Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

Serge Autexier, Stephan Busemann, Marc Wagner

Bonn, Germany 31. October 2008

1

- Support "Workflow" of preparing documents with math. content
- ... for mathematicians/scientists/software engineer for developing theories and especially proofs
- ► Why?
 - Verifiable formalisations and proofs
 - Added values through machine support
 - Take over routine checks/tasks in proofs
 - Organisation of large complex proofs (z.B. Kepler' conjecture proof by T. Hales)
 - Semantic-based search for math. concepts

▶ ...

😫 anampte dynamica av 🖑	= (D) X
File Billt Insett Text Format Document View On Tools Help	
이 여러 등 속 위 조 파 한 것 않 것 위 위 티 ★ 위 파 팀 위 의 수 등 수 있 비 Hang	
編集書版課題和 田田田 88×5NA群	
1 1. Simple Sets	
This theory defines the basic concepts and properties of the Theory of Simple Sets.	
Durnwinnen 1. (Type of Alementa) First of all use define the type olean.	
Dervermon 1. (Type of Sole) Then we define the type set.	
DEFECTION 3. (Poweries \oplus) The function \oplus states are individual and a set and title whether the which belows to this set.	i inde
NOTATION 4. (Parenties \in) Let x be an independ and A a set, then we write x is independent of $A,$ is $\sin A$ or A constaining.	с A,
Deremone's. (Partice <) The function Communication labor two are end tolls whether die first set is a subset around set.	of the
Notestice 4. (Function \subset) Let A and B be sets, then we write $A \subset B$.	
$\begin{array}{l} \text{Axiout 7: } (Juginations of \subset) \\ \text{ It indications } \forall U, V, (U \subset V) \Leftrightarrow \{\forall x. \{x \in U\} \Rightarrow \{x \in V\}\} \end{array}$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
DEFERTION 5. (Parentees U.) The function U _{mit} tasks cost index too acts and returns the scalars of both acts.	
Noterrow 10. (Function \cup) Let A and B be sets, then we write $A \cup B$.	
Axios 11. (Definition of U.)	
artick plata menus text soman 13 be	der pi-document

Approaches

Sichere Kognitive Syste

Bottom-up Approach:

- Logic, calculus, and components build upon (proof assistants)
- Hope that eventually targeted users will use it
- Classical approach (a.o. Ωmega)

Approaches

Bottom-up Approach:

- Logic, calculus, and components build upon (proof assistants)
- Hope that eventually targeted users will use it
- Classical approach (a.o. Ωmega)

Top-down Approach:

- Start with systems that users already use
- Add functionality, e.g. those provide by proof assistants and more
- Analogy: Grammar-checker, but interactive
- Working hypotheses:
 - Authors of documents should not have to learn peculiarities of proof assistance systems in order to get their support
 - Support system should adapt to user, not vice versa
 - Author always has full control over the text (layout, formulation)

3

(Texteditors)

The Vision

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Autexier: Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

Bonn, October'08

Writing the Lecture Notes

Introduction to Algebra Thomas H.

1 Logic 2 Classes and Sets 3 Functions 4 Relations and Partitions ...Logic

Introduction to Algebra Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H.]	This course
¬ <i>P</i>	"not <i>P</i> "
$P \wedge Q$	" <i>P</i> and <i>Q</i> "
$P \lor Q$	" <i>P</i> or <i>Q</i> "
$P \supset Q$	" <i>P</i> implies <i>Q</i> ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x.Q$	"for all x, Q"
∃ <i>z</i> . <i>Q</i>	"there exists x, Q"

2 Classes and Sets 3 Functions 4 Relations and Partitions

Introduction to Algebra Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H.]	This course
¬ <i>P</i>	"not <i>P</i> "
$P \wedge Q$	" <i>P</i> and <i>Q</i> "
$P \lor Q$	" <i>P</i> or <i>Q</i> "
$P \supset Q$	" <i>P</i> implies <i>Q</i> ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x.Q$	"for all <i>x</i> , <i>Q</i> "
∃z.Q	"there exists x, Q"

2 Classes and Sets

3 Functions

4 Relations and Partitions

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are **class**, **membership**, and **equality**. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for "x is an element of A" and $x \notin A$ for "x is not an element of A".

[...]

The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \supset A = B)$.

A class \hat{A} is defined to be a **set** if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a **proper class**. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The **axiom of class formation** asserts that for any statement P(y) in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement P(x) is true. We denote this class A by $\{x \mid P(x)\}$.

A class A is a **subclass** of a class B (written $A \subseteq B$) provided:

for all $x \in A$, $x \in A \supset x \in B$.

By the axioms of extensionality and the properties of equality

 $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$

Introduction to Algebra Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H.]	This course
¬P	"not <i>P</i> "
$P \wedge Q$	" <i>P</i> and <i>Q</i> "
$P \lor Q$	" <i>P</i> or <i>Q</i> "
$P \supset Q$	" <i>P</i> implies <i>Q</i> ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x.Q$	"for all <i>x</i> , <i>Q</i> "
∃z.Q	"there exists x, Q"

2 Classes and Sets

3 Functions

4 Relations and Partitions

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are **class**, **membership**, and **equality**. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for "x is an element of A" and $x \notin A$ for "x is not an element of A".

[...]

The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \supset A = B)$.

A class A is defined to be a **set** if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a **proper class**. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The **axiom of class formation** asserts that for any statement P(y) in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement P(x) is true. We denote this class A by $\{x \mid P(x)\}$.

A class A is a **subclass** of a class B (written $A \subseteq B$) provided:

for all $x \in A$, $x \in A \supset x \in B$.

By the axioms of extensionality and the properties of equality

 $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$

Introduction to Algebra Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H.]	This course
¬P	"not <i>P</i> "
$P \wedge Q$	" <i>P</i> and <i>Q</i> "
$P \lor Q$	" <i>P</i> or <i>Q</i> "
$P \supset Q$	" <i>P</i> implies <i>Q</i> ", " $P \Rightarrow Q$ "
$P \equiv Q$	" $P \Leftrightarrow Q$ "
$\forall x.Q$	"for all <i>x</i> , <i>Q</i> "
∃z.Q	"there exists x, Q"

2 Classes and Sets

3 Functions

4 Relations and Partitions

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are **class**, **membership**, and **equality**. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for "x is an element of A" and $x \notin A$ for "x is not an element of A".

[...]

The axiom of extensionality asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A = B)$.

A class A is defined to be a **set** if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a **proper class**. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The **axiom of class formation** asserts that for any statement P(y) in the first-order predicate calculus involving a variable y, there exists a class A such that $x \in A$ if and only if x is a set and the statement P(x) is true. We denote this class A by $\{x | P(x)\}$.

A class A is a **subclass** of a class B (written $A \subset B$) provided:

for all $x \in A, x \in A \Rightarrow x \in B$.

By the axioms of extensionality and the properties of equality

 $A = B \Leftrightarrow A \subset B$ and $B \subset A$

Introduction to Algebra Thomas H.

1 Logic

We adopt the logical foundations developed in the lecture notes [SS08, David H.] and agree on the following notational conventions:

[SS08, David H.]	This course
$\neg P$	"not <i>P</i> "
$P \wedge Q$	" <i>P</i> and <i>Q</i> "
$P \lor Q$	" <i>P</i> or <i>Q</i> "
$P \supset Q$	" <i>P</i> implies <i>Q</i> ", " $P \Rightarrow Q$ "
$P \equiv Q$	" <i>P</i> ⇔ <i>Q</i> "
$\forall x.Q$	"for all <i>x</i> , <i>Q</i> "
∃z.Q	"there exists x, Q"

2 Classes and Sets

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, **membership**, and **equality**. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for "x is an element of A" and $x \notin A$ for "x is not an element of A".

[...] The **axiom of extensionality** asserts that two classes with the same elements are equal (formally, $|x \in A \Leftrightarrow x \in B| \Rightarrow A = B$).

A class *A* is defined to be a **set** if and only if there exists a class *B* such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a **proper class**. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The **axiom of class formation** asserts that for any statement P(y) in the first-order predicate calculus involving a variable *y*, there exists a class *A* such that $x \in A$ if and only if *x* is a set and the statement P(x) is true. We denote this class *A* by $\{X \mid P(X)\}$.

A class A is a **subclass** of a class B (written $A \subset B$) provided:

for all $x \in A, x \in A \Rightarrow x \in B$.

By the axioms of extensionality and the properties of equality

$$A = B \Leftrightarrow A \subset B$$
 and $B \subset A$

3 Functions 4 Relations and Partitions

[...]

Autexier: Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

... Functions and Relations

Introduction to Algebra Thomas H.

1 Logic

2 Classes and Sets

3 Functions

Given classes A and B, a function (or map or mapping) f from A to B (written $f: A \rightarrow B$) assigns to each $a \in A$ exactly one element $b \in B$; b is called the value of the function at a or the image of a and is usually written f(a). A is the **domain** of the function (sometimes written Dom_i) and B is the **range** or **codomain**. Sometimes it is convenient to denote the effect of the function f on an element of A by $a \mapsto f(a)$. Two functions are **equal** if they have the same domain and range and have the same value for each element of their common domain. [...]

4 Relations and Partitions

The **axiom of pair formation** states that for any two sets [elements] *a*, *b* there is a set $P = \{a, b\}$ such that $x \in P$ if and only if x = a or x = b; if a = b then P is the **singleton** $\{a\}$. The **ordered pair** (*a*, *b*) is defined to be the set $\{\{a\}, \{a, b\}\}$; its **first component** is *a* and its **second component** is *b*. It is easy to verify that (a, b) = (a', b') if and only if a = a' and b = b'. The **Cartesian product** of classes *A* and *B* is the class

 $A \times B = \{(a, b) \mid a \in A, b \in B\}$

A subclass R of $A \times B$ is called a **relation** on $A \times B$. For example, if $f : A \to B$ is a function, the **graph** of f is the relation $R = \{(a, f(a)) \mid a \in A\}$. [...]

... Functions and Relations

Introduction to Algebra Thomas H.

1 Logic

2 Classes and Sets

3 Relations and Partitions

The **axiom of pair formation** states that for any two sets [elements] *a*, *b* there is a set $P = \{a, b\}$ such that $x \in P$ if and only if x = a or x = b; if a = b then P is the **singleton** $\{a\}$. The **ordered pair** (a, b) is defined to be the set $\{\{a\}, \{a, b\}\}$; its **first component** is *a* and its **second component** is *b*. It is easy to verify that (a, b) = (a', b') if and only if a = a' and b = b'. The **Cartesian product** of classes *A* and *B* is the class

 $A \times B = \{(a, b) \mid a \in A, b \in B\}$

A subclass R of $A \times B$ is called a **relation** on $A \times B$. For example, if $f : A \to B$ is a function, the **graph** of f is the relation $R = \{(a, f(a)) \mid a \in A\}$. [...]

4 Functions

Given classes A and B, a function (or map or mapping) f from A to B (writen $f: A \rightarrow B$) assigns to each $a \in A$ exactly one element $b \in B$; b is called the value of the function at a or the image of a and is usually written f(a). A is the domain of the function (sometimes written Dom_f) and B is the range or codomain. Sometimes it is convenient to denote the effect of the function f on an element of A by $a \mapsto f(a)$. Two functions are equal if they have the same domain and range and have the same value for each element of their common domain.

[...]

... Verification Details on Demand

Introduction to Algebra Thomas H.

1 Logic

2 Classes and Sets

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are class, **membership**, and equality. Intuitively, we consider a class to be a collection A of objects (elements) such that given any object x if it is possible to determine whether or not x is a member (or element) of A. We write $x \in A$ for "x is an element of A" and $x \notin A$ for "x is not an element of A".

[...]

The **axiom of extensionality** asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A = B)$.

A class A is defined to be a **set** if and only if there exists a class B such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a **proper class**. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The **axiom of class** formation asserts that for any statement P(y) in the first-order predicate calculus involving a variable y, there exists a

class A such that $x \in A$ if and only if x is a set and the statement P(x) is true. We denote this class A by $\{x \mid P(x)\}$.

[...]

A class A is a **subclass** of a class B (written $A \subset B$) provided:

for all
$$x \in A, x \in A \Rightarrow x \in B$$
.

By the axioms of extensionality and the properties of equality $^{\ensuremath{\textit{Details}}}$

$$A = B \Leftrightarrow A \subset B$$
 and $B \subset A$

Details We first prove $A = B \Rightarrow A \subset B$ and $B \subset A$: Assume (h) A = B, then we have to prove (1) $A \subset B$ and (2) $B \subset A$: For (1), assuming $x \in A$, we conclude $x \in B$ from (h) and properties of equality. For (2), assuming $x \in B$, we conclude $x \in A$ from (h) and properties of equality. Conversely, we prove $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$ for all x. Hence, $x \in A \Leftrightarrow x \in B$ for all x and by extensionality follows A = B.

4 Functions

1

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Autexier: Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

General

- Are all used concepts defined? Uniquely? Unambiguously?
- Have all introduced notations been followed?
- Management/Maintenance of notational information
- Use of theories from other documents (semantic citation/copy&paste)
 Specifically for proofs
- In a subproof: What are possible next steps?
- Apply automatic proof procedures (verification or subtasks)
- Automatically found (sub-)proofs
 - ▶ integrated into document: readable, e.g. for inspection, explanation
 - use introduced notations
- Is a proof complete? Is it verified?

12

The Vision

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Autexier: Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

• Connect $T_E X_{macs}$ with $\Omega mega$ via Mediator $Plat\Omega$

$$T_{E}X_{macs} \longleftrightarrow Plat\Omega \longleftrightarrow \Omega mega$$

Fully annotated (manually) T_EX_{macs} document \begin{definition}[Function \$\in\$] The predicate \concept{\in}{elem \times set \rightarrow bool} takes an individual and a set and tells whether that individual belongs to this set. \end{definition}

Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps

• Connect $T_E X_{macs}$ with $\Omega mega$ via Mediator $Plat\Omega$

$$T_{E}X_{macs} \longleftrightarrow Plat\Omega \longleftrightarrow \Omega mega$$

Fully annotated (manually) T_EX_{macs} document \begin{definition}[Function \$\in\$] The predicate \concept{\in}{elem \times set \rightarrow bool} takes an individual and a set and tells whether that individual belongs to this set. \end{definition}

Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps

• Connect $T_E X_{macs}$ with $\Omega mega$ via Mediator $Plat\Omega$

 $T_{E}X_{macs} \longleftrightarrow Plat\Omega \longleftrightarrow \Omega mega$

Fully annotated (manually) T_EX_{macs} document \begin{definition}[Function \$\in\$] The predicate \concept{\in}{elem \times set \rightarrow bool} takes an individual and a set and tells whether that individual belongs to this set. \end{definition}

Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps

- Except for formulas.
- Provides type and proof checking, interactive proof construction
- Incremental: only changes are passed around
- Basic document change management

• Connect $T_E X_{macs}$ with $\Omega mega$ via Mediator $Plat\Omega$

 $T_{E}X_{macs} \longleftrightarrow Plat_{\Omega} \longleftrightarrow \Omega mega$

Fully annotated (manually) T_EX_{macs} document \begin{definition}[Function \$\in\$] The predicate \concept{\in}{elem \times set \rightarrow bool} takes an individual and a set and tells whether that individual belongs to this set. \end{definition}

Use Macros to indicate semantics: begin/end of theories, definitions, theorems, proofs, proof steps

- Except for formulas.
- Provides type and proof checking, interactive proof construction
- Incremental: only changes are passed around
- Basic document change management

Marc's Part

Next Phase: Verimathdoc II

- ► Support independent from editors (*T_EX_{macs}*, Word 2007, LAT_EX)
- Start from Document as is
- Use NL-Analysis to obtain richer structures on which support can be offered (consistency checks, reorganisation, proof support, etc.)
- Use NL-Generation to map changes and modifications back into the document.

15

Next Phase: Verimathdoc II

- Support independent from editors (*T_EX_{macs}*, Word 2007, L^AT_EX)
- Start from Document as is
- Use NL-Analysis to obtain richer structures on which support can be offered (consistency checks, reorganisation, proof support, etc.)
- Use NL-Generation to map changes and modifications back into the document.

The Vision

Planned Functionality

Current State

Spectrum between Text, Notations and Formal Representations

Autexier: Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

The **axiom of extensionality** asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A = B$).

A class *A* is defined to be a **set** if and only if there exists a class *B* such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a **proper class**. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large".

Formal Counterpart

Definitions

Natural Language Text

A class A is a **subclass** of a class B (written $A \subset B$) provided:

for all $x \in A, x \in A \Rightarrow x \in B$.

Formal Counterpart

```
define subclass : object*object->o;
```

Notation

notation subclass(#1, #2) <-> #1 \subset #2

The **axiom of class formation** asserts that for any statement P(y) in the first-order predicate calculus involving a variable *y*, there exists a class *A* such that $x \in A$ if and only if *x* is a set and the statement P(x) is true. We denote this class *A* by $\{x \mid P(x)\}$.

Formal Counterpart

```
axiom "class formation" ! P:object->o . ? A. class(A) /\
    ! x . membership(x,A) <=> (set(x) /\ P(x));
```

```
define setconstr:(object->o)->object;
axiom "" ! P:object->o . class(setconstr(P)) /\
        ! x . membership(x,setconstr(P)) <=> (set(x) /\ P(x));
```

Notation

notation setconstr(lam #1 . #2) <-> {#1 | #2}

19

By the axioms of extensionality and the properties of equality

 $A = B \Leftrightarrow A \subset B$ and $B \subset A$

Formal Counterpart

```
conjecture "Class_Th_124" ! A,B. class(A) /\ class(B) =>
  (A = B <=> subclass(A,B) /\ subclass(B,A));
```

```
proof
fact ! A,B. class(A) /\ class(B) => (A = B <=>
    subclass(A,B) /\ subclass(B,A)) by "Extensionality", "Properties of ="
trivial
end
```


By the axioms of extensionality and the properties of equality

 $A = B \Leftrightarrow A \subset B$ and $B \subset A$

Formal Counterpart

```
conjecture "Class_Th_124" ! A,B. class(A) /\ class(B) =>
     (A = B \iff subclass(A,B) / subclass(B,A));
proof
fact ! A,B. class(A) /\ class(B) => (A = B <=>
    subclass(A,B) /\ subclass(B,A)) by "Extensionality", "Properties of ="
   proof
    assume class(a), class(b);
     subgoal "1": a = b => subclass(a,b) /\ subclass(b,a);
      proof assume "hyp" : a = b;
         subgoal "1a": subclass(a,b)
           proof assume "hyp1" membership(x,a); subgoal membership(x,b);
                trivial by "hyp", "hyp1" and "=" end
         subgoal "1b": subclass(b,a)
           proof assume "hyp2" membership(x,b); subgoal membership(x,a);
                 trivial by "hyp", "hyp2" and "=" end
```

Autexier: Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

Formal Counterpart

```
subgoal "2": subclass(a,b) /\ subclass(b,a) => a = b;
  proof assume subclass(a,b), subclass(b,a);
         fact ! x . membership(x,a) => membership(x,b) by "subclass";
         fact ! x . membership(x,b) \Rightarrow membership(x,a) by "subclass";
         fact ! x . membership(x,b) <=> membership(x,a) by "logic";
         trivial by "Extensionality"; end
end; trivial; end
```

Natural Language Text

By the axioms of extensionality and the properties of equality Details

 $A = B \Leftrightarrow A \subset B$ and $B \subset A$

Details We first prove $A = B \Rightarrow A \subset B$ and $B \subset A$: Assume (h) A = B, then we have to prove (1) $A \subset B$ and (2) $B \subset A$: For (1), assuming $x \in A$, we conclude $x \in B$ from (h) and properties of equality. For (2), assuming $x \in B$, we conclude $x \in A$ from (h) and properties of equality. Conversely, we prove $A \subseteq B$ and $B \subseteq A \Rightarrow A = B$: By Definition of \subseteq we know from $A \subseteq B$ and $B \subseteq A$ that $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$ for all x. Hence, $x \in A \Leftrightarrow x \in B$ for all x and by extensionality follows A = B.

Autexier: Semantik-basierte Autorenwerkzeuge für mathematische Dokumente

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are **class**, **membership**, and **equality**. Intuitively, we consider a class to be a collection *A* of objects (elements) such that given any object *x* if it is possible to determine whether or not *x* is a member (or element) of *A*. We write $x \in A$ for "*x* is an element of *A*" and $x \notin A$ for "*x* is not an element of *A*".

Formal Counterpart

```
define class:object->o;
define membership:object*object->o;
```

axiom !x,a . membership(x, a) or ~ membership(x, a);

Notation

```
notation \#1 \in \#2 \iff membership(\#1, \#2)
notation \#1 \notin \#2 \iff membership(\#1, \#2)
```