JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 13, Number 3, Pages 467–479 S 0894-0347(00)00331-3 Article electronically published on March 13, 2000

SEMI-INVARIANTS OF QUIVERS AND SATURATION FOR LITTLEWOOD-RICHARDSON COEFFICIENTS

HARM DERKSEN AND JERZY WEYMAN

1. Introduction

Let Q be a quiver without oriented cycles. Let α be a dimension vector for Q. We denote by $SI(Q, \alpha)$ the ring of semi-invariants of the set of α -dimensional representations of Q over a fixed algebraically closed field K.

In this paper we prove some results about the set

$$\Sigma(Q, \alpha) = \{ \sigma \mid SI(Q, \alpha)_{\sigma} \neq 0 \}.$$

 $\Sigma(Q,\alpha)$ is defined in the space of all weights by one homogeneous linear equation and by a finite set of homogeneous linear inequalities. In particular the set $\Sigma(Q,\alpha)$ is saturated, i.e., if $n\sigma \in \Sigma(Q,\alpha)$, then also $\sigma \in \Sigma(Q,\alpha)$.

These results, when applied to a special quiver $Q = T_{n,n,n}$ and to a special dimension vector, show that the GL_n -module V_{λ} appears in $V_{\mu} \otimes V_{\nu}$ if and only if the partitions λ , μ and ν satisfy an explicit set of inequalities. This gives new proofs of the results of Klyachko ([7, 3]) and Knutson and Tao ([8]).

The proof is based on another general result about semi-invariants of quivers (Theorem 1). In the paper [10], Schofield defined a semi-invariant c_W for each indecomposable representation W of Q. We show that the semi-invariants of this type span each weight space in $SI(Q, \alpha)$. This seems to be a fundamental fact, connecting semi-invariants and modules in a direct way. Given this fact, the results on sets of weights follow at once from the results in another paper of Schofield [11].

2. The results

A quiver Q is a pair $Q = (Q_0, Q_1)$ consisting of the set of vertices Q_0 and the set of arrows Q_1 . Each arrow a has its head ha and tail ta, both in Q_0 :

$$ta \xrightarrow{a} ha$$
.

We fix an algebraically closed field K. A representation (or a module) V of Q is a family of finite dimensional vector spaces $\{V(x) | x \in Q_0\}$ and of linear maps

Received by the editors July 20, 1999.

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 13A50; Secondary 14L24, 14L30, 16G20, 20G05.

Key words and phrases. Quiver representations, semi-invariants, Littlewood-Richardson coefficients, Klyachko cone, saturation.

The second author was supported by NSF, grant DMS 9700884 and KBN No. PO3A 012 14.

 $V(a):V(ta)\to V(ha)$. The dimension vector of a representation V is the function $\underline{d}(V):Q_0\to\mathbb{Z}_{\geq 0}$ defined by $\underline{d}(V)(x):=\dim V(x)$. The dimension vectors lie in the space Γ of integer-valued functions on Q_0 . A morphism $\phi:V\to V'$ of two representations is a collection of linear maps $\phi(x):V(x)\to V'(x), x\in Q_0$, such that for each $a\in Q_1$ we have $\phi(ha)V(a)=V'(a)\phi(ta)$. We denote the linear space of morphisms from V to V' by $\operatorname{Hom}_Q(V,V')$.

A path p in Q is a sequence of arrows $p = a_1, \ldots, a_n$ such that $ha_i = ta_{i+1}$ $(1 \le i \le n-1)$. We define $tp = ta_1, hp = ha_n$. We also have the trivial path e(x) from x to x. If V is a representation and $p = a_1, \ldots, a_n$, then we define $V(p) := V(a_n)V(a_{n-1})\cdots V(a_1)$. We assume throughout the paper that Q has no oriented cycles, i.e., there are no paths $p = a_1, \ldots, a_n$ such that $ta_1 = ha_n$.

For representations V and W of Q there is a canonical exact sequence ([9])

$$(1) \quad 0 \to \operatorname{Hom}_{Q}(V, W) \xrightarrow{i} \bigoplus_{x \in Q_{0}} \operatorname{Hom}(V(x), W(x))$$

$$\xrightarrow{d_{W}^{V}} \bigoplus_{a \in Q_{1}} \operatorname{Hom}(V(ta), W(ha)) \xrightarrow{p} \operatorname{Ext}_{Q}(V, W) \to 0.$$

The map i is the obvious inclusion, the map d_W^V is given by

$$\{f(x)\}_{x\in Q_0} \mapsto \{f(ha)V(a) - W(a)f(ta)\}_{a\in Q_1},$$

and the map p constructs an extension of the representations V and W by adding the maps $V(ta) \to W(ha)$ to the direct sum representation $V \oplus W$.

For $\alpha, \beta \in \Gamma$ we define the Euler inner product

$$\langle \alpha, \beta \rangle = \sum_{x \in Q_0} \alpha(x)\beta(x) - \sum_{a \in Q_1} \alpha(ta)\beta(ha).$$

It follows from (1) that $\langle \underline{d}(V), \underline{d}(W) \rangle = \dim_K \operatorname{Hom}_Q(V, W) - \dim_K \operatorname{Ext}_Q(V, W)$. For a dimension vector α we denote by

$$\operatorname{Rep}(Q, \alpha) := \bigoplus_{a \in Q_1} \operatorname{Hom}(K^{\alpha(ta)}, K^{\alpha(ha)})$$

the vector space of α -dimensional representations of Q. The group

$$\operatorname{GL}(Q,\alpha) := \prod_{x \in Q_0} \operatorname{GL}(\alpha(x))$$

and its subgroup

$$SL(Q, \alpha) = \prod_{x \in Q_0} SL(\alpha(x))$$

act on $Rep(Q, \alpha)$ in an obvious way. We are interested in the ring of semi-invariants

$$SI(Q, \alpha) := K[Rep(Q, \alpha)]^{SL(Q, \alpha)}.$$

The ring $SI(Q, \alpha)$ has a weight space decomposition

$$SI(Q, \alpha) = \bigoplus_{\sigma} SI(Q, \alpha)_{\sigma}$$

where σ runs through the (one-dimensional irreducible) characters of $GL(Q,\alpha)$ and

$$SI(Q, \alpha)_{\sigma} = \{ f \in K[Rep(Q, \alpha)] \mid q(f) = \sigma(q) f \ \forall q \in GL(Q, \alpha) \}.$$

Suppose that σ lies in the dual space $\Gamma^* := \text{Hom}(\Gamma, \mathbb{Z})$. For each dimension vector α we can associate to σ a character of $GL(Q,\alpha)$ defined as

$$\prod_{x \in Q_0} d_x^{\sigma(e_x)}$$

where d_x is the determinant function on $GL(\alpha(x))$ and e_x is the dimension vector defined by

$$e_x(y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

In this way we will identify characters with Γ^* . Sometimes, for convenience, we will write $\sigma(x)$ instead of $\sigma(e_x)$ (and treat σ as an element of Γ).

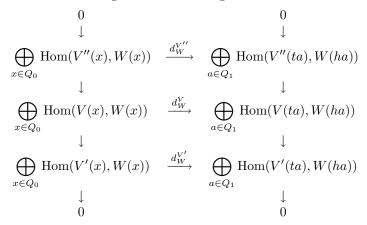
Let us choose the dimension vectors α and β in such way that $\langle \alpha, \beta \rangle = 0$. Then for every $V \in \text{Rep}(Q,\alpha)$ and $W \in \text{Rep}(Q,\beta)$ the matrix of d_W^V will be a square matrix. Following [10] we can therefore define the semi-invariant c of the action of $GL(Q,\alpha) \times GL(Q,\beta)$ on $Rep(Q,\alpha) \times Rep(Q,\beta)$ by $c(V,W) := \det d_W^V$. The value of the determinant depends on the choices of bases, so c is well-defined up to a scalar. Notice that the semi-invariant c vanishes at the point (V, W) if and only if $\operatorname{Hom}_Q(V,W) \neq 0$ which is equivalent to $\operatorname{Ext}_Q(V,W) \neq 0$. For a fixed V the restriction of c to $\{V\} \times \operatorname{Rep}(Q, \beta)$ defines a semi-invariant c^V in $\operatorname{SI}(Q, \beta)$. Schofield proves ([10, Lemma 1.4]) that the weight of c^V equals $\langle \alpha, \cdot \rangle \in \Gamma^*$ which is defined as $\gamma \mapsto \langle \alpha, \gamma \rangle$. Similarly, for a fixed W the restriction of c to Rep $(Q, \alpha) \times \{W\}$ defines a semi-invariant c_W in $SI(Q,\alpha)$ of weight $-\langle \cdot,\beta \rangle$ ([10, Lemma 1.4]). If $V, V' \in \operatorname{Rep}(Q, \alpha)$ and $V \cong V'$, then V and V' are in the same $\operatorname{GL}(Q, \alpha)$ -orbit, and c^V and $c^{V'}$ are equal up to a constant scalar. Semi-invariants of the types c^V and c_W are well-defined up to a scalar. These semi-invariants have the following properties.

Lemma 1. Suppose that V, V', V'' and W, W', W'' are representations of Q such that $\langle \underline{d}(V), \underline{d}(W) \rangle = 0$, and that there are exact sequences

$$0 \to V' \to V \to V'' \to 0$$
, $0 \to W' \to W \to W'' \to 0$.

- a) If $\langle \underline{d}(V'), \underline{d}(W) \rangle < 0$, then $c^V(W) = 0$;
- b) If $\langle \underline{d}(V'), \underline{d}(W) \rangle = 0$, then $c^V(W) = c^{V'}(W)c^{V''}(W)$; c) If $\langle \underline{d}(V), \underline{d}(W') \rangle > 0$, then $c^V(W) = 0$; d) If $\langle \underline{d}(V), \underline{d}(W') \rangle = 0$, then $c^V(W) = c^V(W')c^V(W'')$.

Proof. Consider the following commutative diagram with exact columns:



If $\langle \underline{d}(V'),\underline{d}(W)\rangle=0$, then $d_W^{V'},d_W^V$ and $d_W^{V''}$ are all represented by square matrices. It follows that $c^V(W)=c^{V'}(W)c^{V''}(W)$. So b) follows and d) goes similarly. If $\langle \underline{d}(V'),\underline{d}(W)\rangle<0$, then $d_W^{V'}$ cannot be surjective, hence d_W^V is not surjective. Now a) follows and c) goes similarly.

Our main result is that the semi-invariants of type c^V (resp. c_W) span all the weight spaces in the rings $SI(Q, \alpha)$.

Theorem 1. Let Q be a quiver without oriented cycles and let β be a dimension vector. The ring of semi-invariants $SI(Q, \beta)$ is a K-linear span of semi-invariants c^V with $\langle \underline{d}(V), \beta \rangle = 0$. The analogous result is true for the semi-invariants c_W .

After this paper was submitted we learned about the paper [12] where among other things the authors give another proof of Theorem 1 under the assumption that the characteristic of K is zero.

We will prove Theorem 1 in Section 4.

Remark 1. If $V = V_1 \oplus V_2$ is decomposable, then by Lemma 1 we have $c^V = 0$ if $\langle \underline{d}(V_1), \beta \rangle \neq 0$, and $c^V = c^{V_1} c^{V_2}$ if $\langle \underline{d}(V_1), \beta \rangle = 0$.

The algebra $\mathrm{SI}(Q,\beta)$ is generated by all c^V where V is indecomposable. Generators of $\mathrm{SI}(Q,\beta)$ therefore can be found in the degrees $\langle \alpha,\cdot \rangle$ such that a general representation of dimension α is indecomposable. By [5] this is equivalent to α being a Schur root.

Remark 2. If $\operatorname{Rep}(Q,\beta)$ has a dense $\operatorname{GL}(Q,\beta)$ -orbit, then Schofield showed in [10] that the invariants of type c^V with V indecomposable generate $\operatorname{SI}(Q,\beta)$ (which is a polynomial ring in this case).

Theorem 1 has the following remarkable consequence.

Corollary 1 (Reciprocity Property). Let α, β be two dimension vectors for the quiver Q. Assume that $\langle \alpha, \beta \rangle = 0$. Then

$$\dim_K \operatorname{SI}(Q,\beta)_{\langle \alpha,\cdot\rangle} = \dim_K \operatorname{SI}(Q,\alpha)_{-\langle \cdot,\beta\rangle}.$$

Proof. Let V_1, \ldots, V_s be the modules of dimension α such that c^{V_1}, \ldots, c^{V_s} form a basis of $\mathrm{SI}(Q,\beta)_{\langle\alpha,\cdot\rangle}$. These are linearly independent polynomials on $\mathrm{Rep}(Q,\beta)$ so there exist s representations W_1, \ldots, W_s in $\mathrm{Rep}(Q,\beta)$ such that $\det(c^{V_i}(W_j))_{1 \leq i,j \leq s}$

is not zero. But $c^{V_i}(W_j) = c_{W_j}(V_i)$ and this means that the semi-invariants c_{W_1}, \ldots, c_{W_s} are linearly independent. This proves that

$$\dim_K \operatorname{SI}(Q,\beta)_{\langle \alpha,\cdot\rangle} \leq \dim_K \operatorname{SI}(Q,\alpha)_{-\langle\cdot,\beta\rangle}.$$

The other inequality is proven in exactly the same way.

In the remainder of this section we investigate the consequences of Theorem 1. First we recall the main results of [11]. They can be summarized as follows.

We say that for two dimension vectors α, β the space $\operatorname{Hom}_Q(\alpha, \beta)$ (respectively $\operatorname{Ext}_Q(\alpha, \beta)$) vanishes generically if and only if for general representations V, W of dimensions α, β respectively we have $\operatorname{Hom}_Q(V, W) = 0$ (resp. $\operatorname{Ext}_Q(V, W) = 0$). We also write $\alpha \hookrightarrow \beta$ if a general representation of dimension β has a subrepresentation of dimension α .

Theorem 2 (Schofield). Let α and β be two dimension vectors for the quiver Q.

- a) $\operatorname{Ext}_{\mathcal{O}}(\alpha,\beta)$ vanishes generically if and only if $\alpha \hookrightarrow \alpha + \beta$,
- b) $\operatorname{Ext}_Q(\alpha, \beta)$ does not vanish generically if and only if $\beta' \hookrightarrow \beta$ and $\langle \alpha, \beta \beta' \rangle < 0$ for some dimension vector β' .

Part a) is proven in Section 3 of [11], and part b) is proven in Section 5.

Remark 3. Suppose that V and W are general modules of dimension α and β respectively, such that $\langle \alpha, \beta \rangle = 0$. The condition in b) is equivalent to $\exists \beta' \beta' \hookrightarrow \beta$ such that $\langle \alpha, \beta' \rangle > 0$. If $c^V(W) = 0$, then W must have a submodule W' such that $\langle \alpha, \underline{d}(W') \rangle > 0$. This means that the converse of Lemma 1.c) is true for general V and W.

Theorem 3. Let Q be a quiver without oriented cycles and let β be a dimension vector. The semigroup $\Sigma(Q,\beta)$ is the set of all $\sigma \in \Gamma$ such that $\sigma(\beta) = 0$ and $\sigma(\beta') \leq 0$ for all β' such that $\beta' \hookrightarrow \beta$. Thus this condition is provided by one linear homogeneous equality and finitely many linear homogeneous inequalities. In particular the set $\Sigma(Q,\beta)$ is saturated in the lattice Γ .

Proof. Suppose that $\sigma \in \Gamma^*$. We can write $\sigma = \langle \alpha, \cdot \rangle$ with $\alpha \in \Gamma$.

We will first assume that α is a dimension vector, i.e., $\alpha(x) \geq 0$ for all $x \in Q_0$. It follows from Theorem 1 that $\operatorname{SI}(Q,\beta)_{\langle \alpha,\cdot\rangle}$ is non-zero if and only if there exists a representation V of dimension α such that c^V is not zero, which is equivalent to $\sigma(\beta) = \langle \alpha, \beta \rangle = 0$ and $\operatorname{Ext}_Q(\alpha, \beta)$ vanishing generically. By part b) of Theorem 2, $\operatorname{Ext}_Q(\alpha, \beta)$ vanishes generically if and only if for all β' such that $\beta' \hookrightarrow \beta$ we have $\langle \alpha, \beta - \beta' \rangle \geq 0$. This means that for all β' such that $\beta' \hookrightarrow \beta$ we have $\sigma(\beta') = \langle \alpha, \beta' \rangle \leq 0$. We conclude that $\operatorname{SI}(Q, \beta)_{\sigma} \neq 0$ if and only if $\sigma(\beta) = 0$ and $\sigma(\beta') \leq 0$ for all $\beta' \hookrightarrow \beta$.

If α is not a dimension vector, then $\mathrm{SI}(Q,\beta)_{n\sigma}=0$ for all integers n>0. Suppose that $W\in\mathrm{Rep}(Q,\beta)$. From [6] it follows that either $\sigma(\underline{d}(W))\neq 0$ or there exists a submodule W' of W such that $\sigma(\underline{d}(W'))>0$. If W is in general position, then we obtain $\sigma(\beta)\neq 0$ or $\sigma(\beta')>0$ for some $\beta'\hookrightarrow\beta$ (see also Remark 5).

Remark 4. Schofield in [11] gives an algorithm allowing one to determine the set of inequalities in Theorem 3 inductively. This algorithm is not very efficient.

Remark 5. A module $W \in \text{Rep}(Q, \beta)$ is called σ -stable if and only if there exist an n > 0 and an $f \in \text{SI}(Q, \beta)_{n\sigma}$ such that $f(W) \neq 0$. King proved in [6] that a module

 $W \in \text{Rep}(Q, \beta)$ is σ -stable if and only if $\sigma(W') \leq 0$ for all submodules W' of W. Applied to a general representation W of dimension β this gives us the equivalence:

$$\exists n > 0 \ \operatorname{SI}(Q, \beta)_{n\sigma} \neq 0 \Leftrightarrow \sigma(\beta) = 0 \ \text{and} \ \forall \beta' \ \beta' \hookrightarrow \beta \ \text{we have} \ \sigma(\beta') \leq 0.$$

This shows that the saturation of $\Sigma(Q,\beta)$ is given by linear inequalities but it does not show that $\Sigma(Q,\beta)$ is saturated.

Remark 6. In Theorem 3, instead of considering all β' with $\beta' \hookrightarrow \beta$ we only need to consider those β' such that the general representation of dimension β' is indecomposable, which is equivalent to β' being a Schur root. Still, the set of inequalities obtained in this way may not be a minimal set of inequalities as we will see in the next example.

Example 1. Let Q be the quiver

$$\begin{array}{ccc}
 & 1 \\
\downarrow \\
4 & \rightarrow & 5 & \leftarrow 2 \\
\uparrow & & & \\
3 & & & \end{array}$$

and let β be the dimension vector

$$\begin{array}{ccc} & 1 \\ 1 & 2 & 1 \\ & 1 \end{array}$$

For a general representation V of Q with dimension vector β , the dimension vectors of indecomposable submodules are:

Let σ be the weight given by $\sigma(\alpha) = \sum_{i=1}^{5} a_i \alpha(i)$, in other words

$$\sigma = \begin{array}{ccc}
a_1 \\
a_5 \\
a_3
\end{array} .$$

We investigate when $SI(Q,\beta)_{\sigma} \neq 0$. First of all we must have $\sigma(\beta) = 0$, so $a_1 + a_2 + a_3 + a_4 + 2a_5 = 0$. In particular $a_1 + a_2 + a_3 + a_4$ must be even. The

indecomposable submodules listed above correspond to the inequalities (using $a_5 = -(a_1 + a_2 + a_3 + a_4)/2$):

(2)

$$a_1 \geq 0, \ a_2 \geq 0, a_3 \geq 0, a_4 \geq 0, \\ a_1 \leq a_2 + a_3 + a_4, \ a_2 \leq a_1 + a_3 + a_4, \ a_3 \leq a_1 + a_2 + a_4, \ a_4 \leq a_1 + a_2 + a_3, \\ a_1 + a_2 + a_3 + a_4 \geq 0.$$

The last inequality is redundant.

In the next section we will see how semi-invariants can be interpreted in terms of tensor products of modules of the general linear group. This particular example shows that for a 2-dimensional vector space U, the tensor product of symmetric powers $S_{a_1}(U) \otimes S_{a_2}(U) \otimes S_{a_3}(U) \otimes S_{a_4}(U)$ contains a non-trivial $\mathrm{SL}(U)$ -invariant subspace if and only if $a_1+a_2+a_3+a_4$ is even and the inequalities (2) hold. In this case, the inequalities are obvious from the Clebsch-Gordan formula.

3. Application to Littlewood-Richardson coefficients

Let us apply Theorem 3 in the following special case. Let us define the quiver $Q = T_{n,n,n}$ as follows:

Let us choose the dimension vector $\beta(x_i) = \beta(y_i) = \beta(z_i) = i$ for i = 1, ..., n-1, $\beta(u) = n$. The following proposition is a direct application of Cauchy's formula and is a standard calculation in representation theory.

Proposition 1. The weight space $SI(T_{n,n,n},\beta)_{\sigma}$ is isomorphic to the space of SL(U)-invariants in the triple tensor product $S_{\lambda}(U) \otimes S_{\mu}(U) \otimes S_{\nu}(U)$ of Schur functors on U, where U is the vector space of dimension n, and λ, μ, ν are partitions whose conjugate partitions are given as follows:

(3)
$$\lambda' = ((n-1)^{\sigma(x_{n-1})}, (n-2)^{\sigma(x_{n-2})}, \dots, 1^{\sigma(x_1)}), \\ \mu' = ((n-1)^{\sigma(y_{n-1})}, (n-2)^{\sigma(y_{n-2})}, \dots, 1^{\sigma(y_1)}), \\ \nu' = ((n-1)^{\sigma(z_{n-1})}, (n-2)^{\sigma(z_{n-2})}, \dots, 1^{\sigma(z_1)}).$$

Here $\sigma(q)$ is defined as $\sigma(e_q)$ where the dimension vector e_q is given by $e_q(q) = 1$ and $e_q(p) = 0$ if $p \neq q$.

Proof. Let us denote by a_i (resp. b_i, c_i) the arrow in $T_{n,n,n}$ with $ta_i = x_i, ha_i = x_{i+1}$ (resp. $tb_i = y_i, hb_i = y_{i+1}, tc_i = z_i, hc_i = z_{i+1}$) for $1 \le i \le n-1$. The space $\text{Rep}(T_{n,n,n},\beta)$ can be identified with

$$\bigoplus_{1 \le i \le n-1} \left(\operatorname{Hom}(V(x_i), V(x_{i+1})) \oplus \operatorname{Hom}(V(y_i), V(y_{i+1})) \oplus \operatorname{Hom}(V(z_i), V(z_{i+1})) \right)$$

where we write $x_n = y_n = z_n = u$.

The Cauchy formula [4, §A.1] gives the decomposition of $K[\text{Rep}(T_{n,n,n},\beta)]$ as a direct sum over the 3(n-1)-tuples of partitions

$$((\alpha^i)_{1 \le i \le n-1}, (\beta^i)_{1 \le i \le n-1}, (\gamma^i)_{1 \le i \le n-1})$$

of the summands

$$\bigotimes_{1 \leq i \leq n-1} \left(S_{\alpha^i} V(x_i) \otimes S_{\alpha^i} V(x_{i+1})^* \otimes S_{\beta^i} V(y_i) \otimes S_{\beta^i} V(y_{i+1})^* \right)$$

$$\otimes S_{\gamma^i}V(z_i)\otimes S_{\gamma^i}V(z_{i+1})^*$$
).

Let us denote $H = \prod_{1 \leq i \leq n-1} \left(\operatorname{SL}(V(x_i)) \times \operatorname{SL}(V(y_i)) \times \operatorname{SL}(V(z_i)) \right)$. Then it follows from the Littlewood-Richardson Rule [4, §A.1] that the summand corresponding to the 3(n-1)-tuple

$$((\alpha^i)_{1 \le i \le n-1}, (\beta^i)_{1 \le i \le n-1}, (\gamma^i)_{1 \le i \le n-1})$$

contains an *H*-invariant if and only if we have for each i, $1 \le i \le n-1$,

$$(\alpha^{i})' = ((i)^{\sigma(x_{i})}, (i-1)^{\sigma(x_{i-1})}, \dots, 1^{\sigma(x_{1})}),$$

$$(\beta^{i})' = ((i)^{\sigma(y_{i})}, (i-1)^{\sigma(y_{i-1})}, \dots, 1^{\sigma(y_{1})}),$$

$$(\gamma^{i})' = ((i)^{\sigma(z_{i})}, (i-1)^{\sigma(z_{i-1})}, \dots, 1^{\sigma(z_{1})})$$

for some non-negative numbers $\sigma(x_i)$, $\sigma(y_i)$, $\sigma(z_i)$. Moreover, if these conditions are satisfied, then the space of H-invariants is isomorphic to

$$S_{\alpha^{n-1}}V(u)^* \otimes S_{\beta^{n-1}}V(u)^* \otimes S_{\gamma^{n-1}}V(u)^*.$$

Therefore the space of $SL(T_{n,n,n},\beta)$ -semi-invariants can be identified with the space of SL(V(u))-invariants in the above triple tensor product.

Corollary 2. The set of triples of partitions (λ, μ, ν) such that the space of SL(U)-invariants in $S_{\lambda}(U) \otimes S_{\mu}(U) \otimes S_{\nu}(U)$ is non-zero, in the space of triples of weights is given by a finite set of linear homogeneous inequalities in the parts of λ, μ, ν and the condition that $|\lambda| + |\mu| + |\nu|$ is divisible by $n := \dim U$.

Proof. Let $\sigma \in \Gamma$ be given by (3) and let $\sigma(\beta) = 0$. All components of σ are integers only if $|\lambda| + |\mu| + |\nu|$ is divisible by n, because

$$0 = \sigma(\beta) = n\sigma(u) + \sum_{i=1}^{n-1} i (\sigma(x_i) + \sigma(y_i) + \sigma(z_i)) = n\sigma(u) + |\lambda| + |\mu| + |\nu|.$$

By Theorem 3 and Proposition 1, those (λ, μ, ν) for which $SI(T_{n,n,n}, \beta)_{\sigma} \neq 0$ are given by $\sigma(\beta) = 0$ and a finite set of homogeneous linear inequalities in $\sigma(x_i), \sigma(y_i), \sigma(z_i), 1 \leq i \leq n-1$. These inequalities can be written as inequalities in the parts of λ , μ and ν .

4. The proof of Theorem 1

We define [x, y] to be the vector space with the basis formed by paths from x to y. We assumed that Q has no oriented cycles, so the spaces [x, y] are finite dimensional.

The indecomposable projective representations are in a bijection with Q_0 . The indecomposable projective corresponding to x is defined by

$$P_x(y) = [x, y], \quad P_x(a) = a \circ \cdot : [x, ta] \to [x, ha],$$

where $P_x(a)$ is given by the composition $p \mapsto a \circ p$. We have $\operatorname{Hom}_Q(P_x, V) = V(x)$. In particular $\operatorname{Hom}_Q(P_x, P_y) = [y, x]$.

We choose a numbering $Q_0 = \{x_1, \ldots, x_n\}$ of vertices of Q such that for every $\alpha \in Q_1$ with $t\alpha = x_i, h\alpha = x_j$, we have i < j. Let $b_{i,j}$ be the number of arrows $\alpha \in Q_1$ with $t\alpha = x_i, h\alpha = x_j$. Let $p_{i,j} = \dim[x_i, x_j]$ be the number of paths p in Q such that $tp = x_i, hp = x_j$.

The relations between the $\alpha(x_i)$ and $\sigma(x_i)$ are as follows:

(4)
$$\sigma(x_j) = \alpha(x_j) - \sum_{i < j} b_{i,j} \alpha(x_i),$$

(5)
$$\alpha(x_j) = \sigma(x_j) + \sum_{i < j} p_{i,j} \sigma(x_i).$$

We define the m-arrow quiver Θ_m as a quiver with two vertices x_+ and x_- , and m arrows a_1, \ldots, a_m with $ta_i = x_-$, $ha_i = x_+$ for $i = 1, \ldots, m$. We define the weight τ given by $\tau(x_+) = 1$, $\tau(x_-) = -1$. The dimension vector $\theta(n)$ is defined by $\theta(n)(x_+) = \theta(n)(x_-) = n$.

The idea of the proof of Theorem 1 is to reduce the calculation to the weight space $SI(\Theta_m, \theta(n))_{\tau}$. The method comes from Classical Invariant Theory with a slight adjustment to accommodate the definition of semi-invariants c^V .

Proof of Theorem 1. Let us fix Q, β and a weight σ . We proceed in three steps. In the first step, we reduce the theorem to the case that Q is a quiver with exactly one source x_- and one sink x_+ , and $\sigma(x_-) = 1$, $\sigma(x_+) = -1$ and σ is zero on all other vertices. In the second step we reduce to the case that there are no vertices x with $\sigma(x) = 0$. The only case left is the quiver Θ_m with weight τ . In Step 3 we will prove the theorem in this case.

Step 1. Construct a quiver $Q(\sigma)$ as follows:

$$Q(\sigma)_0 = Q_0 \cup x_- \cup x_+,$$

$$Q(\sigma)_1 = Q_1 \cup Q_- \cup Q_+$$

where Q_{-} consists of the set of arrows from x_{-} to x_i , with $\sigma(x_i)$ arrows going to the vertex x_i for which $\sigma(x_i) > 0$ and no arrows going to other vertices. The set Q_{+} consists of the set of arrows from x_i to x_{+} , with $-\sigma(x_i)$ arrows going from the vertex x_i for which $\sigma(x_i) < 0$ and no arrows going from other vertices to x_{+} .

Example 2. Let Q be the quiver

Let $\sigma = (1, 1, -2)$. Then the quiver $Q(\sigma)$ is

We will write $\overline{Q} = Q(\sigma)$. Define the weight $\overline{\sigma}$ of \overline{Q} by $\overline{\sigma}(x_{-}) = 1$, $\overline{\sigma}(x_{i}) =$ $0, \overline{\sigma}(x_+) = -1.$ The dimension vector $\overline{\beta} = \beta(\sigma)$ is defined by $\overline{\beta}(x_i) = \beta(x_i)$, $\overline{\beta}(x_-) = \sum_{\{i \mid \sigma(x_i) > 0\}} \sigma(x_i) \beta(x_i), \ \overline{\beta}(x_+) = \sum_{\{i \mid \sigma(x_i) < 0\}} -\sigma(x_i) \beta(x_i).$ Suppose that $W \in \operatorname{Rep}(\overline{Q}, \overline{\beta})$. The matrices of all maps W(a) with $a \in Q_-$ form a square matrix. Let $D^-(W)$ be the determinant of this block matrix. Let $D^+(W)$ be the determinant of all W(a) with $a \in Q_+$. Then the correspondence $c \to D^-cD^+$ gives the isomorphism of weight spaces $SI(Q,\beta)_{\sigma} \to SI(\overline{Q},\overline{\beta})_{\overline{\sigma}}$.

Let $\overline{\alpha}$ be the dimension vector of \overline{Q} such that $\overline{\sigma} = \langle \overline{\alpha}, \cdot \rangle$. Let \overline{V} be a representation of \overline{Q} with dimension vector $\overline{\alpha}$ and let $c^{\overline{V}}$ be the corresponding non-zero semi-invariant on $SI(\overline{Q}, \overline{\beta})$.

Proposition 2. The factor c in the decomposition $c^{\overline{V}} = D^-cD^+$ is of the form c^V for some $V \in \text{Rep}(Q, \alpha)$.

Proof. Notice that the weight of D^- is equal to $\langle \gamma_-, \cdot \rangle$ where

$$\gamma_{-}(x_{-}) = 1, \quad \gamma_{-}(x_{j}) = \gamma_{-}(x_{+}) = 0.$$

Similarly, by (5), the weight of D^+ equals $\langle \gamma_+, \cdot \rangle$ where

$$\gamma_{+}(x_{-}) = 0, \quad \gamma_{+}(x_{j}) = -\sum_{\substack{i \leq j \\ \sigma(x_{i}) < 0}} p_{i,j}\sigma(x_{i}),$$

$$\gamma_{+}(x_{+}) = -1 + \sum_{\substack{j \\ \sigma(x_{i}) < 0}} \sum_{\substack{i \le j \\ \sigma(x_{i}) < 0}} p_{i,j}\sigma(x_{i})\sigma(x_{j}).$$

It is easy to see that $\langle \gamma_-, \overline{\beta} \rangle = \langle \gamma_+, \overline{\beta} \rangle = 0$. Let $\overline{V} \in \text{Rep}(\overline{Q}, \overline{\alpha})$. Then \overline{V} has an obvious submodule $\overline{V}_1 = \overline{V} \mid_{\overline{Q}_0 \setminus \{x_-\}}$. We have an exact sequence

$$0 \to \overline{V}_1 \to \overline{V} \to \overline{V}_2 \to 0$$

with the dimension of \overline{V}_2 equal to γ_- .

Let M be the module defined by the exact sequence

$$0 \to P_{x_+} \xrightarrow{i} \bigoplus_{b,hb=x_+} P_{tb} \to M \to 0,$$

where the morphism i from P_{x_+} to a copy P_{tb} maps the trivial path $e(x_+)$ to the path b. The dimension vector of M is γ_+ , and c^M is the determinant D^+ . Consider the map

$$\sum_{\substack{b \\ hb=x_+}} \overline{V}_1(b) : \bigoplus_{b,hb=x_+} \overline{V}_1(tb) \to \overline{V}_1(x_+).$$

The dimension of the kernel is at least 1. Let $(s_b)_{b,hb=x_+}$ with $s_b \in \overline{V}_1(tb)$ be a non-trivial element in the kernel. We can now define a map $\bigoplus_{b,hb=x_{+}} P_{tb} \to \overline{V}_{1}$ by sending the generator $e(tb) \in P_{tb}(tb)$ to s_b for all b. Because $(s_b)_{b,hb=x_+}$ lies in the kernel, this actually defines a morphism $M \to \overline{V}_1$. Let \overline{V}_3 be the image of this

Now \overline{V}_3 is a submodule of \overline{V}_1 and $c^{\overline{V}_1} \neq 0$. By Lemma 1 a) we have $\langle \underline{d}(\overline{V}_3), \overline{\beta} \rangle \geq 0$. We also have $c^M = D^+ \neq 0$. If we apply Lemma 1 a) to the kernel N of

 $M \to \overline{V}_3$, then we get $\langle \underline{d}(N), \overline{\beta} \rangle = \langle \gamma_+, -\underline{d}(\overline{V}_3) \rangle = -\langle \underline{d}(\overline{V}_3), \overline{\beta} \rangle \geq 0$. We conclude that $\langle \underline{d}(\overline{V}_3), \overline{\beta} \rangle = 0$. By Lemma 1 b) $c^{\overline{V}_3}$ divides the semi-invariant $c^M = D^+$. Because D^+ is an irreducible semi-invariant we must have $c^{\overline{V}_3} = D^+$, $\gamma_+ = \dim \overline{V}_3$ and \overline{V}_3 is isomorphic to M.

We have an exact sequence

$$0 \to \overline{V}_3 \to \overline{V}_1 \to \overline{V}_4 \to 0.$$

Now it is clear by the multiplicative property that $c^{\overline{V}} = c^{\overline{V}_2} c^{\overline{V}_4} c^{\overline{V}_3}$ with the first factor being proportional to D^- and the last one to D^+ . Let us also define a submodule $\overline{V}_5 = \overline{V}_4 \mid_{\{x_+\}}$, so we have an exact sequence

$$0 \to \overline{V}_5 \to \overline{V}_4 \to \overline{V}_6 \to 0.$$

Note that \overline{V}_6 has support within Q. The restriction of \overline{V}_6 to Q will be denoted by V. We will prove that the restriction of $c^{\hat{V}}$ to $\text{Rep}(Q,\beta)$ is c^V .

Extend $W \in \text{Rep}(Q, \beta)$ to the module \overline{W} of dimension $\overline{\beta}$ by putting $\overline{W}(x_{-}) = \bigoplus_{a,ta=x_{-}} W(ha)$, $\overline{W}(x_{+}) = \bigoplus_{b,hb=x_{+}} W(tb)$, with the maps $\overline{W}(a)$ and $\overline{W}(b)$ being the components of the identity map. Define the canonical submodule $\overline{W}_{1} = \overline{W}|_{\{x_{+}\}}$. We have an exact sequence

$$0 \to \overline{W}_1 \to \overline{W} \to \overline{W}_2 \to 0.$$

Define the submodule $\overline{W}_3 = \overline{W}_2 \mid_{\widehat{O} \setminus \{x_-\}}$ of \overline{W}_2 . Now we have an exact sequence

$$0 \to \overline{W}_3 \to \overline{W}_2 \to \overline{W}_4 \to 0.$$

The representation \overline{W}_3 has support within Q and its restriction to Q is just W. We now have

$$c^{\overline{V}}(\overline{W}) = c^{\overline{V}_4}(\overline{W}) = c^{\overline{V}_4}(\overline{W}_1)c^{\overline{V}_4}(\overline{W}_3)c^{\overline{V}_4}(\overline{W}_4) = c^{\overline{V}_4}(\overline{W}_3)$$

because $c^{\overline{V}_4}(\overline{W}_1)$ and $c^{\overline{V}_4}(\overline{W}_4)$ are constant. Moreover,

$$c^{\overline{V}_4}(\overline{W}_3) = c^{\overline{V}_5}(\overline{W}_3)c^{\overline{V}_6}(\overline{W}_3) = c^{\overline{V}_6}(\overline{W}_3) = c^V(W)$$

because $c^{\overline{V}_5}(\overline{W}_4)$ is constant. This concludes the proof of the proposition.

Step 2. Let Q, β , σ be as above. Let $x \in Q_0$ be a vertex such that $\sigma(x) = 0$. Let a_1, \ldots, a_s be the arrows in Q_1 with $ha_k = x$ $(k = 1, \ldots, s)$ and let b_1, \ldots, b_t be the arrows in Q_1 with $tb_l = x$ $(l = 1, \ldots, t)$. Let \overline{Q} be the quiver such that $\overline{Q}_0 = Q_0 \setminus \{x\}$ and $\overline{Q}_1 = (Q_1 \setminus \{a_1, \ldots, a_s, b_1, \ldots, b_t\}) \cup \{ba_{k,l}\}_{1 \le k \le s, 1 \le l \le t}$, where $t(ba_{k,l}) = ta_k, h(ba_{k,l}) = hb_l$. Let $\overline{\beta}$, $\overline{\sigma}$ be the restrictions of β , σ to $Q_0 \setminus \{x\}$.

The Fundamental Theorem of Invariant Theory (see [2] for a characteristic free version) says that every semi-invariant from $\mathrm{SI}(Q,\beta)_{\sigma}$ can be obtained from the semi-invariants from $\mathrm{SI}(\overline{Q},\overline{\beta})_{\overline{\sigma}}$ by substituting the actual compositions b_la_k for the arrows of type $ba_{k,l}$. Assuming Theorem 1 for $\mathrm{SI}(\overline{Q},\overline{\beta})_{\overline{\sigma}}$ to be true, we need to show that every semi-invariant $c^{\overline{V}}$ from $\mathrm{SI}(\overline{Q},\overline{\beta})_{\overline{\sigma}}$ pulls back to a semi-invariant of type c^V . For a given representation \overline{V} of \overline{Q} of dimension $\overline{\alpha}$ we define the representation $V = \mathrm{ind} \ \overline{V}$ as follows. We notice that the condition $\sigma(x) = 0$ means that we expect $\mathrm{dim} \ V(x) = \sum_{k=1}^s \mathrm{dim} \ V(ta_k)$.

This means we put

$$V(y) = \begin{cases} \overline{V}(y) & \text{if } y \neq x, \\ \bigoplus_{k=1}^{s} \overline{V}(ta_k) & \text{if } y = x. \end{cases}$$

We define the linear maps V(a) as follows:

$$V(a) = \begin{cases} \overline{V}(a) & \text{if } a \neq a_k, b_l, \\ i(a_k) & \text{if } a = a_k, \\ \sum_{k=1}^s \overline{V}(ba_{k,l}) & \text{if } b = b_l, \end{cases}$$

where $i(a_k): V(ta_k) \to \bigoplus_{k=1}^s V(ta_k)$ is the injection on the k-th summand.

Then it is easy to check directly from the definition of semi-invariants c^V that if the representation $\overline{W} = \operatorname{res} W$ of dimension $\overline{\beta}$ is a restriction of a representation W of Q of dimension β , then $c^{\overline{V}}(\overline{W}) = c^V(W)$.

Notice that the functor ind \overline{V} is the left adjoint of the obvious restriction functor res: $\operatorname{Rep}(Q) \to \operatorname{Rep}(\overline{Q})$, i.e., we have the natural isomorphisms

$$\operatorname{Hom}_Q(\operatorname{ind} \overline{V}, W) = \operatorname{Hom}_{\overline{Q}}(\overline{V}, \operatorname{res} W)$$

which explains why $c^{\overline{V}}(\overline{W})$ and $c^{V}(W)$ vanish simultaneously.

Step 3. It remains to deal directly with the weight space $SI(\Theta_m, \theta(n))_{\tau}$. Writing the representation W of dimension $\theta(n)$ as an m-tuple of linear maps,

$$W(a_1), \ldots, W(a_m): W_- \to W_+,$$

we can introduce the additional action of the group $\operatorname{GL}(m)$ acting on this space by taking linear combinations of the linear maps $W(a_1),\ldots,W(a_m)$. Using the Cauchy formula (in its characteristic free version, say from [1]) we see that the space $\operatorname{SI}(\Theta_m,\theta(n))_{\tau}$ of semi-invariants can be identified with $\bigwedge^n W_- \otimes \bigwedge^n W_+^* \otimes D_n(K^m)$. Here D_n denotes the n-th divided power. Since the divided power $D_n(K^m)$ is generated as a $\operatorname{GL}(m)$ -module by its highest weight vector (which corresponds to the semi-invariant det $W(a_1)$) and the set of semi-invariants of the form c^V is preserved by the action of $\operatorname{GL}(m)$, it is enough to express $\det W(a_1)$ as the semi-invariant of the form c^V . Notice that $\tau = \langle \alpha, \cdot \rangle$ for the dimension vector $\alpha = (1, m-1)$. Taking the module V to be the m-tuple of linear maps $V(a_1),\ldots,V(a_m): K \to K^{m-1}$ where $V(a_1)=0$ and $V(a_i)$ is the embedding sending 1 to the i-1'st basis vector, for $i=2,\ldots,m$, we check directly that $c^V=\det W(a_1)$. This concludes the proof of Theorem 1.

We now will give another description for semi-invariants $\mathrm{SI}(Q,\beta)_{\sigma}$. Let $\overline{Q}=Q(\sigma), \overline{\beta}$ and $\overline{\sigma}$ be as in Step 1 of the proof of Theorem 1. We know that $\mathrm{SI}(Q,\beta)_{\sigma}\cong \mathrm{SI}(\overline{Q},\overline{\beta})_{\overline{\sigma}}$. Let $\overline{\alpha}$ be a dimension vector of \overline{Q} such that $\langle \overline{\alpha},\cdot \rangle=\overline{\sigma}$. Now $\mathrm{SI}(\overline{Q},\overline{\beta})_{\overline{\sigma}}$ is generated by semi-invariants $c^{\overline{V}}$ with $\underline{d}(\overline{V})=\overline{\alpha}$. In fact we only need to take those $c^{\overline{V}}$ where \overline{V} lies in a Zariski dense set of $\mathrm{Rep}(\overline{Q},\overline{\alpha})$. A general representation \overline{V} of dimension $\overline{\alpha}$ has the following projective resolution:

$$0 \to P_{x_+} \xrightarrow{d_V} P_{x_-} \to \overline{V} \to 0$$

with $d_V \in \operatorname{Hom}_Q(P_{x_+}, P_{x_-}) = [x_-, x_+]$. So d_V can be seen as some linear combination $\sum_{i=1}^r \lambda_i p_i$ where p_1, \ldots, p_r are all paths from x_+ to x_- . For any $\overline{W} \in \operatorname{Rep}(\overline{Q}, \overline{\beta})$ we have the following exact sequence:

$$0 \to \operatorname{Hom}_{\overline{Q}}(\overline{V}, \overline{W}) \to \operatorname{Hom}_{\overline{Q}}(P_{x_{+}}, \overline{W}) \xrightarrow{\tilde{d}_{\overline{V}}} \operatorname{Hom}_{\overline{Q}}(P_{x_{-}}, \overline{W}) \to \operatorname{Ext}_{\overline{Q}}(\overline{V}, \overline{W}) \to 0.$$

It is easy to see that $\det(\tilde{d}_{\overline{V}}) = c^{\overline{V}}(\overline{W}) = c^{V}(W)$.

We have that

$$\begin{array}{c} \operatorname{Hom}_{\overline{Q}}(P_{x_{+}},\overline{W}) \cong \overline{W}_{x_{+}} = \bigoplus_{\sigma(x_{i})>0} W(x_{i})^{\sigma(x_{i})}, \\ \operatorname{Hom}_{\overline{Q}}(P_{x_{-}},\overline{W}) \cong \overline{W}_{x_{-}} = \bigoplus_{\sigma(x_{i})<0} W(x_{i})^{\sigma(x_{i})}, \\ \tilde{d}_{\overline{V}} = \sum_{i} \lambda_{i} \overline{V}(p_{i}). \end{array}$$

Let F be a function from the set of paths from x_+ to x_- to the set of non-negative integers. For each such F we can define the semi-invariant I_F as the coefficient of $\lambda_1^{F(p_1)}\lambda_2^{F(p_2)}\dots\lambda_r^{F(p_r)}$ in $\det(\tilde{d}_{\overline{V}})$.

Corollary 3. The space of semi-invariants $SI(Q, \beta)_{\sigma}$ is spanned by semi-invariants of the form I_F .

A necessary condition for I_F to be non-zero is

$$\sum_{i} F(p_i) = \sum_{\sigma(x_i) > 0} \sigma(x_i) \beta(x_i) = \sum_{\sigma(x_i) < 0} -\sigma(x_i) \beta(x_i).$$

ACKNOWLEDGEMENT

The authors would like to thank Andrei Zelevinsky for helpful suggestions.

References

- K. Akin, D. A. Buchsbaum, J. Weyman, Schur functors and Schur complexes, Adv. Math. 44 (1982), 207–278. MR 84c:20021
- [2] C. DeConcini, C. Procesi, Characteristic free approach to invariant theory, Adv. Math. 21 (1976), 330–354. MR 54:10305
- [3] W. Fulton, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki (1998). MR **99m:**00026
- [4] W. Fulton, J. Harris, Representation Theory, Springer-Verlag, New York, 1991. MR 93a:20069
- [5] V. Kac, Infinite root systems, representations of graphs and invariant theory II, J. Algebra 78 (1982), 141–162. MR 85b:17003
- [6] A. D. King, Moduli of representation of finite dimensional algebras, Quart. J. Math. Oxford(2) 45 (1994), 515–530. MR 96a:16009
- [7] A. Klyachko, Stable vector bundles and Hermitian operators, IGM, University of Marne-la-Vallee, preprint (1994).
- [8] A. Knutson, T. Tao, The honeycomb model of $GL_n(\mathbb{C})$ tensor products, I: Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055–1090. MR 2000c:20066
- [9] C.M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976) 269–302.MR 54:10340
- [10] A. Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991), 383–395. MR 92g:16019
- [11] A. Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992) 46–64. MR 93d:16014
- [12] A. Schofield, M. van den Bergh, Semi-invariants of quivers for arbitrary dimension vectors, preprint, math.RA/9907174.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02151

 $E ext{-}mail\ address: hderksen@math.mit.edu}$

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115 $E\text{-}mail\ address$: weyman@neu.edu