

Fakultät für Technische Wissenschaften

Bewertung der Lochleibungstragfähigkeit von Schraubenverbindungen mittels FEM

Manuel Vererfven, BSc

Innsbruck, Oktober 2017

Masterarbeit

eingereicht an der Leopold-Franzens-Universität Innsbruck, Fakultät für Technische Wissenschaften zur Erlangung des akademischen Grades

Diplomingenieur

Beurteiler:

Univ.Prof.Dipl.-Ing Dr.techn. Gerhard Lener Institut für Konstruktion und Materialwissenschaften Arbeitsbereich für Stahlbau und Mischbautechnologie

Betreuer: Univ.Prof.Dipl.-Ing Dr.techn. Gerhard Lener
 Universität Innsbruck, Institut für Konstruktion und Materialwissenschaften
 Arbeitsbereich für Stahlbau und Mischbautechnologie
 Mitbetreuer: Dipl.-Ing Dr.techn. Ralph Timmers
 Universität Innsbruck, Institut für Konstruktion und Materialwissenschaften
 Arbeitsbereich für Stahlbau und Mischbautechnologie

Danksagung

Zunächst möchte ich mich bei meinem Betreuer, Ralph Timmers, für die Betreuung sowie für anregende Ideen in Hinblick auf die Erstellung dieser Arbeit bedanken.

Ein weiteres Dankeschön gilt dem gesamten Arbeitsbereich für Stahlbau und Mischbautechnologie, insbesondere dessen Leiter Univ.-Prof Dipl.-Ing. Dr.techn. Gerhard Lener, für die Möglichkeit diese Arbeit durchführen zu können.

Außerdem möchte ich mich bei meinen Studienkollegen bedanken, welche das Studium zu einer unvergesslichen Erfahrung gemacht haben.

Zu guter Letzt möchte ich mich einerseits bei meiner Familie bedanken, die mir das Studium ermöglich hat sowie in schwierigen Phasen jederzeit für Unterstützung da war. Andererseits bedanke ich mich bei meiner Freundin für die bedingungslose Unterstützung während des gesamten Studiums.

Kurzfassung

In der fortschreitenden Entwicklung der numerischen Simulation von komplexen Bauteilen ist es möglich, komplette Konstruktionen mittels einer FE-Berechnung zu untersuchen. Für die Hauptbestandteile (Profile, Bleche, ...) eines zusammengesetzten Bauteils ist es möglich, über eine Auswertung der auftretenden Spannungen den Nachweis der Tragfähigkeit bei gegebener Belastung zu erfüllen. Bei den Verbindungen können Schweißnähte ebenfalls über die Auswertung der Vergleichsspannungen unter ruhender Belastung nachgewiesen werden. Für dynamische Beanspruchungen gibt es Konzepte (Nennspannungs-, Strukturspannungs-, und Kerbspannungskonzept) und Richtlinien (FKM-Richtlinie) mit denen der Nachweis erbracht werden kann. Für Schraubenverbindungen gibt es keine eindeutigen Grenzwerte, bei denen man den Nachweis der Lochleibungsfestigkeit als erbracht betrachtet.

Im Rahmen dieser Arbeit wird ein numerisches Modell entwickelt, welches das tatsächliche Verhalten eines Laschenstoßes möglichst gut abbildet. Dazu werden zunächst unterschiedliche Modellierungen analysiert und mit Versuchsergebnissen verglichen. Anschließend werden die Modelle zu einem numerischen Modell zusammengefasst, mit dem im Anschluss eine Parameterstudie durchgeführt wird. Am Ende wird untersucht, welche Grenzkriterien eingeführt werden können, damit der Lochleibungsnachweis mit einer reinen FE-Berechnung erbracht werden kann.

Abstract

With the progressing development of numerical methods it is possible to investigate the behavior of complicated geometries and components using FE-analysis. For the main components the occurring stresses can be compared to the maximum resistance stress according to the ultimate limit state. For welded joints in static systems the equivalent stresses can be compared to the yield stresses in the Eurocode. For dynamic systems special methods (hot spot concept, notch stress concept and nominal stress concept) and guidelines (FKM-guideline) were developed to proof the strength of the components. For screw connections there are no specific limits considering stresses and strains to fulfill the bearing stress verification.

In this thesis a numerical model is developed which is capable to depict the behavior of a real strap joint. Different systems are made and compared to test results of a strap joint. The best aspects of the different systems are taken together in a final system and a parameter study is conducted. At the end, the results of this parameter study are evaluated in order to set new limits, so the ultimate limit state of a bearing type connection can be evaluated solely by performing a FE-analysis.

Inhaltsverzeichnis

1	Einleitung - Stand der Technik	. 1
	1.1. Problemstellung	. 5
	1.2. Ziele der Masterarbeit	. 5
	1.3. Vorgehensweise	. 5
2	2. Theoretische Grundlagen der FEM	. 7
	2.1. Allgemein	. 7
	2.2. Materialmodell	. 7
	2.2.1. Baustahl (S235 bzw. S355)	. 8
	2.2.1.1. Bilineares Materialverhalten	. 8
	2.2.1.2. Multilineares Materialverhalten	. 8
	2.2.2. Schraube (FK 8.8 und 10.9)	. 9
	2.2.2.1. Schraubenmaterial nach RAMBERG-OSGOOD	. 9
	2.3. Verfestigungsverhalten	10
	2.4. Kontaktbedingungen	12
	2.4.1. Frictionless (Reibungsfrei)	12
	2.4.2. Bonded (Verbund)	12
	2.4.3. Frictional (Reibungsbehaftet)	12
	2.4.4. No Separation (Keine Trennung)	12
	2.5. Mesh	12
3	8. Aufbau und Validierung des numerischen Modells	17
	3.1. Aufbau und Ergebnisse der Versuchsreihen	17
	3.2. Versuch C3 (Halbmodell):	19
	3.3. Versuch C1	26
	3.4. Versuch C14 (Halbmodell)	34
	3.5. Versuch C13 (Halbmodell)	38
	3.6. Vereinfachtes numerisches Modell	42
	3.6.1. Schalenmodell	43

	3.6.2.	Volumenmodell (innenliegend)	45
	3.6.3.	Volumenmodell (außenliegend)	47
	3.6.4.	Vergleich	47
3	.7. Vergleid	ch bilineares und lineares Materialverhalten	53
	3.7.1.	[A] Bilineares Materialverhalten	55
	3.7.2.	[B] Multilineares Materialverhalten	56
	3.7.3.	Vergleich Bilinear-Multilinear	57
3	.8. Ergebni	sse	58
	3.8.1.	Validierung der Vereinfachungen	60
4.	Paramete	erstudie	63
4	.1. Allgeme	eines	63
	4.1.1.	Parameter	63
	4.1.2.	Lastniveaus	64
	4.1.3.	Netzstudie	65
4	.2. Auswer	tung	73
	4.2.1.	Kraft-Verformungs-Diagramme	73
	4.2.1.1	. Kraft-Weg-Diagramme	73
	4.2.1.2	2. Kraft-Lochaufweitung in mm	76
	4.2.1.3	 Kraft-Lochaufweitung in % (real) 	80
	4.2.2.	Max. Eq. Tot. Strain	82
	4.2.3.	Maximale Hauptverzerrung EPPL1	88
	4.2.4.	Steifigkeiten	92
	4.2.4.1	. Steifigkeit beim Kraft-Weg-Diagramm	92
	4.2.4.2	2. Steifigkeit real (Kraft-Aufweitung in mm)	95
	4.2.4.3	3. Steifigkeit relativ	97
	4.2.5.	Max. Hauptverzerrung am Laschenende	99
	4.2.6.	Normalisierte Lochleibungsfestigkeit nach Draganić [14]	103
	4.2.6.1	. Allgemeines	103

	4.2.6.2.	Auswertung der NBR	
	4.3. Zusamm	enfassung der Ergebnisse	109
5.	Traglastve	ergleich	
6.	Zusamme	nfassung und Ausblick	
7.	Literaturv	erzeichnis	115
8.	Anhang A		
	3.1. Material	definition Blechtafel 5008 - multilinear	
	3.2. Schraube	e 10.9 nach RAMBERG-OSGOOD	119
	3.3. Stahl S35	55 - multilinear	
	3.4. Paramet	erkonfigurationen	

Abbildungsverzeichnis

Abb. 1-1: Versagensmechanismen	2	
bb. 1-2: Versagensmodi in der Laschenebene [4] 2		
Abb. 1-3: Versagensmodus in Abhängigkeit der Randabstände [5]	3	
Abb. 1-4: Versagensmodi aus der Laschenebene [4]	4	
Abb. 1-5: Risse infolge Abheben [4]	5	
Abb. 2-1: Bilineares Materialverhalten	8	
Abb. 2-2: Multilineares Materialverhalten [10]	9	
Abb. 2-3: Materialmodell nach RAMBERG-OSGOOD	10	
Abb. 2-4: Isotrope Verfestigung; (a) Fließfläche im Raum; (b) Spannungs-Dehnungsdiagramm	11	
Abb. 2-5: Kinematische Verfestigung; (a) Fließfläche im Raum; (b) Spannungs-Dehnungsdiagramm.	11	
Abb. 2-6: SOLID186-Element	13	
Abb. 2-7: SOLID187-Element	13	
Abb. 2-8: Kontaktbeschreibung mit CONTA174 UND TARGE170	14	
Abb. 2-9: PLANE183-Element	15	
Abb. 2-10: Kontaktbeschreibung mit CONTA172 UND TARGE169	15	
Abb. 3-1: Versuchsaufbau für die Durchführung der Versuchsreihen [4]	18	
Abb. 3-2: Laschengeometrie gemäß [4]	19	
Abb. 3-3: Numerisches Modell mit Randbedingungen zur Verifizierung am Versuch C3	20	
Abb. 3-4: Bonded-Bedingung zwischen Schraube und mittlerer Lasche	21	
Abb. 3-5: Einstellungen der Kontaktbedingung	21	
Abb. 3-6: Mesh (Versuch C3)	22	
Abb. 3-7: Inflation um das Schraubenloch (Versuch C3)	23	
Abb. 3-8: Last-Verschiebungsdiagramm Versuch C3	23	
Abb. 3-9: Bruchbild Versuch C3 [4]	24	
Abb. 3-10: Gesamtverformungen FE-Modell (Versuch C3)	24	
Abb. 3-11: Vergleichsspannungen in der Lasche (Versuch C3)	25	
Abb. 3-12: Eq. Plastic Strain Lasche (Versuch C3) - (true scale)	25	
Abb. 3-13: Frictionless-Verbindung zwischen den Laschen	26	
Abb. 3-14: Frictionless-Verbindung zwischen äußerer Lasche und Schraubenkopf bz	zw.	
Schraubenschaft	27	
Abb. 3-15: Versuch C1 Mesh - Vernetzungsbereiche	27	
Abb. 3-16: Mesh (Versuch C1)	28	
Abb. 3-17: Last-Verschiebungsdiagramm Versuch C1	29	

Abb. 3-18: Gesamtverformung am Ende der Berechnung (Versuch C1)	29
Abb. 3-19: Bruchbild beim Versuch C1 [4]	30
Abb. 3-20: Vergleichsspannungen in der Lasche (TimeStep 0,66637) - Versuch C1	30
Abb. 3-21: Vergleichsverzerrungen (TimeStep 0,66637) - Versuch C1	31
Abb. 3-22: Asymmetrische Vernetzung im Nettoquerschnitt (Versuch C1)	31
Abb. 3-23: Versuch C1 (Viertelmodell)	32
Abb. 3-24: Versuch C1 - Last-Verschiebungskurve (Halb-und Viertelmodell)	32
Abb. 3-25: Gesamtverschiebung Versuch C1 (Viertelmodell)	33
Abb. 3-26: Max. Eq. Tot. Strain Versuch C1 (Viertelmodell)	33
Abb. 3-27: M015 Mesh - Vernetzungsbereiche	34
Abb. 3-28: Mesh - Versuch C14	35
Abb. 3-29: Last-Verschiebungsdiagramm Versuch C14	35
Abb. 3-30: Gesamtverformungen - Versuch C14	36
Abb. 3-31: Bruchbild beim Versuch C14 [4]	36
Abb. 3-32: Vergleichsspannungen - Versuch C14	37
Abb. 3-33: Vergleichsdehnungen - Versuch C14	37
Abb. 3-34: Mesh - Versuch C13 (grob)	39
Abb. 3-35: Mesh - Versuch C13 (fein)	39
Abb. 3-36: Last-Verschiebungsdiagramm Versuch C13	40
Abb. 3-37: Bruchbild beim Versuch C13 [4]	40
Abb. 3-38: Total Deformation - Versuch C13 (grob) -true scale	41
Abb. 3-39: Total Deformation - Versuch C13 (fein) - 5-fach überhöht	41
Abb. 3-40: Eq. Pl. Strain - Versuch C13 - grob	42
Abb. 3-41: Geometrie des vereinfachten Modellaufbaus - Bemaßung in [mm]	43
Abb. 3-42: Schalenmodell - Modellaufbau	43
Abb. 3-43: Schalenmodell - Vernetzungsbereiche	44
Abb. 3-44: Mesh - Schalenmodell außenliegender Lasche	45
Abb. 3-45: Volumenmodell (innenliegende Lasche) - Modellaufbau	45
Abb. 3-46: Volumenmodell (innenliegend) - Vernetzungsbereiche	46
Abb. 3-47: Volumenmodell (außenliegend) - Modellaufbau	47
Abb. 3-48: Verformung in x-Richtung - Schalenmodell (true scale)	48
Abb. 3-49: Verformung in x-Richtung -Volumenmodell der innenliegenden Lasche (true scale) .	49
Abb. 3-50: Verformung in x-Richtung - Volumenmodell der außenliegenden Lasche (true scale)	49
Abb. 3-51: Max. Eq. Pl. Str Schalenmodell (true scale)	50
Abb. 3-52: Max. Eq. Pl. Str. Volumenmodell der innenliegenden Lasche (true scale)	51

Abb. 3-53: Max. Eq. Pl. Str Volumenmodell der außenliegenden Lasche (true scale)
Abb. 3-54: Definition der Lochaufweitungen
Abb. 3-55: Last-Verschiebungskurven - Vereinfachtes numerisches Modell
Abb. 3-56: Geometrie (Maße in mm)54
Abb. 3-57: Partitionierungskreise (Durchmesser angegeben)
Abb. 3-58: Vergleich bilineares und multilineares Materialverhalten - Mesh
Abb. 3-59: Eq. Plastic Strain - Bilineares Materialverhalten (True Scale)
Abb. 3-60: Eq. Plastic Strain - Multilineares Materialverhalten (True Scale)
Abb. 3-61: Lastverschiebungskurven - Vergleich Bilinear - Multilinear
Abb. 3-62: Vernetzungspartitionierung
Abb. 3-63: Hinweise zur Kontaktmodellierung[13]60
Abb. 3-64: Kraft-Weg Diagramme Versuch C3 (grün - Versuch, blau - genaues Modell, rot -
Verifizierung)
Abb. 3-65: Kraft-Weg Diagramme Versuch C1 (grün - Versuch, blau -genaues Modell, rot -
Verifizierung)
Abb. 3-66: Kraft-Weg Diagramme Versuch C14 (grün - Versuch, blau -genaues Modell, rot -
Verifizierung)
Abb. 3-67: Kraft-Weg Diagramme Versuch C3 (grün - Versuch, blau -genaues Modell, rot -
Verifizierung)
Abb. 4-1: Lastniveaus
Abb. 4-2: Vernetzungsbereich A - Body Sizing Schraubenschaft
Abb. 4-3: Vernetzungsbereich B - Body Sizing Randbereich Schraubenloch
Abb. 4-4: Vernetzungsbereich C- Body Sizing Laschen und Schraubenkopf
Abb. 4-5: Vernetzungsbereich D - Face Sizing Schraubenschaft
Abb. 4-6: Feine Vernetzung
Abb. 4-7: mittelgrobe Vernetzung
Abb. 4-8: grobe Vernetzung
Abb. 4-9: Pfadeinteilung
Abb. 4-10: Max. Eq. Tot. Strain - d0
Abb. 4-11: Max. Eq. Tot. Strain -d0
Abb. 4-12: Feine Vernetzung - Eq. Total Strain
Abb. 4-13: Mittelgrobe Vernetzung - Eq. Total Strain71
Abb. 4-14: Grobe Vernetzung - Eq. Total Strain72
Abb. 4-15: Kraft-Wegdiagramme
Abb. 4-16: Kraft-Weg-Diagramm PS0774

Abb. 4-17: Kraft-Weg-Diagramm PS10	75
Abb. 4-18: Kraft-Weg-Diagramm PS17	75
Abb. 4-19: Kraft-Weg-Diagramm PS19	76
Abb. 4-20: Definition der Lochaufweitung	77
Abb. 4-21: Kraft-Lochaufweitungsdiagramme in [kN/mm]	77
Abb. 4-22. Kraft-Aufweitungsdiagramm [kN/mm] PS07	78
Abb. 4-23. Kraft-Aufweitungsdiagramm [kN/mm] PS10	78
Abb. 4-24. Kraft-Aufweitungsdiagramm [kN/mm] PS17	79
Abb. 4-25. Kraft-Aufweitungsdiagramm [kN/mm] PS19	79
Abb. 4-26: Kraft-Lochaufweitungskurven (kN/%)	80
Abb. 4-27: Pfaddefiniton	82
Abb. 4-28: Definion der Vergleichsdehnung in Ansys	84
Abb. 4-29: Vergleichsdehnung PS07	84
Abb. 4-30: Vergleichsdehnung PS10	85
Abb. 4-31: Vergleichsdehnung PS17	85
Abb. 4-32: Vergleichsdehnung PS19	86
Abb. 4-33: Max. Eq. Tot. Strain $e_1 = 1.2 t = 10 mm$ in Abhängigkeit von d_0 und e_2	86
Abb. 4-34: Max. Eq. Tot. Strain $e_1 = 1.2 t = 10 mm$ in Abhängigkeit von d_0 und e_2	87
Abb. 4-35: Max. Eq. Tot. Strain $e_1 = 1.2 t = 10 mm$ in Abhängigkeit von d_0 und e_2	87
Abb. 4-36: Max. Eq. Tot. Strain $e_1 = 1.2 t = 10 mm$ in Abhängigkeit von d_0 und e_2	88
Abb. 4-37: Rissöffnungsarten: Mode I (Zugriss), Mode II (Schubriss in Materialebene), Mod	de III
(Schubriss zur Materialebene) [1]	89
Abb. 4-38: Pressure PS01	89
Abb. 4-39: Hauptspannungen in ANSYS	90
Abb. 4-40: Plastische Hauptverzerrungen PS01	90
Abb. 4-41: Steifigkeitsverteilung der Konfigurationen	93
Abb. 4-42: Steifigkeiten bei F _{Rk} für t=10mm	94
Abb. 4-43: Steifigkeiten bei F _{Rk} für t=20mm	94
Abb. 4-44: Steifigkeitsverteilung der Konfigurationen in kN/mm Aufweitung (real)	95
Abb. 4-45: Steifigkeiten bei F _{Rk} für t=10 mm - real	96
Abb. 4-46: Steifigkeiten bei F _{Rk} für t=20 mm - real	96
Abb. 4-47: relative Steifigkeitsverteilung der Konfigurationen	97
Abb. 4-48: relative Steifigkeiten bei F _{Rk} für t=10mm	98
Abb. 4-49: relative Steifigkeiten bei F _{Rk} für t=20mm	98
Abb. 4-50: Max. Hauptverzerrung am Rand PS30 (Biegebruch)	. 100

Abb. 4-51: Max. Hauptverzerrung am Rand PS32 (Scherbruch) 100
Abb. 4-52: Hauptverzerrrungen am Laschenende unter charakteristischer Belastung für t=10mm . 102
Abb. 4-53: Hauptverzerrrungen am Laschenende unter charakteristischer Belastung für t=20mm . 102
Abb. 4-54: Vergleich der NBR unter Traglast lt. Draganic [14] 104
Abb. 4-55: Vergleich der NBR beim Erreichen der Gebrauchstauglichkeit lt. Draganić [10] 10!
Abb. 4-56: Kraft-Lochaufweitungsdiagramme und 16,6 % Lochaufweitungsgrenze
Abb. 4-57: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e_2 =1.2 d_0 107
Abb. 4-58: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e_2 =1.5 d ₀ 107
Abb. 4-59: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e_2 =2.0 d_0 108
Abb. 4-60: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e_2 =3.0 d_0 108
Abb. 5-1: NBR-Diagramm für $e_2 = 1,2 d_0 \dots 112$
Abb. 5-2: Kraft-Lochaufweitungsdiagramme mit 16,6% Lochaufweitungsgrenze

Tabellenverzeichnis

Tab. 1-1: Kategorien von Schraubenverbindungen	
Tab. 3-1: Vergleich der Ergebnisse - Vereinfachtes numerisches Modell	
Tab. 4-1: Netzgrößenstudie	65
Tab. 4-2: Max. horizontale Lochaufweitung	
Tab. 4-3: Vergleich der Rechenzeiten	72
Tab. 4-4: Lochaufweitungen	
Tab. 4-5: Max. Eq. Total Strain bei F _{Rk}	
Tab. 4-6: Steifigkeiten in kN/mm Verschiebung, kN/mm Lochaufweitung und kN/% Lochauf	weitung99
Tab. 4-7: Hauptverzerrungen am Laschenrand unter F _{Rk}	101

1. Einleitung - Stand der Technik

Um Einzelbauteile aus Stahl miteinander zu verbinden, gibt es unterschiedliche Verbindungstechniken. Seit den Anfängen des Stahlbaus wurden Nietverbindungen eingesetzt. Bis in die zwanziger Jahre des 20 Jahrhunderts waren sie die beliebteste und am weitesten verbreitete Art Stahlelemente miteinander zu verbinden. Seit den zwanziger Jahren wurden sie von Schweiß- und Schraubverbindungen abgelöst, welche deutlich einfacher in der Handhabung sind [1].

Bei den Schraubenverbindungen wird gemäß ÖNORM EN 1993-1-8 [2] zwischen folgenden Kategorien unterschieden:

A	Scher-/Lochleibungsverbindung	
В	Gleitfeste Verbindung im Grenzzustand der	Scherverbindung
	Gebrauchstauglichkeit	Scherverbindung
С	Gleitfeste Verbindung im Grenzzustand der Tragfähigkeit	
D	Nicht vorgespannte Zugverbindung	Zugverbindung
E	Vorgespannte Zugverbindung	

Tab. 1-1: Kategorien von Schraubenverbindungen

In dieser Arbeit wird lediglich der Versagensmodus Lochleibung untersucht, dementsprechend werden hier die Grundzüge der Verbindungsmittel der Kategorie A erklärt.

Bei Scher-/Lochleibungsverbindungen (SL-Verbindungen) können prinzipiell drei verschiedene Versagensmöglichkeiten betrachtet werden. Einerseits kommt es aufgrund der in der Schraube auftretenden Schubspannungen zu einem Schubversagen (Abscheren der Schraube). Andererseits kommt es zum Lochleibungsversagen, welches von den Randabständen e₁ (in Kraftrichtung) und e₂ (senkrecht zur Kraftrichtung) abhängig ist. Der Sammelbegriff Lochleibung steht dabei für das Versagen des Bleches in Kraftrichtung. Diese zwei grundlegenden Versagensmechanismen für eine ein- bzw. zweischnittige Verbindung sind dabei in der Abb. 1-1[3] dargestellt.

Abb. 1-1: Versagensmechanismen

Beim Abscheren kommt es zu einem Versagen des Schraubenwerkstoffes, beim Versagensmodus Lochleibung kommt es zu plastischen Verformungen oder Brüchen in den Laschen.

Wie bereits erwähnt wurde, steht der Begriff "Lochleibung" für unterschiedliche Versagensarten. Hierbei wird unterschieden zwischen den Modi Scherbruch, Zugbruch und Biegebruch. Diese Versagensmodi sind in der Abb. 1-2 dargestellt. Der Zugbruch in Abb. 1-2 kann mit dem Nettoquerschnittsversagen gleichgestellt werden.

Abb. 1-2: Versagensmodi in der Laschenebene [4]

Welcher Versagensmodus für die jeweilig betrachtete Verbindung auftritt, hängt im Wesentlichen von den Parametern e_1 bzw. e_2 ab (vgl. Abb. 1-3). Bei einem kleinen Verhältnis von e_2/d_0 kommt es eher zu einem Zugbruch. Im Gegensatz dazu kommt es bei einem kleinen e_1/d_0 -Verhältnis zu einem Biegebruch des Werkstoffes vor dem Schraubenloch, bei sehr kleinen Verhältnissen kommt es zu einem zweischnittigen Scherbruch.

Abb. 1-3: Versagensmodus in Abhängigkeit der Randabstände [5]

Gemäß den anerkannten Regeln der Technik, können Schrauben momentan lediglich mit den Nachweisen der ÖNORM EN 1993-1-8 nachgewiesen und bemessen werden. Diese Nachweise beinhalten für Scher-Lochleibungsverbindungen den Nachweis der Tragfähigkeit der Schraube unter Scherbeanspruchung ($F_{v,Ed} \leq F_{v,Rd}$), den Lochleibungsnachweis ($F_{v,Ed} \leq F_{b,Rd}$) und den Nachweis des Nettoquerschnittes ($F_{v,Ed} \leq N_{u,Rd}$). Sämtliche Nachweise können mit dem Formelapparat des Eurocodes geführt werden. Der Teilsicherheitsbeiwert γ_{M2} bezeichnet bei den unten angeführten Formeln den Teilsicherheitsbeiwert auf der Widerstandsseite und ist gemäß ÖNORM EN 1993-1-1 [2] mit 1.25 festgelegt.

Scherbeanspruchung:
$$F_{v,Rd} = \frac{\alpha_v \cdot f_{ub} \cdot A}{\gamma_{M2}}$$
 bzw. $F_{v,Rd} = \frac{\alpha_v \cdot f_{ub} \cdot A_S}{\gamma_{M2}}$ Nettoquerschnitt: $N_{u,Rd} = min \begin{cases} 0.9 \cdot A_{net} \frac{f_u}{\gamma_{M2}} \\ \frac{A \cdot f_y}{\gamma_{M0}} \end{cases}$

Dabei steht A für die Bruttoquerschnittsfläche der Schraube (Schraubenschaft) und A_s für die Spannungsquerschnittsfläche. Die gesamte Grenzabscherkraft ergibt sich dabei aus der Summe der Grenzabscherkräfte der einzelnen Scherfugen. Im Rahmen dieser Arbeit soll nur genauer auf den Nachweis der Lochleibungsfestigkeit für zweischnittige Verbindungen eingegangen werden, weshalb nur diese Formel genauer erklärt wird.

Lochleibung:
$$F_{b,Rd} = \frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t}{\gamma_{M2}}$$

mit $\alpha_b = \min(\alpha_d, \frac{f_{ub}}{f_u}, 1.0)$

für am Rand liegende Schrauben: $\alpha_d = \frac{e_1}{3 \cdot d_0}$ für innen liegende Schrauben: $\alpha_d = \frac{p_1}{3 \cdot d_0} - \frac{1}{4}$

und

für am Rand liegende Schrauben: $k_1 = \min(2.8 \cdot \frac{e_2}{d_0} - 1.7, 2.5)$

für innen liegende Schrauben: $k_1 = \min(1.4 \cdot \frac{p_2}{d_0} - 1.7, 2.5)$

Bei den Formeln des Eurocodes wird nicht berücksichtigt, ob es sich bei der vorhandenen Lasche um eine innen- oder außenliegende Lasche in mehrschnittigen Verbindungen handelt. In der Realität kann es bei außenliegenden Laschen zusätzlich zu den bereits erwähnten Versagensformen zu Begleiterscheinungen kommen. Diese Begleiterscheinungen treten im Gegensatz zu den eigentlichen Versagensformen, welche in der Laschenebene auftreten, aus der Laschenebene auf. Dabei wird unterschieden zwischen Krüppeln und Abheben (vgl. Abb. 1-4).

Abb. 1-4: Versagensmodi aus der Laschenebene [4]

In einigen Fällen kann es infolge der abhebenden Laschen zu Rissen in der Lasche kommen (vgl. Abb. 1-5). Die Abstützkräfte des Schraubenkopfes auf die Lasche werden dabei so groß, dass es infolge dieser Pressung zu einem Durchstanzen des Schraubenkopfes kommt.

Risse infolge Abheben

Abb. 1-5: Risse infolge Abheben [4]

1.1. Problemstellung

Die Nachweise, welche im Eurocode angeführt werden, setzen eine "händische" Berechnung voraus. In Zeiten der Finite-Elemente-Berechnung und der immer besser werdenden Rechenleistung ist es auch möglich komplexe Bauteile, Geometrien und Verbindungen mittels einer FE-Berechnung nachzuweisen. Ein Grenzkriterium für den Grenzzustand der Tragfähigkeit befindet sich lediglich in der ÖNORM EN 1993-1-5 Anhang C.8 [6]. Dabei wird unterschieden zwischen dem Plattenbeulen, bei dem das Grenzkriterium als Maximum der Traglastkurve festgelegt wird, und Nachweise bei Zugbeanspruchungen, bei denen eine maximale Hauptmembrandehnung von 5% nicht überschritten werden darf. In der Anmerkung 2 wird darauf verwiesen, dass anstelle der 5% Hauptdehnung auch andere Grenzkriterien, wie etwa das Erreichen eines Fließkriteriums, verwendet werden können. Eine Festlegung für den Grenzzustand der Gebrauchstauglichkeit wird in der ÖNORM EN 1993-1-5 nicht angeführt.

1.2. Ziele der Masterarbeit

Diese Masterarbeit überprüft zunächst die Gültigkeit und die Anwendbarkeit der Grenzkriterien der ÖNORM EN 1993-1-5. Hierzu werden die gemäß ÖNORM EN 1993-1-8 gültigen Lasten aufgebracht und überprüft, ob die bisherigen Grenzkriterien eingehalten werden können. Anschließend werden zusätzliche Kriterien untersucht, die möglicherweise besser geeignet sind, um die Nachweise der ÖNORM EN 1993-1-8 abzudecken. Dabei werden einerseits Dehnungen und Verformungen, andererseits Steifigkeiten ausgewertet.

1.3. Vorgehensweise

In dieser Arbeit wird eine Parameterstudie mittels einer Finiten-Elemente-Modellierung durchgeführt. Dazu wird zunächst ein genaues Berechnungsmodell aufgebaut, welches mit

Versuchsergebnissen einer Studie validiert wird. Um die Berechnungen zu vereinfachen und die Rechendauer zu reduzieren, werden Vereinfachungen getroffen und die Resultate mit den Ergebnissen des genauen Modells bzw. mit denen der Versuche verglichen. Die FEM-Berechnungen werden mit der Ansys Workbench 17.2 (Academic License) [7] durchgeführt. Die Parameterstudie ergibt sich aus einer Variation der Parameter e₁, e₂, den Schraubendurchmesser d und der Blechdicke t. Die Parameterstudie konzentriert sich zusätzlich auf den Versagensmodus "Lochleibung" bzw. "Nettoquerschnittsversagen". Die Parameterkonfigurationen bei denen ein Versagen der Schraube zu betrachten ist, werden nicht mit einer FEM-Berechnung untersucht.

Die Auswertung erfolgt einerseits in Excel, andererseits zur einfacheren Handhabung der Datenmengen in Matlab 2016b [8].

2. Theoretische Grundlagen der FEM

2.1. Allgemein

Die FEM (Finite-Elemente-Methode) ist ein numerisches Verfahren, welches zur Simulation unterschiedlichster Aufgabenstellungen innerhalb des Ingenieurbaus verwendet wird. Die Methode der Finiten Elemente kann als eine Erweiterung des Verfahrens von RITZ bzw. GALERKIN angesehen werden. [9]

Bei der Finiten-Elemente-Methode wird unterschieden zwischen linearen und nichtlinearen Berechnungen. Im Falle einer linearen Berechnung wird einerseits von einem linearen Materialmodell und somit die Gültigkeit des HOOKE'schen Gesetzes ausgegangen. Andererseits soll es im Laufe der Berechnung zu kleinen Verschiebungen und Verzerrungen kommen, was als geometrische Nichtlinearität definiert wird. Kontakte können bei einer linearen Berechnung nicht abgebildet werden.

Bei nichtlinearen Analysen gibt es keinerlei Voraussetzungen, da alle Nichtlinearitäten zugelassen werden, unter der Voraussetzung, dass diese hinreichend genau definiert sind. Im Falle der geometrischen Nichtlinearitäten werden dabei beispielsweise große Verschiebungen, Verdrehungen und Stabilitätsprobleme zugelassen. Dank des nichtlinearen Materialgesetzes können die Materialien genauer definiert werden, z.B. die Plastizität und Wiederverfestigung von Stahl oder das Rissverhalten von Beton. Mittels einer Berücksichtigung von Kontakten können unterschiedliche Materialbereiche definiert werden oder Fugen zwischen einzelnen Bauteilen mit Übergangsparameter festgelegt werden.

2.2. Materialmodell

Eine der wichtigsten Einstellungen bei der FEM-Modellierung ist die Definition der unterschiedlichen Materialien. Im vorliegenden Fall handelt es sich dabei um den üblichen Baustahl (S235 und S355) und das Schraubenmaterial. Bei Letzterem handelt es sich im Regelfall um einen Kohlenstoffstahl mit höheren Festigkeiten (üblicherweise FK 8.8 und 10.9). Der erste Wert bezeichnet hierbei den Nennwert der Zugfestigkeit ($f_{ub}/100$), der zweite Wert den Prozentanteil der Zugfestigkeit, bei der die Streckgrenze f_{yb} erreicht wird. Für Berechnungen mit der Finiten-Elementen-Methode sind die Werkstoffeigenschaften anhand der charakteristischen Werte zu definieren [6].

2.2.1.Baustahl (S235 bzw. S355)

Gemäß ÖNORM EN 1993-1-5 - Anhang C [6] können für Berechnungen mit der Finite-Elemente-Methode (FEM) vier unterschiedliche Materialmodelle für die Modellierung des Werkstoffverhaltens gewählt werden. Dabei wird unterschieden zwischen jenen mit Fließplateau und jenen mit der Abbildung des Wiederverfestigungsverhaltens. Aus Gründen der numerischen Stabilität wird beim Modell mit Fließplateau eine kleine Wiederverfestigung eingeführt.

2.2.1.1. Bilineares Materialverhalten

Beim bilinearen Materialverhalten verhält sich die Spannungs-Dehnungskurve im ersten Ast wie beim linear elastischen Materialverhalten. Spannungen und Dehnungen sind in diesem Bereich über den E-Modul gekoppelt. Wird bei dieser Materialdefinition die Fließgrenze erreicht, wird angenommen, dass sich schlagartig ein Fließgelenk ausbildet. Danach kann man zwischen Materialmodellen mit und ohne Pseudowiederverfestigung unterscheiden. Wird keine Pseudowiederverfestigung erwünscht bzw. eingeplant, so nehmen die Dehnungen ohne weitere Lastzunahme konstant zu. Wird ein Verhalten mit Pseudowiederverfestigung erwünscht, so sind It. ÖNORM EN 1993-1-5 die Spannungen und Dehnungen über den Faktor $\tan^{-1}(E/100)$ zu koppeln. Hiermit kann eine stabilere Rechnung mit einem besseren Konvergenzverhalten erzielt werden. Das bilineare Materialverhalten gemäß ÖNORM EN 1993-1-5 kann der Abb. 2-1 entnommen werden.

Abb. 2-1: Bilineares Materialverhalten

2.2.1.2. Multilineares Materialverhalten

Das multilineare Materialverhalten entspricht am ehesten dem tatsächlichen Verhalten des Baustahls. Im ersten aufsteigenden Ast der Spannungsdehnungskurve herrscht die Gültigkeit des HOOK'SCHEN Gesetzes. Es herrscht ein linearer Zusammenhang zwischen Spannungen und Dehnungen, welche über den E-Modul des Materials gekoppelt sind. Nach dem Erreichen der Fließgrenze (ϵ_1) kommt es zu einem Fließplateau, in dem sich ein mikroskopisches Fließgelenk ausbildet (ϵ_2). Die Spannungen können noch über diese Fließspannung ansteigen und es kommt zu plastischen Verformungen. Beim Erreichen der Bruchspannung (ϵ_3) versagt die einzelne Stahlfaser. Es kann keine weitere Laststeigerung mehr aufgebracht werden.

Abb. 2-2: Multilineares Materialverhalten [10]

Dieses Materialverhalten ist in der Abb. 2-2 dargestellt. Die Umwandlung von Ingenieursspannungen und -dehnungen in wahre Spannungen und Dehnungen ist für die in der Arbeit verwendete Software (ANSYS) notwendig. Die dazu notwendigen Formeln sind:

$$\sigma_{true} = \sigma_{eng} \cdot (1 + \varepsilon_{eng})$$
$$\varepsilon_{true} = ln \cdot (1 + \varepsilon_{eng})$$

Mit diesem Materialmodell kann das reelle Verhalten des Stahls am besten angenähert werden.

2.2.2.Schraube (FK 8.8 und 10.9)

Wie auch bei den unterschiedlichen Materialmodellen für den Baustahl, gibt es auch bei jenen für das Schraubenmaterial grundlegende Unterschiede, die zwar zu genaueren Ergebnissen führen können, dafür aber die Rechenzeit verlängern. In der vorliegenden Arbeit wird sowohl ein an das Materialmodell für Aluminium angelehntes Modell, als auch das bilineare Verhalten verwendet. Aufgrund dessen, dass es sich beim Material der Schraube um höherfeste Stähle handelt, kann das Material nicht mit dem unter 2.2.1.2 angeführten Materialverhalten abgebildet werden, weshalb hier die Wahl auf das Materialmodell nach RAMBERG-OSGOOD fällt, welches theoretisch nur für Aluminium gilt, hier jedoch sinnvolle Ergebnisse liefert.

2.2.2.1. Schraubenmaterial nach RAMBERG-OSGOOD

Beim Materialmodell nach RAMBERG-OSGOOD handelt es sich theoretisch um ein Materialmodell für Aluminium. Aufgrund der hohen Duktilität von Schrauben (FK 8.8 und

10.9) ist es eher konservativ, diese mit einem bilinearen Verhalten abzubilden. Beim Verhalten nach RAMBERG-OSGOOD gibt es kein ausgebildetes Fließplateau, sondern eine kontinuierliche Abnahme des E-Moduls im Verlauf der Spannungs-Dehnungskurve. Es gibt keinen linearen Zusammenhang zwischen Spannung und Dehnung. Das Materialverhalten nach RAMBERG-OSGOOD ist in der ÖNORM EN 1999-1-1 E.2.2.2(3) [11] geregelt und in der Abb. 2-3 dargestellt.

Abb. 2-3: Materialmodell nach RAMBERG-OSGOOD

Für die Berechnung und Eingabe des Modells sind folgende Formeln zu beachten:

$$\varepsilon = \frac{\sigma}{E} + 0.002 \cdot \left(\frac{\sigma}{f_o}\right)^n \text{ und } n = \frac{\ln(0.002/\varepsilon_{o,x})}{\ln(f_o/f_x)}$$

Dabei sind f_x und $\epsilon_{0,x}$ den auftretenden Dehnungen beim untersuchten Problem anzupassen. Bei Untersuchungen mit plastischen Verformungen heißt das:

$$f_x = f_u$$
 und $\varepsilon_{o.x} = \varepsilon_u$

mit

$$\varepsilon_u = 0.30 - 0.22 \cdot \frac{f_o}{400} \qquad \text{wenn } f_o < 400 \text{ N/mm}^2$$
$$\varepsilon_u = 0.08 \qquad \text{wenn } f_o \ge 400 \text{ N/mm}^2$$

2.3. Verfestigungsverhalten

Bei der Definition des Materialverhaltens in ANSYS kann zwischen isotroper bzw. kinematischer Verfestigung unterschieden werden.

Bei der isotropen Verfestigung vergrößert sich die Fließfläche unter gleichzeitiger Beibehaltung der Lage der Achsen der einzelnen Fließflächen. Eine Vergrößerung der Fließspannung im Zugbereich hat damit eine Vergrößerung der Fließspannung im Druckbereich zur Folge [12]. Somit kann dieses Verfestigungsverhalten den BAUSCHINGER-Effekt, welcher beschreibt, dass das Verhältnis zwischen der Fließspannung im Druck- und Zugbereich in etwa konstant 2·f_v sein soll, nicht sinnvoll abbilden (vgl. Abb. 2-4; [9]). Die isotrope Verfestigung eignet sich somit nur begrenzt für die Abbildung zyklischen Verhaltens.

Abb. 2-4: Isotrope Verfestigung; (a) Fließfläche im Raum; (b) Spannungs-Dehnungsdiagramm

Die kinematische Verfestigung bildet eine Translation der Fließfläche ab, d.h. der Ursprung des Hauptspannungsraumes verschiebt sich und aus der isotropen Fließfunktion wird eine anisotrope Fließfunktion. Der Abstand zwischen den Fließspannungen bleibt konstant $2 \cdot f_y$. Der BAUSCHINGER-Effekt wird somit abgebildet (vgl. Abb. 2-5; [9]).

Abb. 2-5: Kinematische Verfestigung; (a) Fließfläche im Raum; (b) Spannungs-Dehnungsdiagramm

Da in der vorliegenden Berechnung keine zyklische Belastung auftritt, kann auf die Abbildung des BAUSCHINGER-Effektes verzichtet werden. Die Wahl, ob für die Berechnung eine isotrope oder kinematische Verfestigung ausgewählt wird, bleibt dem Benutzer überlassen. Im Rahmen dieser Arbeit wird, soweit im Modellaufbau nichts anderes angegeben wird, beim Laschenstahl ein Materialmodell mit isotroper Wiederverfestigung verwendet, beim Schraubenmaterial wird eine kinematische Wiederverfestigung eingeführt.

2.4. Kontaktbedingungen

Sämtliche Kontakte zwischen den einzelnen Bauteilen einer Laschenverbindung stellen Nichtlinearitäten in der FEM-Analyse dar. Bei diesen Fugen sind Kontaktbedingungen festzulegen, welche das Verhalten der einzelnen Bestandteile zueinander festlegen. Im Folgenden soll nur auf die bei der Analyse verwendeten Kontaktbedingungen eingegangen werden.

2.4.1.Frictionless (Reibungsfrei)

Die Kontaktbedingung "Frictionless" stellt einen reinen reibungslosen Kontakt dar. Es kann infolge der wirkenden Kräfte zu einem Abheben der einzelnen Laschen der Verbindung kommen. Die Pressungen senkrecht zur Kontaktebene werden im Falle einer Trennung zu Null. In der Gleitfuge wird kein Reibungsbeiwert definiert.

2.4.2.Bonded (Verbund)

Im Falle einer "Bonded"-Verbindung kommt es zwischen den einzelnen Kontaktflächen zu keinerlei Verschiebung. Die "Bonded"-Verbindung kann als eine geklebte bzw. geschweißte Verbindung interpretiert werden. Ein Vorteil der "Bonded"-Verbindung liegt in der linearen Berechnung, da die Größe der Kontaktfläche im Verlauf der Berechnung konstant bleibt.

2.4.3.Frictional (Reibungsbehaftet)

Bei der reibungsbehafteten Definition der Kontaktbedingung kann in der Kontaktfuge zum Teil eine Schubspannung übertragen werden. Die maximal übertragbare Schubspannung ist dabei von dem Reibungsbeiwert μ abhängig. Wird die maximale Schubspannung überschritten, kommt es zu einer Verschiebung innerhalb der Fuge.

2.4.4.No Separation (Keine Trennung)

Die Definition "No Separation" ist dem reibungsfreien Kontakt sehr ähnlich. Im Gegensatz zur reibungsfreien Definition, kann es zwischen den einzelnen Bauteilen nicht zu Klaffungen kommen. Die Kontaktflächen bleiben miteinander verbunden, während es zu geringen Verschiebungen zwischen den einzelnen Bauteilen in Fugenrichtung kommen kann.

2.5. Mesh

Die Vernetzung der einzelnen Volumenbauteile erfolgt vorwiegend mit Hexaeder-Elementen unter Berücksichtigung der "Element Midside Nodes". Aufgrund der komplexen Geometrie (Rundungen) kommt es zu kleineren Bereichen, in denen Tetraeder für die Vernetzung hergenommen werden. Auch bei diesen Elementen werden die "Midside Nodes" beibehalten. Die Größe der einzelnen Elemente variiert von Modell zu Modell.

In ANSYS werden für die Vernetzung der Volumina folgende Elementstypen verwendet:

SOLID186

Beim SOLID186 Element handelt es sich um ein 20-knotiges Volumenelement mit einem quadratischen Verschiebungsansatz. Jeder Knoten hat drei Freiheitsgrade in x-, y- und z-Richtung. Das SOLID186-Element kann Plastizitäten, große Verformungen, große Verzerrungen und Spannungsversteifung (stress stiffening) abbilden.

Abb. 2-6: SOLID186-Element

SOLID187

Abb. 2-7: SOLID187-Element

Das SOLID187-Element beschreibt die Tetraeder-Form des SOLID186 und verfügt über 10 Knoten und einen quadratischen Verschiebungsansatz. Die Knoten haben ebenfalls drei Freiheitsgrade in x-, y- und z-Richtung, womit das Element in der Lage ist, die gleichen Phänomene abzubilden wie das SOLID186.

CONTA174

CONTA174 ist ein Flächenelement, welches verwendet wird um den Kontakt zwischen den einzelnen Körpern zu beschreiben. Das Element verfügt über die gleichen geometrischen Eigenschaften wie das Volumenelement mit dem es verbunden ist und ist in der Lage sowohl einen reibungsfreien, als auch einen reibungsbehafteten Kontakt zu simulieren. CONTA174 wird bei verformbaren Oberflächen angebracht.

TARGE170

TARGE170 beschreibt das Gegenstück zu CONTA174 und wird auf Festkörpern angewendet. Das Element überlagert sich mit den Volumenelementen (bspw. SOLID186) und beschreibt die Randfläche des Körpers.

Abb. 2-8: Kontaktbeschreibung mit CONTA174 UND TARGE170

In einigen Modellen wird ein Schalenmodell zur Berechnung verwendet. Wie auch bei den Volumenmodellen werden hier die "Element Midside Nodes" beibehalten. Für die Vernetzung werden folgende Elementstypen verwendet:

PLANE183

Im Wesentlichen werden Elemente des Typs PLANE183 verwendet, welche höherwertige 8knotige Elemente darstellen. Alle Knoten verfügen über zwei Freiheitsgrade, Verschiebungen in x- bzw. y-Richtung. Das Element PLANE183 verfügt über einen quadratischen Verschiebungsansatz und kann einen ebenen Spannungszustand und einen ebenen Verzerrungszustand abbilden. Plastizitäten, Kriechen, Spannungsversteifungen und große Verschiebungen können ebenfalls abgebildet werden.

Abb. 2-9: PLANE183-Element

CONTA172 UND TARGE169

Diese zwei Elementtypen sind analog zu CONTA174 und TARGE170 beim Volumenmodell. Sie dienen ebenso rein zur Kontaktanalyse und verfügen über die gleichen Eigenschaften wie die Flächen, mit denen sie verbunden sind. Sie dienen der Beschreibung der Grenzfläche bzw. linie der verformbaren Körper.

Abb. 2-10: Kontaktbeschreibung mit CONTA172 UND TARGE169

3. Aufbau und Validierung des numerischen Modells

Im Rahmen der Arbeit soll zunächst versucht werden, mittels eines realitätsnahen Modells, das Tragverhalten einer Laschenverbindung möglichst genau nachzubilden. Um dieses Verhalten möglichst genau anzupassen, werden die Ergebnisse des FE-Modells mit denen einer Versuchsserie verglichen. Dabei sollen mehrere geometrische Varianten verwendet werden, um die verschiedenen Versagensarten darstellen zu können. Zur Validierung des Rechenmodells werden im vorliegenden Fall die Ergebnisse der Versuchsreihen des "Forschungsberichtes zur Untersuchung der Lochleibung außenliegender Laschen" der Technischen Universität Braunschweig verwendet [4]. Um die Rechenzeit zu verringern, erfolgen alle Berechnungen am Halb- oder Viertelmodell. Dementsprechend müssen die Symmetrierandbedingungen festgelegt werden. Bei den vorliegenden Berechnungen wird die Symmetrie über physikalische Randbedingungen berücksichtigt. Im Rahmen des Modellaufbaus werden lediglich Laschen mit einer Stahlgüte S235 und Schrauben der Festigkeitsklasse 10.9 verwendet.

3.1. Aufbau und Ergebnisse der Versuchsreihen

Die Validierung der einzelnen Modelle im Rahmen des Aufbaus des numerischen Modells erfolgt mit den Ergebnissen des Forschungsberichtes "Lochleibung außenliegender Laschen" der Technischen Universität Braunschweig. Bei dem Forschungsbericht handelt es sich um einen Versuch im Rahmen des DASt-Gemeinschaftprogramms "SCHRAUBENVERBINDUNGEN", bei dem insbesondere das Verhalten außenliegender Laschen untersucht wird. Im Rahmen des Versuchsprogrammes wurden 8 Versuchsserien untersucht, welche nach den Blechdicken, dem Schraubendurchmesser und der Anzahl der Schrauben unterteilt wurden. Die ersten fünf Versuchsserien waren zweischnittige Verbindungen mit einer Schraube mit einer Stahlfestigkeit des Typs St37. Diese dienten als Grundlage zur Aufstellung des mechanischen Modells. In den Versuchsserien 6 und 7 wurde die Anwendbarkeit auf 2-Schraubenverbindungen untersucht, in der Serie 8 die Anwendbarkeit bei einer höheren Stahlfestigkeit des Typs St52.

Der Versuchsaufbau bestand aus einer zweischnittigen Schraubenverbindung gemäß Abb. 3-1. Die Versuche wurden mit einer Belastungsgeschwindigkeit von 50mm/Stunde weggesteuert belastet. Parallel zur Belastung wurden die Verschiebungen der Wegaufnehmer aufgezeichnet, wobei sich herausstellte, dass die Differenz von Δw_2 und Δw_3 sich mit der Verschiebung w₁ deckt.

Abb. 3-1: Versuchsaufbau für die Durchführung der Versuchsreihen [4]

Bei den Versuchen wurde für jeden Versuch die Kraft-Verschiebungskurve aufgezeichnet und der unter Traglast auftretende Versagensmodus festgehalten. [4]

Diese Last-Verschiebungskurven werden für einzelne Konfigurationen mit den Last-Verschiebungskurven der FEM-Berechnung verglichen um das Berechnungsmodell zu validieren. Dabei wird für jede Versagensform eine Parameterkonfiguration ausgewählt und im Zuge des Aufbaus des numerischen Modells nachgerechnet. Alle nachgerechneten Versuche entstammen der Versuchsreihe C. Das Materialmodell (bi- bzw. multilinear) wird mit den aus den Versuchen stammenden Festigkeiten ermittelt.

Für die Versuchsnachrechnung werden die Festigkeiten aus dem Versuchsbericht [4] entnommen. Für sämtliche Versuche der Versuchsreihe C (Blechtafel 5008) ergeben sich diese zu:

$$f_{y,eng} = 249,4 N/mm^2$$
 $f_{u.eng} = 370,1 N/mm^2$
 $\varepsilon_{u.eng} = 42,5\%$

Für die Fließdehnung wurde kein Wert angegeben, weshalb diese über das HOOKE'sche Gesetz zurückgerechnet werden mit der Annahme, dass der E-Modul wie beim handelsüblichen Baustahl bei 210000 N/mm² [6] liegt.

Eine Umrechnung dieser Ingenieursspannungen und -dehnungen auf reelle Spannungen und Dehnungen mit den Formeln aus 2.2.1.2 führt zu:

$$f_{y,eng} = 249,69 N/mm^2$$
 $f_{u.eng} = 527,25 N/mm^2$
 $\varepsilon_{u.eng} = 35,4\%$

Die komplette Definition der Blechtafel 5008 als multilineares Material kann dem Anhang A entnommen werden.

3.2. Versuch C3 (Halbmodell):

Dieses Modell wird mit dem Versuch C3 der Versuchsreihen verifiziert und überprüft des Weiteren die Möglichkeiten des numerischen Modells einen Biegebruch darzustellen. Dazu werden die Abmessungen den Parameterkonfigurationen des Forschungsberichts [4] entnommen. Im Forschungsbericht sind die Abmessungen dabei gemäß Abb. 3-2 definiert und ergeben sich für den Versuchsaufbau C3 zu:

$$\bar{a}_{\perp} = 33,12 \ mm$$
 $d_L = 21,95 \ mm$
 $\bar{a}_{\parallel} = 32,93 \ mm$ $t = 7,25 \ mm$ M20

Abb. 3-2: Laschengeometrie gemäß [4]

Das Modell mit den aufgebrachten Lagerungsbedingungen ist in der Abb. 3-3 dargestellt.

Abb. 3-3: Numerisches Modell mit Randbedingungen zur Verifizierung am Versuch C3

Dabei wird das Modell am rechten Rand an der mittleren Lasche unverschieblich in z-Richtung [Displacement C] gelagert. Die Lagerungsbedingung [Displacement A] stellt die Symmetriebedingung dar, und wird als unverschiebliche Lagerung in y-Richtung angesehen. Am linken Rand der äußeren Lasche wird die im Versuch erreichte Maximalverschiebung aufgebracht.

Da im Wesentlichen das Verhalten der äußeren Lasche betrachtet wird, werden die Kontakte zwischen dem Bolzen und dem mittleren Blech zwar mit einem Lochspiel versehen, jedoch als "Bonded" angenommen (siehe Abb. 3-4). Diese "Bonded"-Bedingung eliminiert eine nichtlineare Kontaktbedingung im Rechenmodell und sollte somit zu einer schnelleren Ergebnisfindung führen. Alle anderen Kontaktbedingungen werden realitätsnah als "Frictionless" angenommen. Das handfeste Vorspannen wird vernachlässigt.

Abb. 3-4: Bonded-Bedingung zwischen Schraube und mittlerer Lasche

Die Kontaktbedingungen wurden alle mit einer "Augmented Lagrange-Formulation", automatisch asymmetrischem Verhalten sowie einer Adaptierung der Steifigkeit bei jedem Iterationsschritt definiert. Alle restlichen Parameter, welche bei der Einstellung der Kontaktbedingung eingestellt werden, sind in der Abb. 3-5 dargestellt.

-	Definition		
	Туре	Frictionless	
	Scope Mode	Manual	
	Behavior	Auto Asymmetric	
	Trim Contact	Program Controlled	
	Suppressed	No	
	Advanced		
	Formulation	Augmented Lagrange	
	Detection Method	On Gauss Point	
	Penetration Tolerance	Program Controlled	
	Normal Stiffness	Program Controlled	
	Update Stiffness	Each Iteration	
	Stabilization Damping Factor	0,	
	Pinball Region	Radius	
	Pinball Radius	2, mm	
	Time Step Controls	None	
-	Geometric Modification		
	Interface Treatment	Add Offset, No Ramping	
	Offset	0, mm	
	Contact Geometry Correction	None	
	Target Geometry Correction	None	

Abb. 3-5: Einstellungen der Kontaktbedingung

Für alle Blechelemente im Rechenmodell werden die Materialparameter gemäß 2.2.1.2 angegeben. Bei der Schraube wird ein bilineares Materialverhalten mit isotroper Verfestigung angenommen.

Die Vernetzung erfolgt allgemein mit einer Elementsgröße von 3,0 mm unter Berücksichtigung einer Inflation in den Übergangsbereichen (Schraube-Blech). Dabei werden 5 Elementreihen mit einer Growth Rate von 1,2 angeordnet, d.h. ein Element in der zweiten Reihe ist 1,2-mal so groß wie ein Element in der ersten Reihe (vgl. Abb. 3-6 und Abb. 3-7).

Abb. 3-6: Mesh (Versuch C3)

Abb. 3-7: Inflation um das Schraubenloch (Versuch C3)

Die Berechnung soll mit dem Versuch C3 [4] verifiziert werden, weshalb eine weggesteuerte Belastung in Form einer Verschiebung in z-Richtung von 10 mm aufgebracht wird. Für die Analyse wird festgelegt, dass die Größe der einzeln aufgebrachten Lastschritte iterativ vom Programm bestimmt wird (Automatic Time Stepping - Program Controlled).

Abb. 3-8: Last-Verschiebungsdiagramm Versuch C3

Wie in der Abb. 3-8 ersichtlich ist, kann die Last-Verschiebungskurve am Anfang gut nachgerechnet werden. Die FE-Berechnung verhält sich ein wenig steifer als im tatsächlichen Versuch. Die Traglast des Versuches kann mit einer FE-Berechnung nicht ganz erreicht werden, da schon bei einer niedrigeren Belastung keine Konvergenz mehr erreicht werden kann. Im Vergleich zur Traglast beim Versuch (237 kN) berechnet sich die Traglast im FE-Modell zu 210 kN (88,6 %). Die Verformungen des FE-Modells sind beim Erreichen der Traglast viel kleiner als beim reellen Versuch. Ein Vergleich der Gesamtverformungen beim FE-Modell mit dem Bruchbild, welches beim Versuch erreicht wurde, zeigt jedoch, dass das Modell die Lochaufweitung sehr gut nachbildet (vgl. Abb. 3-9 und Abb. 3-10). Des Weiteren lässt sich am Laschenrand bereits die Verformung des Randes in z-Richtung feststellen, welche den Versagensmodus "Biegebruch" ankündigt. Dieser Versagensmodus trat auch beim Versuch [4] auf.

Abb. 3-9: Bruchbild Versuch C3 [4]

Abb. 3-10: Gesamtverformungen FE-Modell (Versuch C3)

Eine Betrachtung der Vergleichsspannungen im Blech zeigt, dass es im Bereich des Lochrandes zu den größten Vergleichsspannungen kommt, welche durch die Pressung, die in der Kontaktfuge Schraube-Blech herrscht, hervorgerufen wird. Am Laschenrand kommt es auch bereits zu Spannungen, die über der Fließgrenze ($f_{y,true} = 249,7 \text{ N/mm}^2$) liegen.

Abb. 3-11: Vergleichsspannungen in der Lasche (Versuch C3)

Abb. 3-12: Eq. Plastic Strain Lasche (Versuch C3) - (true scale)

Wie in der Abb. 3-12 ersichtlich ist, kommt es im Randbereich der Lasche bereits zu plastischen Vergleichsdehnungen in der Größe von 0,13 mm/mm. Dieser Wert ist zwar noch weit von der Bruchdehnung entfernt, jedoch sind die Elemente am Lochrand so stark verzerrt, dass keine weitere Laststeigerung mit anschließender Konvergenz der Berechnung möglich ist. Eine weitere Laststeigerung würde zu größeren Verzerrungen am Laschenrand sorgen, jedoch nie zu einem Riss, da keine Bruchmechanik in die Berechnung implementiert wurde. Das Modell ist sehr gut in der Lage den Versagensmodus des Versuches abzubilden und erreicht annähernd die Traglast des Versuches. Bei der Vernetzung der Lasche gibt es Optimierungsbedarf.

3.3. Versuch C1

Dieses Modell dient zur Verifizierung des Versuches C1 mit den folgenden geometrischen Vorgaben:

$$\bar{a}_{\perp} = 10,97 \ mm$$
 $d_L = 21,95 \ mm$
 $\bar{a}_{\parallel} = 33,08 \ mm$ $t = 7,15 \ mm$ M20

Die Bleche werden analog zu 3.2 mit einem multilinearen Materialverhalten mit kinematischer Verfestigung eingegeben. Für die Schraube wird die Spannungsdehnungslinie gemäß RAMBERG-OSGOOD bestimmt und ebenfalls über eine multilineare Funktion mit kinematischer Verfestigung eingegeben (vgl. Anhang A). Die Festlegung der Kontakteigenschaften erfolgt analog zu M003, d.h. "Frictionless" zwischen den einzelnen Blechen bzw. zwischen Schraube und Schraubenkopf zur betrachteten Lasche (vgl. Abb. 3-13 und Abb. 3-14). Der Schraubenschaft wird mit der mittleren Lasche mit einer "Bonded"-Bedingung verbunden.

Abb. 3-13: Frictionless-Verbindung zwischen den Laschen

Abb. 3-14: Frictionless-Verbindung zwischen äußerer Lasche und Schraubenkopf bzw. Schraubenschaft

Für die Vernetzung wird die Geometrie unterteilt, damit im Bereich des Schraubenloches eine feinere Vernetzung erzielt werden kann. Um die Plastifizierung, welche sowohl am oberen Rand als auch seitlich auftreten kann, genauer betrachten zu können, werden diese Randbereiche ebenso mit einer feineren und möglichst strukturierten Vernetzung versehen. Damit ergeben sich 3 unterschiedliche Vernetzungsbereiche:

Abb. 3-15: Versuch C1 Mesh - Vernetzungsbereiche

- Bereich A: Netzgröße 1,5 mm
- Bereich B: Netzgröße 1,0 mm
- Bereich C: Netzgröße 3,0 mm

Für die restlichen Bereiche wird die maximale Netzgröße mit 5,0 mm angegeben.

Abb. 3-16: Mesh (Versuch C1)

Die Berechnung erfolgt wiederum weggesteuert mit einer Verschiebung von 10 mm. Der minimale Zeitschritt wird mit 5 E-3, der maximale mit 5 E-2 vorgegeben, d.h. die aufgebrachte Verschiebung bei jedem Zeitschritt ergibt sich zu SubStep-10mm.

Bei der Berechnung kann die maximale Verschiebung von 10 mm aufgebracht werden. In der in Abb. 3-17 dargestellten Grafik endet die Last-Verschiebungskurve bei 9,025 mm, da das Lochspiel von der Endverschiebung abgezogen wird. Wie aus der Last-Verschiebungskurve ersichtlich ist, kann die Traglast mit dem Modell sehr genau angenähert werden (122,69 kN zu 120,17 kN). Die Traglast aus dem FE-Modell übersteigt die des Versuchs sogar geringfügig um 2%.

Abb. 3-17: Last-Verschiebungsdiagramm Versuch C1

Eine Betrachtung der Gesamtverformungen der äußeren Lasche am Ende der Berechnung (vgl. Abb. 3-18) zeigt sehr große Einschnürungen rechts des Schraubenlochs. Bei der FE-Berechnung lässt sich somit feststellen, dass es zu einem Nettoquerschnitts- bzw. Zugversagen kommt.

Abb. 3-18: Gesamtverformung am Ende der Berechnung (Versuch C1)

Der Vergleich mit dem tatsächlichen Bruchbild des Versuches (Abb. 3-19) zeigt, dass beim Versuch eine annähernd symmetrische Verformung auftritt. Der Versagensmodus Zugbruch ist auch hier eindeutig erkennbar.

Abb. 3-19: Bruchbild beim Versuch C1 [4]

Damit der Steifigkeitsabfall beim Erreichen der Traglast genauer analysiert werden kann, wird die Spannungsverteilung in der Lasche zu diesem Zeitpunkt (0,66637) ausgewertet.

Abb. 3-20: Vergleichsspannungen in der Lasche (TimeStep 0,66637) - Versuch C1

In der Abb. 3-20 ist die Spannungskonzentration rechts vom Schraubenloch eindeutig erkennbar. Aufgrund dieser Spannungen kommt es zu hohen Verzerrungen in z-Richtung. Dabei kommt es aufgrund der Koppelung über die Querdehnzahl ebenso zu einer Verzerrung in x-Richtung und einer Querschnittsreduktion rechts des Schraubenlochs. Eine Auswertung der Vergleichsverzerrungen in der äußeren Lasche (Abb. 3-21) zeigt die maximalen Verzerrungen von 1,18 mm/mm. Der Bereich auf der rechten Seite des Schraubenlochs plastifiziert zur Gänze. Bei einer Implementierung der Bruchmechanik, würde es hier zu einem Riss kommen.

Abb. 3-21: Vergleichsverzerrungen (TimeStep 0,66637) - Versuch C1

Die unterschiedlichen Verformungsfiguren, reell und in der FEM-Berechnung, werden durch numerische Probleme bei der Berechnung hervorgerufen. Eine genaue Betrachtung des Netzes im Nettoquerschnittsbereich (Abb. 3-22) zeigt die leicht asymmetrische Vernetzung, die in weiterer Folge zu der asymmetrischen Lastverteilung führt.

Abb. 3-22: Asymmetrische Vernetzung im Nettoquerschnitt (Versuch C1)

Diese asymmetrischen Verteilungen bei den Spannungen, Verformungen und Dehnungen sind bei einem vollkommen symmetrischen Modell falsch und dürfen nicht auftreten.

Um die asymmetrischen Verteilungen zu verhindern, wird das Modell durch eine Schnittführung durch das Schraubenloch in ein Viertelmodell übergeführt. Dabei werden alle Symmetrien des Modells ausgenutzt. Die Randbedingungen, Lagerungen und Belastungen, sowie die Vernetzung erfolgt analog zum Halbmodell. Das vollständige Viertelmodell kann der Abb. 3-23 entnommen werden.

Abb. 3-23: Versuch C1 (Viertelmodell)

Versuch C1

Abb. 3-24: Versuch C1 - Last-Verschiebungskurve (Halb-und Viertelmodell)

Bei einem Vergleich der Last-Verschiebungskurven ist erkennbar, dass sich das Viertelmodell bis zum Erreichen der Traglast wie das Halbmodell verhält. Nach dem Erreichen der Traglast, fällt die Kraft bei weiterer Aufbringung der Verschiebung nicht so stark ab.

Abb. 3-25: Gesamtverschiebung Versuch C1 (Viertelmodell)

Abb. 3-26: Max. Eq. Tot. Strain Versuch C1 (Viertelmodell)

Bei einer Betrachtung des Verschiebungsbildes (vgl. Abb. 3-25) ist ersichtlich, dass es aufgrund der vollständigen Ausnutzung der Symmetrie zu keinen asymmetrischen Verformungen mehr kommt. Auch bei einer Betrachtung der Vergleichsdehnungen (vgl. Abb. 3-26) ist ersichtlich, dass sich jene mehr über den gesamten Nettoquerschnitt verteilen. Zwar kommt es im Bereich des Lochrandes zu den größten Vergleichsdehnungen, diese deuten aber auf den Versagensmodus (Zugbruch) hin. Die ersten Risse wären in diesem Bereich zu erwarten.

3.4. Versuch C14 (Halbmodell)

Dieses Modell dient zur Verifizierung des Versuches C14 und der Überprüfung, ob das Modell in der Lage ist, den Versagensmodus Schubbruch abzubilden. Die geometrischen Parameter dieser Versuchskonfiguration ergeben sich zu:

$$\bar{a}_{\perp} = 43,91 \, mm$$
 $d_L = 22,10 \, mm$
 $\bar{a}_{\parallel} = 10.95 \, mm$ $t = 7.33 \, mm$ M20

Das Modell wird analog zu 3.3 mit einem multilinearen Materialverhalten der Bleche und einer Definition des Schraubenmaterials gemäß RAMBERG-OSGOOD (vgl. Anhang A) aufgebaut. Aufgrund der kleineren Geometrie kommt es lediglich zu Änderungen in Bezug auf die Partitionierung für das Meshing (vgl. Abb. 3-27).

Abb. 3-27: M015 Mesh - Vernetzungsbereiche

Die Netzgrößen wurden analog zu denen im Versuch C3 vorgegeben:

- Bereich A 1.5 mm
- Bereich B 1.0 mm
- Bereich C 3.0 mm

Abb. 3-28: Mesh - Versuch C14

Die Belastung wird wiederum als Verschiebung an den Versuch angepasst und beträgt 10mm. Als Berechnungsparameter werden die minimalen und maximalen TimeSteps, sprich, die jeweiligen Schrittweiten vorgegeben. Als Minimum gilt dabei ein Lastschritt von 0.5%, als Maximum 5%.

Eine Auswertung der Kraft-Verschiebungskurve ergibt einen guten Zusammenhang zwischen dem FE-Modell und dem durchgeführten Versuch. Trotz der vollständigen Berechnung kann die Traglast des Versuches nicht ganz erreicht werden (115 kN zu 127,3 kN). Dies entspricht einem Traglastunterschied von ca. 10%. Das FE-Modell verhält sich wie auch in den vorherigen Berechnungen am Anfang steifer als in der Realität. Ähnlich zum Versuch, kommt es bei der FE-Berechnung zu einem abfallenden Ast nach dem Erreichen der Traglast.

Abb. 3-30: Gesamtverformungen - Versuch C14

Abb. 3-31: Bruchbild beim Versuch C14 [4]

Ein Vergleich der Verformungen der FE-Berechnung mit dem Bruchbild des Versuches, ergibt eine sehr gute Übereinstimmung und eine sehr deutliche Darstellung des Versagensmodus "Scherbruch".

Abb. 3-32: Vergleichsspannungen - Versuch C14

Abb. 3-33: Vergleichsdehnungen - Versuch C14

Bei einer Auswertung der Vergleichsspannungen und Vergleichsdehnungen (vgl. Abb. 3-32) sind die Bereiche, die unter einem Winkel von 45° zur Belastungsrichtung auftreten, sehr stark beansprucht.

3.5. Versuch C13 (Halbmodell)

Im Forschungsbericht wurde insbesondere auf die Begleiterscheinung der abhebenden Laschen eingegangen, da diese die Traglast wesentlich reduzieren kann. Daher wird zusätzlich eine Parameterkonfiguration untersucht, bei der es zu einem Abheben kam. Dazu wird die Parameterkonfiguration C13 ausgewählt. Die Abmessungen des Bleches beim Versuch sind:

$$ar{a}_{\perp} = 22,03 \ mm$$
 $d_L = 22,10 \ mm$ $ar{a}_{\parallel} = 76,60 \ mm$ $t = 7,31 \ mm$ $M20$

Bei dieser Parameterkonfiguration werden die Laschen wiederum mit einem multilinearen Materialverhalten des Bleches 5008 gemäß Anhang A und die Schraube mit einem multilinearen Materialverhalten nach RAMBERG-OSGOOD versehen. Die Kontaktbedingungen werden analog zu den vorherigen Modellen aufgebracht. Als Belastung wird die in dem Versuch maximal erreichte Verschiebung von 20 mm aufgebracht. Es werden zwei unterschiedliche Netzgrößen untersucht, um den Einfluss der Netzfeinheit auf das Berechnungsergebnis zu überprüfen. Für die grobe Vernetzung wird eine Elementsgröße von 5 mm für die äußere Lasche vorgegeben. Bei der feinen Vernetzung wird die Geometrie analog zu 3.4 partitioniert und mit den folgenden Elementsgrößen vorgegeben:

- Bereich um das Schraubenloch: 1 mm
- Schraube und Blechstreifen seitlich des Schraubenloches: 1,5 mm
- Mittlere Lasche: 3 mm
- restliche Bereiche: 5 mm.

Die daraus entstehenden Vernetzungen können der Abb. 3-34 bzw. Abb. 3-35 entnommen werden.

Abb. 3-34: Mesh - Versuch C13 (grob)

Abb. 3-35: Mesh - Versuch C13 (fein)

Die Berechnung erfolgt mit Automatic Time Stepping.

Abb. 3-36: Last-Verschiebungsdiagramm Versuch C13

Bei der groben Vernetzung wird die Berechnung aus numerischen Gründen beim SubStep 0,77037 abgebrochen. Im Vergleich dazu kommt es bei der feinen Vernetzung bereits beim SubStep 0,25431 zu Konvergenzproblemen. Aus der Abb. 3-36 ist ersichtlich, dass die feine Vernetzung und die grobe Vernetzung sich im Hinblick auf den Verlauf der Last-Verschiebungskurve kaum unterscheiden. Die grobe Vernetzung liefert eine Traglast von 238,64 kN bei 11,68 mm Verschiebung. Im Versuch wurde eine maximale Traglast von 241 kN ermittelt.

Eine Auswertung der Gesamtverformung der groben Vernetzung ist in der Abb. 3-38 dargestellt. Dabei kann eindeutig die abhebende Wirkung dargestellt werden, die auch beim real durchgeführten Versuch (vgl. Abb. 3-37) auftrat.

Abb. 3-37: Bruchbild beim Versuch C13 [4]

Abb. 3-38: Total Deformation - Versuch C13 (grob) -true scale

Zum Vergleich wird das Verformungsbild bei der groben Vernetzung beim maximalen SubStep von 0,25431 ausgewertet. Dabei wird die Verformung 5-fach überhöht dargestellt, um diese deutlich sichtbar zu machen. Aufgrund der geringeren Belastung ist das Phänomen der abhebenden Lasche nicht so deutlich ersichtlich wie beim groben Netz (vgl. Abb. 3-39).

Abb. 3-39: Total Deformation - Versuch C13 (fein) - 5-fach überhöht

Die Auswertung der maximalen plastischen Vergleichsdehnung wird lediglich für die grobe Vernetzung durchgeführt, da sie aufgrund der höheren Beanspruchung besser ausgeprägt ist.

Abb. 3-40: Eq. Pl. Strain - Versuch C13 - grob

Wie aus der Abb. 3-40 ersichtlich ist, kommt es wiederum zu den größten plastischen Vergleichsverzerrungen im Bereich des Lochrandes, wo der Schraubenschaft auf das Material der Lasche trifft. Diese Bereiche werden wiederum durch den Kontaktdruck sehr stark beansprucht, weshalb sich die Elemente in diesem Bereich am meisten verzerren. Es handelt sich hauptsächlich um Stauchungen.

3.6. Vereinfachtes numerisches Modell

In den nachfolgenden Modellen werden die Möglichkeiten einer Vereinfachung der Berechnungen untersucht. Zum einen wird dabei das multilineare Materialverhalten des Laschenstahls durch eine bilineare Spannungs-Dehnungsbeziehung ersetzt. Das Materialverhalten der Schraube wird mit einer groben Näherung linear elastisch berücksichtigt, da prinzipiell das Verhalten der Lasche untersucht wird. Des Weiteren wird die Geometrie nur angenähert, d.h. der Schraubenkopf wird bei der Berechnung ignoriert und der Schraubenschaft mit einem Überstand eingegeben, damit das Blech nicht von der Schraube rutscht. Das Lochspiel wird zu Null gesetzt. In einem weiteren Schritt wird untersucht, ob das Volumenmodell durch ein Schalenmodell ersetzt werden kann.

Die Kraft, mit der am Blech gezogen wird, ergibt sich aus den Bemessungslasten gemäß ÖNORM EN 1993-1-8 unter Berücksichtigung des Teilsicherheitsbeiwertes γ_{M2} . Die Materialfestigkeiten werden mit den charakteristischen Werten eingegeben.

Für die vereinfachte Berechnung wird nur ein Modell mit den folgenden geometrischen Randbedingungen aufgebaut:

Abb. 3-41: Geometrie des vereinfachten Modellaufbaus - Bemaßung in [mm]

Die Blechstärke wird mit 10 mm vorgegeben.

3.6.1.Schalenmodell

Bei diesem Modell wird ein Schalenmodell zur Analyse verwendet, bei dem angenommen wird, dass sich in der Lasche ein ebener Verzerrungszustand einstellt, d.h., dass gemäß [9] gilt

$$u_3 = 0$$
 $\frac{\partial u_1}{\partial x_3} = 0$ $\frac{\partial u_2}{\partial x_3} = 0$

und in weiterer Folge

$$\varepsilon_{33} = \varepsilon_{31} = \varepsilon_{32} = 0.$$

Daraus resultiert, dass sich in Richtung der Laschendicke keine Spannungen einstellen.

Abb. 3-42: Schalenmodell - Modellaufbau

Wie in der Abb. 3-42 ersichtlich ist, wird die Lasche nur zur Hälfte und der Schraubenschaft nur als Viertelzylinder modelliert. Dabei kann die Kraft nur über den Viertelkreis in die Lasche eingeleitet werden. Bei dieser Form der Modellierung wird die Schraube gehalten [B] und an der Lasche gezogen [C]. Zusätzlich wird die Symmetrie in x-Richtung über eine unverschiebliche Lagerung in y-Richtung berücksichtigt [A]. Als Kontaktbedingung muss nur der Übergang zwischen der Schraube und der Lasche berücksichtigt werden. Diese Kontaktbedingung wird als "Frictionless" angesehen. Für die Vernetzung werden drei Bereiche definiert um ein sauber strukturiertes Netz zu erhalten:

Abb. 3-43: Schalenmodell - Vernetzungsbereiche

- Bereich A: Body-Sizing mit 2 mm
- Bereich B: Face-Sizing mit 1 mm
- Bereich C: Edge-Sizing mit 1 mm

Dadurch entsteht die in Abb. 3-44 dargestellte strukturierte Vernetzung.

Abb. 3-44: Mesh - Schalenmodell außenliegender Lasche

Im Anschluss erfolgt die Berechnung kraftgesteuert mit der automatischen Ermittlung der Schrittweite durch das Programm.

3.6.2.Volumenmodell (innenliegend)

Bei diesem Berechnungsmodell wird eine innenliegende Lasche in einer zweischnittigen Verbindung mittels eines Volumenmodells untersucht. Der Unterschied zwischen einer innen- und einer außenliegenden Lasche sollte bei der Spannungsverteilung und somit bei der Tragfähigkeit bemerkbar sein.

Abb. 3-45: Volumenmodell (innenliegende Lasche) - Modellaufbau

Der Modellaufbau für die FEM-Berechnung kann der Abb. 3-45 entnommen werden. Die mittlere Lasche des Versuchsaufbaus wird als Viertelmodell abgebildet und mit den nötigen Symmetriebedingungen versehen. Zur Abbildung dieser Symmetriebedingungen werden die Lagerungen [A] und [B] verwendet, welche die Symmetrie in y- bzw. z-Richtung darstellen und als unverschiebliches Auflager angenommen werden. Die Kraft wird direkt in die zu untersuchende Lasche eingeleitet und ergibt sich aufgrund der Symmetrie als die Hälfte der Kraft im Modell "Schalenmodell". Als Kontaktbedingung wird einerseits der Übergang zwischen der Schraube und den einzelnen Laschen als "Frictionless", andererseits die Gleitfuge zwischen den Laschen als "No Separation" angesehen. Die Definition "No Separation" hat den Vorteil, dass es zu keinen abhebenden Verformungen der Lasche kommen kann, womit eine einfachere Analyse und damit eine schnellere Konvergenz erreicht wird.

Die Vernetzung wird wie beim Schalenmodell vorwiegend mit Hexaeder-Elementen in unterschiedlichen Elementgrößen strukturiert durchgeführt. Die Schraube [A] und der Bereich um das Schraubenloch bis zu einem Durchmesser von $2 \cdot d_0$ [C] werden mit einer Elementgröße von 1,0 mm vernetzt. Außerhalb dieser Bereiche wird die maximale Elementgröße auf 1,5 mm erhöht. Die gröber vernetzten Bereiche sind für die Abbildung der Versagensform nicht relevant (vgl. Abb. 3-46).

Die Berechnung erfolgt wiederum kraftgesteuert mit einer automatischen "Time Step"-Ermittlung.

Abb. 3-46: Volumenmodell (innenliegend) - Vernetzungsbereiche

3.6.3.Volumenmodell (außenliegend)

Das Modell "Volumenmodell (außenliegend)" ist analog zu dem Modell "Volumenmodell (innenliegend)" aufgebaut, wobei hier die äußere Lasche betrachtet wird. Die Vernetzung und die Lagerungsbedingungen resultieren wiederum aus den Symmetriebedingungen. Die Kontakte zwischen den einzelnen Blechen werden als "No Separation" angesehen. Die Übergänge zwischen dem Schraubenschaft und dem Schraubenloch der jeweiligen Lasche werden als "Frictionless" modelliert. Der Modellaufbau mit den Lagerungsbedingungen und der Kraft ist in der Abb. 3-47 dargestellt.

Abb. 3-47: Volumenmodell (außenliegend) - Modellaufbau

3.6.4.Vergleich

Im Anschluss an die Berechnungen sollen die Ergebnisse der drei Modellierungsvarianten miteinander verglichen werden. Dazu werden bei allen Varianten die maximalen Verformungen, die maximalen plastischen Verzerrungen und die Aufweitung des Schraubenloches ausgewertet. Des Weiteren erfolgt ein Vergleich der Last-Verschiebungskurven der FEM-Berechnung. Ein Vergleich mit den Versuchen ist nicht möglich, da aufgrund der getroffenen Vereinfachungen bei der Festlegung des Materialverhaltens (bilinear mit S355) das Materialmodell zu weit von den Materialien der Versuche abweicht und die gewählte Parameterkonfiguration (e₁, e₂, usw.) nicht vorhanden war.

Verformungen

Ein Vergleich der Verformungen in x-Richtung (Zugrichtung) zeigt, dass die Verformungen des außenliegenden Volumenmodells die der Schalenberechnung und die der innenliegenden Lasche bei Weitem übersteigen (vgl. Abb. 3-48 bis Abb. 3-50). Die Ergebnisse des Volumenmodells der innenliegende Lasche stimmen annähernd mit denen der Schalenberechnung überein. Aufgrund der Möglichkeit der äußeren Lasche sich beim Volumenmodell ungehindert in Dickenrichtung verformen zu können, verhält sich die Lasche bei dieser Berechnungsart sehr weich, woraus größere Verformungen resultieren.

Abb. 3-48: Verformung in x-Richtung - Schalenmodell (true scale)

Directional Deformation 2 Type: Directional Deformation(X Axis) Unit: mm Global Coordinate System Time: 1

Abb. 3-49: Verformung in x-Richtung -Volumenmodell der innenliegenden Lasche (true scale)

Abb. 3-50: Verformung in x-Richtung - Volumenmodell der außenliegenden Lasche (true scale)

Plastische Verzerrungen

Bei einem Vergleich der plastischen Verzerrungen ergeben sich ähnliche Ergebnisse. Das Volumenmodell der außenliegenden Lasche ergibt wiederum die größten plastischen Verzerrungen (112%). Das Schalenmodell liefert jedoch größere Ergebnisse als die Berechnung der innenliegenden Lasche (vgl. Abb. 3-51 bis Abb. 3-53). Des Weiteren lässt sich feststellen, dass die maximalen Vergleichsdehnungen beim Schalenmodell über die Laschendicke konstant sind, was aus der Definition des ebenen Verzerrungszustandes bei der Festlegung des Schalenmodells folgt. Außerdem treten die Maxima der maximalen Vergleichsdehnungen an unterschiedlichen Stellen beim Modell auf. Beim Schalenmodell (Abb. 3-51) tritt das beim Scheitelpunkt des Kontaktkreises auf und ist über die gesamte Laschendicke konstant. In diesem Bereich tritt der Kontaktdruck auf, wodurch sich die Vergleichsverzerrungen erhöhen. Beim Volumenmodell der innenliegenden Lasche (Abb. 3-52), tritt das Maximum bei einem Winkel von ca. 45° auf, wobei sich dieses Maximum nicht weit von den Werten beim Scheitelpunkt unterscheidet. Das Maximum unter einem Winkel von 45° kann auf einen Scherbruch hindeuten. Beim Volumenmodell der außenliegenden Lasche (Abb. 3-53) tritt das Maximum punktuell beim Scheitelpunkt des Schraubenlochs auf. Dieses punktuelle Maximum am Randbereich der Lasche, in der Scherfuge zum mittleren Blech, resultiert aus der Schiefstellung der Schraube und dem maximalen Kontaktdruck an diesem Punkt.

Abb. 3-51: Max. Eq. Pl. Str. - Schalenmodell (true scale)

Abb. 3-52: Max. Eq. Pl. Str. Volumenmodell der innenliegenden Lasche (true scale)

Abb. 3-53: Max. Eq. Pl. Str. - Volumenmodell der außenliegenden Lasche (true scale)

Lochaufweitung

Eine Berechnung der Lochaufweitung der einzelnen Modelle ergibt, dass die Lochaufweitungen bei der innenliegenden Lasche, sowohl in Laschenmitte als auch am Laschenrand, gleich groß sind. Bei der außenliegenden Lasche sind die Verformungen in der Gleitfuge größer als bei jenen am Rand. Die Lochaufweitung der innenliegenden Lasche deckt sich in etwa mit den Ergebnissen des Schalenmodells.

Die Definition der Lochaufweitung in der Gleitfuge bzw. am Rand der Lasche ist in der Abb. 3-54 dargestellt. Die Differenz der Verschiebung in x-Richtung der Punkte 1.1 und 1.2 wird als Lochaufweitung am Rand der Lasche festgelegt. Analog bezeichnet die Differenz der Verschiebung des Punktes 2.1 bzw. 2.2 die Lochaufweitung in der Gleitfuge.

Abb. 3-54: Definition der Lochaufweitungen

Modell	Schalenmodell	Volumenmodell innenliegend	Volumenmodell außenliegend
Maximale Verschiebung in x- Richtung [mm]	3,46	3,90	6,20
Max. Eq. Plastic Strain [mm/mm]	0,79	0,52	1,12
Lochaufweitung in der Gleitfuge [mm]	3,36	3,59	5,28
	<u>28%</u>	<u>30%</u>	<u>44%</u>
Lochaufweitung am Rand der Lasche [mm]	3,36	3,61	4,82
	<u>28%</u>	<u>30%</u>	<u>40%</u>

Tab. 3-1: Vergleich der Ergebnisse - Vereinfachtes numerisches Modell

Last-Verschiebungskurve

Vergleicht man die Last-Verschiebungskurven der einzelnen Modelle, ergibt sich, dass sich die Steifigkeiten am Anfang der Berechnung beim Schalenmodell und beim Volumenmodell der innenliegenden Lasche decken. Das Volumenmodell der außenliegenden Lasche hat eine geringere Anfangssteifigkeit, da ein Verformen außerhalb der Laschenebene zulässig ist. Beim Schalenmodell fällt die Steifigkeit bei ca. 25-30 kN ab. Dies tritt bei den Volumenmodellen erst später auf (innenliegend bei ca. 37 kN, außenliegend bei ca. 35 kN). Dafür ist der Abfall der Steifigkeit beim Schalenmodell nicht abrupt, sondern kontinuierlich; das Modell verhält sich duktiler.

Abb. 3-55: Last-Verschiebungskurven - Vereinfachtes numerisches Modell

<u>Fazit</u>

Eine Berechnung der Lasche mit einem Schalenmodell liefert die Ergebnisse mit den niedrigsten Werten und ist physikalisch nicht richtig, da die Laschen sich im realen Versuch in Dickenrichtung verformen können. Die Einschnürung der Randbereiche bleibt aufgrund des ebenen Verzerrungszustandes beim Schalenmodell unberücksichtigt. Das Volumenmodell der innenliegenden Lasche liefert im Vergleich zu jenem der außenliegenden Lasche immer die niedrigeren Werte. Aufgrund dieser Tatsache werden die weiteren Berechnungen im Rahmen dieser Arbeit nur das Verhalten außenliegender Laschen untersuchen.

3.7. Vergleich bilineares und lineares Materialverhalten

Bei den folgenden Berechnungen wird untersucht, inwieweit die Ergebnisse einer bilinearen Berechnung der Lasche den Ergebnissen einer multilinearen Berechnung ähneln und ob es möglich ist, die gesamte Analyse mit einem bilinearen Materialverhalten durchzuführen. Dabei werden zwei Modelle mit der doppelten Normlast (47040 kN unter Berücksichtigung der Symmetrie) belastet um zu analysieren, welches Materialmodell die höhere Traglast in der FEM-Berechnung aufweist.

Die Geometrie und die Eingangsparameter für beide Berechnungen sind gleich. Es wird eine außenliegende Lasche mit der folgenden Geometrie modelliert:

Abb. 3-56: Geometrie (Maße in mm)

Für die Scherfuge zwischen den einzelnen Blechtafeln wird eine Kontaktbedingung des Typs "No Separation" gewählt. Alle anderen Kontakte werden als "reibungslos" angenommen.

Das Meshing erfolgt wiederum bereichsweise unter Berücksichtigung einer feineren Vernetzung im Bereich des Schraubenloches, mit einer Netzgröße von maximal 0,5 mm, bis zu einem Abstand von 2,0 \cdot d₀. Die Schraube wird ebenfalls mit einer maximalen Elementsgröße von 0,5 mm vernetzt. Alle anderen Bereiche verfügen über eine Elementsgröße von 1,5 mm. Es werden wiederum Hexaederelemente mit einem quadratischen Verschiebungsansatz verwendet. Die Definition dieser Partitionierungskreise in der Geometrie bzw. die Vernetzung sind in der Abb. 3-57 und Abb. 3-58 dargestellt.

Abb. 3-57: Partitionierungskreise (Durchmesser angegeben)

Abb. 3-58: Vergleich bilineares und multilineares Materialverhalten - Mesh

3.7.1. [A] Bilineares Materialverhalten

Für das bilineare Materialverhalten wird das Verhalten gemäß 2.2.1.1 mit einem Wiederverfestigungsmodul von 210 MPa verwendet.

Die bilineare Berechnung beendet die Berechnung aus numerischen Gründen beim SubStep 0,48225. Daraus resultiert, dass die aufgebrachte Belastung lediglich 22,685 kN beträgt und somit die gemäß ÖNORM zulässige Grenzkraft von 23,52 kN nicht erreicht werden kann. Eine Begründung für die Beendigung der Berechnung stellen die plastischen Verzerrungen der betrachteten außenliegenden Lasche dar (vgl. Abb. 3-59). Es kommt zu maximalen plastischen Verzerrungen von 37,3 % im Kontaktbereich zwischen Schraube und Lasche.

Abb. 3-59: Eq. Plastic Strain - Bilineares Materialverhalten (True Scale)

3.7.2. [B] Multilineares Materialverhalten

Bei einer Berechnung mit einem multilinearen Materialverhalten (vgl. Anhang A) kann die Traglast über die, gemäß ÖNORM definierte Versagenslast, gesteigert werden. Die Berechnung wird beim Zeitschritt 0,62871 abgebrochen und erreicht somit eine Traglast von 29,57 kN. Wie auch bei der bilinearen Berechnung, kommt es auch hier zu sehr großen Verzerrungen im Bereich des Kontaktes zwischen Schraube und Lasche. Die plastischen Verzerrungen der außenliegenden Lasche können der Abb. 3-60 entnommen werden. Die Verzerrungen in diesem Bereich erreichen einen Maximalwert von 73,686 %, welche jenseits der Bruchdehnung eines üblichen Baustahls liegen. Die Berechnung wird aufgrund der zu großen Verzerrungen der einzelnen Elemente beendet.

Abb. 3-60: Eq. Plastic Strain - Multilineares Materialverhalten (True Scale)

3.7.3.Vergleich Bilinear-Multilinear

Bei einem Vergleich der zwei Materialmodelle ist ersichtlich, dass eine Berechnung mit einem bilinearen Materialverhalten ungünstig ist, da die Traglast gemäß ÖNORM unter Umständen nicht erreicht werden kann. Des Weiteren ist bei einem Vergleich der Last-Verschiebungskurven ein deutlicher Unterschied zwischen den Steifigkeiten der verschiedenen Modelle nach dem Erreichen der Fließspannungen festzustellen. Beim bilinearen Materialmodell fällt die Steifigkeit rasant ab, wohingegen bei der multilinearen Modellierung eine Laststeigerung möglich ist. Die Steifigkeit fällt bei beiden Modellen bei ca. 18 kN ab, jedoch kann im Falle einer multilinearen Modellierung eine Steigerung von ca. 12 kN erreicht werden. Im Vergleich dazu kommt es beim bilinearen Verhalten nur zu einer Laststeigerung von 4 kN. Die Last-Verschiebungskurven sind in der Abb. 3-61 dargestellt.

Abb. 3-61: Lastverschiebungskurven - Vergleich Bilinear - Multilinear

3.8. Ergebnisse

- a. Um das tatsächliche Verhalten einer Lochleibungsverbindung darstellen zu können, ist es notwendig das Material der Laschen als multilineares Materialverhalten abzubilden. Mit einem bilinearen Materialverhalten kann die zusätzliche Tragfähigkeit und die Steifigkeit der Verbindung nach dem Erreichen der Fließgrenze nicht dargestellt werden.
- b. Die Schraube wird mit einem bilinearen Materialgesetz angenähert. Somit kann mit dem Modell ebenfalls die Wirkung der Scherkraft im Schraubenschaft dargestellt werden. Des Weiteren sorgt es für ein realitätsnäheres Verhalten und eine bessere Ermittlung der tatsächlichen Verformungsfigur.
- c. Die Geometrie wird realitätsnah angenähert, d.h. der Schraubenkopf wird als Zylinderkopf mit einem Durchmesser, der sich aus dem Mittelwert des Eckenmaßes *e* und der Schlüsselweite *s* ergibt, angenähert. Die Kopfhöhe der Schraube wird beibehalten. Das Lochspiel wird aus Gründen der FE-Berechnung (leichtere Konvergenz am Anfang) nicht berücksichtigt. Auf eine Berücksichtigung der Beilagscheibe wird verzichtet. Die mittlere Lasche wird doppelt so dick modelliert wie die außenliegenden Laschen. Damit kann erzielt werden, dass in der äußeren Lasche immer die größeren Spannungen, Verzerrungen und dergleichen auftreten.
- d. Die Fuge zwischen den einzelnen Laschen kann sowohl als "Frictionless"-Verbindung als auch als "No Separation"-Verbindung modelliert werden. Die Modellierung mit einer "Frictionless"-Kontaktbedingung hat jedoch zur Folge, dass die Lasche abheben kann und somit die Rechenzeiten zunehmen. Aus Gründen der Rechenzeit wird die Verbindung als "No Separation"-Verbindung angenähert.
- e. Die Kontaktflächen zwischen der Schraube und den einzelnen Laschen werden als "Frictionless" modelliert, da eine "Bonded"-Bedingung nur geringe Vorteile hat, beispielsweise geringere Rechenzeiten, jedoch die Schiefstellung der Schraube im mittleren Schraubenblech vollkommen vernachlässigt. Für den Übergang zwischen dem Schraubenkopf und der außenliegenden Lasche wird ebenfalls eine "Frictionless"-Bedingung gewählt, da es mit einer "No Separation"-Bedingung zu einer Behinderung der Querzugspannungen kommen würde.
- f. Für die einzelnen Berechnungsschritte und in weiterer Folge die einzelnen Lastinkremente, wird vorgegeben, dass die Größen der Schritte vom Programm selbst bestimmt werden. Betrachtet man den "Solver Output" einiger Berechnungen, ergibt sich die Anzahl der SubSteps minimal zu 5, maximal zu 1000.
- g. Die Vernetzung erfolgt bereichsweise mit unterschiedlichen Netzgrößen. Der Bereich um das Schraubenloch wird aus Gründen der späteren Auswertung unterteilt und genauer vernetzt. Die Unterteilungen können der Abb. 3-62 entnommen werden.

Body Sizing 03.05.2017 20:36

Abb. 3-62: Vernetzungspartitionierung

- h. Für die Zuordnung der Contact bzw. Target-Seite der Kontaktbedingungen werden folgende Regelungen (gemäß [13]) befolgt:
 - i. Die Contact-Seite verfügt über die kleinere Elementsgröße.
 - ii. Konvexe Bauteile werden als "Contact", konkave Bauteile als "Target" definiert.

Abb. 3-63: Hinweise zur Kontaktmodellierung[13]

3.8.1.Validierung der Vereinfachungen

Zur Überprüfung der Konformität der Berechnung mit den durchgeführten Vereinfachungen werden die im Rahmen des Kapitels "Aufbau und Validierung des numerischen Modells" berechneten Parameterkonfigurationen der Versuche nochmals berechnet und die Abweichung der Ergebnisse analysiert. Die Auswertung erfolgt dabei nur anhand eines Vergleichs der Last-Verschiebungskurve der vereinfachten Modellierung, der genauen Modellierung und des Versuches.

Versuch C3

Abb. 3-64: Kraft-Weg Diagramme Versuch C3 (grün - Versuch, blau - genaues Modell, rot - Verifizierung)

Aus der Abb. 3-64 ist ersichtlich, dass die getroffenen Vereinfachungen bei der Berechnung des Versuches C3 nur einen geringen Einfluss haben. Die maximale Belastung am Ende der FE-Berechnung fällt von ca. 210 kN auf 207 kN ab. Auch bei der Vereinfachung ist es nicht möglich den kompletten Last-Verschiebungspfad des Versuches nachzufahren. Analog zum genauen Modell werden die Verzerrungen am Lochrand zu groß, weshalb keine Konvergenz mehr erreicht werden kann.

Abb. 3-65: Kraft-Weg Diagramme Versuch C1 (grün - Versuch, blau -genaues Modell, rot - Verifizierung)

Aus der Abb. 3-65 ist ersichtlich, dass sich die Last-Verschiebungskurve mit den getroffenen Vereinfachungen der Kurve des Versuches besser annähert. Das resultiert aus der Vernetzung, da diese nun aufgrund des Viertelmodells absolut symmetrisch erfolgt und eine Rotation des Bleches nicht mehr möglich ist. Die maximale Belastung von 125,52 kN übersteigt die im Versuch aufgebrachte maximale Kraft von 120,2 kN.

Abb. 3-66: Kraft-Weg Diagramme Versuch C14 (grün - Versuch, blau -genaues Modell, rot - Verifizierung)

Beim Versuch C14 (vgl. Abb. 3-66) verhält sich das vereinfachte Modell am Anfang steifer als beim Versuch bzw. beim genauen Modell. Am Ende der Berechnung befindet sich die Last-Verschiebungskurve zwischen denen des Versuches bzw. des genauen Modells. Die maximale Belastung von 118,8 kN weicht ca. 7% von der im Versuch erreichten Traglast von 127,3 kN ab.

Abb. 3-67: Kraft-Weg Diagramme Versuch C3 (grün - Versuch, blau -genaues Modell, rot - Verifizierung)

Beim Versuch C13 deckt sich die Last-Verschiebungskurve des vereinfachten Modells nach Erreichen einer Verschiebung von 3 mm mit der aus dem Versuch ermittelten Last-Verformungskurve. Die Behinderung der abhebenden Wirkung hat einen positiven Effekt auf den Verlauf der Last-Verschiebungskurve.

62

4. Parameterstudie

4.1. Allgemeines

4.1.1.Parameter

Für die Durchführung der Parameterstudie werden unterschiedliche Geometrien und Materialien verwendet. Hinsichtlich der Materialien kommt es zu einer Analyse der Stahlgüten S235 und S355, bzw. der Schraubenfestigkeitsklassen 8.8 und 10.9. Geometrische Einflussfaktoren ergeben sich aus Randabständen, Blechdicken und Schraubendurchmessern. Es ergeben sich folgende ausgewählte Parameter:

a.	Stahlgüten:	S235, S355
b.	Schraubenfestigkeitsklassen:	8.8, 10.9
c.	Blechdicken:	10 mm, 15 mm, 20 mm
d.	Schraubentyp:	M12, M16, M20, M22, M24, M27, M30, M36
e.	Randabstand e_1 :	$1.2 \cdot d_0, 1.5 \cdot d_0, 2.0 \cdot d_0, 3.0 \cdot d_0$
f.	Randabstand e ₂ :	$1.2 \cdot d_0, 1.5 \cdot d_0, 2.0 \cdot d_0, 3.0 \cdot d_0$

Damit ergeben sich 1538 unterschiedliche Verbindungen, bei denen zunächst untersucht wird, welcher Versagensmodus maßgebend ist. Dazu werden die Nachweise gemäß ÖNORM EN 1993-1-8, ohne Berücksichtigung des Teilsicherheitsbeiwertes γ_{M2} , geführt (Bemessung mit charakteristischen Werten). Die Berechnung der Nachweise der Tragfähigkeiten auf charakteristischem Niveau ist notwendig um den Vergleich mit dem FE-Modell durchführen zu können (Aufbau mit charakteristischen Festigkeiten). In einem weiteren Schritt werden die Parameterkonfigurationen, bei denen der Versagensmodus "Lochleibung" bzw. "Nettoquerschnittsversagen" maßgebend ist, herausgefiltert. Es ergeben sich in Summe 912 Konfigurationen, in denen der Lochleibungswiderstand geringer ist als die Grenzabscherkraft. Eine Berechnung aller Konfigurationen ist im Rahmen der Arbeit nicht möglich, da eine Berechnungsdauer von durchschnittlich 30 min zu einer Gesamtrechendauer von 456 Stunden führt. Dementsprechend werden die Parameter reduziert und folgende Annahmen getroffen:

- I. Der Baustahl S355 ist weiter verbreitet, somit wird nur dieser berücksichtigt.
- II. Die Blechdicke 15 mm entfällt.
- III. Bei den Schrauben werden die Typen M12, M20 und M30 ausgewählt. Diese ausgewählten Durchmesser sollen eine gewisse Bandbreite abdecken.

In einem ersten Schritt werden nur die Schrauben der Festigkeitsklasse 10.9 analysiert, da eine höhere Festigkeit zur Folge hat, dass es häufiger zum Versagensmodus "Lochleibung" kommt.

Damit ergeben sich 46 Berechnungen mit einem Baustahl der Güte S355 und einer Blechdicke von 10 bzw. 20 mm. Die vollständige Liste der berechneten Parameterkonfigurationen kann dem Anhang A entnommen werden.

4.1.2.Lastniveaus

Die Berechnung der einzelnen Konfigurationen erfolgt kraftgesteuert, somit können die einzelnen benötigten Lastniveaus gemäß Abb. 4-1 genauer ermittelt werden. Für jede Laststufe wird ein "TimeStep" verwendet.

Grundlage für die Berechnung der einzelnen Lastniveaus stellt die charakteristische Traglast der Lochleibungsfestigkeit dar.

Gemäß ÖNORM EN 1993-1-5 C.9(1) soll der ermittelte Lasterhöhungsfaktor α_u ausreichend zuverlässig sein. Der Lasterhöhungsfaktor α_u wird gemäß C.9(3) anhand der folgenden Formel ermittelt:

$$\alpha_u = \alpha_1 \cdot \alpha_2$$

Dabei berücksichtigt der Faktor α_1 die Modellunsicherheiten bei der FEM-Modellierung und sollte mittels Versuche ermittelt werden. Im Rahmen dieser Arbeit wird der Faktor α_1 mit 1,0 festgelegt, da das Modell anhand einer Reihe von Versuchen validiert wurde.

Der Faktor α_2 dient zur Abdeckung von materiellen und lastspezifischen Ungenauigkeiten. Gemäß C.9 (2)2. darf dieser Faktor, wenn materielles Versagen zu erwarten ist, als γ_{M2} (mit $\gamma_{M2} = 1,25$) angesetzt werden.

Daraus resultiert in weiterer Folge:

$$F_{Rd} = \frac{F_{Rk}}{\alpha_u} = \frac{F_{Rk}}{\alpha_1 \cdot \alpha_2} = \frac{F_{Rk}}{1,25}$$

Die Lochleibungsfestigkeit ergibt sich gemäß ÖNORM EN 1993-1-8 zu:

$$F_{b,Rd} = \frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t}{\gamma_{M2}}$$

Unter Berücksichtigung, dass $\gamma_{M2} = 1,25$ ist, ergibt ein Gleichsetzen von $F_{b,Rd}$ und F_{Rd} :

$$F_{Rk} = k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t$$

Der Faktor 1,4 zur Umrechnung der Traglast für den ULS-Nachweis auf die Traglast für den SLS-Nachweis resultiert aus einem Vergleich der Teilsicherheitsbeiwerte $\gamma_G = 1,35$ und $\gamma_G = 1,50$.

Der höchste Lastschritt mit $1,30 \cdot F_{Rk}$ soll eine mögliche Überfestigkeit des Stahls berücksichtigen.

4.1.3.Netzstudie

Mit einer ersten Berechnung am Modell PS01 wird der Einfluss einer Modifizierung des Netzes analysiert. Dabei werden drei verschiedene Netzgrößen (fein, mittel, grob) untersucht und die Ergebnisse der einzelnen Berechnungen miteinander verglichen. Hinsichtlich der Festlegung der einzelnen Netzgrößen gelten folgende Bestimmungen in Zusammenhang mit Abb. 4-2 bis Abb. 4-5:

Bereich	Fein	Mittel	Grob
[A] Schraubenschaft	0,4 mm	1 mm	2 mm
[B]Randbereich Schraubenloch	0,3 mm	0,5 mm	0,8 mm
[C] Restliche Bereiche	1,5 mm	2 mm	3,5 mm
[D] Face Sizing Schraubenschaft	0,4 mm	0,5 mm	0,6 mm
Anzahl der Elemente	73076	16675	4582

Tab. 4-1: Netzgrößenstudie

Abb. 4-2: Vernetzungsbereich A - Body Sizing Schraubenschaft

Abb. 4-3: Vernetzungsbereich B - Body Sizing Randbereich Schraubenloch

Abb. 4-4: Vernetzungsbereich C- Body Sizing Laschen und Schraubenkopf

Abb. 4-5: Vernetzungsbereich D - Face Sizing Schraubenschaft

Abb. 4-6: Feine Vernetzung

Abb. 4-7: mittelgrobe Vernetzung

Abb. 4-8: grobe Vernetzung

• Lochaufweitung unter F_{b.Rd}

Zum Vergleich der Berechnungen der unterschiedlichen Netzgrößen wird die maximale horizontale Lochaufweitung unter der charakteristischen Belastung ausgewertet. Dazu werden die Verschiebungen der zwei Scheitelpunkte ausgewertet und anschließend subtrahiert.

Lochaufweitung					
Fein	0,06910	[mm]			
Mittel	0,06770	[mm]			
Grob	0,06818	[mm]			

Tab. 4-2: Max. horizontale Lochaufweitung

Hinsichtlich der Größe der Verformungen ist zu erkennen, dass sich bei allen Vernetzungsvarianten eine ähnlich große Lochaufweitung einstellt. Es kommt bei einem Vergleich zwischen dem feinen und dem mittelfeinen Netz zu Abweichungen in der Größenordnung von 2%.

Max. totale Verzerrung unter F_{b.Rd}

Die maximalen totalen Verzerrungen werden an unterschiedlichen Rundschnitten um das Schraubenloch ausgewertet. Hierzu wird die Geometrie unterteilt, damit die Verzerrungen entlang eines Pfades ausgewertet werden können. Die Unterteilungen erfolgen in einem Abstand von $0.1 \cdot d_0$, $0.2 \cdot d_0$, $0.5 \cdot d_0$, $1.0 \cdot d_0$. Zusätzlich werden die Ergebnisse direkt am Lochrand ausgewertet. Die Darstellung dieser Pfade kann der Abb. 4-9 entnommen werden. Das Pfadende befindet sich dabei immer am druckbeanspruchten Rand. Die Pfade werden sowohl in der Gleitfuge zwischen der mittleren und der außenliegenden Lasche, als auch zwischen der Lasche und dem Schraubenkopf ausgewertet.

I. Pfad d₀ (Lochrand)

Abb. 4-10: Max. Eq. Tot. Strain - d0

Bei einem Vergleich der maximalen totalen Verzerrungen direkt am Lochrand stimmen die Ergebnisse der feinen Vernetzung sehr gut mit denen der mittleren Vernetzungsgröße zusammen. Aufgrund der größeren Anzahl der Elemente (und somit Punkte) an denen die Verzerrungen ausgewertet werden, ist die Kurve vom feinen Netz zackiger und stellt die Ergebnisse genauer dar. Beim groben Netz hingegen wird die maximale Verzerrung am Ende des Auswertungspfades nicht berücksichtigt, was einen Nachteil gegenüber den anderen Netzen darstellt. Zwar handelt es sich bei dem Endpunkt um eine Singularität (vergleiche Verzerrungen bei $1.1 \cdot d_0$), jedoch sollte eine Betrachtung und eine Darstellung der auftretenden plastischen Verzerrungen möglich sein.

II. Pfad $1.1 \cdot d_0$

Abb. 4-11: Max. Eq. Tot. Strain -d0

Werden die Ergebnisse in einem Abstand von $0.1 \cdot d_0$ zum Rand ausgewertet, nähern sich alle Verläufe der Max. Eq. Tot. Strain an. Hierbei handelt es sich um ein logisches Verhalten, da die Singularitätsstelle nach einigen Elementen verschwinden soll. Im vorliegenden Fall werden bei allen Vernetzungsdichten zwei Elemente über die Breite des Ringes (zwischen d₀ und $1.1 \cdot d_0$) angeordnet.

III. Gesamtlasche

Abb. 4-12: Feine Vernetzung - Eq. Total Strain

Abb. 4-13: Mittelgrobe Vernetzung - Eq. Total Strain

Abb. 4-14: Grobe Vernetzung - Eq. Total Strain

Wie aus den Abbildungen Abb. 4-12, Abb. 4-13 und Abb. 4-14 ersichtlich ist, stellt sich im Allgemeinen eine ähnliche Verteilung der maximalen totalen Verzerrungen ein. Lediglich bei der feinen und mittelgroben Vernetzung kommt es zu einer Singularitätsstelle im Kontaktbereich zwischen der Lasche und dem Schraubenschaft, welche aus dem punktuellen Kontakt aufgrund der Schiefstellung resultiert.

Rechenzeiten

Die unterschiedlichen Genauigkeiten und Feinheiten der Netzeinstellungen haben einen großen Einfluss auf die Rechendauer der einzelnen Modelle, da es aufgrund der Knoten und Elemente zu größeren Matrizen kommt. Für das vorliegende Modell (PS01) resultieren dabei folgende Rechenzeiten:

Netz	Rechendauer
Fein	16 min 4 s
Mittel	3 m 51 s
Grob	1 m 36 s

Tab. 4-3: Vergleich der Rechenzeiten

Die Rechendauer von maximal 16 Minuten unterschreitet im vorliegenden Fall die unter 4.1.1 angeführten 30 Minuten, was auf die kleine Geometrie zurückgeführt werden kann. Bei größeren Geometrien steigt die Anzahl der Elemente drastisch an. Insbesondere bei den Kontaktbedingungen kommt es dadurch zu längeren Berechnungszeiten.

• Ergebnis

Aus einem Vergleich der Netzstudien, basierend auf der mittleren Netzgröße, resultiert, dass eine Verfeinerung des Netzes einen nur geringen Einfluss auf die Genauigkeit der Ergebnisse hat, gleichzeitig aber die Rechenzeit vervierfacht. Ein gröberes Netz führt zwar zu einer Reduktion der Rechendauer auf die Hälfte, ist jedoch nicht in der Lage etwaige Singularitäten abzubilden. Dementsprechend wird beschlossen, das mittelgrobe Netz für die Parameterstudie zu verwenden.

4.2. Auswertung

Für die verschiedenen Berechnungsmodelle sollen Grenzwerte ermittelt werden, anhand derer geprüft werden kann, ob eine Schraubenverbindung den Lochleibungsnachweis gemäß ÖNORM EN 1993-1-8 erfüllt.

4.2.1.Kraft-Verformungs-Diagramme

4.2.1.1. Kraft-Weg-Diagramme

Eine Auswertung der angreifenden Kraft und der auftretenden Verschiebung der einzelnen Parameterkonfigurationen ergibt die Kraft-Weg-Diagramme, wie sie auch bei einem physikalischen Versuch ausgewertet werden. Mithilfe dieser Diagramme soll dargestellt werden, in welchem Bereich des Kraft-Weg-Diagrammes sich die gemäß EN 1993-1-8 zulässige Last befindet. Dabei werden einerseits die charakteristischen Werte der Lochleibungstragfähigkeit, andererseits, die um den Faktor γ_{M2} reduzierte Last, d.h. die Designlast, dargestellt. Alle Kraft-Wegdiagramme der untersuchten Parameterkonfigurationen sind in der Abb. 4-15 dargestellt. Dabei ist deutlich erkennbar, dass sich alle Parameterkonfigurationen zunächst sehr steif verhalten, wobei alle Verbindungen ungefähr die gleiche Anfangssteifigkeit haben. Des Weiteren ist feststellbar, dass es zu sehr großen Verformungen kommt, die auch bei den Versuchen [4] vorhanden waren. Um zu überprüfen, wo sich die gemäß ÖNORM EN 1993-1-8 [6] zulässige Belastung auf der Kraft-Wegkurve befindet, wird diese in den Abb. 4-16 bis Abb. 4-19 für ausgewählte Parameterkonfigurationen dargestellt.

Abb. 4-15: Kraft-Wegdiagramme

Abb. 4-16: Kraft-Weg-Diagramm PS07

Abb. 4-17: Kraft-Weg-Diagramm PS10

Abb. 4-18: Kraft-Weg-Diagramm PS17

Abb. 4-19: Kraft-Weg-Diagramm PS19

Bei den in Abb. 4-16 bis Abb. 4-19 dargestellten Last-Verschiebungskurven zeigt sich, dass sich die gemäß ÖNORM EN 1993-1-8 zulässigen Belastungen teilweise unter der elastischen Traglast, erkennbar am Knick in der Last-Verformungskurve, befinden (vgl. Abb. 4-16), andererseits die Grenzlast kaum erreicht werden kann (vgl. Abb. 4-18 und Abb. 4-19).

Diese Art der Ermittlung der Kraft-Weg-Kurven beinhaltet jedoch einen von der Blechlänge abhängigen Störfaktor, da sich nicht nur der Bereich um das Schraubenloch verformt, sondern es über die gesamte Laschenlänge zu Dehnungen kommt. Da die Blechlängen in Abhängigkeit des Lochdurchmessers bzw. des Randabstandes e₁ definiert wurden, ergeben sich somit unterschiedlich große Werte für den Störfaktor. Um diesen Störfaktor zu entfernen, werden die Kraft-Verformungsdiagramme auf die Lochaufweitung bezogen. Dabei wird diese Auswertung zunächst in mm ausgeführt, anschließend relativ zum Schraubendurchmesser in %.

4.2.1.2. Kraft-Lochaufweitung in mm

Zur Auswertung der Lochaufweitung wird die Verschiebung der in Abb. 4-20 dargestellten Punkte ermittelt und die jeweilige Differenz ermittelt. Die Differenz der Punkte 2.1 und 2.2 wird dabei als Verschiebung in der Gleitfuge definiert, die Differenz der Punkte 1.1 und 1.2 als Lochaufweitung an der Laschenaußenseite. Zur Erstellung der Kraft-Lochaufweitungsdiagramme wird immer der maximale Wert verwendet.

Abb. 4-20: Definition der Lochaufweitung

Die Kraft-Lochaufweitungsdiagramme aller Parameterkonfigurationen sind in Abb. 4-21 dargestellt. Ein Vergleich der Kraft-Lochaufweitung mit den Kraft-Wegkurven zeigt, dass sich die Kurven der Kraft-Lochaufweitung am Anfang steifer verhalten. Es kommt zu keiner wesentlichen Lochaufweitung bis zum Erreichen der elastischen Traglast.

Abb. 4-21: Kraft-Lochaufweitungsdiagramme in [kN/mm]

Dieses Verhalten ist darauf zurückzuführen, dass sich zunächst die gesamte Belastung in der Lasche verteilt und es erst bei einer hohen Belastung zu plastischen Verformungen im Bereich des Schraubenloches kommt. Erst dann stellt sich die Lochaufweitung ein. Der Unterschied der Anfangssteifigkeiten ist auf den bereits beschriebenen Störfaktor der Laschenlänge zurückzuführen.

Abb. 4-24. Kraft-Aufweitungsdiagramm [kN/mm] PS17

Abb. 4-25. Kraft-Aufweitungsdiagramm [kN/mm] PS19

Die Abb. 4-22 bis Abb. 4-25 stellen die Kraft-Lochaufweitungskurven der ausgewählten Parameterkonfigurationen dar. Auch hier lässt sich die höhere Anfangssteifigkeit feststellen.

4.2.1.3. Kraft-Lochaufweitung in % (real)

Bei der Auswertung der Kraft-Lochaufweitung in % wird die Lochaufweitung in Prozent zum ursprünglichen Schraubendurchmesser ausgewertet. Dadurch wird zusätzlich zum Störfaktor der Laschenlänge der Schraubendurchmesser aus der Berechnung eliminiert. Für Konfigurationen mit gleicher Dicke, e₁ und e₂ und unterschiedlichen Schraubendurchmessern sollen sich die Kraft-Lochaufweitungskurven annähernd decken. Alle Kraft-Lochaufweitungskurven sind in der Abb. 4-26 dargestellt.

Kraft-Lochaufweitungsdiagramme in [kN/%]

Abb. 4-26: Kraft-Lochaufweitungskurven (kN/%)

Dabei kann festgestellt werden, dass die Steifigkeit der Konfigurationen bei einer Lochaufweitung von ca. 2% abnimmt und es bei den Konfigurationen mit einer Blechdicke von 10 mm zu keiner wesentlichen Laststeigung mehr kommt. Bei den Konfigurationen mit einer Blechdicke von 20 mm verhält sich die Verbindung nach Erreichen der elastischen Tragfähigkeit steifer, da sich die Spannungen über die doppelte Blechdicke ausbreiten können.

Die auftretenden Lochaufweitungen (in mm und %) unter den einzelnen Laststufen (F_{SLS} , F_{Rd} und F_{Rk}) sind in der Tab. 4-4 aufgeführt.

PS	F _{SIS}		F _{UIS} =F _{Bd}		F _{Bk}		
[-]	[mm]	[mm] [%]		[mm] [%]		[mm] [%]	
1	0.028	0.235	0.044	0.364	0.068	0.564	
2	0.035	0.288	0.058	0.481	0.089	0.741	
3	0.050	0.418	0.096	0.799	0.698	5.818	
4	0.047	0.394	0.245	2.046	0.877	7.307	
5	0.046	0.384	0.216	1.796	0.691	5.762	
6	0.046	0.380	0.191	1.589	0.619	5.156	
7	0.037	0.185	0.055	0.277	0.084	0.418	
8	0.044	0.218	0.068	0.341	0.111	0.557	
9	0.060	0.298	0.122	0.608	0.702	3,508	
10	0.072	0 362	0 343	1 717	1 530	7 651	
11	0.058	0.290	0.371	1.855	1.254	6.270	
12	0.070	0 3 5 2	0.416	2 082	1 506	7 528	
13	0.070	0.532	0.410	3 4 2 5	6.879	3/ 396	
1/	0.120	0.035	0.003	1 5 1 5	0.075	J 561	
15	0.000	0.275	0.000	0.000	0.010	0.000	
16	0.000	0.000	0.000	3 0/3	7 /03	25 / 6/	
17	0.117	0.364	0.009	1 210	0.000	4 002	
10	0.035	0.207	0.202	1 710	0.000	4.002	
10	0.004	0.520	0.545	2.007	0.902	4.910	
19	0.115	0.574	0.001	3.007	4.557	22.080	
20	0.052	0.175	0.078	0.259	0.121	0.402	
	0.081	0.202	0.096	0.320	0.159	0.550	
22	0.082	0.275	0.167	0.557	1.120	5./54	
23	0.101	0.338	0.558	1.860	2.402	8.007	
24	0.081	0.269	0.553	1.843	1.959	5.531	
25	0.099	0.329	0.633	2.109	2.360	7.868	
26	0.172	0.572	1.079	3.596	0.000	0.000	
27	0.194	0.648	1.693	5.643	13.326	44.421	
28	0.076	0.254	0.461	1.536	1.396	4.652	
29	0.092	0.306	0.576	1.920	1.881	6.269	
30	0.156	0.521	0.904	3.012	5.474	18.248	
31	0.000	0.000	0.000	0.000	0.000	0.000	
32	0.074	0.247	0.372	1.240	1.219	4.062	
33	0.089	0.296	0.501	1.672	1.512	5.041	
34	0.151	0.504	0.883	2.944	9.638	32.125	
35	0.000	0.000	0.000	0.000	0.000	0.000	
36	0.061	0.307	0.099	0.493	0.169	0.846	
37	0.076	0.381	0.129	0.646	0.321	1.607	
38	0.063	0.209	0.095	0.318	0.142	0.472	
39	0.075	0.250	0.119	0.397	0.182	0.606	
40	0.106	0.352	0.193	0.643	1.076	3.585	
41	0.101	0.336	0.564	1.879	1.868	6.226	
42	0.124	0.412	0.661	2.202	2.668	8.893	
43	0.096	0.319	0.484	1.612	1.405	4.682	
44	0.118	0.393	0.616	2.054	2.232	7.439	
45	0.094	0.313	0.389	1.297	1.214	4.047	
46	0.115	0.385	0.548	1.826	1.809	6.029	

Tab. 4-4: Lochaufweitungen

Bei einem Vergleich der Lochaufweitungen lässt sich unter charakteristischer Beanspruchung eine maximale Lochaufweitung von 44,42% feststellen, unter Designlast reduziert sich diese auf maximal 5,64% und unter der Gebrauchstauglichkeitsbeanspruchung auf 0,65%.

4.2.2.Max. Eq. Tot. Strain

Für die Auswertung der maximalen Dehnungen wird in Anlehnung an die EN 1993-1-5 Anhang C.9(2) [6] das Versagenskriterium mit einer maximalen Hauptmembrandehnung von 5% angenommen und mit den tatsächlich auftretenden maximalen plastischen Vergleichsdehnungen der Parameterkonfigurationen verglichen. Die Vergleichsdehnungen werden dabei entlang der in Abb. 4-27 dargestellten Pfade ausgewertet. Aus der Tab. 4-5 ist ersichtlich, dass die Dehnungen einen sehr weiten Streuungsbereich haben und die Werte am Lochrand zwischen 0,72 % und 189,06 % schwanken.

Named Selections 03.05.2017 20:53

Abb. 4-27: Pfaddefiniton

PS	PS Max. Eq. Total Strain				
	d ₀	1,1*d ₀	1,2*d ₀	1,2*d ₀ 1,5*d ₀	
PS01	1,68%	0,88%	0,72%	0,44%	0,20%
PS02	3,36%	1,32%	1,05%	0,63%	0,27%
PS03	29,72%	28,70%	10,22%	4,87%	2,82%
PS04	17,74%	12,86%	11,20%	7,25%	4,66%
PS05	14,71%	9,73%	8,81%	6,16%	4,16%
PS06	13,43%	8,67%	7,75%	5,62%	3,69%
PS07	0,75%	0,63%	0,52%	0,27%	0,14%
PS08	1,37%	0,79%	0,66%	0,39%	0,17%
PS09	9,55%	5,81%	4,95%	2,75%	2,58%
PS10	14,15%	12,30%	9,46%	5,44%	4,51%
PS11	13,61%	11,20%	9,69%	6,38%	4,66%
PS12	15,66%	12,84%	11,40%	7,92%	5,03%
PS13	70,31%	64,94%	53,17%	47,87%	24,13%
PS14	10,01%	8,22%	7,01%	5,06%	3,72%
PS16	67,51%	71,92%	64,10%	47,93%	28,16%
PS17	8,98%	7,25%	6,22%	4,50%	3,04%
PS18	10,12%	8,13%	7,16%	5,25%	3,90%
PS19	37,37%	38,08%	43,12%	31,69%	15,25%
PS20	0,72%	0,60%	0,50%	0,26%	0,14%
PS21	1,29%	0,74%	0,62%	0,37%	0,17%
PS22	8,17%	5,77%	4,79%	2,68%	2,66%
PS23	13,18%	11,74%	9,75%	5,47%	4,48%
PS24	13,88%	11,70%	10,20%	6,40%	4,70%
PS25	15,75%	13,26%	11,65%	8,09%	4,93%
PS27	189,06%	168,82%	145,87%	78,42%	44,16%
PS28	10,09%	8,38%	7,22%	5,05%	3,56%
PS29	12,15%	10,16%	9,08%	6,54%	4,42%
PS30	41,59%	35,92%	29,66%	19,34%	13,10%
PS32	8,92%	7,34%	6,36%	4,48%	2,81%
PS33	9,98%	8,20%	7,19%	5,30%	3,76%
PS34	134,95%	99,10%	79 <i>,</i> 96%	40,54%	22,77%
PS36	2,91%	1,65%	1,33%	1,01%	0,56%
PS37	13,29%	4,43%	3,21%	1,79%	0,95%
PS38	1,40%	0,71%	0,58%	0,32%	0,16%
PS39	2,31%	0,90%	0,76%	0,45%	0,18%
PS40	11,64%	7,18%	5,77%	3,04%	2,54%
PS41	13,31%	11,08%	9,58%	6,14%	4,60%
PS42	20,46%	21,28%	13,00%	9,08%	5,64%
PS43	10,12%	8,29%	7,13%	5,02%	3,70%
PS44	17,57%	16,20%	10,70%	7,57%	5,05%
PS45	9,07%	7,27%	6,24%	4,51%	3,04%
PS46	14,94%	13,79%	8,49%	6,23%	4,25%

Tab. 4-5: Max. Eq. Total Strain bei ${\rm F}_{\rm Rk}$

Die Begründung für diese großen Verzerrungen liegt in der Definition der Vergleichsdehnung, welche definiert ist als:

$\varepsilon_e = \frac{1}{1+\nu} \left(\frac{1}{2} \left[(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2 \right] \right)^{\frac{1}{2}}$

Abb. 4-28: Definion der Vergleichsdehnung in Ansys

Aus der in Abb. 4-28 angeführten Formel ist ersichtlich, dass sich die Vergleichsdehnung aus Termen aller Hauptdehnungen zusammensetzt, welche anschließend quadriert werden. Dabei geht das Vorzeichen der Verzerrung verloren und eine Unterscheidung zwischen Druck- und Zugzonen bei der Betrachtung der Vergleichsdehnungen ist nicht mehr möglich. Im Bereich der Druckzone, Kontaktfläche Schraube-Blech, kommt es zu sehr großen Stauchungen, weshalb hier die Vergleichsdehnung auch ihren maximalen Wert erreicht. Eine Betrachtung der Vergleichsdehnungen für einige Parameterkonfigurationen bestätigt dieses Verhalten. Bei einem Vergleich der Abb. 4-29 bis Abb. 4-32 lässt sich jedoch die Versagensform der Lochleibungsverbindung feststellen. Bei der Abb. 4-29 kommt es zu den maximalen Vergleichsdehnungen unter einem Winkel von ca. 120°, was auf einen Scherbruch hindeutet. Bei der Abb. 4-30 treten zunächst die größten Vergleichsdehnungen unter einem Winkel von 90° auf, was auf ein Zug- bzw. Nettoquerschnittsversagen hindeutet. Die Vergleichsdehnungen unter einem Winkel von 180° sind die Maxima, da hier die Pressung und somit die Stauchung am größten ist.

Abb. 4-29: Vergleichsdehnung PS07

Vergleichsdehnung $\epsilon_{\rm v}$ am Pfad in [MPa] unter ${\rm F_k}$ - Modell PS10

M20 e ₁	= 3.0 €	e ₂ = 1	.2 t =	10 mm	

Abb. 4-30: Vergleichsdehnung PS10

Vergleichsdehnung $\epsilon_{\rm v}$ am Pfad in [MPa] unter F $_{\rm k}$ - Modell PS17

M20 $e_1 = 1.2 e_2 = 3.0 t = 10 mm$

Vergleichsdehnung $\epsilon_{\rm v}$ am Pfad in [MPa] unter ${\rm F_k}$ - Modell PS19

Abb. 4-32: Vergleichsdehnung PS19

Eine Betrachtung der maximalen Vergleichsverzerrungen am Lochrand in Abhängigkeit des Randabstandes e_2 unter Vorgabe des Schraubendurchmessers und des Randabstandes e_1 für die Parameterkonfigurationen mit Blechdicken t = 10 mm ergibt folgende Diagramme (Abb. 4-33 bis Abb. 4-36):

Abb. 4-33: Max. Eq. Tot. Strain $e_1 = 1.2 t = 10 mm$ in Abhängigkeit von d_0 und e_2

Abb. 4-34: Max. Eq. Tot. Strain $e_1 = 1.2 t = 10 mm$ in Abhängigkeit von d_0 und e_2

Max. Eq. Tot. Strain e₁ = 2.0 t = 10 mm

Abb. 4-35: Max. Eq. Tot. Strain e_1 = 1.2 t = 10 mm in Abhängigkeit von d_0 und e_2

Abb. 4-36: Max. Eq. Tot. Strain $e_1 = 1.2 t = 10 mm$ in Abhängigkeit von d_0 und e_2

Insbesondere aus den Abbildungen Abb. 4-33 und Abb. 4-34 ist ersichtlich, dass bei gleichbleibenden Randabständen (e₁ und e₂) und Dicken, eine Variation des Schraubendurchmessers immer zu ähnlichen maximalen Vergleichsdehnungen führt. Das liegt an der direkten Proportionalität zwischen der gemäß EN 1993-1-8 vorgeschriebenen Traglast und dem Schraubendurchmesser d bzw. Lochdurchmesser d₀. Diese Vergleichbarkeit ist nur gültig, wenn bei beiden Parameterkonfigurationen der Versagensmodus "Lochleibung" maßgebend wird.

4.2.3. Maximale Hauptverzerrung EPPL1

Nachdem sich eine Betrachtung der gesamten Vergleichsdehnung aufgrund der auftretenden Maxima im Druckbereich der Laschen als wenig sinnvoll erwiesen hat, soll in einer genaueren Anlehnung an die EN 1993-1-5 C.8(1.2) nun anstatt der in Anmerkung 1 vorgeschlagenen Hauptmembrandehnung, die maximale Hauptverzerrung innerhalb der Lasche betrachtet werden. Der Unterschied zwischen der Membrandehnung und Hauptverzerrung erklärt sich aus der Definition der Membran, gemäß welcher eine ideelle Membran nur tangentiale Zugkräfte überträgt [9].

Stahl verfügt in der Regel über zwei verschiedene Versagensmechanismen, wobei zwischen Versagen unter Zug- und Druckbeanspruchung unterschieden wird. Im Falle einer Druckbelastung kann es bei schlanken Bauteilen zu einem Stabilitätsversagen in Form vom lokalen Beulen bzw. Knicken oder zum globalen Beulen kommen. Bei den vorliegenden Berechnungen kommt es nicht zu einem Stabilitätsversagen, sondern der Stahl wird

kontinuierlich auf Druck beansprucht. Der Werkstoff kann jedoch unter kontinuierlichem Druck sehr hohe Beanspruchungen aufnehmen, die zwar zu großen Verzerrungen, jedoch zu keinem Versagen des Werkstoffes führen. Unter Zugbeanspruchung kommt es zu einer Rissentstehung und zur Bildung von Mikrorissen im Material. Im Anschluss zur Mikrorissbildung kommt es zur Rissöffnung, wobei zwischen drei verschiedenen Rissöffnungsarten unterschieden wird. Beim Mode I (vgl. Abb. 4-37) greift eine Zugbeanspruchung senkrecht zur Rissoberfläche an, wodurch die Rissflächen voneinander abheben. Bei den Modes II und III kommt es zu einer Relativverschiebung der beiden Rissflächen. [1]

Abb. 4-37: Rissöffnungsarten: Mode I (Zugriss), Mode II (Schubriss in Materialebene), Mode III (Schubriss zur Materialebene) [1]

Um die störenden Druckverzerrungen im Bereich der Kontaktfläche Schraubenschaft-Lasche aus der Berechnung der Hauptverzerrungen zu eliminieren, werden die Hauptverzerrungen nur in den Bereichen, in denen keine Pressung in der Kontaktfuge (Schraubenschaft - Blech) vorhanden ist, ausgewertet (vgl. Abb. 4-38).

Abb. 4-38: Pressure PS01

Die Hauptspannungen und in weiterer Folge die Hauptdehnungen sind gemäß der ANSYS-Hilfe wie folgt definiert:

Abb. 4-39: Hauptspannungen in ANSYS

Dabei gilt immer:

$$\sigma_1 \geq \sigma_2 \geq \sigma_3 \text{ und } \varepsilon_1 \geq \varepsilon_2 \geq \varepsilon_3$$

Dehnungen sind dabei immer als positive Werte definiert.

Eine Analyse der plastischen Hauptdehnungen (exemplarisch in Abb. 4-40 dargestellt) zeigt, dass die erste plastische Hauptverzerrung (Maximum Principal = EPPL1) in den Bereichen, in denen kein Druck aus dem reibungsfreien Kontakt auftritt (Pressure = 0), radial entlang des Lochrandes verläuft. Bei den Bereichen, wo die Pressung aus der Kontaktbedingung sehr groß wird, kommt es zu einer Rotation der Richtung der Hauptverzerrung, die dann in Richtung der Laschendicke (y-Achse) verläuft. Die erste Hauptverzerrung wird nur dann ausgewertet, wenn der Pressure Null ist und die Hauptverzerrung radial zum Lochrand verläuft.

Abb. 4-40: Plastische Hauptverzerrungen PS01

Die Hauptverzerrungen werden an der innenliegenden Laschenseite, d.h. in der Gleitfuge, und unter charakteristischer Belastung für die Blechdicke t=10mm ausgewertet.

Max. EPPL1 für M12 und t = 10 in [mm/mm] bei F_{Rk}

Die Hauptdehnungen befinden sich demnach meistens im Bereich bis 10-15 %, wobei Ausreißer feststellbar sind. Insbesondere bei größeren Schraubendurchmessern und größeren Randabständen, kommt es zu Hauptdehnungen von über 30 %. Besonders markant ist dabei die Konfiguration PS34 (M30, $e_1=2.0$, $e_2=3.0$, t=10mm) bei der die Hauptdehnung über 100 % beträgt.

4.2.4.Steifigkeiten

4.2.4.1. Steifigkeit beim Kraft-Weg-Diagramm

Aufbauend auf die Kraft-Weg-Diagramme soll die Steigung der Kraft-Weg-Kurven bei Erreichen der Design- bzw. charakteristischen Last ermittelt werden. Dazu werden die Ergebnisse am letzten "TimeStep" vor Erreichen des jeweiligen Lastniveaus mit den Ergebnissen des "TimeSteps" am jeweiligen Lastniveau miteinander verglichen und mit der Formel

$$K = \frac{F_{(t)} - F_{(t-1)}}{u_{(t)} - u_{(t-1)}}$$

Formel 4-1: Steifigkeitsauswertung

ausgewertet.

Zur besseren Veranschaulichung werden die Daten als Punktdiagramm, welches die Steifigkeit der jeweiligen Parameterkonfiguration enthält, dargestellt (vgl. Abb. 4-41). Wie bereits erwähnt, befinden sich die Laststufen in unterschiedlichen Bereichen der Last-Verschiebungsdiagramme, woraus sich auch unterschiedliche Steigungen und damit Steifigkeiten der einzelnen Konfigurationen ergeben. Die meisten Steifigkeiten befinden sich jedoch im unteren Bereich bis ca. 20 kN/mm.

Um eine bessere Veranschaulichung der Steifigkeiten in Abhängigkeit der Parameter darstellen zu können, werden sie für die einzelnen Schraubendurchmesser und Randabstände e_1 (vgl. Abb. 4-42 und Abb. 4-43) dargestellt. Bei einem geringen Randabstand e_2 befindet sich das Lastniveau noch im steiferen Bereich der Last-Verschiebungskurve und fällt bei einer Steigung von e_2 =1.2 auf e_2 =1.5 rasant ab. Dieses Verhalten tritt bei sämtlichen Randabständen von e_1 und einer Variation der Dicken auf.

Abb. 4-43: Steifigkeiten bei F_{Rk} für t=20mm
4.2.4.2. Steifigkeit real (Kraft-Aufweitung in mm)

Die Auswertung der reellen Steifigkeiten, ohne den Störfaktor der Längsdehnung des Bleches, erfolgt analog zur Formel 4-1. Lediglich die Gesamtverschiebung wird durch die Aufweitung des Schraubenloches in mm ersetzt.

Wie aus der Abb. 4-44 ersichtlich ist, befindet sich auch in Bezug auf die reellen Verformungen, d.h. die Aufweitung des Schraubenloches, die Mehrheit der Steifigkeiten im unteren Bereich der Grafik. Beim Erreichen der Traglast, F_{Rk}, sind nur noch sehr kleine Steifigkeiten vorhanden. Ab der Konfiguration PS36 kommt es zu geringfügig höheren Steifigkeiten, welche aus der größeren Dicke des Bleches (t=20mm) resultieren.

Abb. 4-44: Steifigkeitsverteilung der Konfigurationen in kN/mm Aufweitung (real)

Eine Darstellung der Steifigkeiten in Abhängigkeit des Schraubendurchmessers und des Lochabstandes ergibt die in den Abb. 4-45 und Abb. 4-46 dargestellten Verläufe.

Abb. 4-45: Steifigkeiten bei F_{Rk} für t=10 mm - real

Abb. 4-46: Steifigkeiten bei F_{Rk} für t=20 mm - real

Wie auch in Kapitel 4.2.4.1 ergeben sich bei kleinen Randabständen e₂ verhältnismäßig große Steifigkeiten, welche dann bei einer Vergrößerung des Randabstandes schlagartig abfallen. Die Verteilung der Steifigkeiten ist bei einem Bezug auf die Lochaufweitung linearer als bei einem Bezug auf die Gesamtverformungen der Lasche.

4.2.4.3. Steifigkeit relativ

Es liegt die Möglichkeit nahe, dass die Verformungen der einzelnen Parameterkonfiguration von den Lochdurchmessern abhängig sind. Durch eine Auswertung der Steifigkeiten in Bezug auf prozentuelle Lochaufweitungen, soll dieser Zusammenhang herausgefiltert werden. Die prozentuelle Lochaufweitung ergibt sich aus dem Verhältnis:

$$\Delta d = \frac{d(t) - d_0}{d_0}$$

Formel 4-2: Prozentuelle bzw. relative Lochaufweitung

Die einzelnen Steifigkeiten für die Parameterkonfigurationen werden wiederum als Streuungsdiagramm in der Abb. 4-47 dargestellt.

Abb. 4-47: relative Steifigkeitsverteilung der Konfigurationen

Die Steifigkeitsverteilung ist übereinstimmend mit jener der Kraft-Weg-Diagramme bzw. mit jener der reellen Lochaufweitungen. Es ist wiederum festzustellen, dass die Steifigkeiten bei einer Erhöhung der Blechdicke zunehmen.

Eine Betrachtung der Steifigkeiten in Abhängigkeit des Schraubendurchmessers bzw. der Randabstände (vgl. Abb. 4-48 und Abb. 4-49) ergibt ähnliche Kurven wie in den vorherigen Kapiteln, wobei die einzelnen Spitzen für die Parametervariationen genauer ausgeprägt sind. Dennoch ist wiederum der enorme Steifigkeitsverlust bei einer Steigerung des Randabstandes e₂ feststellbar.

Abb. 4-48: relative Steifigkeiten bei F_{Rk} für t=10mm

Abb. 4-49: relative Steifigkeiten bei F_{Rk} für t=20mm

Die auftretenden Steifigkeiten der einzelnen Parameterkonfigurationen in pro mm-Gesamtverschiebung, pro mm-Lochaufweitung und pro relative Lochaufweitung können der Tab. 4-6 entnommen werden.

Pς	ELIIS	EIUS	E LILS	E IIIS	ELIIS	ELUS
15	(EN 1993-1-8)	(FEA)	(EN 1993-1-8)	(FEA)	(EN 1993-1-8)	(FEA)
r 1		[]_N[/]		[L01/mm 0f.u]	1.51/0/1	fL.N. (0/1
[-]		133736	[KN/IIIII_AUIW.]	Aurw.j	[KIN/ /0]	[KIN/ /0]
	203.550	122.420	434.009	252.480	4.333	4.479
	182.254	101.914	370.328	239.230	4.18_	4.410
5	93.504	5.009	-39.122	12.571	3,628	0.421
	14.828	3.005	30.595	16.666	0.964	0.524
	10.937	7.251	55.515	10.000	1,105	0.000
	18.623	7.339	39.113	19.152	1.238	0.747
	291.063	166.980	609.368	362.051	10.699	10.510
	107.595	142.965	527.902	200.025	-0.755	10.010
9	137.525	15.021	-95.057	20.441	7,245	2.132
	20.210	0.007	29.008	14,000	2.220	1.120
	16 220	8.555	35.749	14.885	1.698	1.067
	15 969	1,610	33.743	14.737	1.005	1.127
-3	16 200	13 805	22.104	3,_3/ 35 331	1,35-	1 514
	10.500	12.695	40.951	23.331	2.23-	1.514
	17.925	0.000	22.049	0.000	1 020	0.000
-0	19 044	10 211	35,508 47 E21	0.362	7.523	1 770
-/	17 922	10.011	44.551	29.492	2.034	1.729
-0	19.070	1 1 6 0	40.050	29.000	1 009	1.750
20	21111	166 090	672 642	232	1.330	10 564
20	201116	147 242	625.042 EE0 321	551.525 207 100	10.255	19.004
21	150 200	12 670	206.025	257.155	12.161	2 2 5 5
22	21 / 16	0.000	200.920	23.373	2 205	0.000
2.5	15 121	6 555	20.000	11 221	2,000	0.000
25	15.816	7 506	2/ 205	12 7/12	2 2 5 5	1 7/17
25	15.010	1 304	21.656	2 2 9 7	2 / 25	0.035
20	0.000	0.000	0.000	0.000	0.000	0.055
27	16 027	12 206	39 562	23 9/0	3 744	2 / 22
29	16 716	10.276	40.118	19.053	3 760	2 219
30	24 302	0 339	35/119	0.589	3.26'	0.005
21	0.000	0.000	0,000	0.000	0.000	0.000
32	17.838	4 657	42.889	23 21 7	A 437	0.000
33	17 776	10.638	46 766	26 91 9	4 339	2 800
37.	19 969	0 388	41 228	1 136	3 / 35	0.002
35	0.000	0.000	0.000	0.000		0.000
36	301 486	108.671	497.372	254.010	1 649	11.041
37	230 973	25.818	484 695	86 729	11143	6 983
38	535 012	316.712	1 025.473	682.080	31 520	33.677
39	493 715	285.603	1 353,292	713.416	48 238	45.942
40	288.823	23.930	343.608	51.386	22,599	6,755
41	30,141	17,453	64,578	30.885	6.118	3,578
42	51.578	11.001	73.391	17.162	6.654	1.103
43	31.881	24.758	76.326	50.214	7.161	4.862
42	59,340	13.931	83.073	24,050	7,250	2.526
45	57.493	29.133	81.955	59.938	8.485	5.641
46	57.395	16.301	92.954	34,388	8.143	3.163
	1 0.1366				1	

Tab. 4-6: Steifigkeiten in kN/mm Verschiebung, kN/mm Lochaufweitung und kN/% Lochaufweitung

4.2.5.Max. Hauptverzerrung am Laschenende

Aus den Steifigkeiten und den Hauptverzerrungen am Lochrand kann nicht auf den Versagensmodus der Lasche geschlossen werden. Bei großen Hauptzugdehnungen am Rand kann angenommen werden, dass sich ein Zugbruch einstellen wird, jedoch ist diese Annahme nicht immer richtig. Um die Versagensmodi Biege- bzw. Scherbruch herauszuarbeiten,

werden die Hauptverzerrungen am Laschenende ausgewertet. Dabei ist erkennbar, dass sich die Maxima der Hauptverzerrungen in der Laschenmitte befinden. Unter charakteristischer Belastung ist kein Unterschied hinsichtlich der Lage der maximalen Verzerrung bei einer Unterscheidung von Biege- und Scherbruch möglich (vgl. Abb. 4-50 und Abb. 4-51).

Abb. 4-50: Max. Hauptverzerrung am Rand PS30 (Biegebruch)

Abb. 4-51: Max. Hauptverzerrung am Rand PS32 (Scherbruch)

Eine Auswertung aller Parameterkonfigurationen ergibt, dass sich nicht bei jeder Konfiguration eine plastische Verzerrung am Laschenrand einstellt. Bei diesen Fällen handelt es sich um Konfigurationen, bei denen es zu einem Zugbruch bzw. einem Versagen des Nettoquerschnittes kommt.

PS	EPPL1
[-]	[mm/mm
1	0.001
2	0.000
3	0.000
4	0.070
5	0.046
6	0.036
7	0.001
8	0.000
9	0.000
10	0.000
11	0.073
12	0.069
13	0.098
14	0.048
15	0.000
16	0.140
17	0.037
18	0.037
19	0.076
20	0.001
21	0.000
22	0.000
23	0.000
24	0.079
25	0.075
26	0.050
2/	0.000
28	0.051
29	0.055
30	0.103
31	0.000
32	0.039
20	0.040
25	0.125
25	0.000
20	0.005
20	0.004
20	0.001
40	0.000
41	0.000
42	0.068
42	0.000
44	0.052
45	0.034
46	0.034
ģ	0.000

Tab. 4-7: Hauptverzerrungen am Laschenrand unter F_{Rk}

Eine Darstellung dieser Hauptverzerrung in Abhängigkeit der Schraubendurchmesser bzw. des Randabstandes e_2 zeigt, dass bei kleinen e_2 -Abständen (e_2 =1,2· d_0) keine Verzerrungen

auftreten, was wiederum mit dem Nettoquerschnittsversagen bzw. Zugbruch zusammenpasst (vgl. Abb. 4-52 und Abb. 4-53).

Abb. 4-52: Hauptverzerrrungen am Laschenende unter charakteristischer Belastung für t=10mm

Abb. 4-53: Hauptverzerrrungen am Laschenende unter charakteristischer Belastung für t=20mm

Bei einer Blechdicke von 10 mm und einem Randabstand $e_1=2.0 \cdot d_0$ steigen die Verzerrungen bei einer Erhöhung des Randabstandes e_2 von 1,5 auf 2,0 \cdot d_0 zunächst an. Bei der Schraube des Typs M20 kann der abfallende Ast jedoch schon festgestellt werden. Es kommt zu einem ähnlichen Verlauf wie bei kleinen e_1 -Abständen. Werden diese klein gehalten, dann kommt es zunächst zu einer Steigerung der Randverzerrung von 0 auf circa 7-8% mit einer anschließenden Abnahme bei einer Vergrößerung des Randabstandes e₂. Dieser abfallende Ast resultiert daraus, dass trotz einer Vergrößerung des Randabstandes e₂ die gemäß ÖNORM zulässige charakteristische Traglast nicht zunimmt. Die Spannungen und Verzerrungen verteilen sich über einen größeren Bereich, weshalb die einzelnen Werte kleiner werden.

4.2.6.Normalisierte Lochleibungsfestigkeit nach Draganić [14]

4.2.6.1. Allgemeines

Im Forschungsbericht von [14] wurde eine umfassende Untersuchung von einschnittigen Schraubenverbindungen im Stahlbau durchgeführt. Zunächst wurde eine Reihe an Parameterkonfigurationen mittels Versuchen bis zur Bruchlast beansprucht. Anschließend wurde ein numerisches Modell aufgestellt, mit dem es möglich war die durchgeführten Versuche mittels einer FE-Untersuchung zu berechnen. Das Modell wurde anhand der Versuche kalibriert. Die wesentliche Erkenntnis war, dass bei einer Lochleibungsverbindung zum Teil sehr hohe Kräfte aufgebracht werden können, diese jedoch zu sehr großen Verformungen führen können.

Draganić berechnete die Modelle mit einem multilinearen Materialmodell, welches sich an einer Reihe von Zugversuchen einzelner Stahllamellen orientiert. Dieses Materialmodell ist dabei sehr realitätsnah, setzt jedoch die vorherige Untersuchung des verwendeten Stahls voraus. Die Berechnungen wurden kraftgesteuert durchgeführt, wobei sich die maximal aufgebrachte Last aus den Versuchen ergab. Sämtliche Versuche wurden bis zur maximalen Traglast durchgeführt und anschließend ausgewertet.

Für jede Berechnung wurde die Kraft-Lochaufweitungskurve ermittelt und anschließend in einem Diagramm dargestellt.

Zusätzlich wurde für jede Parameterkonfiguration der NBR (Normalized Bearing Resistance) ausgewertet. Der normalisierte Lochleibungswiderstand der ÖNORM EN 1993-1-8 berechnet sich anhand der Formel 4-3 und besagt, dass der normalisierte Lochleibungswiderstand, von d, t und f_y unabhängig ist, bzw. die Lochleibungsfestigkeit in weiterer Folge linear zu diesen Parametern ist.

$$\bar{F}_{b,EN} = \frac{F_{b,Rd,EN}}{f_u \cdot d \cdot t}$$

Formel 4-3: Normalisierte Lochleibungsfestigkeit (EN 1993-1-8) lt. [14]

Die normalisierte Lochleibungsfestigkeit der FE-Berechnung ergibt sich analog zu:

$$\bar{F}_{FEA} = \frac{F_{FEA}}{f_u \cdot d \cdot t}$$

Formel 4-4: Normalisierte Lochleibungsfestigkeit (FE-Berechnung) lt. [14]

Diese anhand der Formel 4-3 und Formel 4-4 ermittelten normalisierten Lochleibungsfestigkeiten werden zum Vergleich der FE-Berechnung mit der ÖNORM EN 1993-1-8 aufgetragen und besagen, dass die gemäß ÖNORM EN 1993-1-8 gültigen Lochleibungsfestigkeiten konservativ sind (vgl. Abb. 4-54).

Abb. 4-54: Vergleich der NBR unter Traglast It. Draganic [14]

Zusätzlich wurde ein Kriterium festgelegt, bei dem das Erreichen der Gebrauchstauglichkeitsgrenze erreicht wird. Gemäß [14] wird dieses Kriterium in der Studie mit 3mm Lochaufweitung, was einer Lochaufweitung von d₀/6 (16,6%) entspricht, festgelegt (vgl. Abb. 4-55).

Abb. 4-55: Vergleich der NBR beim Erreichen der Gebrauchstauglichkeit lt. Draganić [10]

4.2.6.2. Auswertung der NBR

In der vorliegenden Parameterstudie wird selten eine genaue Traglast erreicht. Teilweise wird die Last bis zu 30% über die gemäß ÖNORM EN 1993-1-8 zulässige Traglast gesteigert, teilweise wird die Traglast des EN 1993-1-8 nur knapp bzw. gar nicht erreicht. Seitens des Bearbeiters wird daher beschlossen, mittels eines Grenzkriteriums der Lochaufweitung, den normalisiertem Lochleibungswiderstand mit dem Widerstand gemäß ÖNORM EN 1993-1-8 zu vergleichen.

Im Rahmen der vorliegenden Arbeit, werden analog zu [14] verschiedene Grenzwerte für die Lochaufweitung betrachtet und der entsprechende normalisierte Lochleibungswiderstand gemäß Formel 4-4 ermittelt. Dazu wird mittels einer Interpolation die aufgebrachte Kraft bei der zugehörigen Lochaufweitung (vgl. Abb. 4-56) ausgewertet und zum normalisierten Lochleibungswiderstand umgerechnet. Bei den Parameterkonfigurationen, bei denen die gewählte Lochaufweitung von 16,6% nicht erreicht wird, wird die maximale Traglast am Ende der Last-Verformungskurve für die Berechnung des normalisierten Lochleibungswiderstandes verwendet.

Abb. 4-56: Kraft-Lochaufweitungsdiagramme und 16,6 % Lochaufweitungsgrenze

Die beste Übereinstimmung der FE-Berechnung mit der gemäß ÖNORM EN 1993-1-8 zulässigen maximalen Belastung zur Erfüllung des Lochleibungs- bzw. Nettoquerschnittsnachweises wird bei einer maximalen Lochaufweitung von 16,6 % erreicht (vgl. Abb. 4-57 bis Abb. 4-60). In den Abb. 4-57 bis Abb. 4-60 werden zusätzlich zum normalisierten Lochleibungswiderstand der FE-Berechnung bzw. des EN 1993-1-8 die vorgeschlagenen neuen Werte des Lochleibungswiderstandes nach Draganić angeführt.

Abb. 4-57: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e_2 =1.2 d_0

Abb. 4-58: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e_2 =1.5 d_0

Abb. 4-59: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e2=2.0 d0

Abb. 4-60: Normalisierter Lochleibungswiderstand bei 16,6% Lochaufweitung für e₂=3.0 d₀

Bei den Berechnungen It. Draganić [14] wurde der maximale normalisierte Lochleibungswiderstand gemäß ÖNORM EN 1993-1-8 mit 1,5 begrenzt. Diese Grenze ist lediglich bei einschnittigen Verbindungen einzuhalten und tritt bei einer zweischnittigen Verbindung nicht auf. Die Grenzkurve (EN-Limit) der Abb. 4-57 bis Abb. 4-60 ergibt sich aus einer Kombination der Lochleibungsnachweise mit dem Nettoquerschnittsnachweis. Aus den Abb. 4-57 bis Abb. 4-60 ist ersichtlich, dass bei einem großem e₁/d₀-Verhältnis und gleichzeitig kleinem e₂/d₀-Verhältnis, die FE-Berechnung bei einer Grenzlochaufweitung von 16,6 % konservative Ergebnisse liefert. Diese konservativen Ergebnisse resultieren aus dem kombinierten Lochleibungs- und Nettoquerschnittsversagen.

4.3. Zusammenfassung der Ergebnisse

Es wird festgehalten, dass die gemäß ÖNORM EN 1993-1-8 zulässigen Lasten in der Regel mit einer FE-Berechnung unter Berücksichtigung des multilinearen Materialverhaltens von Stahl und einer Modellierung mit charakteristischen Werkstoffkennwerten erreicht werden können. Unter der charakteristischen Belastung kommt es zu sehr großen Vergleichsverzerrungen, welche die Bruchdehnungen vom Stahl um ein vielfaches überschreiten. Diese großen Vergleichsverzerrungen werden durch die Kontaktpressungen und daraus folgender Stauchung, welche vorzeichenneutral bei der Berechnung der Vergleichsdehnungen berücksichtigt wird, hervorgerufen. Eine Auswertung der Hauptdehnung der einzelnen Parameterkonfigurationen ist nur in jenen Bereichen sinnvoll, in denen die Hauptdehnung radial zum Lochrand verläuft und keine Pressung vorhanden ist. Dennoch kommt es auch hier zu großen Hauptzugdehnungen, welche die maximale Bruchdehnung von Stahl überschreiten. Das zunächst angenommene Versagenskriterium der maximalen Hauptmembrandehnung mit einem Grenzwert von 5% erweist sich als sehr konservativ, da die gemäß ÖNORM EN 1993-1-8 zulässigen Beanspruchungen nicht erreicht werden können.

Eine Auswertung der Kraft-Verformungskurven und in weiterer Folge der Steifigkeiten der einzelnen Parameterkonfigurationen ergibt sinnvollere Ergebnisse, da für alle Parameterkonfigurationen mit einem Randabstand $e_2 \ge 1,5 \cdot d_0$ ähnliche Steifigkeiten beim Erreichen der maximalen Traglast auftreten. Für Randabstände $e_2 \ge 1,5 \cdot d_0$ befindet sich die gemäß ÖNORM zulässige charakteristische Traglast am Ende der Traglastkurve. Die Steifigkeiten befinden sich unter charakteristischer Last in einer gewissen Bandbreite, die beispielsweise bei einer Blechdicke von 10mm auf ca. 30-40 kN/mm Lochaufweitung begrenzt werden kann. Bei größeren Blechdicken ergeben sich höhere Steifigkeiten pro mm Lochaufweitung, welche in direkt proportionalem Verhältnis zu den Steifigkeiten bei einer Blechdicke von 10 mm stehen.

Als zusätzliches Kriterium für die Nachweise beim Versagensmodus Biegebruch bzw. Scherbruch kann die maximale Hauptverzerrung am unbeanspruchten Laschenrand ausgewertet werden und mit den in 4.2.5 erzeugten Grenzlinien verglichen werden. Dieses Kriterium ist bei einem Zugversagen nicht verwendbar und daher nur bedingt anwendbar. Des Weiteren ist festzuhalten, dass sich bei größer werdendem e_2/d_0 -Verhältnis die maximale Hauptverzerrung 0 nähert. Dies resultiert aus der nicht mehr weiter steigenden maximalen Beanspruchung gemäß ÖNORM EN 1993-1-8 bei gleichbleibender Dicke und e_1/d_0 -Verhältnis.

Für die praktische Umsetzung eignet sich am ehesten eine Auswertung der maximalen Lochaufweitung unter dem jeweiligen Lastniveau. Es können maximale Lochaufweitungen für jedes beliebige Lastniveau festgelegt und mit den aus der FE-Berechnung resultierenden Lochaufweitungen verglichen werden. Dennoch gibt es auch bei den Lochaufweitungen sehr große Streuungen für den Maximalwert der Lochaufweitung unter charakteristischer Beanspruchung (0,5 % bis 44 %). Beim Grenzzustand der Gebrauchstauglichkeit kann die maximale Lochaufweitung von ca. 0,5 % als Grenzkriterium gesetzt werden.

Eine Auswertung der Kraft-Lochaufweitungskurven und Festlegung der maximalen Lochaufweitung unter charakteristischer Belastung mit 16,6 % ergibt bei einer Auswertung des normalisierten Lochleibungswiderstandes die beste Übereinstimmung mit den gemäß ÖNORM EN 1993-1-8 zulässigen Beanspruchungen. Die erreichten normalisierten Lochleibungswiderstände unterschreiten zwar die gemäß Draganić neuen Lochleibungswiderstände, können jedoch auf die unterschiedlichen Konfigurationen zurückgeführt werden. Bei einer einschnittigen Verbindung kann nämlich ein Anteil der aufgebrachten Kraft direkt über die Schiefstellung der Schraube (axiale Zugbeanspruchung) abgetragen werden.

5. Traglastvergleich

Bei der kraftgesteuerten FE-Berechnung unter Berücksichtigung eines multilinearen Materialverhaltens mit isotroper Verfestigung ist es sehr gut möglich die Traglastkurven eines reellen Versuches nachzurechnen. Bei einer ausreichend genauen Vernetzung, wie sie im Rahmen dieser Arbeit verwendet wurde, kann im Regelfall die Traglast des EN 1993-1-8 ohne Weiteres erreicht werden. Eine gleichzeitige Betrachtung der Kraft-Lochaufweitungsdiagramme und der normalisierten Lochleibungswiderstandsdiagramme zeigt, dass es beim gewählten Grenzwert von 16,6 % Lochaufweitung teilweise noch Tragreserven im Vergleich zur EN 1993-1-8 gibt.

Abb. 5-1: NBR-Diagramm für e₂ = 1,2 d₀

Abb. 5-2: Kraft-Lochaufweitungsdiagramme mit 16,6% Lochaufweitungsgrenze

Insbesondere bei kleinen e_1/d_0 bzw. e_2/d_0 - Verhältnissen gibt es deutliche Tragreserven und konservative Gleichungen zur Berechnung der Lochleibungstragfähigkeit in der ÖNORM EN 1993-1-8.

Die neuen Gleichungen nach Draganić konnten bei einer Berechnung der zweischnittigen Verbindung nicht vollständig bestätigt werden. Die auftretenden Unterschiede können dabei einerseits mit dem unterschiedlichen Tragverhalten von ein- bzw. zweischnittigen Verbindungen bei einem gleichzeitigem Schiefstellen der Schraube, andererseits mit der unterschiedlichen Definition des Materialverhaltens des Hauptwerkstoffs Stahl bei den Laschen begründet werden. Auch bei einer Eliminierung des Kennwertes f_u, bei der Berechnung des normalisierten Lochleibungswiderstandes, kommt es vor dem Erreichen der Fließfestigkeit bzw. Bruchfestigkeit zu unterschiedlichen Dehnungen bei gleicher Spannung im Werkstoff.

6. Zusammenfassung und Ausblick

Den Lochleibungsnachweis mittels einer FE-Berechnung zu erbringen, ist bei einer geeigneten Rechenleistung und bei geeigneter Software, welche in der Lage ist ein multilineares Materialverhalten mit kinematischer bzw. isotroper Wiederverfestigung und Kontaktdefinitionen abzubilden, durchaus möglich. Die, in der EN 1993-1-5 aufgeführten Grenzkriterien der 5% Hauptmembrandehnung bzw. das Erreichen des Maximums der Traglastkurve, sind praktisch nicht umsetzbar. Insbesondere die 5% Hauptmembrandehnung kann bei einer Berechnung eines Lochleibungsanschlusses unter einer gemäß ÖNORM EN 1993-1-8 zulässigen charakteristischen Beanspruchung nicht eingehalten werden. Eine Auswertung der maximalen Vergleichsdehnung führt aufgrund der auftretenden Drücke in der Kontaktfuge zwischen Schraube und Lasche zu sehr hohen Vergleichsdehnungen, welche durch die Stauchungen im Kontaktbereich hervorgerufen werden. Diese Vergleichsdehnungen (Werte über 50% Vergleichsdehnungen) stellen kein Versagenskriterium dar, sorgen aber für eine sehr aufwendige Berechnung. Eine Auswertung des normalisierten Lochleibungswiderstandes bei einer Lochaufweitung von 16,6 % zeigt, dass die Norm insbesondere bei kleinen e_1/d_0 - bzw. e_2/d_0 -Verhältnissen konservativ ist. Die neuen Gleichungen zur Bestimmung des Lochleibungswiderstandes nach Draganić können aufgrund der unterschiedlichen Modelle (ein- bzw. zweischnittig) nur bedingt bestätigt werden.

Die momentan gültigen Formeln zur Berechnung des Lochleibungswiderstandes sind bei kleinen e_1/d_0 - und e_2/d_0 -Verhältnissen konservativ und sollten angepasst werden. Im Rahmen einer umfangreichen Untersuchung kann der normalisierte Lochleibungswiderstand für unterschiedliche e_1 und e_2 weiter untersucht werden und neue Grenzkurven zur Festlegung des normalisierten Lochleibungswiderstand festgelegt werden, welche dann mit einer anschließenden Multiplikation mit dem Lochdurchmesser d_0 , der Dicke t_0 und der Bruchspannung f_u zur maximalen Beanspruchung für die einzelne Schraube führen. Des Weiteren ist die Gültigkeit dieser Grenzkurven bei mehrschnittigen Verbindungen und bei Verbindungsmittelgruppen zu untersuchen.

7. Literaturverzeichnis

- C. Petersen, Stahlbau: Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten, Wiesbaden: Springer Vieweg, 2003.
- [2] Austrian Standards Institute/Österreichisches Normungsinstitut, EN 1993-1-8 Eurocode
 3: Bemessung und Konstruktion von Stahlbauten Teil 1-8: Bemessung von Anschlüssen,
 Wien: Austrian Standards Institute/Österreichisches Normungsinstitut, 2012.
- [3] Stahl-Informations-Zentrum, "Merkblatt 322 "Geschraubte Verbindungen im Stahlbau","2012.
- [4] R. Zhu, "Lochleibung außenliegender Laschen," *Bauforschungsbericht*, 1990.
- [5] G. Lener, Studienblätter zur Vorlesung Stahlbau WS 2015/2016, Innsbruck: Leopold Franzens Universität Innsbruck - Fakultät für Technische Wissenschaften - Institut für Konstruktion und Materialwissenschaften - Arbeitsbereich Stahlbau und Mischbautechnologie, 2015/2016.
- [6] Austrian Standards Institute/Österreichisches Normungsinstitut, EN 1993-1-5 Eurocode
 3 Bemessung und Konstruktion von Stahlbauten Teil 1-5: Plattenförmige Bauteile,
 Wien: Austrian Standards Institute/Österreichisches Normungsinstitut, 2012.
- [7] Ansys Inc., *Ansys 17.2*, 2016.
- [8] The MathWorks, Inc., *Matlab 2016b*, 2016.
- [9] H. Mang und G. Hofstetter, Festigkeitslehre, Heidelberg: Springer Vieweg, 2013.
- [10] Boverket, "Boverkets handbok om stålkonstruktioner, BSK 07," 2007.
- [11] Austrian Standards Institute/Österreichisches Normungsinstitut, EN 1999-1-1 Eurocode
 9: Bemessung und Konstruktion von Aluminiumtragwerken Teil 1-1: Allgemeine
 Bemessungsregeln, Wien: Austrian Standards Institute/Österreichisches
 Normungsinstitut, 2014.
- W. Rust, Nichtlineare Finite-Elemente-Berechnungen Kontakt, Geometrie, Material, 1.
 Ausgabe Hrsg., Wiesbaden: Vieweg + Teubner, 2009, pp. 187-190.

- [13] C. Bode, "4.4 Kontaktprobleme," 08 03 2011. [Online]. Available: http://prof.beuthhochschule.de/fileadmin/user/bode/Lehre/CE-Fernstudium/4.4-Kontakt.pdf. [Zugriff am 30 05 2017].
- [14] H. Draganić, T. Dokšanović und D. Markulak, "Investigation of bearing failure in steel single bolt lap connections," *Journal of Constructional Steel Research*, 2014.

8. Anhang A

	Ingenieursc Ingenieur	lehnung bzw. sspannung	Wahre Dehnungen bzw. Wahre Spannungen		
	<i>.</i>		_		
	0 _{eng} [N/mm²]	د _{eng} [-]	0 _{true} [N/mm²]	E _{true} [-]	
ľ	0	0	0	C	
	10	4,7619E-05	10,0004762	4,7618E-05	
	20	9,5238E-05	20,0019048	9,5234E-05	
	30	0,00014286	30,0042857	0,00014285	
	40	0,00019048	40,C07619	0,00019046	
	50	0,0002381	50,0119048	0,00023807	
	60	0,00C28571	60,0171429	0,00028567	
	70	0,00C33333	70,0233333	0,00033328	
	80	0,00C38095	80,0304762	0,00038088	
	90	0,00C42857	90,0385714	0,00042848	
	100	0,00047619	100,047619	0,00047608	
	110	0,00052381	110,057619	0,00052367	
	120	0,00C57143	120,068571	0,00057127	
	130	0,00C61905	130,080476	0,00061886	
	140	0,00C66667	140,093333	0,00066644	
	150	0,00C71429	150,107143	0,00071403	
	160	0,0007519	160,121905	0,00076161	
	170	0,00C80952	170,137619	0,0008092	
	180	0,00085714	180,154286	0,00085678	
	190	0,00C90476	190,171905	0,00090435	
	200	0,00095238	200,190476	0,00095193	
	210	0,001	210,21	0,0009995	
	220	0,00104762	220,230476	0,00104707	
	230	0,00109524	230,251905	0,00109464	
	240	0,00114286	240,274286	0,0011422	
	249,4	0,00118762	249,695192	0,00118691	
	249,4	0,0190519	254,154039	0,0188825	
	250	0,01920943	254,802357	0,01902726	
	260	0,02166817	265,633723	0,02143675	
	270	0,02412691	276,514264	0,02384045	
	280	0,02658564	287,44398	0,02623839	
	290	0,02904438	298,422871	0,02863059	
	300	0,03150312	309,450936	0,03101708	
	310	0,03396186	320,528176	0,03339789	
	320	0,0364206	331,654591	0,03577304	
	330	0,03887933	342,83018	0,03814257	
	340	0,04133807	354,054944	0,04050649	
	350	0,04379681	365,328883	0,04286484	
	360	0,04625555	376,651997	0,04521765	
	370	0,04871429	388,024286	0,04756492	
	370	0,425	527,25	0,35417181	

8.1. Materialdefinition Blechtafel 5008 - multilinear

8.2. Schraube 10.9 nach RAMBERG-OSGOOD

Ingenieursd Ingenieurs	ehnung bzw. sspannung	Wahre Dehnungen bzw. Wahre Spannungen		
σ _{eng} [N/mm²]	σ _{eng} ε _{eng} [N/mm²] [-]		€ _{true} [-]	
0	0	0	G	
20	9,5238E-05	20,0019048	9,5234E-05	
40	0.00019048	40.007619	0.00019046	
60	0.00028571	60.0171429	0.00028567	
80	0.00038095	80 0304762	0.00038688	
100	0.00047619	100.047619	0.00047608	
120	0.00057143	120.068571	0.00057127	
140	0.00066667	140.093333	0.00066644	
160	0.0007619	160.121905	0.00076161	
180	0,00085714	180,154286	0,00085678	
200	0.00095238	200.190476	0.00095193	
220	0,00104762	220,230476	0,00104707	
240	0.00114286	240.274286	0.0011422	
260	0,0012381	260,321905	0,00123733	
280	0,00133333	280,373333	0,00133245	
300	0,00142857	300,428571	0,00142755	
320	0,00152381	320,487619	0,00152265	
340	0,00161905	340,550476	0,00161774	
360	0,00171429	360,617143	0,00171282	
380	0,00180952	380,687619	0,00180789	
400	0,00190476	400,761905	0,00190295	
420	0,002	420,84	0,001998	
440	0,00209524	440,921905	0,00209305	
460	0,00219048	461,007619	0,00218808	
480	0,002285 71	481,097143	0,00228311	
500	0,00238095	501,190476	0,00237812	
520	0,00247619	521,287619	0,00247313	
540	0,00257143	541,388571	0,00256813	
560	0,00266667	561,193333	0,00266312	
580	0,0027619	581,601905	0,0027581	
600	0,00285714	601,714286	0,00285307	
620	0,00295238	621,830476	0,00294803	
640	0,00304762	641,950476	0,00304298	
660	0,00314286	662,074286	0,00313793	
680	0,0032381	682,201905	0,00323286	
700	0,003333333	702,333333	0,00332779	
720	0,00342857	722,468571	0,00342271	
740	0,00352381	742,607619	0,00351762	
760	0,00361905	762,750476	0,00361251	
780	0,003/1429	/82,89/143	0,0037074	
800	0,00384189	803,073511	0,00383453	
820	0,00398159	825,264907	0,00397369	
840	0,00417865	845,510051	0,00416995	
860	0,00450259	355,872051 004 400000	0,00449228	
065	0,0051010b	ŏŏ4,4ŏŏ₩3⊥ ΩΩ⊑ 2 ⊑74 42	0,00508809	
900 000	0,00028571 0.00060042	993,957143 639 363550	0,00020604 3,00020604	
92V 640	V,VU803043 A A124 4250	720,992008 050 00 101 5	0,0050008Z	
54V 960	V,VL304333 0.0227202/	732,824313 992 791130	0.0223E21E	
7410 020	a,az.ar.au.34 ∩ ∩4//10≥1	1073 27102	പപ്പാലാ പപ്പാലാ	
1000	0,0847619	1084,7619	0,08136052	

8.3. Stahl S355 - multilinear

Ingenieurse Ingenieu	dehnung bzw. rsspannung	Wahre Dehnungen bzw. Wahre Spannungen		
0				
σ _{eng} [N/mm [#]]	е _{епд} [-]	σ _{true} [N/mm²]	۵ _{נרט} פ [-]	
0	0	0	0	
10	4,7619E-05	10,0004762	4,7618E-05	
20	9,5238E-05	20,0019048	9,5234E-95	
30	0,00014286	30,0042857	0,00014285	
40	0,00019048	40,007619	0.00019046	
50	0,0002381	50,0119048	0,00023807	
60	0,00028571	60,0171429	0,00028567	
70	0,00033333	70,0233333	0 00033328	
80	0,00038095	86,0304762	0,00038088	
90	0,00042857	90,0385714	0,00042848	
100	0,00047619	100,047619	0,00047608	
110	0,00052381	110,057619	0.00052367	
120	0,00057143	120,068571	0,00057127	
130	0,00061905	130,080476	0,00061886	
140	0,00066667	140,093333	0,00066644	
150	0,00071429	150,107143	9,00071403	
160	0,0007619	160,121905	0.00076161	
170	0,00080952	170,137619	6,0008092	
180	0,00085714	180,154286	9,00085678	
190	0,00090476	190,171905	0,00090435	
200	0,00095238	200,190476	0,00095193	
210	0,001	210,21	0,0009995	
220	0.00104762	220.230476	0 00104707	
230	0,00109524	230,251905	0.00109464	
240	0.00114286	240.274286	0.0011422	
250	0,00119048	250,297619	0.00118977	
260	0,0012381	260,321905	0,00123733	
270	0,00128571	270,347143	0,00128489	
280	0,00133333	280,373333	0,00133245	
290	0.00138095	290,400476	0.00138	
300	0.00142857	300.428571	0 00142755	
310	0.00147619	310.457619	0.0014751	
320	0.00152381	320.487619	9 00152265	
330	0.00157143	330.518571	0.0015702	
340	0.00161905	340,550476	0 00161774	
350	0.00166667	350.583333	0 00166528	
355	0.01654762	360.874405	0.0164122	
360	0.01786596	366.431746	0.017/0824	
370	0.02050265	377.585979	0.0202953	
380	0.02313933	388,792945	0.02287567	
390	0.02577601	400.052646	0.02544941	
400	0.0284127	411.365079	0.62801654	
110	0.03104938	422.730247	0.0305771	
120	0.03368607	131 148148	0.03313112	
430	0.03632275	445.618783	0.03567863	
110	0.03895944	457.142152	0.03821967	
150	0.04159612	468 71 8254	0.04075427	
160	0.0442328	480 34700	0.01030427	
1/0	0.04626040	192 07866	0.04580407	
490	0.04950617	503 762963	0.64891974	
490	0,05214286	515.55	0,0508289	

8.4. Parameterkonfigurationen

PS	d	e1	e2	t	Force_Rk
	[mm]			[mm]	[N]
1	12	1,2	1,2	10,00	39043
2	12	1,5	1,2	10,00	48804
3	12	2,0	1,2	10,00	65072
4	12	1,2	1,5	10,00	58800
5	12	1,2	2	10,00	58800
6	12	1.2	З	10.00	58800
7	20	1.2	1.2	10.00	65072
8	20	1.5	1.2	10.00	81340
9	20	2.0	1.2	10.00	108453
10	20	3.0	1.2	10.00	123480
11	20	1.2	1.5	10.00	98000
12	20	1.5	1.5	10.00	122500
13	20	2.0	1.5	10.00	163333
14	20	1.2	2	10.00	98000
15	20	1.5	2	10.00	122500
16	20	2.0	2	10.00	163333
17	20	1.2	3	10.00	98000
18	20	1.5	3	10.00	122500
19	20	2.0	3	10.00	163333
20	30	1.2	1.2	10.00	97608
21	30	1.5	1.2	10.00	122010
22	30	2.0	1.2	10.00	162680
23	30	3.0	1.2	10.00	185220
24	30	1.2	1.5	10.00	147000
25	30	1.5	1.5	10.00	183750
26	30	2.0	1.5	10.00	245000
27	30	3.0	1.5	10.00	264600
28	30	1.2	2	10.00	147000
29	30	1.5	2	10.00	183750
30	30	2.0	2	10.00	245000
31	30	3.0	2	10.00	367500
32	30	1.2	3	10.00	147000
33	30	1.5	3	10.00	183750
34	30	2.0	3	10.00	245000
35	30	3.0	3	10.00	367500
36	20	1.2	1.2	20.00	130144
37	20	1.5	1.2	20.00	162680
38	30	1.2	1.2	20.00	195216
39	30	1.5	1.2	20.00	244020
40	30	2.0	1.2	20.00	325360
41	30	1.2	1.5	20.00	294000
42	30	1.5	1.5	20.00	367500
43	30	1.2	2	20.00	294000
44	30	1.5	2	20.00	367500
45	30	1.2	3	20.00	294000
46	30	1.5	3	20.00	367500

Verpflichtungs- und Einverständniserklärung

Ich erkläre, dass ich meine Masterarbeit selbständig verfasst und alle in ihr verwendeten Unterlagen, Hilfsmittel und die zugrunde gelegte Literatur genannt habe.

Ich nehme zur Kenntnis, dass auch bei auszugsweiser Veröffentlichung meiner Masterarbeit die Universität, das/die Institut/e und der/die Arbeitsbereich/e, an dem/denen die Masterarbeit ausgearbeitet wurde, und die Betreuerin/nen bzw. der/die Betreuer zu nennen sind.

Ich nehme zur Kenntnis, dass meine Masterarbeit zur internen Dokumentation und Archivierung, sowie zur Abgleichung mit der Plagiatssoftware elektronisch im Dateiformat pdf ohne Kenntowrtschutz bei der Leiterin bzw. beim Leiter der Lehrveranstaltung einzureichen ist, wobei auf die elektronisch archivierte Masterarbeit nur die Leiterin bzw. der Leiter der Lehrveranstaltung, im Rahmen derer die Masterarbeit abgefasst wurde, und das studienrechtliche Organ Zugriff haben.

Innsbruck, am 17.10.2017

.....

Manuel Vererfven, BSc