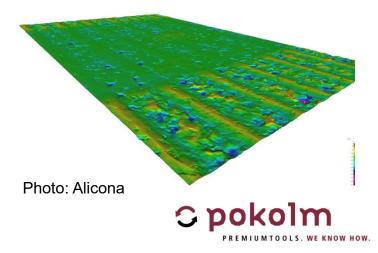
FORGEfix® P

Pneumatic Cold Forging System Machine-Hammer-Peening (MHP, according to VDI 3416)

pokolm

RGEE

FORGEfix[®] P


Contents:

- How did FORGEfix come about
- What is FORGEfix for
- How economical is FORGEfix

$\mathbf{MHP} = \mathbf{FORGE}_{fix} + \mathbf{CNC}$

Photo: Mercedes-Benz

What is FORGEfix[®] P

Pneumatically operated tool with oscillating hammer head for mechanical surface treatment (MHP or "forging") of functional surfaces

- → Ball diameters: from 3 to 20mm
- \odot Stroke compensation: 0 4mm
- Connection to the
 - Machine:

M16 / Weldon Ø 20mm (ATC possible)

Compressed air

connection:

6 bar (through spindle or external)

X

How did FORGEfix® P come about

Developed in cooperation with MERCEDES-BENZ (MB) Production Equipment

- Manual grinding and polishing of the thermoforming tool surface until 2011 (spending up to 17days of manual labor)
- Development of the process (MB)
- Development of the FORGEfix based on the GRAVfix (3S-Engineering GmbH)

- Mai 2011 Implementation in the first Robot-Finishing cell (MB)
- → April 2013 Implementation in the second Robot-Finishing cell (MB)
- 2013 worldwide sales of FORGEfix
- 2018 Pokolm acquires product FORGEfix and all patents intensify sales on German and international market

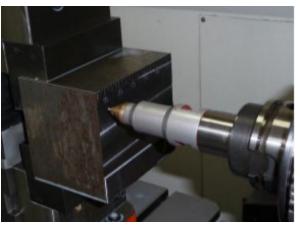
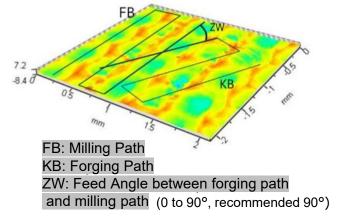
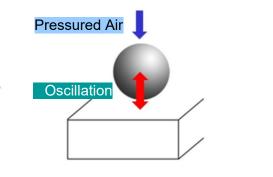


Foto: Mercedes-Benz


How FORGEfix[®] P work

Cold forging head (ball) is guided with a corresponding CNC program over the surface (forging path).

Variable setting parameters:


- → Ball diameter

- → Feed angle (between forging path and milling path)

 \odot Tilt angle α

Tilt Angle α = 0 to 30°, recommended 0°

What is FORGEfix[®] P for

Creation of functional surfaces

- 1. Smoothing milled surfaces
- 2. Surface hardnening (cold)
- 3. Targeted, local introduction of residual compressive stresses

Advantages/ Benefits

- ⇒ Elimination / reduction of manual processing times
- ⇒ Prolonged service life of machined components
- ⇒ Increasing economic efficiency with maximum reproducibility



Photo: Hermle

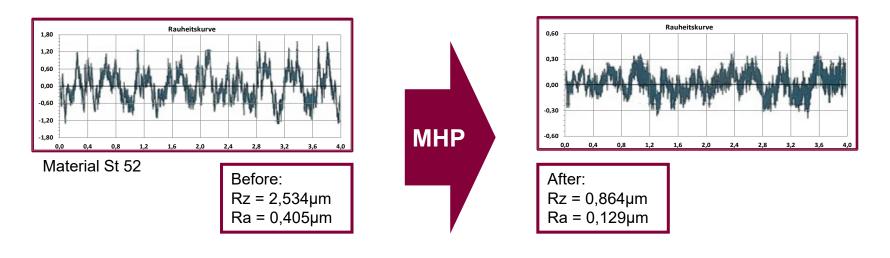
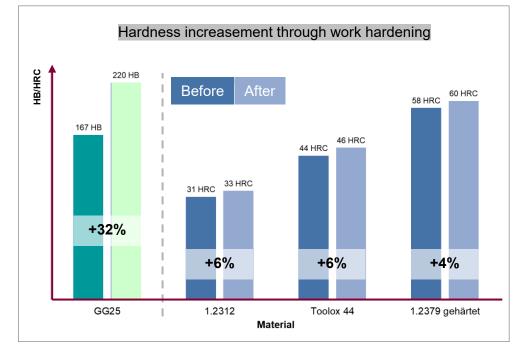


Photo: Voith Turbo


Smoothing the surface

- Roughness Ra improves by 2 20 times (Ra <0,05µm)
 </p>
- Homogeneous surface quality
- Repeatable surface quality
- No offset (machining allowance) required, since μ-deformation

Cold Hardening of the surfaces

- Up to more than 30% increasement of the surface hardness due to work hardening (depending on the material)

Introduction of residual stresses in the surface

- ⊙ Compressive stresses up to 1.000 MPa up to 0,5mm deep
- ➔ Hardness increase over 10% possible
- ✤ Targeted, local introduction of residual compressive stresses
- Increasing the service life by avoiding cracking
- Milling + local MHP on the same machine (no re-clamping of the working part)

Piston rod processed with MHP

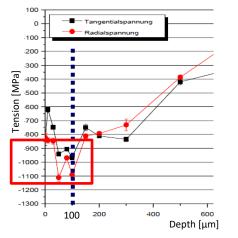


Photo: Pankl Racing

What does FORGEfix[®] P do

Results from the field | Smoothen + hardness

Material		process parameters			Status	Results			
Designation	Tensile strength	Ball diameter	Feed rate	Sidestep		Roughness		Hardness	
	N/mm ²	mm	m/min	mm		Ra [µm]	Factor	HRC/HRB	%
GG25	300	20	3,5	0,3	Before	1,700	5,00	167,0 HRB	31,7%
					After	0,340		220,0 HRB	
AI 3.7075	500	20	3	0,2	Before	1,500	12,82	61,2 HRB	5,23%
					After	0,117		64,4 HRB	
04.50	500	12	2	0,2	Before	2,700	12,22		
St 52	500	12	2	0,2	After	0,221			
1.2312	1000	12	1	0,1	Before	1,461	20,29	31,20 HRC	5,77%
					After	0,072		33,00 HRC	
Toolox 44	1400	8	1	0,1	Before	0,497	4,36	43,70 HRC	5,49%
					After	0,114		46,10 HRC	
1.2379	2100	0	1	0.1	Before	0,100	2.09	58,20 HRC	3,61%
hardened	2100	8	1	0,1	After	0,048	2,08	60,30 HRC	

What does FORGEfix[®] P do?

Fully automated smoothing of the surface | practical example

Task

- Complete processing of thermoforming mould (mould+die)
- ORC-Milling + MHP on Hermle C42
 ⇒ no re-clamping of the working part
- Material Steel 1.2379 60HRC (D2)

Result

- → Ra 0,08 µm
 →
- Hardness increased from
 60 HRC to 62 HRC | +3,3%

Advantages / Benefits

- → Saving 3.600.- €/Mould
- Payback period 2 months

MHP

Photo: AESCULAP

What does FORGEfix[®] P do?

Local introduction of residual stresses in tools | practical example

Task

- Complete machining dies (aluminium hot forgings)
- Output Content of the state of
- → Material Steel 1.2343 (H11)

Result

 Increasing tool life by avoiding cracking

Advantages / Benefits

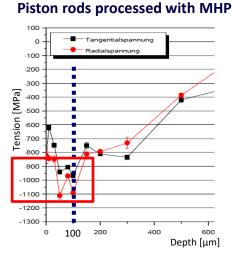
➔ Increase of the tool life quantities

4.300pcs | +36 % (mittel)

MHP

Foto: Leiber

What does FORGEfix[®] P do


Local introduction of residual stresses in components | practical example

MHP

Task

- Complete machining piston rod (Formula 1 / racing)
- CNC Milling + MHP on Hermle C30
 - ⇒ MHP replaces shot blasting
 - \Rightarrow no re-clamping of the

working part

Result

- Increasing the service life by avoiding cracking
- → Factor 2 higher residual stress in depth 100µm
 - ↔ Hardness increase from 356HV1 to 402HV1 | + 13%

Photo: Pankl Racing

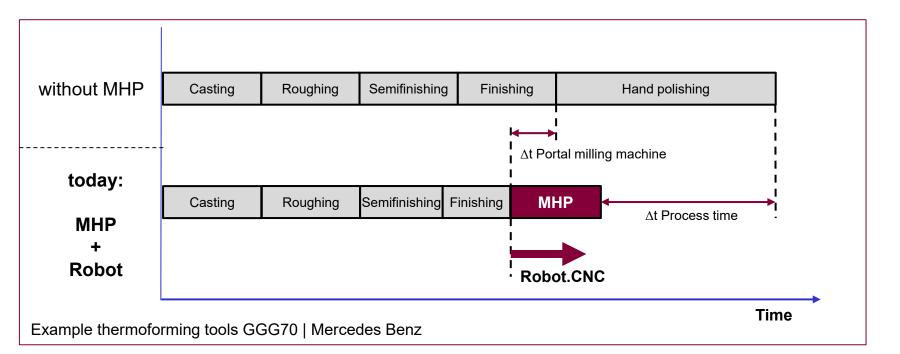
Conditions to be observed | Summary

- \odot When forging, the tilt angle should be α <30 $^{\circ}$
 - ⇒ Positioning of the tool (depending on component geometry)
 - ⇒ 5-axis machining required (depending on component geometry)
- FORGEfix (main Spindle) must not rotate during processing (especially with external air supply)
 - \Rightarrow Processing of the corresponding CNC program with S = 0 rpm
- \odot In the processing area of casting, material should have no porosity.
 - ⇒ Forging over the porosity area leads to uneven surface level
- Corresponding finishing quality / flatness is necessary
 - \Rightarrow Waveness of the surface will not be smoothed by forging

How economical is FORGEfix® P

Increased cost-effectiveness through process shortening and automation

- 80 100% reduction of manual work such as grinding and polishing
- Op to 100 hours of manual process are fully automated
- ✤ Finishing process and overall process of manufacture is shortened
- Repeatability of the process
- Output the second s


Advantages / Benefits

- ⇒ Saving on shorter processing time
- ⇒ Optimized machine utilization and occupancy
- ⇒ Reduction of human resources
- ⇒ Increasement of the quality

How economical is FORGEfix® P

Process Reductions and Automation | practical example

C pokolm

MIUMTOOLS, WE KNOW HOW

	Hand polishing	Automated finishing (MHP)			
	cca. 50 h/m²	cca. 20 h/m ²			
Mercedes-Benz		Reduction by up to60 %			

How is FORGEfix[®] P automated

Processing of large and / or complex free-form surfaces

- Existing CNC milling machine / lathe according to NC data set
- → Applied inside standard tool holder with M16 or Weldon Ø 20mm
- ✤ Tool change from magazine (ATC) possible
- Oppressed air connection 6 bar

Alternative:

Photo: Hermle

Photo: Mercedes-Benz

Photo: Sematek

Who uses FORGEfix[®] P

Area of aplication

- O AUTOMOTIV ● AUTOMOTIV
- → AEROSPACE
- MEDICAL

- → MOLD & DIE (Thermoforming etc.)
- → MOLDS (CFK, GFK, Castings etc.)

