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Let G be a finite group with 77AG a Hall subgroup, let F be any field of charac-

teristic 0 and let S be the character of an irreducible F-representation 36 of 77.

Suppose S is invariant under the natural action of G on the characters of 77. As is

well known, if X is absolute irreducible, the character S can be extended to G and

in fact in this case it is not hard to see that X can be extended to an F-representation

of G. (For instance, this follows immediately from the results of §2.) This paper is

an attempt to prove (at least when 77 is solvable) that X can always be extended

to G. We do not succeed in this attempt. We obtain, however, some purely group

theoretic conditions which are sufficient to guarantee the extendibility of X without

any assumptions on F. In particular we prove

Theorem A. 7/77 is nilpotent then X is extendible to G.

In proving this we define a property (*) of /»-groups such that if 77 is solvable,

C=G¡H and every/»-subgroup of C satisfies (*) then X is extendible. An attempt

to find /»-groups satisfying (*) yields

Theorem B. Let 77 be solvable and suppose far every prime p\[C : C] that

a Sylow p-subgroup of C is regular and metabelian where C=G\H. Then X is

extendible to G.

1. Throughout this section we assume that G is an arbitrary finite group and

HAG; F is a field of characteristic 0 which is held fixed throughout the whole

paper. Let S be the character of an irreducible F-representation of 77. Then

H=m 2l=i 0, where 0( e Irr (77) (the set of absolutely irreducible characters of 77)

and all the 0( are distinct and a full set of conjugates under the action of the Galois

group © = ^(F(0)/F) where 0 is any one of the 0,. (See [1, §11].) If S is invariant

in G then for any g e G we have 0" = 0" for some a e @.

(1.1) Definition. Let 0elrr(77). Then 0 is F-semi-invariant in G if for every

geG, there exists o e ^S{FiB)\F) such that 09 = 6". If 0 is ß-semi-invariant we say

it is semi-invariant.

It is clear that F-semi-invariance implies semi-invariance.
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(1.2) Lemma. Suppose 9eIrr(H) is F-semi-invariant in G. Let © = ^(F(0)/F)

and I=JQ(9), the inertia group of 9 in G. Then the mapping f: G—^ @ defined by

O9 = 9ng) is a homomorphism with kernel I. Thus TAG and G/I is abelian.

Proof. The a e © such that 9g = 9" is uniquely defined since © acts regularly on

the set of conjugates of 9 and thus/is well defined. Now

ö"l»2   =   (0«»1>)<>2   =   (092)»9l>   =    J/9Ä)

since the actions of © and G on Irr (H) commute. Now © is abelian since F(6)

çF[e] for some root of unity, e and thus we have

f(gigj=f(g¿ñgi)=ñgi)f(g¿
and /is a homomorphism. Clearly, ker (/) = / and we are done.

If 8 is a character of any group we may associate with it a linear character by

taking the determinant of any representation which affords 8. This well-defined

linear character will be denoted by det 6. We denote by o(6), the order of det 8

when considered as an element of the group of linear characters. We state below

an important fact which relates det 8 with the extendibility of 9. (This is implicit in

[2J0

(1.3) Proposition. Let 9eIn(H) be invariant in G. Suppose o(9) and 9(1)

are both prime to [G : H]. Then there exists a unique extension § of 8 to G such that

o(ê) is prime to [G : H].

In particular, if H is a Hall subgroup of G and 9 e Irr (H) then there is a uniquely

defined character Ú of JG(9) which extends 8 and has determinantal order as above.

We shall generally call this the canonical extension of 9.

(1.4) Proposition. Suppose H is a Hall subgroup and let 9 e Irr (H) be F-semi-

invariant in G. Let 1= Ja(9) and let Ê be the canonical extension of 9 to I. Then,

X=#G is irreducible, F(9)=F(6)^F(x) and if oe&(F(x)IF) with <r==l, then

[X\H, x"\H] = 0.

Proof. Since ê\H=8 we have /s/(i) <^J(9) = I and since #elrr(/) it follows

that x e Irr (G). Clearly, F(9)^F(9) so let a e ^(F(Ô)/F(8)). Then o(Ô°) = o(ê) and

6"\H= 9" = 9 so 6a = ê by the uniqueness of ê. Thus a= 1 and hence we must have

F0)=F(8). Clearly, F(x) = F(0G)<=F(0).

Finally, let"a e <S(F(y)\F) and suppose [X\H, x°\H]¿0. By Clifford's Theorem,

both x\H and x"\H consist of a single orbit of irreducible characters of H with

certain multiplicities. Since they have a constituent in common they must be equal

so 8 is a constituent of x"W- Choose an irreducible constituent <\¡ of x°\I with

ip\H containing 8. The degrees and determinantal orders of the constituents of

x\I are the same as those of x"\I so o(tp) = o(ô) and 'p\H= 9 and so we must have

if) = 9. Thus x" is a constituent of #° = x and this forces x—Xa an£l tnus a~ L The

proof is complete.
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2. In this section we assume that 77AG is a Halk subgroup and X is an irreducible

F-representation of 77 with character H invariant in G. Let 0 be an absolutely

irreducible constituent of S so 0 is F-semi-invariant in G. Let 7, § and x be as in §1.

Here we show

(2.1) Proposition. The representation X is extendible to G if the Schur index,

mFix) is relatively prime to [G : 77].

We begin with two lemmas.

(2.2) Lemma. Let FçL be groups with 0 e Irr (L) and <p = ip\Ke Irr (F). Then

mF(ip)\mF(<p) with equality ifF(>p) = F(<p).

Proof. Let A be the character of an irreducible F-representation of K with

absolutely irreducible constituent <p so [A, 93] = mF(<p). Then AL is the character

of an F-representation of L and [<p, AL] = [<p, A] = mF(<p). It follows that

mF(>p)\mF((p). Now let @ = ^(F(i/r)/F) so A = mF(ip) 2<,6<5 •A" is the character of an

irreducible F-representation of L. Now if F(4i)=F(<p) then <pa^9 whenever

ají I so [A\H, 9] = mF(>p) and hence mF(<p)\mF(ip) and we are done.

(2.3) Lemma. Let KAL, <p e Irr (K) and ip = <pL. Suppose >p is irreducible. Then

mF(tp) = umF((p) where u\[L : K].

Proof. Let A be the character of an irreducible F-representation of K with

[A, <p] = mFi<p). Then [AL, ip] = [A, <p\H] = vmF(<p) where v is the number of elements

xKeLjK such that <px = <p" for some a e ^(F(<p)¡F). If U is the set of such x then

Uis a subgroup and FçLçL, v = [U : K] so v\[L : K]. Since AL is the character

of an F-representation ofL, mFi>p)\vmFi<p).

On the other band, let A be the character of an irreducible F-representation of

L, A = mFH>) 2ie<& ¥ where © = ^(F(i/>)/F). If t^I then 9 is not a constituent

of ipz\K since <pL = ip^ipt. Thus [A\K,cp] = mFitp)[tj)\K,<p]=mFi4>) and hence

mFiq>)ImFi>p). We have then, mFip) = umF(<p) and this divides vmFi<p) so u\v and the

result follows.

Proof of (2.1). Let A be the character of an irreducible F-representation 3J of

G with constituent y. If A|77=H then 3)|77 and X are F-representations of 77

which have the same character and thus are similar over F Effecting this similarlity

transformation on 3) yields an F-representation which is an extension of X.

Since A|77 has 0 as a constituent, H is a constituent of A|77 and since 3 is in-

variant in G it follows by Clifford's Theorem that A\H=eE for some integer e.

Thus it suffices to show that e=\ when mF(x) is prime to [G : 77]. Now A =

mF(x) loe® Xa where @ = ̂ (F(v)/F). If a* 1 then by (1.4) [0, vl77]=0 so [A|77, 0]

=«!J7(x)[y|77, 0] = «if(y)[y|7, 0']. However, among the irreducible constituents of

x\I, only 6 has constituent 0 when restricted to 77 so [y|7, 8'] = [8, 6'] = [8, 0] = 1

and we obtain

emFi8) = [eS, 0] = [A|77, 0] = mf(y).
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Since F(8) = F(Ô), we have by (2.2) that mF(9) = mF(ê) and by (2.3) that mF(x) =

umF(Ê) where w|[G : /]. Since by assumption mF(%) is prime to [G : H] we must

have u= 1 and it follows that e= 1 and the proof is complete.

3. In this section and for most of the rest of this paper we shall be concerned

with showing that under suitable hypotheses, mF(x) is prime to [G : H] as in (2.1).

Here we reduce the problem to the case where G\H is a /»-group containing I\H

in its Frattini subgroup. We assume that HAG is a Hall subgroup and that

9 e Irr (H) is F-semi-invariant in G. Let I, § and x be as before.

(3.1) Proposition. Let H^U^G and let Ö be the canonical extension of 9 to

I C\U and ip = 8u. Then <f¡ e Irr (U). Suppose mF(<p) is prime to [U : H]. Then if p

is any prime divisor of(mF(x), [G : H]) we must have p\[G : HI].

Proof. Clearly / n U=JU(9) so by (1.4) applied to U, </> = 9U e Irr (U). By the

uniqueness of 8, we have ê\(I nU) = 9. Let v = S'ue Irr (IU). Then 0^ fo|(/ n U), 8~]

= bl I U,t¡i]so>l> is an irreducible constituent of r¡ \ U. However, </>(l) = [U : In U]S(l)

= [IU : 7]í(l) = ij(l) and thus ij|l/=f It follows from (2.2) that mF(r¡)\mF(>P).

Now mF(>l>) | \U\ and is prime to [U : H] and thus «1,(77) | \H\. We have x=VG

and IUaG since G\I is abelian so by (2.3) mF(x) = umF(r¡) where u\[G : IU].

Ifp I (mF(x), [G : H]) then/if \H\ so p \ m F(r¡) and hence p\u. The result follows.

Now for any U, H^ t/s G, let us denote the </< of (3.1) by xu so xg = X an(l Xh = 9-

In general, xu e Irr (U).

(3.2) Theorem. Suppose mF(xu) is prime to [U : H] for every U, //££/£ G,

such that U/H is ap-group with (In U)¡H^^(U/H) where í> denotes the Frattini

subgroup. Then mF(x) is prime to [G : H].

Proof. By induction we may assume for all U with //£i/<G that mF(xv) is

prime to [U : H]. If G\H is not a /»-group for any prime, let /?|[G : H] and let

P\H be an Sv subgroup of G\H. Then P<G and thus mF(xF) is prime to p. By (3.1),

any prime q dividing both [G : H] and mF(x) must divide [G : IP] sop^q. Sincep

was arbitrary, we conclude that the result follows in this case and we may assume

that GjH is a /»-group.

If I/H^ <S?(G/H) there is nothing to prove so we may assume that this is not the

case. Thus we can find a subgroup U\H<G\Hsuch that UI=G. By the inductive

assumption applied to U, mF(xu) is prime to p and hence by (3.1), any prime

dividing (mF(x), [G : H]) divides [G : 7i/] = 1. The result follows.

Before continuing in §4 to derive conditions which will guarantee that

(mF(x), [G : H]) = 1 we give a simple lemma about induced characters.

(3.3) Lemma. Let L be a group with subgroups A and B such that L=AB and

let <p be any class function on A. Then <pL\B = (cp \ (A n B))B.

Proof. Let F be a transversal for the right cosets of A n B in B so AT^B and

AT=AAT2AB=L. Also \T\ = [B : An B] = [AB : A] so F is a transversal for
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the right cosets of A in L. Suppose then x e F. We have 9>L(x) = %teT <p°{txt "1)

and (931 {A n F))B(x) = 2ter ç>00(fxf_1) where 9?°( v) = 9Íy) if j> e ^ and 0 otherwise

and 9°°iy) = 9Íy) iíyeAnB and 0 elsewhere in F. Since T^B, txt'1 eA n B

iff it is in A. Hence for all t e T, <p°{txt-1)=<p00itxt-1) and the result follows.

We note here a result which may be of some interest although we shall not refer

to it again.

(3.4) Corollary. If G\H is a split extension of I/H then mFix) is prime to

[G : 77].

Proof. Let U/H be a complement for 7/77 in G/77. By the Schur-Zassenhaus

Theorem, there exists a complement C for the normal Hall subgroup 77 in U.

Clearly, IC=G and 7 n C= 1 so by the lemma we have

[x, 18] = [y|C, lc] = [(0ll)c, ic] = 0(l).

Therefore, mFix)\8{\) and the result follows.

4. Let F be a /»-group and B^P with P'eFç<D(P). We wish to consider the

family of groups F such that with any F as above, the following statement is a

theorem :

(*) Let F e Sylp (G) where G has a solvable normal /»-complement 77 and let

0 e Irr (77) be invariant in 77F. Suppose MAG, M<H and 77/M is a chief factor of

G. Suppose further that 0 vanishes on 77— M and that 8\M=ey where 93 e Irr (Ai).

Let ê and <j> be the canonical extensions of 8 and 93 to F77 and BM. Then ê\BM

= $$ where </< is a character of BMI M (viewed as one of BM) and [<p, 1] is prime to

P-
Note that if -n is any irreducible constituent of 6\BM then 93 is a constituent of

T¡\M so -n=ß9 where ß e Irr iBM/M) and ß is uniquely defined. (See for instance

Theorem 2 of [2].) It follows that the </r of (*) is always a well-defined character

and the force of (*) is in the assertion that/» \ [</>, 1]. In §5 some general methods for

calculating >p will be given and in §6 (*) will be proved for regular, metabelian

/»-groups. It is conjectured, however, that it is always true. The connection between

(*) and the problem of this paper is given in the next theorem. Assume here that

77, 0, 7, ê and x have the same meaning as in the previous section.

(4.1) Theorem. Suppose C=G\H has the property that for every p-subgroup

P^C, that P satisfies (*). Then if H is solvable, mFix) is prime to [G : Tí].

Proof. By (3.2) we may assume that G/TT is a /»-group and that T/TTs <S(G/77).

Let F e Sylp (G) and let F=T n F. Then by assumption (*) holds if it applies and

F'çFç<D(P). We prove the theorem by induction on |7T|. Let M<H, MAG

such that 77¡M is a chief factor of G, so that 77/M is an elementary abelian ç-group.

Let G0=PM and 70 = 7n G0 = BM. We now consider the various possibilities for

0|M.
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Suppose 9\M=(p e Irr (M). Then clearly, <p is F-semi-invariant in G0 and in-

variant in 7) so Io^J=yao((p)- Let <p be the canonical extension of y to / and let

Xo = 9>G°- By the inductive hypothesis, mF(xo)=m is prime to p. Let H=«i2xo

so H is the character of an irreducible F-representation of G0. Now, using (3.3), we

obtain

[HG, x] = [3, x\Go] - [S, (^|/o)G°] = [S|/0, i|/0] = [S|I0, 0|/o]

= rn[xo\h, $\h¡.

The last equality follows because if ct^I then [xo|M,<p] = 0 by (1.4) and thus

[Xo\Io, <p|70]=0. We have then

[HG, y] = m[Xo|F WoYl

However, (4>\I0)J = p4> where p is the regular character of J¡I0. It follows that

(4>\I0Y = 1,ß ß(l)ß$ where ß runs over Irr(///0). Since each ß$ is irreducible,

(y|/0)7 has a unique irreducible constituent with degree <p(l) and determinantal

order prime top. That constituent is $ and has multiplicity 1. Since every irreducible

constituent of xo|^ bas this degree and order we have

[SG, x] = m[xo\J, $] = m.

Thus mF(x)\m and we are done in this case.

We suppose then that 9\M=e 2f=i <p¡ where eu> 1 and the c>¡ are distinct conju-

gate irreducible characters of M. Now, since H\M is abelian, there exists H0,

Ms H0<H such that 8 is induced from a character of 7i0 and thus vanishes on

H—H0. Let F=n {#0 I M^H0<H with 0 vanishing on H—H0}. Since 0 is semi-

invariant in G, the group FAG and thus L = M so 0 vanishes on H—M and

ue2 = [8\M, 9\M] = [H : M]. Now let T=JH(<px). Since FA//, F depends only on

0 and it follows that FAG so that either T=H or T=M. Suppose T=H so u=l

and 0|M=ec>, e2 = [H : M]. Thus <pH = e9 and it follows that ^a0((p) = Io and 99

is F-semi-invariant in G0 so if we set xo = <PG° we have by induction that m = mF(x0)

is prime to />. By (*) we have È\Io = <f>y where [i/>, 1] is prime to p. Let H = «j 2„ xo

where a runs over ^(F(x0)/F). Then

[SG, y] = [S, y|G0] = [3, (#)°o] = [5|/0, #] = m 2 [Ä, #].

If ß is an irreducible constituent of 0 then /9<p is irreducible so the only constituents

of 1/191 with degree equal to 93(1) and determinantal order prime to p are the ones of

the form 1 -<p and the multiplicity of this is [</<, l] = r which is prime to/7. Thus

[EG,x] = rm2[x5|/o.9U
IT

As before, if o^ 1, [xo|/o, <p] = 0 and [xo|/o> <p] = 1 so [5G, x] = rm which is prime to

p and divisible by mF(x) and the proof of this case is complete.
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We may suppose then that T=M so m = [77 : M] and thus e=\. Now, 70/M

acts on TT/M and on the set {93;} and this action is compatible with the action of

77/M on the set so by Glauberman's lemma (Theorem 4 of [3]), some 904 (say 9^)

is invariant in T0. If 9j = 9i is also invariant in T0, then for x eT0 we have 9t'1hx

=93^ so [«, T0]sJrH(931) = Af. Thus if <px is not the unique irreducible constituent of

0|M which is invariant in T0, then CH/M(T0) = C/A/'> 1. Since T0AG0, we get G0

S7V(C) and thus CAG so C=T7. It follows in that case that I\M=H\M xI0/M

and T0AG. Also every 9^ is invariant in T0.

Suppose that this situation occurs. Now some irreducible constituent r¡ of

êIT0 satisfies [r¡\M, 9i]^0 and thus 7i = A^1, where A elrr (T0/A7). Since A is invariant

in I, we have by Clifford's Theorem that ê\I0 = A 2¡u= 1 9¡- Thus A(l) = 1 and by calcu-

lating determinants we get AW1)= 1 so A= 1 and ê\IQ = J, 9V If any two of the ¡pt are

Galois conjugate over F, let 5={« e TT | 3a e ^iF{<px)IF) with 93? = 93?}. Then S> M

is a subgroup of TT which depends only on 0 and clearly SAG. Thus S=H and

hence 9^ is F-semi-invariant in 77. Now if g e G then 09 = 01 where t e ^(F(0)/F)

and since F{d)^Fi<p1), t may be extended to t^ on Ffo). Then ¡pi1 and 93? are both

constituents of 09|M so 9>illff is a constituent of 0|M so that 9l^ig = 9i where

a e @{F{<pi)IF). Thus 93?= <p\l" and ç>j is F-semi-invariant in G. Let J=<?GÍ9i) so

FAG and G/7 is abelian. Also, J n TT= M so J\M is a /»-group and being normal,

it must satisfy 7/Ms G0/Af e Sylp (G/AT). Thus G'çJ^G0 so G0AG. Since 93? = 0

we have /ÇT so we must have T=T0. Now 9Í = # so yi°=xo satisfies xo = x ar>d by

induction mF{xo) is prime to /». Since/» f [G : G0], it follows that/»t«v(x) by (2.3).

Consider now the case where all 93¡ are invariant in T0 but no two of them are

Galois conjugate over F. In this case we also have T0=JrGo(931). We claim that for

some /', 93j is F-semi-invariant in G0. Let F0 be a/»-subgroup of G of maximal order

such that some 9¡ is F-semi-invariant in MP0. Since Pft^P for some he H we may

replace 93¡ by <pf and assume that P0S:P. Assume then that <p! is F-semi-invariant

in P0M and suppose that P0<P- Choose aeP—P0. Then 8a=8a for some a e <3

•(F(0)/F) and <p\ is a constituent of 8°\M. Extend a to ax on Ffai) so that 93Î1

is a constituent of 0"|AT and thus ç>ix=<p?ft for some he H. It follows that 93! is

F-semi-invariant in <F0M, ah) = Gi. Now ah $P0M because for any element of G,

the representation as a product of an element of P with an element of TT is unique

and we conclude that Gi>P0M. However, d n H=M since no two of the 9>¡

are Galois conjugate and thus the /»-part of |Gi| exceeds |F0|. Taking a Sylow

subgroup of Gj yields a contradiction to the maximality of F0 and thus we have

Xo = 9>i° satisfies m=mF{x0) is prime to p. Now let H=mj_„ xS as before. Then

[3°, y] = [S, yjG0] = [S|T0, 6\I0] = m 2 », *|U

Suppose ct^ 1 and extend a to a! on F{<p1) = F{$1). If <p( is a constituent of xo|T0

then 9>i and ^i1 are conjugate in G0. Thus yl"1 = f¡ for some geG0 and hence

pï<71 = 9,i- Now 95Î=93Ï for some t e^iFip^/F) and thus <pY1 = (pi. This forces
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i=l so $x is a constituent of xoVo- However, $1°=Xo and this is a contradiction.

Since i|/0 = 2 <Pi we have then

[HG, x] = w[xo|/o, #|/0] = m[Xo, x\G0] = m[Xo, xl

However, Xo = <Pi = ^G = X so [HG, x] = m and the result follows in this case.

The one remaining case is where exactly one constituent <px of 9\M is invariant

in IQ. Here we have @\IQ = Xy1 + l.,nj where i¡f e Irr (I0) with p\r¡j(l) and

A e Irr (hlM). We claim that in fact A = 1. Since p\X(l) we have A(l)= 1 and thus

(XyxY^Q^Xy'x where on the right, A is viewed as a character of/with kernel con-

taining H. We will have shown that A = 1 if we show that $[ has determinantal

order prime to p. Let « = o($x) and consider (det y'x)n(g)- This is ± a product of

factors of the form (det <¡>xY(tgt "l) = 1. Hence if the associated sign is + we are

done. The sign is determined by the parity of the permutation that gel induces

on the right cosets of I0 in /. This parity is the same as that of the action of g on the

cosets of G0 in G. If the action of every element of / were not even, there would

exist a subgroup A of index 2 in G with A 2 M and A n I< I so AI= G. lip + 2 then

even if o(<j>[) = 2« we may conclude that A = 1 and the sign above does not matter.

We may assume then that p = 2 so that A 2 H and this yields a contradiction to

////£3>(G///). Thus in any case our claim is established and A = l. Therefore

Now if g e G0 then <pax is a constituent of 9S\M = 0"|M for some o e ^(F(0)/F).

Thus as before we must have <px=<pï1 where ox is an extension of a to F(<p¡). How-

ever, <p{ is invariant in /0 since /0AG0 and so «pf1 and hence also 9i is invariant in

/0 and this forces i=l and thus <px is F-semi-invariant in G0. Since Io—^g0(9i)

we have by induction that xo = "Pi0 satisfies mF(xo) is prime to p. As in the previous

cases, we set E=«i2o-Xo so [HG, x] = nt 2 [xS|/o> #Vo] where a runs over

<S(F(xo)\F). Now every constituent of xolF has degree <Pi(l) and the only constituent

of S\I0 with this degree is 9V Also, if o^ 1 then [xo\h, <Pi] = 0 so we have

[SG, x] = m[Xo\Io, <Pi] = m.

The result now follows in this case and the entire proof is complete.

5. In this and the next section we attempt to find conditions which will guarantee

that (*) will hold so that the previous theorem can be applied. Here we consider

a situation somewhat more general than is necessary for this purpose because

the results of this section may have some independent interest.

Let G be a finite group and suppose M < HAG with MAG and H\M an ele-

mentary abelian #-group where q\[G : //]. Let 9 e Irr (H) satisfy 9\M=ey where

9> e Irr (M) and 0 vanishes on H— M. Suppose also that 0 is invariant in G and that

o(9) and 0(1) are prime to [G : H] so that 0 has a unique extension È on G with

(0(6), [G : H]) = l. Since (det9>)e = det (0|M) and (e, [G : H]) = l, we may define

9 on U where U\M is a complement for H\M in G\M which exists by the Schur-

Zassenhaus Theorem. Then every irreducible constituent of 6\ U is of the form
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ßq> where ß e Irr W/M) is uniquely determined. Therefore there exists a unique

character </i (possibly reducible) such that #| U=tf>y. (As usual we do not distinguish

between characters of U\M and characters of U with M contained in their kernels.)

It is the object of this section to obtain information about <p. We first consider the

case where G\M is a Frobenius group with cyclic complement U\M. We begin

with a lemma.

(5.1) Lemma. Let C be a finite group and f a function from C into the rational

integers. Suppose that for all c e C we have

2üix)-/icx)]2ú2.
xeC

Then either/is constant or there exists an integer k and aeC such that/(x)=fe

far x^a and/{a) = k± 1.

Proof. For all x, ceC, [/(x)-/(ex)]2 ^ 2 so |/(x)-/(v)| ^ 1 for all x, yeC.

Suppose / is not constant so that we see / takes on exactly two values and these

differ by 1. Let A, Fç C be the inverse images of these two values. We have then

2(|C|-i)fc 2 Uix)-/icx)]2 = 2 Uix)-/iy)f
x,ceC x,yeC

= Z\B\+2\A\=2\A\\B\.
xeA xeB

Thus we have |C| -1 ^ |,4| |F| and \A\ + |F| = |C| and also lSj4|ájC[-l.

Since the function x(|C| — x) takes on its minimal value, |C| — 1, at the endpoints

of the interval láxá|C|-l, the inequality |C|-lèM|(|C|-|^|) yields |^4| = 1

or \A\ = \C\ — 1 and the result follows.

(5.2) Proposition. Let G\M be a Frobenius group with G\H cyclic. Then there

exists e= ± 1 with W '■ M]\{e—e) and one o/ the fallowing occurs:

(a) ip = el+iie-e)l[U ■ M])p and [U : M] is odd or (e-e)/[t/ : M] is even,

(b) ip=ep.+He-e)IW ■ M])p and [U : M] is even and (e-e)/[l7 : M] is odd,

where p is the regular character o/U/Mand in case (b), p. is the unique linear character

o/ U\M with order 2.

Proof. Since G\M is a Frobenius group, it is the disjoint union of H\M with the

W '■ M] conjugates of (C//A/)#. Let xi and X2 be two class functions of G such that

Xi vanishes on TT. Then

\G\\xuX2] = [H : M]W\kiW>X2W)

and since [G : £/] = [TT : M] we have [Xl, Xa]~kiW> X*Wl

Now let A^l be a linear character of G/77 and xi = ^~®=X2- Then xi|7T=0

so 2 = [Xl, X2] = [(A0-0)|C/, (A0v-^)|t/] = [(A0-^, (ty-#fl = [(ty-fl, (ty-0]
where the last equality follows because [ß^, ^2^] = [ß1, ß2] for ß{ e Irr W/M).

We are freely interpreting A as a character of G/TT or U\M as is convenient. Write
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0 = 2v/(I')v where/if a nonnegative integer valued function and v runs over the

group C of linear characters of U\M. Then >p — Xip = '2v[f(v)—f(X~1v)]v so

2 [/(")—f(X~1v)]2 = 2 for all A e C, A^ 1. Clearly/is not constant so by the lemma,

there exists p. e C and integer & such that/(v) = A: for v+p. and f(p)=k + e where

e= +1. We can thus write ip = ep.+kp where p is the regular character of U¡M.

Since <A(l) = e, p(l) = [C/: M] and /¿(1) = 1 we obtain k = (e-e)j[U : M] so all

that remains is to determine p.. Since det (ip$) = (det ^"(det $fm and 9>(1) is

prime to [G : H] as is 0(9), we conclude that o(i/>) is prime to [G : //]. To find /u.

we calculate det p. On a generator of U\M, det p has the value ní2;iM] <>' where 8

is a primitive [U : M] root of unity. This product is ± 1 where the negative value

occurs iff [U : M] is even. Thus if [U : M] is odd or if A: is even, det (kp)= 1 and

it follows that p.= l so we have (a). Otherwise det (kp)2 = 1 but det (kp)^ 1 and

(b) holds. The proof is complete.

(5.3) Proposition. Suppose LAG with M^L^H. Then G\H acts on H\L and

on the group (L\M)* of linear characters of L\M. Suppose that these two G/H-

modules have no composition factors in common. Then 0\L=f£ where f elrr(F)

is invariant in G and vanishes onL — M.

Proof. Since H\M is abelian, it is clear that both actions are well defined. It is

sufficient to show that 0|F is homogeneous. Let i be an irreducible constituent of

0|F. If f vanishes on L — M, then since 0|M is homogeneous, we have £\M=a(p

and thus a2 = [L : M] and (pL = atj. However, every irreducible constituent of

0|F must be a constituent of <pL so we are done in this case. Suppose then that f

does not vanish on L—M. Then for some Ae(F/M)*, A£^£. However, for any

A e (L\M)* we have Af |M= £\M so X£ is a constituent of <pL and (X$)H is a con-

stituent of <pH = e9. Therefore 0^[(X^)H, 0] = [Af, 9\H] so A£ is an irreducible

constituent of 0|F. Now let F=-/H(0A//. There is a one-to-one correspondence

between the irreducible constituents of 0|F and the elements of H\T. Thus for

each A e (LjM)* we can find a unique Th e HjT such that Af= ¿* and this defines

a function /: (L¡M)* -> H ¡T. We claim that /isa G//7-homomorphism and since

ker (/) < (L¡M)*, we will be done when this claim is established. We have

Moi = Xxe* = ÍA0».

since Xhx2 = Xx. Thus A^f-fM» and/(A1A2)=«1«2F where/(A¡)=«,F for ¿=1 or 2.

Therefore/is a homomorphism. Now let g eG. We have 99~1 = 9 so I5"1 is a

constituent of 0|L and for some heH, ^W*. Thus £=£*" and A9| = A5|hB

= (A^)' = (Af)'l!' since A" = A. Thus X3è=îh^g = ^" = îg'lh^ and it follows that

/(As) =f(X)g and the proof is complete.

(5.4) Theorem. The character i/j is determined by the action of U\M on H\M.

If xe U\M then \CHIM(x)\ is a square and </>(*)= ±(\CHIM(x)\)112. If[U:M] is a

power of a prime p then ip(x) = emodp and this determines the sign if p + 2.
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Proof. If TTsGqSG and 0 is the canonical extension of 0 to G0, then 8\U0

= (i/r|<70)<jp where U0=U n G0 and y is the canonical extension of 93 to U0. By the

uniqueness of ip, it follows that to determine </r(x), we may set t/0/M=<x> so that

we may assume that t//AT=<x> and G/77 is cyclic. We proceed by induction on

[G : M]. Suppose that C^TT/M) = M0/M > 1. Then M0AG. Let TT0 = TTM0 and

0 and y be the canonical extensions to TT0 and M0. Let A9 be an irreducible con-

stituent of S\M0. Now A is invariant in TT0 and by the uniqueness of its definition,

9 is also so we have 8\M0 = eiX<p). By the determinant criterion, Xe"a) = l and thus

we must have A = 1 and 0| M0 = ef. If M0 = U then TT0 = G and we have >p = e-l so

tp(x) = e=([H : M])1'2 and the result follows in this case. We suppose then that

M0 < U. Suppose M0 > M. We may apply the theorem to the situation (G, TT0, M0,

U, 9, 9) in place of (G, TT, M, U, 8, 93) since [G : M0]<[G : M] so induction applies.

The canonical extensions of 0 and 9 to G and U are § and 93 and thus the \¡¡ obtained

in the inductive situation is the same as the original </>. The isomorphism between

77/M and H0IM0 is an isomorphism of i//M-modules so induction applies to tell

us that i/r(x) is determined by the action of x on TT0/M0 which is identical with the

action on TT/M. In particular, <A(x)2= |CHo/m0(x)| = |CWM(x)| and the result follows

in this case.

We now assume that MQ = M so CC//M(TT/M)= 1. If U\M acts in a Frobenius

manner on TT/M then (5.2) applies and we have either (a) <pix) = e or (b) </<(x)= -e

where (a) occurs iff [U '• M] is odd or {e — ¿)¡[U '■ M] is even. Thus </<(x)2=l

= |CH/M(x)|. If W '■ M]>2, e is uniquely determined by the condition that [Í/ : M]

divides e — e and thus t/<(x) is determined by the order of UjM and e. If [t/ : M] = 2

and e=l then </-(x) = l iff (e-l)/2 is even. If e=-l then </<(x)=l iff (e-e)/2

= (e+l)/2 is odd. Thus the value of ip(x) is independent of the choice of e. If

W '■ M]=pa for an odd prime p then tp(x) = e and since [U : M] divides e — e we

have i/i(x) = e mod/». If/» = 2 this is certainly true and the proof in this situation is

complete.

We may suppose then that for some y e U\M of prime order, that LjM

= CHIM(y)> 1. However, since y $ CWM(H¡M), we have L<7T and since UjM is

abelian, LAG. In the action of UjM on (LjM)*, y acts trivially. Now y cannot

act trivially on any composition factor of TT/L since this would imply that y fixes

some element of TT/M—L/M because the order of v is a prime not dividing |7T/M|

and this contradicts the definition of L. It follows that TT/L and {LjM)* have

no composition factors in common as L/M-modules. Therefore (5.3) applies and

0|L=/f where £ e Irr (L) and f vanishes on L—M. Let V= UL and let | be the

canonical extension of f to V. Then §\V=<pii and ||[/=y!i2<p and </> = «/-i«/^- By

induction, the conclusions of the theorem apply to ifti and <p2 since [G : L] <

[G : M] and [F : M]<[G : M]. We may apply Maschke's Theorem to find a

complement, L0/M for L/M in TT/M such that L0AG. Clearly, |CH/M(x)| =

IQ/mW I \Cl0imÍx)\ and the latter factor is equal to |CH/L(x)|. We have then,

¡/r(x)2 = i/r1(x)202(x)2 = |CH/M(x)|. Also if [U : M] is a power of a prime /», we have
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ipx(x)=f and </>2(x) = ejf modp and the result follows in this case. The proof is

complete.

6. Let G have a solvable normal/»-complement H and let ///M be a chief factor

of G. Let 0 e Irr (//), 9 e Irr (M) and 0|M=e9> where 0 vanishes on H—M. Let

F e Sylp (G) with F ' £ Fs <£(F) where 0 is invariant in HB. Let S and 9 be the canoni-

cal extensions of 0 and 9 to //F and MB and write ê\MB=<j>$. We attempt to

find conditions on F which will guarantee that it satisfies (*) of §4, that is to show

that [i/y, 1] is prime top. We shall use some of the results of §5 to prove the following

theorem. Unfortunately, we do not have a way to utilize the full strength of Theorem

(5.4) and so the present result is probably weaker than it must be. In fact it seems

reasonable to conjecture that it might be true without any conditions on F at all.

(6.1) Theorem. If P is regular and metabelian then [<p, 1] is prime to p.

We begin with a lemma.

(6.2) Lemma. Let C=CP(H¡M). If the action of B on H\M is homogeneous

(all irreducible constituents equivalent) then B¡(B n C) is cyclic. If P\C is not

cyclic andp±2 then B acts reducibly and the number of its irreducible constituents

is divisible by p.

Proof. Suppose B¡(B n C)?BC/C is not cyclic. Since Fç <J>(P), BC\C<^ <$>(P\C)

and thus FC/C contains a normal subgroup A\C which is abelian of type (p, p). (See

for instance Hilfsatz 7.5, p. 303 of [4].) Since p2 \ | Aut (A\C)\, CPIC(A¡C) has index

Up and thus contains <D(F/C)2FC/C. Thus A\C<^Z(BC\C) and hence Z(BC\C)

is not cyclic. It follows that BC\C cannot have a faithful irreducible representation.

Now, BC/C acts faithfully on HjM and thus not all irreducible constituents can

have the same kernel and the first statement follows.

Suppose p + 2. We have P\C acts irreducibly on HjM and is not cyclic so it

follows by a theorem of Roquette, (p. 248 of [5]), that there exists a subgroup

PolC of index p in P/C such that the representation of F0/C on HjM splits into p

irreducible constituents. Since B^P0, the result follows.

(6.3) Proposition. Let C=CP(H¡M). If B\(B n C) is cyclic then p\[>l>, 1].

Proof. Let A=B n C. If A = B then F acts trivially on HjM and it is clear that

iji=el and since p\e, there is nothing further to prove in this case. Suppose then

A<B. We claim that B\A acts in a Frobenius manner on H\M. Suppose then

b e B and CHIM(b)>l. Let E=(b,A} so LjM=CHIM(E)>l. Now B\A is cyclic

so E/A is characteristic and thus FAF. Thus FsAr(F) and by the irreducibility

of the action of F on HIM we have L=H. Thus be E^CB(H¡M)=A and the

action of B¡A on H¡M is indeed Frobenius.

Now, AMABH and the action of F on H\M is isomorphic with its action

on AH ¡AM. We may calculate tp (viewed as a character of F for convenience)

by applying (5.2) to BH\AM and we conclude that ker</<2/l  and ip = ep.+
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(e—¿)¡[B : A]p where p is the regular character of B\A viewed as a character of

B and p? = l and p.= l unless/; = 2 and (e—¿)¡[B : A] is odd.

Suppose p¥=2. We claim that p[B : A] divides [H : M]—\. Certainly,

[B : A]\([H : M] — \) since the action is Frobenius. If F/C is not cyclic, then by

(6.2), F acts reducibly on HjM and the number of irreducible constituents, n,

is divisible by p. If each constituent has order k (as an elementary abelian ç-group)

then since B/A acts fixed point freely on each constituent, [B : A]\(k-l) and

kn=[H: M]. Thus

[H: M]-l =kn-l = (k-lYl+k+'-'+k*-1)

and to establish the claim it suffices to show that the second factor is divisible by p.

However k=l mod/» and so l+k+ ■ ■ ■ +kn~1^n = 0 mod/». If F/C is cyclic,

it acts in a Frobenius manner on H\M and [F : C]|([// : M] — 1). Now [B : A] =

[BC : C]<[P : C] so the claim is fully established.

Now [H : M]-l = e2-l=(e-e)(e-l-e) and [B : A]\(e-e). Since p¥=2 is being

assumed, p\(e+e) so the full /»-part of [H : M] — l divides e — e and thus

p[B : A]\(e-e) so (e-e)/[B : A] is divisible by p and we have [<p, 1] = e^0 mod p

if/» ̂ 2.
Suppose then that p=2. If (e-e)j[B : A] is even we have [ip, l] = e^0 mod 2

and the result follows. If (e-e)/[B : A] is odd then /x^l so [</r, l] = (e-e)/[B : A]

^ 0 mod 2 and thus the result follows in this case also and the proof is complete.

We now give the

Proof of (6.1). Let C be as in (6.3). If />=2 then since F is assumed to be regular,

it is abelian and since P\C is represented irreducibly and faithfully on H\M,

P\C is cyclic. Thus BC\C^B\(B n C) is cyclic and the result follows from (6.3).

We assume then that/»^2. By (6.3) and (6.2) we may assume that F acts reducibly

and inhomogeneously on H\M. Since the action is completely reducible, we may

let Ft/M, 1 ̂ i^pa, be the distinct homogeneous constituents of the action of B

on HjM. By Clifford's Theorem, the F( are all conjugate in G. Let Kt = Yli*iLj

so H/K^LilM as F-modules. We claim that H\K and (F,/M)* have no B-

constituent in common, so we may apply (5.3). Since the dual of a homogeneous

module is homogeneous, the only way our claim can fail is if LJM^ (Lj/M)* for

some iftj. If this occurs, then since all F¡ are conjugate under the action of F, a

pairing will be established among the integers i, l^i^p" where i*-*j iff LJM

^(Lj/M)*. Since /» is odd, i*-* i for some / and this forces f*-*j for all / Thus

LiIM^(LjIM)*^LjIM contradicting i^j and the claim is established.

From (5.3) it follows that 0^=/^ and from (5.4) it follows that the class func-

tion i7j on F is a rational valued character, where ??¡(¿»)= ±(|ÇH/jfl(è)|)1'2 and the

sign is chosen so that 17,(6)=/mod/». Now \CH,M(b)\ = \~[i |CL(/M(¿>)| =n. \CHIKi(b)\

and it follows that <p(b)= ±F\i r¡i(b). Since ip(b) = e=fp" mod/», the sign is + and

0 = Uli. Also since the F( are all conjugate under the action of F it follows that the
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rij are all conjugate. (They are not necessarily all distinct, however.) We put the

remainder of the proof into a separate result.

(6.4) Proposition. Let P be a regular metabelian p-group and suppose that

F'£Fsi)(P). Let J be an index set with \J\ =pa> 1 and let t)¡ be a rational valued

character o/ B far each j eJ. Suppose that P acts transitively on J in such a manner

that rjj.x = (r¡j)x and B is in the kernel o/ the action. Let >p = Yltej Vt and suppose that

Pm)-Thenp\[4>,\].

Proof. Choose a particular element, say 1 e J and write r¡i = 2¡6/ 0t9t1) where

the <p\l) e Irr (F) are distinct and 7 is a suitable index set. For j e J, fix a particular

x¡ e F with \-Xj=j (take xx = 1) so we have

(1) „ = (1,0*1 = 2 rf
tei

where <pf = W)xie Irr (F).

Let y be the set of functions /:J->I. Then

(2) -a = n 2 <wí° = 2 n «»•«*>$>.
ieJ  iel ¡eV  ieJ

We write a¡ = FTj arui so that we obtain

(3) * = 2 °t n <$»•

Now let F be the stabilizer of 1 in the action of F on 7 so F'ç5çF<F and Vi = '?i

for ie7. Therefore F permutes the irreducible constituents of r^ and we may define

an action of F on 7 by ^\=is¡cvsf. Note that ai = ai.i. Now let F act on Sf by

/ij)=/ij)-t. We have then a,t = af. Also

mO) _   _«> _   ('„(D      ̂ x,   _   /"_(l)\tx,   —   fm(1> 1*.¡
9/iü) — 9/(1)-1 — (.9/(1)-tJ ' — (9/(1)1   ' — (9/(1)1 J,

where the last equality follows since F'sF. Thus

„(i)    _ /-(i) y
9/f<!) — (9/(1)1

and

(4) «/• n ä = f«/ n *&)'•
16/ \ 16/ /

Thus in (3), the contributions of the/and/' terms are equal when calculating either

</<(l) or [¡/i, 1]. In evaluating these integers mod/» we may therefore neglect all those

/which lie in F-orbits of size divisible by/», i.e. all those/which are not fixed by F.

Let 70 = {/eT| i-t = i, Vi e T), and let ^0={/e^ \/{j)eI0, VjeJ}. The ele-

ments of ¿r°0 are precisely the / which are invariant under T and thus we have

¡/i(l) = ii0(l) and [>p, l] = [ipo, 1] mod/» where

(5) h =   2  "/ il 9%)-
feS?0 1
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Now let F act on £r"Q according to the formula fy(})=f(j-y~1)- We have then

a¡y = af. Now suppose k=j-y. Then 1 xk = k=jy=l -Xjy so x¡y=txk for some

t e T. We obtain for/e ^0

w%r = i<p%Y>y = (fjr* = w*.
where the last equality follows because/(y) e /0. Thus

CPfai)   — Vni) ~ 9mj.V)

and this yields

(6) ^n^ = %»n^r

Therefore, reasoning as before we have ip(l) = ipx(l) and k/>, 1] = [</>i, 1] mod/»

where

(V) *i -  2 °r n <>

and ^={/e^ \fy=f, VyeP}. In  other words, ^ consists of the constant

functions from J to /0. Thus we have

(8) &=2 w" n ^
ie/o y

Let £ be a primitive |F| root of unity and e0 a primitive pth root of 1. Let

U= ^(ß(£)/ß(«o)) so F is a /»-group and U acts on Irr (B). This induces an action

of U on / and since r¡x has rational values, ai = ai.u for all ueU. Clearly, /0 is an

invariant subset of / so U acts on /„. We have

i??1)" = WT* = MT* = rf?.-

Let /2 = {í e /0 | i-u = i, Vw e £/} and set

(9) <l>2 = 2 (a«)"0 11 ̂
ie/2 I

so that reasoning as before we have </i(l) = i/y2(l) and [</>, 1] = [02, 1] mod/». If we can

show for /' e I2 that

(io) p. em*] ̂ n^') m°d^

then we will have ¡/>2(l) = [i/>2, 1] mod/» and the result will follow. We shall show

that because of the hypotheses on F, all of these y\n are linear characters and that

rw^i.
Suppose then that 9 e Irr (B), 9(1) > 1 and that 9 is invariant under U. It follows

that Z(F/ker 9) has order p. Since the hypotheses that F is metabelian and regular

are inherited by factor groups, we may assume that C)x<;p ker <px= I. Now let

z e Z(B) so that zp e ker 9. It follows that zv e ker 9* for all x e P so zp = 1 and
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Z{B) is elementary abelian. Let C=B n Z(<5(F)). Since <D(F)=F, CçZiB)<B,

where the latter inequality follows from the assumed existence of a nonlinear 93.

Choose AAP with C<A^B and [^ : C]=/». Furthermore, since P'sF, if P'C> C

we may assume that A^P'C and since P'C is abelian we have in this case that

CiA)^P'. Otherwise, P'C=C so P'^ZiB) and thus here too we have P'sC(/l).

Note that /I is abelian. Let yeA-C and x e F so y*=yc for c e C. Thus 1 = cp

= iy~1x~ 1yx)p = {y~1x~ py)ixr)uv where u e <x ~ v, x> ' £ <x, y> ' by regularity. How-

ever, <x, y>'sC since [x,y]eC and C is elementary so wp = l. Thus l = [y, xp]

and xp e C(y). Also x" e 0(F) so x" centralizes C and hence xp e C{A) for all

x e F. Now F's C(y4) so F/C(/l) is an elementary abelian /»-group and í>(F)s C(4)

so /4sF nZ(<P(P)) = C</L This contradiction shows that 9»(1)>1 is impossible

for 93 e Irr (F), 93 invariant under U.

Finally, we suppose that ffl = A, a linear character invariant under T and U

and we show that fl* A*=l as x runs over a transversal for F in F. Since A is

fixed by U, we have Ap = 1. Now [F : F]=/»°> 1 so we may choose x eP—F and

let m be the order of x mod F. Let W be a transversal for (T, x> in F so

{x'w I 1 ̂ ifkm, we W} is a transversal for F in P. Let /¿=rii,u> A*'1" and pick

beB. We have

At(¿>) = Yl Xxtw(b) = u Kx'wbw^x-').
i.w I,w

For given weW, let Z»0 = h7jw"1. We shall show that n™=i A(xiè0x~i) = l and it

will follow that /x(¿>) = 1. We must show that n™=i x'èox"' e ker A. However,

(xèoX-^Xx2^*"2)- • -ixmb0x-m) = ixb0)mx-m.

Since F is regular, this equals upxmbôx~m where we<x, 60>'=<^, F>'sF. Since

A" = 1 we have
m

[ A(x'¿>oX-f) = A(H)pA(xm¿>0x-T = 1
i=l

since p\m. Thus p-ib) = 1 for all b e B and so p.= 1 and the proof is complete.

It is of interest to note that the use of the assumptions that F is regular and

metabelian in Theorem (6.1) has been rather minimal. The assumption of regu-

larity was used to handle the case p = 2 and then was used twice in proving (10)

of (6.4). That F is metabelian was used only once, in proving (10).

7. In this section we prove the two theorems which were stated in the introduction.

We assume the situation described there.

(7.1) Theorem B. Let H be solvable and let C=G/H. Suppose that far all primes

p\[C : C] that a Sylow p-subgroup 0/ C is regular and metabelian. Then X is

extendible to G.

Proof. Let 0, 7, @ and x be as in §1. By (2.1) we are done if we show that mFix)

is prime to [G : 77]. By (3.2), this will follow if for every U, Tís [/£G such that

UjH is a /»-group and I (~\ ÍT/TTs <D(i//TT), we have mFixv) is prime to /». If
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p\[C : C] then since ////2C, we must have Í/S/ whenever U/H is a /»-group.

Then U n I=U and the condition of (3.2) is vacuously satisfied for such primes

because {////$ 0(t////) unless U\H= 1. Suppose then U\H is a/»-group for a

prime p\[C : C']. Then U/H is contained in a regular metabelian /»-group by

hypothesis, so U/H satisfies these conditions and by (6.1), condition (*) holds for

each of its subgroups. The result now follows by (4.1).

(7.2) Theorem A. If H is nilpotent then S is extendible to G.

Proof. First, suppose that H is a/»-group. Let e be a primitive \H\ root of unity

so F(0)cF(e) and ^(F(0)/F) is cyclic unless/» = 2 in which case it is a 2-group. If

/ is as in §1, then G ¡I is isomorphic with a /»'-subgroup of <S(F(8)jF) so in any

case G// is cyclic. Let //£ £/£ G be such that U/H is a ^-group and U n I\H

£<!>({////). Now U\Uni is cyclic and it follows that U/H is cyclic. Then by

(6.3), every subgroup satisfies (*). Thus by (4.1) and (3.2), mF(x) is prime to

[G:H].
Now we prove by induction on the number of prime divisors of \H\ that mF(x)

is prime to [G : H] and the result will follow by (2.1). By the above we may assume

that H is not a /»-group and write H= H0 x Hx where H0 is a Sylow subgroup of

H and \Hx\ is divisible by fewer primes than is \H\. Let 0O and 8X be irreducible

characters ofH¡Hx and H/H0 respectively such that 0= 0o0i. If g e G then 8s = 8s08gx

= 8" = 8181 for some oe(S(F(8)\F) since F(0()sF(0). By the uniqueness of the

decomposition, it follows that each 0¡ is F-semi-invariant in G. Let Ií=^g(8\).

Clearly, l0 n IX = I=JG(8). Let 6t be the canonical extension of 0, to /( and let

Xi = #G. By the inductive hypothesis we have mF(xi)=m¡ is prime to [G : H] for

z'=0, 1. Let ©j = ^(F(0()/F) and At=mt 2<re<5iXÍ so A is the character of an F-

representation of G. It follows that A0AX is also the character of an F-representation

of G so mF{x)\[x, AqAj]. Now

AqAj = «7oWl     2     XoXi-

We claim that [x, xSxIHO unless a=l = r. Suppose 0^[x, xSxi] = ß (xS|/)(xí|/)]-

Thus O^[0, (xS|//)(xî|Z/)]- Now all irreducible constituents of xl\H have //,. in

their kernels and similarly for x\\H and thus the irreducible constituents of

(x°o\H)(x\\H) are the products of the irreducible constituents of each factor.

Since 9 = 909x is a constituent of this, we must have [0O, xS|/^]#O/[01, xí|F/]

and by (1.4) this yields <t=1 = t. Therefore mF(x) divides m0mx[x, XoXi] and it

suffices to show that [x, XoXi] is prime to [G : //].

Now [x, XoXi] = $ (xo|/)(xi|/)] and since /¡2/, we have Xi|/=2* 6X\I where x

runs over a transversal for /¡ in G. Suppose # is a constituent of (#o |/)(^ï|/).

By considering degrees we have, û=(ûx\I)(êx'\I) and hence 9=8^8\. It follows that

0O = 8X and 6X = 8\. Thus x e I0 and j> e Ix and we have

[^(Xo|/)(xi|/)] = ^(^o|/)(^i|/)].
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However, (#o|T)(0\|T) is an extension of 0= 808i to I with determinan tal order prime

to [G : TT] so by the uniqueness of § this yields 6=(60\I)iûi\I) and it follows that

[x, xoXi] = 1 and the result follows.
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