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1. Introduction 

Modern financial markets adopt several major kinds of risk: credit risk, operational risk, 

liquidity risk and market risk. In recent years, researches and market practitioners have paid 

more attention to Value at Risk (VaR) in analyzing the market risk. According to the 

International Monetary Fund (IMF), the 2008 financial crisis has made an overall loss of $3.4 

trillion among all major financial institutions over the world(Dattels,2009). It is an enormous 

economic decline since the 1930s. In the case of Black Monday, the world stock crashed in a 

very short time. The major quantitative measurement of market risk during such catastrophic 

events is the above-mentioned Value at Risk, or VaR in short. It attempts to measure the risk of 

unexpected changes in prices or log-return rate within a given period. It is a very simple and 

popular way of measuring market risk. Since it will provide an amount that summarizes the 

whole market risk faced by the company, VaR has become a necessary implementation in any 

professional corporate risk management. VaR is not only applicable in exploring the market risk 

but also in manage all other types of risk. This entire system is primarily designed for both risk 

management and regulatory purposes. It is broadly used by most financial institutions, 

commercial banks, and investment banks to estimate the potentially maximal loss of their 
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portfolio during a given time period for a given market condition. On the other hand, from the 

viewpoint of regulatory committee, VaR can be defined as a set margin, which is the minimal 

loss under the confidence interval of a horizontal time.  

By the basic definition of the VaR, it is the maximum expected potential loss on the 

portfolio over the given time horizon for a given confidence interval under normal market 

conditions(Jorion,2001). In other words, there are three key elements to describe the Value at 

Risk (VaR): 

1. A time period. 

2. The dollar amount of VaR(portfolio, assets ,etc. ). 

3. A given normal market condition (or confidence interval). 

For example: consider a $ 100 million portfolio, suppose the confidence interval is 95% for a 1-

month horizon. These are typical statements to calculate the VaR for a 1-month horizon (30 

days). Overall, each of our models will be related to these three statements.  

The objective of this paper is threefold. First of all, I briefly discuss the mathematical theory 

used to calculate VaR. Secondly; I intend to list the three different methodologies to estimate the 

risk. Those are Risk Metrics, time series to calculate VaR, and Extremely Value theory to 

measure it. I want to introduce how this concept can be used to count VaR The paper ends with a 

discussion of the strengths and weaknesses of calculation of the VaR in each of the approaches.  

 

2. 1 Mathematical definition of Value at Risk. 

 Given a confidence level of 𝑝 ∈ 0,1 , and assumed the time index of t and 𝑡 + 𝛼 , we 

want to find the change asset of the Δ𝑉 (𝛼) in the financial position over the time period  𝛼. Let 

𝐹! 𝑥  be the cumulative distribution function (CDF) of Δ𝑉 𝛼 . Since the financial position is 
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Δ𝑉 𝛼 ≤ 0, then we can define the VaR of a long position over the time horizon 𝛼 for a given 𝑝 

as  

𝑝 = ℙ  Δ𝑉 𝛼 ≤ 𝑉𝑎𝑅 = 𝐹! 𝑉𝑎𝑅  

Considering the holder of a short position, in a given time 𝛼 with probability 𝑝, and the financial 

position Δ𝑉 𝛼 ≥ 0, the VaR is define as 

𝑝 = ℙ  Δ𝑉 𝛼 ≥ 𝑉𝑎𝑅 = 1− ℙ  Δ𝑉 𝛼 ≤ 𝑉𝑎𝑅 = 1− 𝐹! 𝑉𝑎𝑅  

Next, we will define the 𝑝-quantile of 𝐹! 𝑥 , that for any CDF of 𝐹! 𝑥  and the given confidence 

level of 𝑝 ∈ 0,1  is 

𝑉𝑎𝑅! = 𝑥! = inf 𝑥 𝐹! 𝑥 ≥ 𝑝  

 inf : The smallest real number 

 𝑥!: It also can write is 𝑉𝑎𝑅! if 𝐹! 𝑉𝑎𝑅  is known 

Therefore, the tail behavior of the CDF of 𝐹! 𝑥  or its quantile is condition necessary for 

approaching VaR calculation. 

 In the application of VaR calculation, we have already listed three factors involve in the 

article.  

1. A time period. Such as, the time horizon 𝛼. 

2. The dollar amount of VaR(portfolio, assets ,etc. ). 

3. A given normal market condition (or confidence interval).Such as, a confidence level of 

𝑝 ∈ 0,1   

We could apply two more factors to estimate the VaR: 

4. The frequency of the data. 

5. The CDF of 𝐹! 𝑥  or its quantiles. 

2.2 An Easy Example for VaR Calculation. 
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Since the definition of the log return 𝑟!  is the effective daily returns with continuous 

compounding, we use 𝑟! to calculate the VaR. That is VaR= Value of amount financial position * 

VaR (of log return). We will solve the previous example we disuses at the beginning of the 

article.  

Example 1: 

Consider a $1000 million portfolio of medium-term bonds. Suppose the confidence interval is 

95%, what is the maximum monthly loss under normal markets over any month? 

Solution:  

 We first look at the graph Fig. 1.1 and Fig. 1.2 we can find the 95% confidence interval, 

the lowest monthly log return𝑟! =  −1.7%. So the corresponding VaR for a monthly loss under 

the normal market over any month is, 

𝑉𝑎𝑅 = $1000 million * 1.7% = $17 million 

 



5	

 

 In this adapted question, the measurement slightly considers that the possible loss in 

value is under the “normal market risk”. The maximum loss is 17 million. Overall, VaR could 

specifically calculate for an individual loss, a large investment project risk for a firm, and a 

portfolio of asset. 

 

3. Approaches to VaR Calculation 

I will discuss several methods of the VaR calculation are RiskMetrics, econometric 

modeling using volatility models, and extreme value theory to estimate VaR. Also, it relates 

some practical and simple question. 

3.1.1 RiskMetrics 

 The Riskmetrics methodology is concerned with data sets and technique software used to 

calculate the VaR. This model was first established by JPMorgan, which was applied to expose 

the trading losses and explain the risks of their company in 1989(RiskMetrics). A few years later, 

J.P.Morgan launched this methodology and released the technical document freely available to 

all marketplaces. J.P Morgan develope the RiskMetrics method to VaR calculation under the 

normal distribution. We can denoted a daily report measure and explain the risk of the company. 
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A mathematical method to find the daily price in this model is: suppose the daily log 

return by 𝑟! and 𝐹!!! be the data at time 𝑡 − 1.The conditional normal distribution under the 

RiskMetrics is 

𝑟!|𝐹!!!~𝑁(𝜇! ,𝜎!!), 

where 𝜇! is the conditional mean and 𝜎!! is the conditional variance of 𝑟!.This method is simple 

model that involve two quantities over time. 

  𝜇! = 0,    𝜎!! = 𝛼𝜎!!!! + 1− 𝛼 𝑟!!!! ,  which  𝛼 ∈ (0,1)            (4.1.1) 

This model satisfies the without drift IGARCH process with 𝑝! −  𝑝!!! = 𝑎! , where 𝑎! = 𝛿!𝜀!, 

and uses it to estimate the daily price 𝑝!, which is 𝑝! = 𝑙𝑛 (𝑃!). Also, we can use the probability 

theory to find a multi-period log return to find the 𝑘-period horizon VaR of the portfolio under 

the IGARCH model. Assume 𝑟![𝑘] is a log return in a 𝑘-period horizon. We can write the 

equation as 𝑟! 𝑘 = 𝑟!!! + 𝑟!!! +⋯+ 𝑟!!!. We want to find the conditional normal distribution 

of 𝑟![𝑘]|𝐹!!! . Since the 𝑟!!!, 𝑟!!!,⋯ , 𝑟!!!  are independent and identically distributed (i.i.d) 

random variable. Therefore, the mean of the conditional distribution of 𝑟![𝑘]|𝐹!!!is 𝜇![𝑘] = 0. 

To find the variance of this conditional distribution, we will use the forecasting mathematical 

method and combined equation of (4.1.1) to get the 𝜎!! 𝑘 =k𝜎!!!! . Hence, the conditional normal 

distribution is 𝑟![𝑘]|𝐹!~𝑁 (0, 𝑘𝜎!!!! ). 

4.1.2 Example for estimate VaR  

Supposed in a long position, we will use RiskMetrics(RM) to estimate the risk of the 

portfolio under the conditional normal distribution. The 1-day horizon VaR of the portfolio is  

VaR= Value of the financial position * (VaR (of log return)* 𝜎!!!), 

and a 𝑘-period horizon VaR of the portfolio is  

VaR(k)= Value of the financial position * (VaR (of log return)* 𝑘𝜎!!!), 
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by combining these two equations, we can easily get VaR(k) using the RiskMetrics method 

VaR(k)= 𝑘 * VaR. 

Example 2: 

Consider an investor had a $10 million portfolio of bonds in a long position Suppose the 

confidence interval is 95%. The actual daily standard deviation of the portfolio over one trading 

year is 3.67%, what is the daily VaR of this portfolio? What is the VaR for a 1-month horizon(30 

days)? 

Solution: 

 Since the confidence level is 95%, RiskMetrics uses 1.645, as the z-score for 95%.And 

the standard deviation is 3.67%. According to the method discussed above, we can easily get the 

5% VaR of a 1-day horizon is 

VaR=$10 million * 1.645 * 3.67% = $603,715 

The VaR of a 1-month horizon(30 days) for the investor is 

VaR=$10 million * 1.645* 30 *3.67%=$3,306,683 

4.2 Econometric Model to Calculate VaR 

 Using a time series economic model to measure a company’s risk is an econometric 

approach to VaR calculation. We will use the GARCH model to discuss this approach. This 

methodology mainly uses statistical techniques and economic concepts. 𝑟! is a log return of an 

asset. According to Tsay(2002) can write the following equations to represent 𝑟!with time series 

model: 

  𝑟! = 𝜑! + 𝜑!𝑟!!! + 𝑎! − 𝜃!
!
!!! 𝑎!!!

!
!!! ,                                      (4.2.1)  

  𝑎! = 𝛿!𝜀!, 𝜎!! = 𝛼! + 𝛼!!
!!! 𝑎!!!! + 𝛽!!

!!! 𝜎!!!! ,                 (4.2.2) 

where the equation of 𝑟! is the mean and the equation of 𝜎!!is the volatility of  𝑟!. 
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Assume that 𝜀!is Gaussian, and all parameters are known. Then using the 1-step ahead forecast 

method to find the condition mean, 𝑟! 𝑡  and variance of 𝑟!, 𝜎!! 𝑡 . We have  

   𝑟! 𝑡 = 𝜑! + 𝜑!𝑟!!!!! + 𝑎! − 𝜃!
!
!!! 𝑎!!!!!

!
!!! , 

   𝜎!! 𝑡 = 𝛼! + 𝛼!!
!!! 𝑎!!!! + 𝛽!!

!!! 𝜎!!!!!! , 

we also assume that 𝜀!is Gaussian, we get the conditional distribution of 𝑟!!! given the data at 

time t is 𝑟!!!|𝐹!~𝑁 𝑟! 1 ,𝜎!! 1 , where the mean  𝑟! 1 ≠ 0. Hence, the calculation of value at 

risk(VaR) is concerned both with the mean and standard deviation. So, the daily VaR of the asset 

using this method at time t is VaR=Amount of position * (mean –VaR(log return) * standard 

deviation) which writing in mathematical notation becomes: 

 𝑉𝑎𝑅 = 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑠𝑠𝑒𝑠𝑡 ∗ 𝑟! 1 − VaR log return ∗ 𝜎!! 1  

Also, we need suppose that 𝜀! is Gaussian, and all parameter are known.  We are 

interested in finding the log return of 𝑟! of a k-horizon VaR of the portfolio at time z using this 

approach. Thus, the k-period horizon log return is 𝑟! 𝑘 =  𝑟!!! +  𝑟!!! +⋯+  𝑟!!!. 

If the individual log return 𝑟! follows the time series model discussed above, then the conditional 

distribution of 𝑟! 𝑘 |𝐹! can still use the forecasting method to find it. After the calculation of this 

model, we get the normal distribution of 𝑟! 𝑘  given 𝐹! with a mean of 𝑘𝜇 and a variance of 

𝑉𝑎𝑟 𝑒! 𝑘 𝐹! , which we write following  

    𝑉𝑎𝑟(𝑒! 𝑘 𝐹! = 𝜎!!!
!!! (𝑖) , 

where 𝑖 is the 𝑖-step ahead, and 𝑒! 𝑘  is the sum of 1-step to k-step forecast errors of 𝑟! at the 

forecast origin 𝑧. Hence, this results in 𝑟! 𝑘 |𝐹!~𝑁[ 𝑘𝜇 , 𝜎!!!
!!! 𝑖  ]. Now, we get the equation 

to estimate the VaR of a k-period horizon starting at the forecast origin z is VaR=Amount of 

position * (mean –VaR(log return) * standard deviation), which we can use notation to represent 

as  
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    𝑟! 𝑘 = 𝑘𝜇,    𝑉𝑎𝑟(𝑒! 𝑘 𝐹! = 𝜎!!!
!!! 𝑖 , 

  𝑉𝑎𝑅 = 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑠𝑠𝑒𝑠𝑡 ∗ 𝑟! 𝑘 − VaR log return ∗ 𝜎!!!
!!! 𝑖 , , 

 However, the mean and standard deviation are totally different from the 1-day conditional 

normal distribution. Therefore, we need to find the two variables first based on our model and 

compute the VaR of the portfolio..  

4.3.1 Extreme Value Theory 

 The mathematical theorem of Extreme Value Theory (EVT) was first explored by Fisher 

Tippett(1928). His works shows that this concept leads to find the limiting distribution of the 

normalized maximum. Firstly, we assume that 𝑟!, 𝑟!,⋯ 𝑟!  is a sequence of independent and 

identically distributed (𝑖. 𝑖.𝑑) random variables with a common distribution function 𝐹 𝑥 , 

satisfying 𝑟 ! ≤ 𝑟 ! ≤ ⋯ ≤ 𝑟 ! . Also, we know  

  𝑉𝑎𝑅! = inf 𝑥:𝐹 𝑥 ≥ 1− 𝑝 , where 1− 𝑝 = ℙ(𝑟! ≤  𝑉𝑎𝑅!) 

 And the range of the log return 𝑟! is −∞,+∞ . If we get the distribution of 𝑟(!), then we can 

write that 

    1− 𝑝∗ = ℙ  𝑟!,! ≤ 𝑟 !
∗ = ℙ(𝑟! ≤  𝑟(!)∗ ) !

, 

where  𝑟(!)∗  is the 1− 𝑝∗ quintile of 𝑟 ! . Denoted the CDF of 𝑟 !  is 𝐹!,!(𝑥), we get the equation 

     𝐹!,!(𝑥)= ℙ (𝑟! ≤  x) 

= ℙ (𝑟! ≤ x, 𝑟! ≤ x,⋯ , 𝑟! ≤ x) 

= ℙ (𝑟! ≤  x),!
!!!  since 𝑟! is 𝑖. 𝑖.𝑑 

= 𝐹 𝑥!
!!!  

=[𝐹 (𝑥)]!, 
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Thence, we need to have two appropriate normalization sequences a position sequence of 𝛽!  

and a scale sequence 𝛼! > 0. Also, to consider the limiting distribution of the 𝐹!,! 𝑥 , this 

distribution holds: 

𝑟(!∗) =
! ! !!!
!!

!→!
 𝐹∗ 𝑥 , 

where  the limit of a probability for 𝑛 → ∞ denoted by  𝐹∗ 𝑥  is the generalized extreme value 

(GEV). According to the Jenkinson (1955) and von Mises(1954 ), it defines as  

If 𝜀 ≠ 0, then 𝐹∗ 𝑥 = 𝑒!(!!!")!/! , 

If 𝜀 = 0, then 𝐹∗ 𝑥 = 𝑒!!!!,                          

where the symbol * is the maximum, and 𝜀 is the shape parameter which can determine the tail 

index x .Also, the probability density function(pdf) of the generalized limiting distribution 

becomes 

If 𝜀 ≠ 0, 𝑡ℎ𝑒𝑛 𝑓∗(𝑥) = (1+ 𝜀𝑥)!
!
!!!𝑒[!(!!!")

!!!] 

If 𝜀 = 0, then 𝑓∗ 𝑥 = 𝑒!!!!!! 

There are three specific types of the limiting distribution of Gnedenoko(1943) based on 

the extreme value distribution, which are generalized as the generalized extreme value (GEV), is  

Case I: 𝜀 = 0.  𝐼𝑡 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑢𝑚𝑏𝑒𝑙 family,𝑤𝑖𝑡ℎ 

 𝐹∗ 𝑥 = 𝑒!!!! ,      𝑥 ∈ ℜ 

Case II: 𝜀 > 0.It is Ϝ𝑟𝑒𝑐ℎ𝑒𝑡 family, with 

     𝐹∗ 𝑥 = 𝑒!(!!!")!!/! ,   𝑥 > − !
!
, 

𝐹∗ 𝑥 = 0,      𝑥 ≤ −
1
𝜀 

Case II: 𝜀 < 0.It is 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 family, with 

     𝐹∗ 𝑥 = 𝑒!(!!!")!!/! ,   𝑥 > − !
!
, 

     𝐹∗ 𝑥 = 1,                  𝑥 ≤ − !
!
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Gnedenko(1943) states that the tail of  𝐹 𝑥  decays that could determines the limiting 

distribution 𝐹∗ 𝑥 . The exponentially decaying tails of the 𝐺𝑢𝑚𝑏𝑒𝑙 family consists of the thin-

distribution the example for example normal and lognormal distribution. In the Ϝ𝑟𝑒𝑐ℎ𝑒𝑡 family, 

the distribution has a polynomials decaying tail that declines like a power function such as the 

Pareto distribution, Student’s t-test and mixture distribution. Finally, the tail of the distribution 

declines is finite endpoint distribution for the 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 family. 

 4.3.2 Statistical Methodology 

There are three parameters in the extreme value distribution. They could use to be either 

parametric or nonparametric methods. – 𝜀 is refereed to as the shape, 𝛽! is related to as the 

location, and 𝛼! is represented to as the scale parameter. Tsay(2002) assumed that there are M 

returns 𝑟! !!!
! . And each of them is divided as  

𝑟!, 𝑟!,⋯ 𝑟! 𝑟!!!,⋯ , 𝑟!! 𝑟!!!!,⋯ , 𝑟!!|⋯ |𝑟 !!! !!!,⋯ , 𝑟!"  

and let 𝑟!"!! is the observed return where 1 ≤ 𝑗 ≤ 𝑛 and ∀𝑖 = 1,2,⋯ ,𝑔.Then there are  𝑛 sizes 

of the subsample and supposed that the largest return of the 𝑖𝑡ℎ subsample is 𝑟!,!.Let n go to 

infinite, the extreme value distribution apply!!,!!!!
!!

= 𝑥!,!, the maximization of the collection of 

the subsample define as 

𝑟!,! = max
!!!!!

{𝑟 !!! !!!} , ∀𝑖 = 1,⋯ ,𝑔 

we used the extreme value theory implement for estimating the unknown variable in the extreme 

value distribution when n is sufficiently large. The choice of the subsample size n could 

determine the estimators. We can use this assumption into either parametric or nonparametric 

methods to count VaR. 
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 There are two parametric approaches maximum likelihood and regression methods. The 

regression method supposes that {𝑟!,!}!!!
!  is a 𝑖. 𝑖.𝑑 random variable sequence from the common 

cumulative distribution function 𝐹(𝑥) under the Gumbel distribution properties. We can denotes 

that  

𝑟! ! ≤ 𝑟! ! ≤ ⋯ ≤ 𝑟! !  

is the collection of subperiod maxima. Under the properties of the Gumbel distribution, we have 

the following 

𝐸 𝐹∗ 𝑟! ! =
𝑖

𝑔 + 𝑖 ,∀𝑖 = 1,⋯ ,𝑔 

If 𝜀! ≠ 0, it follows the generalized extreme value theory. We have 

𝐹∗ 𝑟! ! = 𝑒!(!!
!! !!,!!!!

!!
)
! !
!!

 

we can apply both equation to get 

    !
!!!

= 𝑒!(!!
!! !!,!!!!

!!
)
! !
!!

, for ∀𝑖 = 1,⋯ ,𝑔 

taking the logarithm twice in this equation, we have 

   ln − ln !
!!!

= − !
!!
𝑙𝑛(1+ !! !!,!!!!

!!
),   ∀𝑖 = 1,⋯ ,𝑔. 

After we calculate previous equation, we will have error between these two quantities, denoted 

by 𝑒! . Then we have the regression equation to get the 𝜀!,𝛼! 𝑎𝑛𝑑 𝛽! that is 

ln − ln
𝑖

𝑔 + 𝑖 = −
1
𝜀!
𝑙𝑛 1+

𝜀! 𝑟!,! − 𝛽!
𝛼!

+ 𝑒! ,   ∀𝑖 = 1,⋯ ,𝑔  

If 𝜀! = 0, we can write the equation is  

 ln − ln !
!!!

= !
!!
𝑟!(!) +

!!
!!
+ 𝑒! , 𝑓𝑜𝑟 ∀𝑖 = 1,⋯ .𝑔 
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These estimates are consistent but less efficient than another parametric approach, which is 

maximum likelihood method. Assumed that {𝑟!,!} is the subsample maximum. The pdf of 

!!,!!!!
!!

= 𝑥 follows the generalized extreme value distribution, which we write as 

If 𝜀 ≠ 0, 𝑡ℎ𝑒𝑛 𝑓 𝑟!,! = !
!!
(1+ !! !!,!!!!

!!
)!

!!!!
!! ∗ 𝑒!(!!

!! !!,!!!!
!!

)
! !
!!

 

If 𝜀 = 0,   𝑡ℎ𝑒𝑛 𝑓 𝑟!,! = !
!!
𝑒[! !!,!!!!

!!
− 𝑒 !

!!,!!!!
!!

]. 

The maximum likelihood could estimate the 𝜀!,𝛼! 𝑎𝑛𝑑 𝛽!.  These estimator are unbiased, more 

efficient and having the minimum variance. We will use the method to calculate the VaR. Let 

𝑝∗ be a small upper tail probability and 𝑟!∗ be the quantile of the subperoid maximum with 

(1− 𝑝∗)th. Also, we plug !!
∗!!!
!!

≤ 𝑥 into the CDF of the maximum likelihood methods function 

under the limiting generalized extreme value distribution. Then we have 1− 𝑝∗ equal to 

If 𝜀 ≠ 0, 𝑡ℎ𝑒𝑛  1− 𝑝∗ = 𝑒[!(!!
!!(!!∗ !!!)

!!
)
! !
!!] 

If 𝜀 = 0,  then 1− 𝑝∗ = 𝑒!!
!!∗ !!!
!!  

After taking natural logarithm and transformation this equation, we have the quantile as  

If 𝜀 ≠ 0, 𝑡ℎ𝑒𝑛  𝑟!∗ = 𝛽! −
!!
!!
[1− [− ln 1− 𝑝∗ ]!!/!! 

If 𝜀 = 0, 𝑡ℎ𝑒𝑛  𝑟!∗ = 𝛽! − 𝛼!ln [− ln 1− 𝑝∗ ]. 

Next we will show the relationship between the observed return 𝑟! series and the subperiod 

maximum for a given upper tail probability 𝑝∗ and the quantile 𝑟!∗. We obtain  

    1− 𝑝∗ = ℙ 𝑟!,! ≤ 𝑟!∗ = [ℙ 𝑟! ≤ 𝑟!∗ ]!. 

Given the specified small upper probability 𝑝, and 1− 𝑝 𝑡ℎ quantile of 𝑟! is 𝑟!∗.Thus we have 

the equation of the VaR portfolio is  

If 𝜀 ≠ 0, 𝑡ℎ𝑒𝑛  𝑉𝑎𝑅 = 𝛽! −
!!
!!
[1− [−𝑛 ln 1− 𝑝 ]!!! 

If 𝜀 = 0, 𝑡ℎ𝑒𝑛  𝑉𝑎𝑅 = 𝛽! − 𝛼!ln [−𝑛 ln 1− 𝑝 ], 

where n is the length of subperiod. 
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6. Conclusion 

In this paper we have three different models to calculate value at risk and estimate the 

potential value of a portfolio during a given time period for a given market condition. In the first, 

we introduce the method of the RiskMetric. The advantage of this method is straightforward. It is 

very easy for people to understand and bring into the financial market to measure the risk of a 

company. Also, it makes the risk much easier to clarify. However, when the conditional mean is 

not equal to zero, we can not use the RiskMetric approach to estimate VaR. We need to consider 

using the econometric method to calculate the VaR. We briefly review the statistical techniques 

and economic concepts applied in this method. In the third approach, we discuss using the 

extreme value theory to compute the VaR of a portfolio. The extreme value distribution obtains 

three different parameters and select the length of the subperoid. Also, we need to check the 

adequacy of the fitted extreme value model. Since the statistical testing could fail to apply the 

daily log returns under the independent assumption, the extreme value theory may not return a 

relatively accurate VaR. All three Value at Risk approaches measure the value of the portfolio 

for analysis and suggestions for the company. Finally, we understand the mathematical and 

statistical concepts of calculating Value at Risk. 
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