

DELTABEAM[®] composite beams supporting hollow core slabs in fire case

From test to approval

Oliver Beckmann R&D Engineer Peikko group

Content

- Introduction
- Technical background
- Summary of experiments
- Contents of the approval (aBG)

Introduction

A faster, safer and more sustainable way to design and build

Peikko DELTABEAM® in combination with prestressed hollow core slabs

Introduction

A faster, safer and more sustainable way to design and build

Technical background

Technical background

Hollow core slabs supported on DELTABEAM®

Shifted direct support

Bottomplate temperature >900°C

Direct support is no longer provided \rightarrow Support reaction shifted towards web

Load transfer to the beam through the concrete grout

Strut-and-tie model

Straight connecting reinforcement

Technical background

Hollow core slabs supported on DELTABEAM®

Ambient temperature

Vertical shear resistance reduced when supported on flexible beams

Fire case

- No negative effect known
- No code regulations available
- Germany: Beam deflection limit in fire case \leq L/100

Important note

- Forced displacement "c2", not a load displacement !
- Cracking reduces stiffness and stresses

From: "Zum Tragverhalten von Spannbeton-Fertigdecken bei biegeweicher Lagerung", Roggendorf, 2010, Fig 2.11

Test program for investigating the system behavior in the event of a fire

- Flexible support
- Shifted direct support

- Shear tests on individual slab elements
 - Behaviour of the slab elements under combined stress of vertical shear, horizontal forced displacement and elevated temperature
- System tests
 - Behaviour of a slab system from DELTABEAM[®] and hollow core slabs
 - Load transfer mechanisms
 - Vertical shear resistance of slabs

Boundary conditions for the shear tests on individual slabs

Objective:

- Investigation of slab element behaviour under combined loading
- Calibration of FE models

Execution:

Bottom side of the slabs – electric heating mats

Apply vertical shear force and horizontal displacement up to failure

Investigation of different slab element geometries

From: "Gutachtliche Stellungnahme zur beigeweichen und indirekten Auflagerung von Spannbetonhohlplatten aus Slim-Floor-Trägern "Deltabeam" im Brandfall – Abstimmung Validierungsversuche", Cyllok, Pessel, Hothan, Häßler, 2018

System fire tests

Sections of the system fire tests (D32-300 mit A32V)

System fire tests

Load and displacement measurements in the A32V test

peikko

Boundary conditions of the aBG

- Design recommendations for support of HCS on DELTABEAM® in fire case
- DELTABEAM®
 - All cross-sections of the German DELTABEAM® approval
 - 180mm to 700mm beam height
- Prestressed hollow core slabs
 - All cross-sections according to standard
 - Slab heights of 200mm to 400mm
- Concrete C20/25 to C50/60
- Ring anchor reinforcement 2Ø14mm around each slab area

Boundary conditions of the aBG

- Fire resistance up to 90 minutes
 - Resistance (Criterium R)
 - Compartmentation (Criterium E)
 - Insulation (Criterium I) is provided by products
- Fire exposure of top and bottom side
- Design of individual products DB und HCS must also be fulfilled

Design

- Deflection of DELTABEAM[®] must be limited:
 - Basis: exceptional load combination
 - Consideration of thermal deflections

$$\frac{L_{DB}}{W_{DB,fi}} \ge 35 + 30 * \frac{h_{HC} - 200}{300}$$

mit

h_{HC} Höhe der Spannbeton-Hohlplatten L_{DB}, W_{DB,fi}, h_{Hc} in [mm]

beikko°

Design

- Design of prestressed hollow core slabs:
 - Vertical shear resistance acc. EN 1168, Annex G
 - Resistance as for rigidly support slabs
 - Support length b_{AL} to be applied as 0mm (Anchorage length of tendons ~0mm)

je peikko®

Design

- Location of the resulting support reaction

 $A_{s,1,fi,req} = \frac{F_{s,1,fi,li/re}}{f_{sk,\theta}}$

Design

- Connecting reinforcement - Part 1: Slab support

Basis: Equilibrium with friction coeff. $\mu_k=0,6$

Factor 1,11 at β =78° (worst case)

peikko®

Design

- Connecting reinforcement - Part 2: Torsion

Design

- Connecting reinforcement - Sum

$$\begin{split} A_{s,fi,req} &= \max \left(\left(A_{s,1,li,fi,req} + A_{s,2,li,fi,req} \right), \left(A_{s,1,re,fi,req} + A_{s,2,re,fi,req} \right) \right) \\ \text{mit} \\ A_{s,fi,req} & \text{erforderlicher Querschnitt der Anschlussbewehrung [cm²/m]} \end{split}$$

- This connecting reinforcement can be also applied for design of the prestressed hollow core slabs according to EN 1168, Annex G.1.3 (no combinations req.)
- Anchorage

$$l_{\rm bd,fi} = \frac{\emptyset_s}{4} * \frac{\sigma_{sd,fi}}{f_{bd,fi}} \ge 700 \ mm$$

mit $\sigma_{sd,fi} = \frac{F_s}{A_{s,fi,req}}$ $f_{bd,fi} = 2,25 * 0,7 * f_{ctk,0.05} * \frac{f_{c,\Theta}}{f_{ck}}$ $f_{ctk,0.05} \qquad 5\%$ -Quantil der Zugfestigkeit des Fugenbetons nach DIN EN 1992-1-1¹⁸, Tabelle 3.1 [kN/cm²] $\frac{f_{c,\Theta}}{f_{ck}} \qquad \text{temperaturbedingter Abminderungsfaktor der}$ Druckfestigkeit des Fugenbetons nach DIN EN 1992-1-2¹⁴, Tabelle 3.1

Design

 Interface shear between concrete grout and HCS element void is covered by aforementioned anchorage length !

Execution

- Cleaning of voids
- No installation of slab elements with cracked anchorage areas
- De-areation and compaction
- Neoprene strips flush with the outer end of the bottom flanges

Thank you for listening !

Oliver Beckmann, Dipl.-Ing. (FH) R&D Engineer Deltabeam Frame

