Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

Serge Autexier, Stephan Busemann, Marc Wagner

Bonn, Germany
31. October 2008

Motivation

- Support "Workflow" of preparing documents with math. content
- ... for mathematicians/scientists/software engineer for developing theories and especially proofs
- Why?
- Verifiable formalisations and proofs
- Added values through machine support
- Take over routine checks/tasks in proofs
- Organisation of large complex proofs (z.B. Kepler' conjecture proof by T. Hales)
- Semantic-based search for math. concepts
- ...
-Simple Seta
-Simple Seta
-Simple Seta

Approaches

Bottom-up Approach:

- Logic, calculus, and components build upon (proof assistants)
- Hope that eventually targeted users will use it
- Classical approach (a.o. תmega)

Approaches

Bottom-up Approach:

- Logic, calculus, and components build upon (proof assistants)
- Hope that eventually targeted users will use it
- Classical approach (a.o. תmega)

Top-down Approach:

- Start with systems that users already use
- Add functionality, e.g. those provide by proof assistants and more
- Analogy: Grammar-checker, but interactive
- Working hypotheses:
- Authors of documents should not have to learn peculiarities of proof assistance systems in order to get their support
- Support system should adapt to user, not vice versa
- Author always has full control over the text (layout, formulation)

The Vision

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Writing the Lecture Notes

Introduction to Algebra

Thomas H.

1 Logic
2 Classes and Sets
3 Functions
4 Relations and Partitions

Introduction to Algebra

Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H.]	This course
$\neg P$	"not P "
$P \wedge Q$	" P and Q "
$P \vee Q$	" P or Q "
$P \supset Q$	" P implies Q ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x . Q$	"for all x, Q "
$\exists z . Q$	"there exists x, Q "

2 Classes and Sets
3 Functions
4 Relations and Partitions
... Classes and Sets

Introduction to Algebra
 Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H .]	This course
$\neg P$	"not P "
$P \wedge Q$	$" P$ and Q "
$P \vee Q$	" or Q "
$P \supset Q$	"P implies Q ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x \cdot Q$	"for all x, Q "
$\exists z . Q$	"there exists x, Q "

2 Classes and Sets

3 Functions
4 Relations and Partitions

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, membership, and equality. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \varepsilon A$ for " x is an element of A " and $x \& A$ for " x is not an element of A ".
[...]
The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \varepsilon A \Leftrightarrow x \varepsilon B] \supset A=B)$.

A class A is defined to be a set if and only if there exists a class B such that $A \varepsilon B$. Thus a set is a particular kind of class. A class that is not a set is called a proper class. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The axiom of class formation asserts that for any statement $P(y)$ in the first-order predicate calculus involving a variable y, there exists a class A such that $x \varepsilon A$ if and only if x is a set and the statement $P(x)$ is true. We denote this class A by $\{x \mid$ $P(x)\}$.
[...]
A class A is a subclass of a class B (written $A \subseteq B$) provided:

$$
\text { for all } x \varepsilon A, x \varepsilon A \supset x \varepsilon B \text {. }
$$

By the axioms of extensionality and the properties of equality

$$
A=B \Leftrightarrow A \subseteq B \text { and } B \subseteq A
$$

... Classes and Sets

Introduction to Algebra
 Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H .]	This course
$\neg P$	"not P "
$P \wedge Q$	$" P$ and Q "
$P \vee Q$	" or Q "
$P \supset Q$	"P implies Q ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x \cdot Q$	"for all x, Q "
$\exists z . Q$	"there exists x, Q "

2 Classes and Sets

3 Functions
4 Relations and Partitions

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, membership, and equality. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \varepsilon A$ for " x is an element of A " and $x \notin A$ for " x is not an element of A ".
[...]
The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \varepsilon A \Leftrightarrow x \varepsilon B] \supset A=B$).

A class A is defined to be a set if and only if there exists a class B such that $A \varepsilon B$. Thus a set is a particular kind of class. A class that is not a set is called a proper class. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The axiom of class formation asserts that for any statement $P(y)$ in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement $P(x)$ is true. We denote this class A by $\{x \mid$ $P(x)\}$.
[...]
A class A is a subclass of a class B (written $A \subseteq B$) provided:

$$
\text { for all } x \in A, x \varepsilon A \supset x \varepsilon B \text {. }
$$

By the axioms of extensionality and the properties of equality

$$
A=B \Leftrightarrow A \subseteq B \text { and } B \subseteq A
$$

... Classes and Sets

Introduction to Algebra
 Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H .]	This course
$\neg P$	"not P "
$P \wedge Q$	$" P$ and Q "
$P \vee Q$	" or Q "
$P \supset Q$	"P implies Q ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x \cdot Q$	"for all x, Q "
$\exists z . Q$	"there exists x, Q "

2 Classes and Sets

3 Functions
4 Relations and Partitions

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, membership, and equality. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for " x is an element of A " and $x \notin A$ for " x is not an element of A ".
[...]
The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A=B)$.

A class A is defined to be a set if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a proper class. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The axiom of class formation asserts that for any statement $P(y)$ in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement $P(x)$ is true. We denote this class A by $\{x \mid$ $P(x)\}$.
[...]
A class A is a subclass of a class B (written $A \subset B$) provided:

$$
\text { for all } x \in A, x \in A \Rightarrow x \in B \text {. }
$$

By the axioms of extensionality and the properties of equality

$$
A=B \Leftrightarrow A \subset B \text { and } B \subset A
$$

Introduction to Algebra

Thomas H .

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H .]	This course
$\neg P$	"not P "
$P \wedge Q$	" P and Q "
$P \vee Q$	" or Q "
$P \supset Q$	"P implies Q ", $" P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x \cdot Q$	"for all x, Q "
$\exists z . Q$	"there exists x, Q "

2 Classes and Sets

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, membership, and equality. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for " x is an element of A " and $x \notin A$ for " x is not an element of A ".

[...]

The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A=B)$.

A class A is defined to be a set if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a proper class. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The axiom of class formation asserts that for any statement $P(y)$ in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement $P(x)$ is true. We denote this class A by
$\{x \mid P(x)\}$.
[...]
A class A is a subclass of a class B (written $A \subset B$) provided:

$$
\text { for all } x \in A, x \in A \Rightarrow x \in B \text {. }
$$

By the axioms of extensionality and the properties of equality

$$
A=B \Leftrightarrow A \subset B \text { and } B \subset A
$$

3 Functions
 4 Relations and Partitions

Functions and Relations

Introduction to Algebra

Thomas H.

1 Logic

2 Classes and Sets

3 Functions

Given classes A and B, a function (or map or mapping) f from A to B (written $f: A \rightarrow B$) assigns to each $a \in A$ exactly one element $b \in B ; b$ is called the value of the function at a or the image of a and is usually written $f(a)$. A is the domain of the function (sometimes written Dom_{f}) and B is the range or codomain. Sometimes it is convenient to denote the effect of the function f on an element of A by $a \mapsto f(a)$. Two functions are equal if they have the same domain and range and have the same value for each element of their common domain.
[...]

4 Relations and Partitions

The axiom of pair formation states that for any two sets [elements] a, b there is a set $P=\{a, b\}$ such that $x \in P$ if and only if $x=a$ or $x=b$; if $a=b$ then P is the singleton $\{a\}$. The ordered pair (a, b) is defined to be the set $\{\{a\},\{a, b\}\}$; its first component is a and its second component is b. It is easy to verify that $(a, b)=\left(a^{\prime}, b^{\prime}\right)$ if and only if $a=a^{\prime}$ and $b=b^{\prime}$. The Cartesian product of classes A and B is the class

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

A subclass R of $A \times B$ is called a relation on $A \times B$. For example, if $f: A \rightarrow B$ is a function, the graph of f is the relation $R=\{(a, f(a)) \mid a \in A\}$.
[...]

Functions and Relations

Introduction to Algebra

Thomas H.

1 Logic

2 Classes and Sets

3 Relations and Partitions

The axiom of pair formation states that for any two sets [elements] a, b there is a set $P=\{a, b\}$ such that $x \in P$ if and only if $x=a$ or $x=b$; if $a=b$ then P is the singleton
$\{a\}$. The ordered pair (a, b) is defined to be the set $\{\{a\},\{a, b\}\} ;$ its first component is a and its second component is b. It is easy to verify that $(a, b)=\left(a^{\prime}, b^{\prime}\right)$ if and only if $a=a^{\prime}$ and $b=b^{\prime}$. The Cartesian product of classes A and B is the class

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

A subclass R of $A \times B$ is called a relation on $A \times B$. For example, if $f: A \rightarrow B$ is a function, the graph of f is the relation $R=\{(a, f(a)) \mid a \in A\}$.
[...]

4 Functions

Given classes A and B, a function (or map or mapping) f from A to B (written $f: A \rightarrow B$) assigns to each $a \in A$ exactly one element $b \in B ; b$ is called the value of the function at a or the image of a and is usually written $f(a)$. A is the domain of the function (sometimes written Dom_{f}) and B is the range or codomain. Sometimes it is convenient to denote the effect of the function f on an element of A by $a \mapsto f(a)$. Two functions are equal if they have the same domain and range and have the same value for each element of their common domain.
[...]

Verification Details on Demand

Introduction to Algebra
 Thomas H.

1 Logic

2 Classes and Sets

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, membership, and equality. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for " x is an element of A " and $x \notin A$ for " x is not an element of A ".
[...]
The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A=B)$.

A class A is defined to be a set if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a proper class. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The axiom of class formation asserts that for any statement $P(y)$ in the firstorder predicate calculus involving a variable y, there exists a
class A such that $x \in A$ if and only if x is a set and the statement $P(x)$ is true. We denote this class A by $\{x \mid P(x)\}$.
[...]
A class A is a subclass of a class B (written $A \subset B$) provided:

$$
\text { for all } x \in A, x \in A \Rightarrow x \in B \text {. }
$$

By the axioms of extensionality and the properties of equality ${ }^{\text {Details }}$

$$
A=B \Leftrightarrow A \subset B \text { and } B \subset A
$$

Details We first prove $A=B \Rightarrow A \subset B$ and $B \subset A$: Assume (h) $A=B$, then we have to prove (1) $A \subset B$ and (2) $B \subset A$: For (1), assuming $x \in A$, we conclude $x \in B$ from (h) and properties of equality. For (2), assuming $x \in B$, we conclude $x \in A$ from (h) and properties of equality. Conversely, we prove $A \subset B$ and $B \subset A \Rightarrow A=B$: By Definition of \subset we know from $A \subset B$ and $B \subset A$ that $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$ for all x. Hence, $x \in A \Leftrightarrow x \in B$ for all x and by extensionality follows $A=B$.

3 Relations

4 Functions

The Vision

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Planned Functionality

General

- Are all used concepts defined? Uniquely? Unambiguously?
- Have all introduced notations been followed?
- Management/Maintenance of notational information
- Use of theories from other documents (semantic citation/copy\&paste) Specifically for proofs
- In a subproof: What are possible next steps?
- Apply automatic proof procedures (verification or subtasks)
- Automatically found (sub-)proofs
- integrated into document: readable, e.g. for inspection, explanation
- use introduced notations
- Is a proof complete? Is it verified?

The Vision

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Current State: Verimathdoc I

- Connect $T_{E} X$ macs with Ω mega via Mediator Plat Ω

- Fully annotated (manually) $T_{E} X_{\text {macs }}$ document
\begin\{definition\}[Function \$\in\$] }
The predicate \concept\{\in\}\{elem \times set \rightarrow bool\}
takes an individual and a set and tells whether that
individual belongs to this set.
\end\{definition\} }
Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps

Current State: Verimathdoc I

- Connect $T_{E} X_{\text {macs }}$ with Ω mega via Mediator Plat Ω

- Fully annotated (manually) $T_{E} X_{\text {macs }}$ document
example-dynamic.tm $\quad \square \square \square$
File Edit Insert Text Format Document Link View Go Tools Help Plato

1. Simple Sets

This theory defines the basic concepts and properties of the Theory of Simple Sets.
Definition 1. (Type of Elements)
First of all we define the type elem.
Definition 2. (Type of Sets)
Then we define the type set.
Definition 3. (Predicate \in)
The predicate \in elem \times set \rightarrow bool takes an individual and a set and tells whether that individual belongs to this set.

Notation 4. (Predicate \in) Let \boldsymbol{x} be an individual and \boldsymbol{A} a set, then we write $\boldsymbol{x} \in \boldsymbol{A}$,

Current State: Verimathdoc I

- Connect $T_{E} X_{\text {macs }}$ with Ω mega via Mediator Plat Ω

- Fully annotated (manually) $T_{E} X_{\text {macs }}$ document

```
example-dynamic.tm 
```

File Edit Insert Text Format Document Link View Go Tools Help Plato

DOCUMENT
THEORY

1. Simple Sets

This theory defines the basic concepts and properties of the Theory of Simple Sets.
definition
Definition 1. (Type of Elements)
First of all we define the type ${ }^{\text {TYPE }}$
elem
DEFINITION
Definition 2. (Type of Sets)
Then we define the type
TYPB

DOCUMENT
THEORY
-

Current State: Verimathdoc I

- Connect $T_{E} X$ macs with Ω mega via Mediator Plat Ω

- Fully annotated (manually) $T_{E} X_{\text {macs }}$ document
\begin\{definition\}[Function \$\in\$] }
The predicate \concept\{\in\}\{elem \times set \rightarrow bool\}
takes an individual and a set and tells whether that
individual belongs to this set.
\end\{definition\} }
Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps

Current State: Verimathdoc I

- Connect $T_{E} X_{\text {macs }}$ with Ω mega via Mediator Plat Ω

- Fully annotated (manually) $T_{E} X_{\text {macs }}$ document
\begin\{definition\}[Function \$ } { } ^ { in } \$]
The predicate \concept\{\in\}\{elem \times set \rightarrow bool\}
takes an individual and a set and tells whether that
individual belongs to this set.
\end\{definition\} }
Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps
- Except for formulas.
- Provides type and proof checking, interactive proof construction
- Incremental: only changes are passed around
- Basic document change management

Current State: Verimathdoc I

- Connect $T_{E} X_{\text {macs }}$ with Ω mega via Mediator Plat Ω

- Fully annotated (manually) $T_{E} X_{\text {macs }}$ document
\begin\{definition\}[Function \$ } { } ^ { in } \$]
The predicate \concept\{\in\}\{elem \times set \rightarrow bool\}
takes an individual and a set and tells whether that
individual belongs to this set.
\end\{definition\} }
Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps
- Except for formulas.
- Provides type and proof checking, interactive proof construction
- Incremental: only changes are passed around
- Basic document change management

Next Phase: Verimathdoc II

- Support independent from editors ($T_{E} X_{\text {macs }}$, Word 2007, LATEX)
- Start from Document as is
- Use NL-Analysis to obtain richer structures on which support can be offered (consistency checks, reorganisation, proof support, etc.)
- Use NL-Generation to map changes and modifications back into the document.

Support on Rich Structures

Next Phase: Verimathdoc II

- Support independent from editors ($T_{E} X_{\text {macs }}$, Word 2007, ${ }^{\text {AT}}{ }_{E} X$)
- Start from Document as is
- Use NL-Analysis to obtain richer structures on which support can be offered (consistency checks, reorganisation, proof support, etc.)
- Use NL-Generation to map changes and modifications back into the document.

Stephan's Part: NL Research Questions \& First Ideas

The Vision

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Gödel-Bernays Set Theory

Natural Language Text

The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A=B$).
A class A is defined to be a set if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a proper class. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large".

Formal Counterpart

```
axiom "extensionality" ! A,B. class(A) /\ (class(B)
    \ (! x. membership (x,A) < membership (x,B))) => A = B;
define set:object->o;
axiom "Set_Ax_89" ! A,a. set(a) << class(a) /\ (? B. class(B) /\ membership(a,B))
define properclass:object*object->o;
axiom "Set_Ax_90" ! A,a. class(a) => (properclass(a) <=> ~ set(a));
```


Definitions

Natural Language Text

A class A is a subclass of a class B (written $A \subset B$) provided:

$$
\text { for all } x \in A, x \in A \Rightarrow x \in B \text {. }
$$

Formal Counterpart

```
define subclass : object*object->o;
axiom "Class_Ax_122" ! A,B. class(A) /\ class(B) =>
    ( subclass(A,B) <> (! x. membership(x,A) => membership (x,B)));
```


Notation

```
notation subclass(#1, #2) <-> #1 \subset #2
```


Definitions

Natural Language Text

The axiom of class formation asserts that for any statement $P(y)$ in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement $P(x)$ is true. We denote this class A by $\{x \mid P(x)\}$.

Formal Counterpart

```
axiom "class formation" ! P:object->o . ? A. class(A) /\
    ! x . membership(x,A) <<> (set(x) /\ P(x));
define setconstr:(object->o)->object;
axiom "" ! P:object->0 . class(setconstr(P)) /\
    ! x . membership(x,setconstr(P)) << ( set(x) /\ P(x));
```


Notation

```
notation setconstr(lam #1 . #2) <-> {#1 | #2}
```


Theorems and Proofs

Natural Language Text

By the axioms of extensionality and the properties of equality

$$
A=B \Leftrightarrow A \subset B \text { and } B \subset A
$$

Formal Counterpart

```
conjecture "Class_Th_124" ! A,B. class(A) /\ class(B) =>
    (A = B < subclass(A,B) /\ subclass(B,A));
proof
    fact ! A,B. class(A) /\ class(B) => (A = B <<>
        subclass(A,B) /\ subclass(B,A)) by "Extensionality", "Properties of ="
    trivial
end
```


Theorems, Proofs and Checking Information

Natural Language Text

By the axioms of extensionality and the properties of equality

$$
A=B \Leftrightarrow A \subset B \text { and } B \subset A
$$

Formal Counterpart

```
conjecture "Class_Th_124" ! A,B. class(A) /\ class(B) =>
    (A = B < subclass(A,B) /\ subclass(B,A));
proof
    fact ! A,B. class(A) /\ class(B) => (A = B <<>
        subclass(A,B) /\ subclass(B,A)) by "Extensionality", "Properties of ="
        proof
            assume class(a), class(b);
    subgoal "1": a = b => subclass(a,b) /\ subclass(b,a);
        proof assume "hyp" : a = b;
            subgoal "1a": subclass(a,b)
            proof assume "hyp1" membership(x,a); subgoal membership(x,b);
                        trivial by "hyp", "hyp1" and "=" end
            subgoal "1b": subclass(b,a)
                proof assume "hyp2" membership(x,b); subgoal membership(x,a);
            trivial by "hyp", "hyp2" and "=" end
```


Theorems, Proofs and Checking Information

Formal Counterpart

```
subgoal "2": subclass(a,b) /\ subclass(b,a) => a = b;
    proof assume subclass(a,b), subclass(b,a);
        fact ! x . membership(x,a) => membership(x,b) by "subclass";
        fact ! x . membership(x,b) => membership(x,a) by "subclass";
        fact ! x . membership(x,b) <=> membership(x,a) by "logic";
        trivial by "Extensionality"; end
```

end; trivial; end

Natural Language Text

By the axioms of extensionality and the properties of equalityDetails

$$
A=B \Leftrightarrow A \subset B \text { and } B \subset A
$$

Details We first prove $A=B \Rightarrow A \subset B$ and $B \subset A$: Assume (h) $A=B$, then we have to prove (1) $A \subset B$ and (2) $B \subset A$: For (1), assuming $x \in A$, we conclude $x \in B$ from (h) and properties of equality. For (2), assuming $x \in B$, we conclude $x \in A$ from (h) and properties of equality. Conversely, we prove $A \subset B$ and $B \subset A \Rightarrow A=B$: By Definition of \subset we know from $A \subset B$ and $B \subset A$ that $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$ for all x. Hence, $x \in A \Leftrightarrow x \in B$ for all x and by extensionality follows $A=B$.

More to come...

Current state (Verimathdoc I)

Marc's Part: Document management, Ambiguities, Verification
Natural language text processing/generation (Verimathdoc II)

Gödel-Bernays Set Theory

Natural Language Text

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, membership, and equality. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for " x is an element of A " and $x \notin \boldsymbol{A}$ for " x is not an element of A ".

Formal Counterpart

```
define class:object->o;
define membership:object*object->o;
axiom !x,a . membership(x, a) or ~ membership(x, a);
```

Notation

```
notation #1\in#2 <-> membership(\#1, \#2)
notation #1&#2 <-> ~ membership(\#1, \#2)
```

