
CSCI699: Theory of Machine Learning Fall 2021

Lecture 13: SQ Learning

Instructor: Vatsal Sharan Scribe: Zhengqi Wu

Definition 1 (SQ dimension). The SQ-dimension of a class C wrt a distribution D over X is the
size of the largest subset C′ ⊆ C s.t. for all f,g ∈ C′,

| Pr
x∼D

[f(x) = g(x)]− 1

2
| < 1

|C ′|

Theorem 2 (Theorem 2). If SQ −DIMD(C) > poly(d) then you cannot efficiently learn C over

D by SQ-algorithms (even “weak-learning” to error ≤ 1

2
− 1

poly(d)
is impossible).

Parity function:
Xd = {0, 1}d
y = {0, 1}
e = w(x) =< w, x > mod 2 : w ∈ {0, 1}d

Theorem 3. PARITIES are efficiently PAC learnable.

Let U be the uniform distribution over {0, 1}d.

Claim 4. Any two parity functions Cw1(x) and Cw2(x) (where w1 ̸= w2) are uncorrelated:

Pr
U
[Cw1(x) = Cw2(x)] =

1

2

SQ Learning

It will be convenient to define PARITIES as a function on {−1,+1}d 7→ {−1,+1}

xd = {±1}d

y = {±1}
e = {CS(x) = Πi∈Sxi : S ⊆ {1, . . . d}}

Claim 5. If S ̸= T, Prx∼U (CS(x) = CT (x)) =
1

2

Proof

Ex∼U [CS(x) · CT (x)] = Ex∼U [
∏
i∈S

xi ·
∏
i∈T

xi]

= Ex∼U [
∏

i∈S∆T

xi]

= 0 if S ̸= T (uniform distribution)

(S∆T = {S − T} ∪ {T − S})

1



Pr
x∼U

(CS(x) = CT (x)) + Pr
x∼U

(CS(x) ̸= CT (x)) = 1

E
x∼U

[CS(x) · CT (x)] = Pr
x∼U

(CS(x) = CT (x))− Pr
x∼U

(CS(x) ̸= CT (x))

E
x∼U

[CS(x) · CT (x)] = 0

Pr
x∼U

(CS(x) = CT (x)) =
1

2

Corollary 6 (Corollary of Theorem 2). It is not possible to efficiently learn parities in the SQ
model over the uniform distribution.

Proof
SQ−DIMU (C) = 2d

We will now prove theorem 2 for the special case of PARITIES.

Theorem 7 (Hardness of parities in SQ). Any SQ algorithm for learning SQ over D=u, which
makes queries of tolerance τ > τmin must make Ω(τ2min2

d) queries to STAT(c,0).

Proof We first define a Correlational SQ (CSQ) oracle, which is a modified version of the SQ oracle:
For any query function Ψ : X 7→ ±, and tolerance τ , let PΨ = E[Ψ(x) · c(x)]
Oracle returns P̂Ψ ∈ [PΨ − τ, PΨ + τ ]

Lemma 8. If learner knows target distribution D, can simulate SQ oracle with CSQ oracle.

Proof We can decompose any SQ ϕ into:

E
x∼D

[ϕ(x, c(x))] = E
x∼D

[ϕ(x, 1) · 1(c(x) = 1)] + E
x∼D

[ϕ(x, 1) · 1(c(x) = −1)]

= E
x∼D

[ϕ(x, 1) · (1 + c(x))

2
)] + E

x∼D
[ϕ(x, 1) · (1− c(x))

2
)]

=
1

2

(
E

x∼D
[ϕ(x, 1)] + E

x∼D
[ϕ(x,−1)]

)
+

1

2

(
E

x∼D
[ϕ(x, 1) · c(x)] + E

x∼D
[ϕ(x,−1) · c(x)]

)
Since we consider D = U (a fixed distribution), suffices to show hardness for CSQ oracle.

Basics of Boolean Function Analysis

Think of any function f : {±1}d 7→ {±1} as a vector f⃗ of 2d entries.(
1

2d/2
f(−1,−1,−1),

1

2d/2
f(−1,−1, 1), . . .

1

2d/2
f(1, 1, 1)

)
Note that < f⃗, g⃗ >= E

x∼U
[f(x) · g(x)]

< f⃗, g⃗ > =
2d

Σ
i=1

1

2d
f(xi) ·

1

2d
g(xi)

= E
x∼U

[f(x) · g(x)]
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And < f⃗, f⃗ >= 1 Fourier analysis: change “basis” to understand t. Recall that an orthogonal basis
for a vector space is a set of orthogonal unit vectors that span the space. If v1, v2 are orthoganal
basis for R2, we can write any vector

w =< w, v1 > v1+ < w, v2 > v2

Claim 9. PARITIES form an orthogonal basis for our vector space.

Proof Note that for S ̸= T .

< C⃗S(x), C⃗T (x) > = E[CS(x) · CT (x)]

= 0

< C⃗S(x), C⃗S(x) > = 1,∀s

For any CSQ Ψ : {±1}d 7→ {±1},
Ψ⃗ = Σ

S:S⊆1...d

Where C⃗S is the parity function over S.
Note that αS = E

x∼U
[Ψ(x) · CS(x)]

Exptected response to CSQ Ψ if the target function is CS(x).
Since < Ψ⃗, Ψ⃗ >= 1
Σα2

s = 1

There can be almost
1

τ2
S s.t. |αS | ≥ τ .

Note that if target is S∗, then CSQ oracle can just answer 0 to this query Ψ if |α∗
S | < τ .

We have the target parity function (the set Sr uniformly at random from all possible subsets.

Claim 10. If algorithm makes less than τ22d queries, whp. over choice of S∗, CSQ can answer 0
to all these queries.

Proof There are 2d options

Any query Ψ is non-zero on almost
1

τ2
options. If S∗ is not among these, just answer 0. Since Sr

is random, whp cannot ”find” if in O(τ22d) queries. [Exercise]
This finishes proof.

Theorem 11. Over the unif dist. D, in the presence of RCN with noise level η, PARITIES are

learnable O(
d

(1− 2n)2
) samples, whp. (information theoretically)

Proof Let ϵ =
1

2
− η

We keep label w.p.
1

2
+ ϵ

We flip label w.p.
1

2
− ϵ

Let m = O(
d

ϵ2
) samples from Exη(c,D).

(Where C(x) + CS(x) = Π
i∈S∗

xi)
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Claim 12. With high probability,

• S∗ is consistent with ≥ (
1

2
+

ϵ

2
) fraction of examples

• Any S ̸= S∗ is consistent with≤ 1

2
fraction.

Proof Exercise. Use Chernoff/Hoeffding inequality and property that parity functions are uncorre-
lated for S ̸= S∗

Best know algorithm for learning parity with noise: 2
d

log d time (Blum- Wasserman - Kalai 03)
Slightly less than exponential time, non-SQ algorithm.
LPN (Learning Parity with Noise) is believed to be hard.

However, the 2
d

log dalg ⇒ time algorithm implies that we can learn parities over O(log d log log d)
co-coordinates with RCN in poly-time. Therefore

SQ ⊂ PAC+RCN ⊆ PAC

Conditioned on hardness of LPN, the final inclusion is proper.

Note that with the exception of Gaussian elimination, almost all known algorithm can be run in
SQ model. Therfore, SQ is sort of the frontier of our algorithmic knowledge. To show that some
learning problem is hard, many recent papers show hardness in SQ model. Thanks to SQ-dim, we
have an information theoretic way to show hardness in SQ.

Boosting

Recall our definition of weak-learning.

Definition 13. Weak-learning: An algorithm A is a weak learner with edge/advantage γ for class
C if: for any dist. D and any target c ∈ C, given access to Ex(c,D), w.p. (1 − δ) A produces a

hypothesis with error(h;c,D)≤ 1

2
− γ.
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If A runs in time poly(d,
1

δ
) and

1

γ
>

1

poly(d)
, then C is efficiently weakly-PAC learnable.

Theorem 14. If C is (efficiently) weakly-PAC learnable , then C is (efficiently) PAC-learnable .

Proof AdaBoost algorithm of Freund and Schapire (next class).
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