore, the particular feeding behavior as a leafminer poses particular 

challenges to potential biocontrol agents. Antagonists need to reach the larvae inside their 

mines, where they are usually well protected against generalist predators or parasitoids, as 

well as against those chemical insecticides that do not penetrate the leaf surface. In addition, 

microbial pathogens need to be applied in a way that larvae get in contact with them or feed 

contaminated plant material. This is often not the case when larvae are already in their mines. 

In contrast, EPNs are mobile, perform an effective host searching behavior, also by following 

host cues/infochemicals (Griffin et al., 2005), and maybe small enough to enter the feeding 

mines of small T. absoluta larvae. The conducted leaf bioassay showed that all four “shortlist” 

EPN candidates were obviously attracted to mining T. absoluta larvae. They were able to 

infect the hosts in their galleries, thus confirming their efficiency against this pest under more 

natural conditions than it was tested before in the sand bioassay. Using the whole tomato 

leaflet instead of leaf disks as done in other studies (Van Damme et al., 2016) made the 

conditions even more challenging for EPNs to locate larvae by allowing the hosts to escape, as 

it probably also occur under real conditions. Steinernema-species are known to perform 

various host locations and mobility behaviors like “sit and wait”, cruising, or jumping on 

approaching insect larvae (Campos-Herrera, 2015) and this agility can also help them to cope 

with this particular host. In addition, the experiment has shown that all four “shortlist” EPN 

candidates are able to establish and/or move on the surface of the tomato leaf, an essential 

prerequisite for their use in this system. The isolate S. carpocapsae B2 was the most effective 

isolate, recording the lowest LC50 value against T. absoluta larvae in these bioassays. 
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Precautions must be taken to maintain EPN persistence on leaves long enough for the 

pests to be reached and infected. All insects of the ETPC stay on above-ground plant parts 

during their larval development; hence the EPNs have to be applied in the form of a foliar 

application. The next partial objective was therefore to achieve an optimization in the 

formulation of the EPN suspension. Rapid drying and inactivation of surface-applied EPNs are 

to be expected under field conditions in Egypt. Therefore, non-toxic components should, on 

the one hand, protect the EPNs, but on the other hand, also ensure good wetting of the hairy 

leaf surface and an even distribution of the EPNs in the suspension. Based on results from 

other studies, different adjuvants were selected and the effect on the application of S. 

carpocapasae B2 as the most effective isolate against T. absoluta on tomato plants was tested. 

Xanthan, Nemaperfect®, and Chitosan clearly improved the performance of the EPNs in these 

experiments and their use can be recommended. However, it needs to be checked if these 

substances are available and affordable for Egyptian farmers. The study also suggested a very 

simple method to increase the efficacy of the selected EPN isolates: the splitting of efficient 

dosages into half and applying the total EPN amount in two steps within 24 h also helped to 

increase the mortality of T. absoluta larvae significantly.  

Certainly, the controlled laboratory conditions necessary for a standardized comparison of 

the effectiveness of the EPN isolates did not reflect the variable, often imponderable and 

challenging scenarios of Egyptian field cultivation of tomatoes. Even the conducted 

greenhouse trials with partly high temperatures and low humidity do not necessarily 

correspond to reality. Nevertheless, the results obtained allow developing the basis for an EPN 

based biocontrol system against the ETPC, which was also the declared aim of the research 

work and did not exist before. It was surprising that S. abbasi, which comes from a semi-arid 

region, performed worst in the greenhouse situation with high temperatures, while both S. 

carpocapsae isolates (including the German isolate, thus being from a temperate region) and 

S. feltiae produced satisfactory results. Further basic research could clarify the responsible 

traits of nematodes and their bacteria in order to find out possibilities to maintain or even 

manipulate them for increased effectiveness. 

To conclude, for biocontrol of the ETPC, it can be recommended to apply effective EPN 

isolates in a double leaf application within 24 h in a formulation provided with adjuvants. As 

the target pests are mainly active during their larval development on the leaf surface at dusk 

or at night, an application at these times of day would be reasonable and better feasible for 

the farmers. Overall, this research has succeeded in establishing a basic system for an EPN-

based control method. 

The next steps would now be to have the three effective isolates (S. carpocapsae BA2 and 

J7, S. feltiae Sf) produced by a biocontrol producer, to find suitable and feasible application 

rates for field application, to test also EPN mixtures, and to make the system so cost-effective 

that Egyptian farmers adopt it and implement it into their pest management. If successful, the 

EPN-based biocontrol system against the ETPC would certainly have adaptive capabilities in 

other regions of the world where the aforementioned pests still make life difficult for farmers 

and prevent the harvest of healthy and tasty tomatoes. 
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