EXTENSIONS OF GROUP REPRESENTATIONS OVER
NONALGEBRAICALLY CLOSED FIELDS(*)

BY
I. M. ISAACS

Let G be a finite group with HAG a Hall subgroup, let F be any field of charac-
teristic 0 and let E be the character of an irreducible F-representation X of H.
Suppose E is invariant under the natural action of G on the characters of H. As is
well known, if X is absolute irreducible, the character E can be extended to G and
in fact in this case it is not hard to see that ¥ can be extended to an F-representation
of G. (For instance, this follows immediately from the results of §2.) This paper is
an attempt to prove (at least when H is solvable) that ¥ can always be extended
to G. We do not succeed in this attempt. We obtain, however, some purely group
theoretie conditions which are sufficient to guarantee the extendibility of X without
any assumptions on F. In particular we prove

THEOREM A. If H is nilpotent then X is extendible to G.

In proving this we define a property (*) of p-groups such that if H is solvable,
C=G/H and every p-subgroup of C satisfies (*) then ¥ is extendible. An attempt
to find p-groups satisfying (*) yields

THEOREM B. Let H be solvable and suppose for every prime p|[C : C'] that
a Sylow p-subgroup of C is regular and metabelian where C=G|[H. Then X is
extendible to G.

1. Throughout this section we assume that G is an arbitrary finite group and
HAG; F is a field of characteristic 0 which is held fixed throughout the whole
paper. Let E be the character of an irreducible F-representation of H. Then
E=m >!_, 0, where 6, € Irr (H) (the set of absolutely irreducible characters of H)
and all the 6, are distinct and a full set of conjugates under the action of the Galois
group &= %(F(0)/F) where 0 is any one of the 6. (See [1, §11].) If E is invariant
in G then for any g € G we have #?=6° for some o € ®.

(1.1) DerINITION. Let 6 € Irr (H). Then 6 is F-semi-invariant in G if for every
g € G, there exists ¢ € (F(0)/F) such that *=6°. If § is Q-semi-invariant we say
it is semi-invariant.

It is clear that F-semi-invariance implies semi-invariance.
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(1.2) LeMMA. Suppose 0 € Irr (H) is F-semi-invariant in G. Let & =Y (F(0)/F)
and I=5y(0), the inertia group of 0 in G. Then the mapping f: G — & defined by
6°= 0’9 is a homomorphism with kernel I. Thus ING and G|I is abelian.

Proof. The o € & such that 6= 6 is uniquely defined since & acts regularly on
the set of conjugates of 6 and thus f'is well defined. Now

09192 = (0[(91))92 = (ggz)f(gl) = @919

since the actions of & and G on Irr (H) commute. Now & is abelian since F(6)
< F[e] for some root of unity, ¢ and thus we have

f(g182) = f(82)f(g1) = f(g1)f(g2)

and f'is a homomorphism. Clearly, ker (f)=1I and we are done.

If 6 is a character of any group we may associate with it a linear character by
taking the determinant of any representation which affords 6. This well-defined
linear character will be denoted by det 8. We denote by o(6), the order of det 8
when considered as an element of the group of linear characters. We state below
an important fact which relates det 6 with the extendibility of 6. (This is implicit in

21)

(1.3) ProPOSITION. Let 6 €lrr (H) be invariant in G. Suppose o(0) and 6(1)
are both prime to [G : H). Then there exists a unique extension 8 of 0 to G such that
o(d) is prime to [G : H].

In particular, if H is a Hall subgroup of G and 8 € Irr (H) then there is a uniquely
defined character 8 of .#;(6) which extends 6 and has determinantal order as above.
We shall generally call this the canonical extension of 6.

(1.4) PROPOSITION. Suppose H is a Hall subgroup and let 0 € Irr (H) be F-semi-
invariant in G. Let I=54(0) and let § be the canonical extension of 0 to I. Then,
x="0° is irreducible, F(0)=F(@)2F(x) and if oce 9(F (x)/F) with o#1, then
[x|H, x°|H]=0. '

Proof. Since §|H=0 we have I #(8)< #(6)=1 and since 8 e Irr (I) it follows
that y € Irr (G). Clearly, F(8)=F(6) so let o € 9(F(8)/F(6)). Then o(8°)=0(f) and
82|H=6°=0 so 2= 0 by the uniqueness of §. Thus =1 and hence we must have
F(8)=F(6). Clearly, F(x)=F(#%)< F(0).

Finally, let'o € (F(x)/F) and suppose [x|H, x°| H]#0. By Clifford’s Theorem,
both x|H and x°|H consist of a single orbit of irreducible characters of H with
certain multiplicities. Since they have a constituent in common they must be equal
so 6 is a constituent of x’|H. Choose an irreducible constituent $ of x°|I with
$|H containing 6. The degrees and determinantal orders of the constituents of
x|I are the same as those of x°|I so o(¥)=0(f) and ¢|H= 0 and so we must have
$=0. Thus ° is a constituent of 8=y and this forces x=x° and thus o=1. The
proof is complete.



1969] EXTENSIONS OF GROUP REPRESENTATIONS 213

2. In this section we assume that HAG is a Halksubgroup and X is an irreducible
F-representation of H with character = invariant in G. Let 8 be an absolutely
irreducible constituent of Z so 8 is F-semi-invariantin G. Let 7, § and x be as in §1.
Here we show

(2.1) PROPOSITION. The representation X is extendible to G if the Schur index,
my(x) is relatively prime to [G : H].

We begin with two lemmas.

(2.2) LEMMA. Let K<L be groups with ¢ € Irr (L) and o=4|K € Irr (K). Then
mg()|mp(e) with equality if F($)=F(g).

Proof. Let A be the character of an irreducible F-representation of K with
absolutely irreducible constituent ¢ so [A, p]=mg(p). Then AL is the character
of an F-representation of L and [§, At]l=[p, Al=m(p). It follows that
mp()|mz(p). Now let & =G (F(P)/F) so A=mp($) >4 ¥° is the character of an
irreducible F-representation of L. Now if F($)=F(p) then ¢°#¢ whenever
o#1 so [A|H, p]=mg() and hence my(p)|mz($) and we are done.

(2.3) LemMA. Let KAL, ¢ € Irr (K) and y=¢". Suppose 4 is irreducible. Then
myp() =umg(p) where u|[L : K.

Proof. Let A be the character of an irreducible F-representation of K with
[A, p]=mg(p). Then [AL, $]=[A, | H]=vmy(p) where v is the number of elements
xK € L|K such that ¢*=¢° for some o € (F(¢)/F). If U is the set of such x then
U is a subgroup and K€ UcL, v=[U : K] so v|[L : K]. Since A’ is the character
of an F-representation of L, my(4)|vmz(p).

On the other hand, let A be the character of an irreducible F-representation of
L, A=mp(y) >,c6 §* where &=F(F)/F). If 7#1 then ¢ is not a constituent
of yY*|K since ¢f=y#y*. Thus [A|K, ¢]=m))[$|K, p]=m(y) and hence
me(@)|me(). We have then, mg()=umg(p) and this divides vm(p) so u|v and the
result follows.

Proof of (2.1). Let A be the character of an irreducible F-representation ¥ of
G with constituent y. If A|H=ZE then 9)|H and X are F-representations of H
which have the same character and thus are similar over F. Effecting this similarlity
transformation on 9) yields an F-representation which is an extension of X.

Since A|H has 0 as a constituent, Z is a constituent of A|H and since E is in-
variant in G it follows by Clifford’s Theorem that A|H=eE for some integer e.
Thus it suffices to show that e=1 when m(x) is prime to [G : H]. Now A=
mp(x) Zse6 x° Where &=F(F(y)/F). If a# 1 then by (1.4) [6, x°|H]=0 so [A|H, 6]
=mz(x)[x| H, 81=mz(x)[x|I, ¢']. However, among the irreducible constituents of
x|1, only § has constituent 8 when restricted to H so [x|, 8']=[8, 6"]=[6, 8]=1
and we obtain

emy(6) = [eE, 6] = [A|H, 0] = my(y).
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Since F(8)=F(#), we have by (2.2) that mz(6)=mz(9) and by (2.3) that m(x)=
umg(8) where u|[G : I]. Since by assumption mg(x) is prime to [G : H] we must
have u=1 and it follows that e=1 and the proof is complete.

3. In this section and for most of the rest of this paper we shall be concerned
with showing that under suitable hypotheses, mz(x) is prime to [G : H] as in (2.1).
Here we reduce the problem to the case where G/H is a p-group containing I/H
in its Frattini subgroup. We assume that HAG is a Hall subgroup and that
0 € Irr (H) is F-semi-invariant in G. Let I, § and y be as before.

(3.1) ProPOSITION. Let HSU<G and let G be the canonical extension of 0 to
IN U and y=0Y. Then ¢ € Irr (U). Suppose my() is prime to [U : H). Then if p
is any prime divisor of (my(x), [G : H]) we must have p|[G : IU].

Proof. Clearly I N\ U= ,(6) so by (1.4) applied to U, y=6Y € Irr (U). By the
uniqueness of 6, we have 8|(I N U)=4. Let =8V e Irr (IU). Then 0 # [1|(I N U), 6]
=[9| U, $]s0 ¢ is an irreducible constituent of 5| U. However, $(1)=[U : I n U]6(1)
=[IU : 116(1)=n(1) and thus n|U=4. It follows from (2.2) that mg(n)|ms().
Now mg() | |U| and is prime to [U : H] and thus mg(n) | |H|. We have y=1¢
and IUAG since G/I is abelian so by (2.3) mg(x)=umg(y) where u | [G : IU).
If p | (mp(x), [G : H]) then p{ |H| so p { m(n) and hence p|u. The result follows.

Now for any U, HS U< G, let us denote the  of (3.1) by xy so x¢e=x and xy=0.
In general, xy € Irr (U).

(3.2) THEOREM. Suppose my(xy) is prime to [U: H] for every U, HSU<G,
such that U[H is a p-group with (I n U)[H< ®(U|H) where ® denotes the Frattini
subgroup. Then mg(x) is prime to [G : H].

Proof. By induction we may assume for all U with HSU<G that mg(xy) is
prime to [U : H]. If G/H is not a p-group for any prime, let p|[G : H] and let
P/H be an S, subgroup of G/H. Then P < G and thus mz(xp) is prime to p. By (3.1),
any prime g dividing both [G : H] and mg(x) must divide [G : IP] so p#4. Since p
was arbitrary, we conclude that the result follows in this case and we may assume
that G/H is a p-group. '

If I/H< ®(G/H) there is nothing to prove so we may assume that this is not the
case. Thus we can find a subgroup U/H < G/H such that UI=G. By the inductive
assumption applied to U, my(xy) is prime to p and hence by (3.1), any prime
dividing (mz(x), [G : H]) divides [G : IU]=1. The result follows.

Before continuing in §4 to derive conditions which will guarantee that
(mz=(x), [G : H])=1 we give a simple lemma about induced characters.

(3.3) LeMMA. Let L be a group with subgroups A and B such that L=AB and
let @ be any class function on A. Then ¢*|B=(p | (4 N B))".

Proof. Let T be a transversal for the right cosets of 4 N B in B so AT=B and
AT=AAT=2AB=L. Also |T|=[B: AN B]=[AB: A] so T is a transversal for
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the right cosets of 4 in L. Suppose then x € B. We have ¢l(x)=1,.r ¢°(txt ~1)
and (p | (4 N B))B(x)=Dcr ¢°°(txt~*) where ¢°(y)=¢() if y € 4 and 0 otherwise
and ¢°°(y)=¢(y) if ye A N B and 0 elsewhere in B. Since T<B, txt e AN B
iff it is in A. Hence for all t e T, °(txt ~1)=¢%(¢xt ~!) and the result follows.

We note here a result which may be of some interest although we shall not refer
to it again.

(3.4) CoroLLARY. If G/H is a split extension of I/H then my(x) is prime to
[G: H].

Proof. Let U/H be a complement for //H in G/H. By the Schur-Zassenhaus
Theorem, there exists a complement C for the normal Hall subgroup H in U.
Clearly, IC=G and I n C=1 so by the lemma we have

[X, lg] = [XIC’ IC] = [(0“)0’ 10] = 0(1)'
Therefore, mg(x)|0(1) and the result follows.

4. Let P be a p-group and B<P with P'< B ®(P). We wish to consider the
family of groups P such that with any B as above, the following statement is a
theorem:

(*) Let P e Syl, (G) where G has a solvable normal p-complement H and let
0 € Irr (H) be invariant in HB. Suppose MAG, M < H and H/M is a chief factor of
G. Suppose further that 6 vanishes on H— M and that 8| M =egp where ¢ € Irr (M).
Let § and ¢ be the canonical extensions of 6 and ¢ to BH and BM. Then 8| BM
=y where ¢ is a character of BM /M (viewed as one of BM) and [y, 1] is prime to
p.

Note that if 7 is any irreducible constituent of §|BM then ¢ is a constituent of
n|M so n=p¢ where B € Irr (BM M) and B is uniquely defined. (See for instance
Theorem 2 of [2].) It follows that the  of (*) is always a well-defined character
and the force of (*) is in the assertion that p { [, 1]. In §5 some general methods for
calculating ¢ will be given and in §6 (*) will be proved for regular, metabelian
p-groups. It is conjectured, however, that it is always true. The connection between
(*) and the problem of this paper is given in the next theorem. Assume here that
H, 6, I, § and y have the same meaning as in the previous section.

(4.1) THEOREM. Suppose C=G|H has the property that for every p-subgroup
P<C, that P satisfies (*). Then if H is solvable, my(x) is prime to [G : H]. '

Proof. By (3.2) we may assume that G/H is a p-group and that I/HS ®(G/H).
Let P € Syl, (G) and let B=I N P. Then by assumption (*) holds if it applies and
P’'c B< ®(P). We prove the theorem by induction on |H|. Let M<H, MAG
such that H/M is a chief factor of G, so that H/M is an elementary abelian g-group.
Let Go=PM and I,=1N G,=BM. We now consider the various possibilities for
0|M.
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Suppose 0| M =g € Irr (M). Then clearly, ¢ is F-semi-invariant in G, and in-
variant in I, so I,SJ=S;(p). Let ¢ be the canonical extension of ¢ to J and let
xo=¢%. By the inductive hypothesis, my(xo)=m is prime to p. Let E=m > x§
so E is the character of an irreducible F-representation of G,. Now, using (3.3), we
obtain

[E, x] = [E, x|Go] = [E, (8]15)%] = [E|L, 8|I,]) = [E|L, $|I,]
mlxo| Lo, $|1Lo].

The last equality follows because if 031 then [x§|M, #]=0 by (1.4) and thus
[x5| T, $|15]=0. We have then

[, x] = mlxo|J, (| 1)'].

However, ($|,)’=p$ where p is the regular character of J/I,. It follows that
(@|l)’ =245 B(1)Bp where B runs over Irr (J/I,). Since each B$ is irreducible,
(¢]L,) has a unique irreducible constituent with degree ¢(1) and determinantal
order prime to p. That constituent is ¢ and has multiplicity 1. Since every irreducible
constituent of x,|/ has this degree and order we have

[E%, x] = mlxol/, ] = m.

Thus mz(x)|m and we are done in this case.

We suppose then that 8| M =e 3%, ¢, where eu>1 and the g, are distinct conju-
gate irreducible characters of M. Now, since H/M is abelian, there exists H,,
Mc Hy,< H such that 0 is induced from a character of H, and thus vanishes on
H—H,. Let L=\ {H, | M< H,< H with 6 vanishing on H— H,}. Since 0 is semi-
invariant in G, the group LAG and thus L=M so 6 vanishes on H— M and
ue’=[0|M, 0)|M]1=[H : M). Now let T=F(p,). Since TAH, T depends only on
6 and it follows that TAG so that either 7= H or T=M. Suppose T=H so u=1
and 0|M=ep, e?=[H : M]. Thus ¢ =e6 and it follows that % (p)=1, and ¢
is F-semi-invariant in G, so if we set yo=¢% we have by induction that m=mg(x,)
is prime to p. By (*) we have 8|I,=y¢ where [, 1] is prime to p. Let E=m 5, x§
where o runs over (F(xo)/F). Then

[E%, x] = [E, x|Gal = [E, $$)%] = [E|L, $¢] = m D [x5|Lo, $].

If B is an irreducible constituent of ¢ then B¢ is irreducible so the only constituents
of ¥¢ with degree equal to ¢(1) and determinantal order prime to p are the ones of
the form 1-¢ and the multiplicity of this is [, 1]=r which is prime to p. Thus

[ES, x] = rm D [x¢|Io, 41.

As before, if o#1, [x§|1o, $]1=0 and [xo|lo, #]=1 so [EF, x]=rm which is prime to
p and divisible by m;(x) and the proof of this case is complete.
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We may suppose then that T=M so u=[H : M] and thus e=1. Now, I,/M
acts on H/M and on the set {g;} and this action is compatible with the action of
H|[M on the set so by Glauberman’s lemma (Theorem 4 of [3]), some ¢; (say @;)
is invariant in I,. If ,=¢} is also invariant in I,, then for x € I, we have ¢}~ '~
=¢% 50 [h, I)< Fy(p,)= M. Thus if ¢, is not the unique irreducible constituent of
6| M which is invariant in I, then Cyy(lo)=C/M>1. Since [,AG,, we get G,
SN(C) and thus CAG so C=H. It follows in that case that I/M=H|M x I,/M
and I,AG. Also every g, is invariant in I,.

Suppose that this situation occurs. Now some irreducible constituent » of
8)I, satisfies [5| M, p,]#0 and thus 7= A¢,, where A € Irr (Io/ M ). Since A is invariant
in I, we have by Clifford’s Thecrem that § [Io=A J¥-; . Thus A(1)=1 and by calcu-
lating determinants we get A*©=1s0 A=1and 8|I,=3 .. If any two of the ¢, are
Galois conjugate over F, let S={h € H| 30 € 9(F(¢,)/F) with ¢"=¢3}. Then S>M
is a subgroup of H which depends only on 6 and clearly SAG. Thus S=H and
hence ¢, is F-semi-invariant in H. Now if g € G then 6?=6* where = € ¥(F()/F)
and since F()< F(p,),  may be extended to r; on F(p,). Then ¢ and ¢f are both
constituents of 67| M so ¢f1'? is a constituent of 6|M so that fi'9=gJ where
o € Y(F(¢,)/F). Thus ¢f =¢%’ and ¢, is F-semi-invariant in G. Let J=J(p,) so
JAG and G|J is abelian. Also, J N H=M so J/M is a p-group and being normal,
it must satisfy J/M < Go/M € Syl, (G/M). Thus G'SJ< G, so GoAG. Since ¢ =0
we have J<1 so we must have J=1,. Now ¢! =8 so ¢$50=y, satisfies x$=yx and by
induction mg(x,) is prime to p. Since p t [G : G,), it follows that ptmy(x) by (2.3).

Consider now the case where all ¢, are invariant in I, but no two of them are
Galois conjugate over F. In this case we also have I,=J; (). We claim that for
some i, g, is F-semi-invariant in G,. Let P, be a p-subgroup of G of maximal order
such that some ¢ is F-semi-invariant in MP,. Since Pt< P for some h € H we may
replace ¢; by ¢} and assume that Po<P. Assume then that ¢, is F-semi-invariant
in PoM and suppose that Py<P. Choose a € P—P,. Then 6*=6° for some c € &
(F(9)/F) and ¢{ is a constituent of 6°|M. Extend o to o; on F(p;) so that ¢t
is a constituent of 6°|M and thus ¢f*=g$" for some h e H. It follows that ¢, is
F-semi-invariant in {(P,M, ah)=G,. Now ah ¢ P,M because for any element of G,
the representation as a product of an element of P with an element of H is unique
and we conclude that G,>P,M. However, G; " H=M since no two of the g
are Galois conjugate and thus the p-part of |G,| exceeds |P,|. Taking a Sylow
subgroup of G, yields a contradiction to the maximality of P, and thus we have
Xo=$fo satisfies m=my(x,) is prime to p. Now let E=m3, x3 as before. Then

(2% x] = [E, X|Go] = [ElLs, 8lL6] = m 2, [xe| Lo, O]1o].
Suppose o#1 and extend ¢ to o, on F(p,)=F($,). If ¢, is a constituent of x5 o

then ¢ and ¢{: are conjugate in G,. Thus $3°*=¢, for some g € G, and hence
"' =¢,. Now ¢i=¢] for some 7€ ¥(F(p,)/F) and thus ¢ =g, This forces
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i=1 so ¢, is a constituent of y3|,. However, o=y, and this is a contradiction.
Since 8|I,=3 ¢, we have then

[E9, x] = mlxo|Io, 8]I5] = mxo, x|Go] = mlx$, x).

However, y$=¢$=8%=y so [E€, x]=m and the result follows in this case.

The one remaining case is where exactly one constituent ¢, of 8| M is invariant
in I,, Here we have 8|I,=M$,+3 7, where =;€lrr (I,) with p|n,(1) and
X e Irr (I,/M). We claim that in fact A=1. Since pfA(1) we have A(1)=1 and thus
(A$,)' = 8= ¢} where on the right, A is viewed as a character of I with kernel con-
taining H. We will have shown that A=1 if we show that ¢! has determinantal
order prime to p. Let n=0($,) and consider (det ¢)"(g). This is + a product of
factors of the form (det ¢,)"(¢gz ~*)=1. Hence if the associated sign is + we are
done. The sign is determined by the parity of the permutation that g € I induces
on the right cosets of I, in 1. This parity is the same as that of the action of g on the
cosets of G, in G. If the action of every element of I were not even, there would
exist a subgroup A4 of index 2 in G with A2 M and 4 N I<Iso AI=G. If p#2 then
even if o(¢})=2n we may conclude that A=1 and the sign above does not matter.
We may assume then that p=2 so that A2 H and this yields a contradiction to
I/HS ®(G/H). Thus in any case our claim is established and A=1. Therefore
O Io=¢,+3 ;.

Now if g € G, then ¢f is a constituent of 6| M =6°|M for some o € 4(F(0)/F).
Thus as before we must have ¢f =¢{* where o, is an extension of o to F(gp;). How-
ever, ¢f is invariant in I, since I,AG, and so ¢{! and hence also ¢, is invariant in
I, and this forces i=1 and thus ¢, is F-semi-invariant in G,. Since Io=S;(p,)
we have by induction that x, = §$o satisfies mz(y,) is prime to p. As in the previous
cases, we set E=m>, x5 so [E, x]=m 3 [x§|lo, §|I] where o runs over
Y(F(xo)/F). Now every constituent of 3|, has degree ¢,(1) and the only constituent
of 8|1, with this degree is ¢,. Also, if o# 1 then [x3|I,, $;]=0 so we have

[E¢, x] = mlxo|lo, $1] = m.
The result now follows in this case and the entire proof is complete.

5. In this and the next section we attempt to find conditions which will guarantee
that (*) will hold so that the previous theorem can be applied. Here we consider
a situation somewhat more general than is necessary for this purpose because
the results of this section may have some independent interest.

Let G be a finite group and suppose M < HAG with MAG and H/M an ele-
mentary abelian g-group where ¢{[G : H]. Let 0 € Irr (H) satisfy 6| M =ep where
@ € Irr (M) ang 6 vanishes on H— M. Suppose also that 0 is invariant in G and that
o(8) and 6(1) are prime to [G : H] so that 8 has a unique extension § on G with
(o(®), [G : H])=1. Since (det p)*=det (8| M) and (e, [G : H])=1, we may define
@ on U where U/M is a complement for H/M in G/M which exists by the Schur-
Zassenhaus Theorem. Then every irreducible constituent of 8|U is of the form
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B¢ where B e Irr (U/M) is uniquely determined. Therefore there exists a unique
character ¢ (possibly reducible) such that §| U=yg. (As usual we do not distinguish
between characters of U/M and characters of U with M contained in their kernels.)
It is the object of this section to obtain information about . We first consider the
case where G/M is a Frobenius group with cyclic complement U/M. We begin
with a lemma.

(5.1) LeMMA. Let C be a finite group and f a function from C into the rational
integers. Suppose that for all ¢ € C we have

2 @) —flenP < 2.

xeC

Then either f is constant or there exists an integer k and a € C such that f(x)=k
for x+#a and f(a)=k + 1.

Proof. For all x, ce C, [f(x)—f(cx)]?<£2 so |f(x)—f(»)|£1 for all x, yeC.
Suppose f is not constant so that we see f takes on exactly two values and these
differ by 1. Let 4, B< C be the inverse images of these two values. We have then

2Cl-D 2z D ) -flen)P = Zc UG-/

x,ceC X, Y€

= 2 |Bl+ > |4] = 24| |B|.
x€A x€B

Thus we have |C|—12|4||B| and |4|+|B|=|C| and also 1=|4|s|C|-1.

Since the function x(|C|—x) takes on its minimal value, |C|—1, at the endpoints

of the interval 1S x<|C|—1, the inequality |C|—12 |4|(|C|—|A4|) yields |4]|=1

or [A|=|C|—1 and the result follows.

(5.2) PrOPOSITION. Let G/M be a Frobenius group with G/H cyclic. Then there
exists e= +1 with [U : M]|(e—e¢) and one of the following occurs:

(@) y=el+((e—¢)/[U: M])p and [U : M) is odd or (e—e)/[U : M]is even,

(b) y=eu+((e—e)/[U: M)p and [U : M] is even and (e—e)/[U : M] is odd,
where p is the regular character of U|M and in case (b), u is the unique linear character
of U|M with order 2.

Proof. Since G/M is a Frobenius group, it is the disjoint union of H/M with the-
[H : M] conjugates of (U/M)*. Let y, and y, be two class functions of G such that
x1 vanishes on H. Then

|Gl[x1, x2] = [H : M1 U|[x.|U, x2|U]

and since [G : U]=[H : M] we have [x;, xz]=[x1|U, x| U].

Now let A#1 be a linear character of G/H and y;=A§—8=yx,. Then x,|H=0
50 2=[x1, xal =[A= )| U, (M=) U=~ g, W—p)Fl=[—4), (—)]
where the last equality follows because [8,§, B.$]=[B1, B2] for B, € Irr (U/M).
We are freely interpreting A as a character of G/H or U/M as is convenient. Write
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¥=73, fv)v where f if a nonnegative integer valued function and » runs over the
group C of linear characters of U/M. Then ¢—M=3, [f(»)—f(A"W)] so
S ) —f(A-W)2=2for all A€ C, A#1. Clearly fis not constant so by the lemma,
there exists 1 € C and integer k such that f(v)=k for v#u and f(u)=k+e where
e=+1. We can thus write y=eu+kp where p is the regular character of U/M.
Since P(1)=e, p(1)=[U : M] and pu(l)=1 we obtain k=(e—¢)/[U : M] so all
that remains is to determine w. Since det (@)= (det $)*¥(det $)*® and ¢(1) is
prime to [G : H] as is o($), we conclude that o(y) is prime to [G : H]. To find p
we calculate det p. On a generator of U/M, det p has the value [J{Z5" 8 where &
is a primitive [U : M] root of unity. This product is + 1 where the negative value
occurs iff [U : M]is even. Thus if [U : M]is odd or if k is even, det (kp)=1 and
it follows that p=1 so we have (a). Otherwise det (kp)>=1 but det (kp)#1 and
(b) holds. The proof is complete.

(5.3) PROPOSITION. Suppose LAG with McL< H. Then G[H acts on H|L and
on the group (L|M)* of linear characters of L{M. Suppose that these two G|H-
modules have no composition factors in common. Then 8|L=f¢ where ¢ € Irr (L)
is invariant in G and vanishes on L— M.

Proof. Since H|M is abelian, it is clear that both actions are well defined. It is
sufficient to show that 0|L is homogeneous. Let £ be an irreducible constituent of
0|L. If ¢ vanishes on L— M, then since 6|M is homogeneous, we have ¢|M=agp
and thus a?=[L : M] and ¢*=af. However, every irreducible constituent of
0|L must be a constituent of ¢" so we are done in this case. Suppose then that ¢
does not vanish on L— M. Then for some A e (L/M)*, A¢+# ¢£. However, for any
Ae(L/M)* we have Aé|M=§¢|M so X¢ is a constituent of ¢ and (A¢)¥ is a con-
stituent of ¢#=ef. Therefore 0% [(AE)Y, 0]=[A¢, 6|H] so A¢ is an irreducible
constituent of 6|L. Now let T=.4,(§)AH. There is a one-to-one correspondence
between the irreducible constituents of 6|L and the elements of H/T. Thus for
each A e (L/M)* we can find a unique Th € H|T such that Aé = £* and this defines
a function f: (L/M)* — H|T. We claim that f'is a G/H-homomorphism and since
ker (f) <(L/M)*, we will be done when this claim is established. We have

MAgé = A 82 = (A )

since Al2= ;. Thus A\ A, €= ™2 and f(A,A.)=h,h,T where f(A)=hT for i=1 or 2.
Therefore f is a homomorphism. Now let g€ G. We have 6* '=0s0 &7 " is a
constituent of |L and for some he H, £ =¢h Thus £€=£" and ME=AI¢he
=AY =(A¢)" since A*=). Thus AN¢=gmhmo=¢gma=¢97'm9 and it follows that
Sf(A9)=f(A)? and the proof is complete.

(5.4) THEOREM. The character | is determined by the action of U/M on H|M.
If xe UM then |Cyu(x)| is a square and $(x)= + (|Cyu(x))*2. If [U : M1 is a
power of a prime p then y(x)=e mod p and this determines the sign if p#2.
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Proof. If HSG,<G and § is the canonical extension of 6 to G,, then 6|U,
= (| U,s)¢ where Uy=U N G, and § is the canonical extension of ¢ to U,. By the
uniqueness of ¢, it follows that to determine )(x), we may set Up/M =<x) so that
we may assume that U/M=<{x) and G/H is cyclic. We proceed by induction on
[G : M]. Suppose that Cy,,(H/M)=My/M>1. Then M,AG. Let Hy=HM, and
6 and ¢ be the canonical extensions to H, and M,. Let A¢ be an irreducible con-
stituent of 6| M,. Now A is invariant in H, and by the uniqueness of its definition,
@ is also so we have 8| M,=e(Ag). By the determinant criterion, A**®=1 and thus
we must have A=1 and 6| My=e@. If My=U then H,=G and we have y=e-1 so
Y(x)=e=(H : M])*? and the result follows in this case. We suppose then that
M, < U. Suppose M,> M. We may apply the theorem to the situation (G, Hy, M,,
U, 8, ¢) in place of (G, H, M, U, 8, ¢) since [G : M,]<[G : M]so induction applies.
The canonical extensions of # and ¢ to G and U are 8 and ¢ and thus the ¢ obtained
in the inductive situation is the same as the original c/:.' The isomorphism between
H|M and Hy/M, is an isomorphism of U/M-modules so induction applies to tell
us that ¢(x) is determined by the action of x on Hy/M, which is identical with the
action on H/M. In particular, (x)®=|Cyymo(X)| = |Cum(x)| and the result follows
in this case.

We now assume that My=M so Cy,,(H/M)=1. If U/M acts in a Frobenius
manner on H/M then (5.2) applies and we have either (a) $(x)=e¢ or (b) Y(x)= —e
where (a) occurs iff [U: M] is odd or (e—¢)/[U : M] is even. Thus §(x)*=1
=|Cym(x)|. If [U : M]>2, & is uniquely determined by the condition that [U : M]
divides e — e and thus ¢(x) is determined by the order of U/M and e. If [U : M]=2
and e=1 then ¥(x)=1 iff (e—1)/2 is even. If e=—1 then Y(x)=1 iff (e—¢)/2
=(e+1)/2 is odd. Thus the value of (x) is independent of the choice of e. If
[U: M]=p® for an odd prime p then y(x)=e¢ and since [U : M] divides e—e we
have (x)=e mod p. If p=2 this is certainly true and the proof in this situation is
complete.

We may suppose then that for some ye U/M of prime order, that L/M
=Cym(y)>1. However, since y ¢ Cy,;(H[M), we have L< H and since U/M is
abelian, LAG. In the action of U/M on (L/M)*, y acts trivially. Now y cannot
act trivially on any composition factor of H/L since this would imply that y fixes
some element of H /M —L|M because the order of y is a prime not dividing |H/M |
and this contradicts the definition of L. It follows that H/L and (L/M)* have
no composition factors in common as U/M-modules. Therefore (5.3) applies and
0|L=f¢ where ¢ € Irr (L) and ¢ vanishes on L— M. Let V=UL and let £ be the
canonical extension of £ to V. Then 8|V=y,€ and €|U=y.¢ and $=4,,. By
induction, the conclusions of the theorem apply to ; and i, since [G : L]<
[G: M] and [V: M]<[G: M]. We may apply Maschke’s Theorem to find a
complement, Lo/M for L/M in H|M such that L,AG. Clearly, |Cyu(x)|=
|Crim(x)] |Crom(x)| and the latter factor is equal to |Cy,(x)|. We have then,
P(x)? =1(x)%ho(x)2 = | Cyym(x)|. Also if [U : M]is a power of a prime p, we have
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Y1(x)=f and P,(x)=e/f mod p and the result follows in this case. The proof is
complete.

6. Let G have a solvable normal p-complement H and let H/M be a chief factor
of G. Let 6 € Irr (H), ¢ € Irr (M) and 6| M =ep where 6 vanishes on H— M. Let
P € Syl, (G) with P’< B< ®(P) where 6 is invariant in HB. Let § and ¢ be the canoni-
cal extensions of 8 and ¢ to HB and MB and write §| MB=y¢. We attempt to
find conditions on P which will guarantee that it satisfies (*) of §4, that is to show
that [, 1] is prime to p. We shall use some of the results of §5 to prove the following
theorem. Unfortunately, we do not have a way to utilize the full strength of Theorem
(5.4) and so the present result is probably weaker than it must be. In fact it seems
reasonable to conjecture that it might be true without any conditions on P at all.

(6.1) THEOREM. If P is regular and metabelian then [, 1] is prime to p.
We begin with a lemma.

(6.2) LEMMA. Let C=Cp(H|M). If the action of B on H|M is homogeneous
(all irreducible constituents equivalent) then B|(B N C) is cyclic. If P|C is not
cyclic and p+#2 then B acts reducibly and the number of its irreducible constituents
is divisible by p.

Proof. Suppose B/(B N C)~ BC|C is not cyclic. Since B ®(P), BC|C< ®(P/C)
and thus BC/C contains a normal subgroup 4/C which is abelian of type (p, p). (See
for instance Hilfsatz 7.5, p. 303 of [4].) Since p? { |Aut (4/C)|, Cp,c(A4/C) has index
<p and thus contains ®(P/C)=2BC/C. Thus 4/C< Z(BC/C) and hence Z(BC/C)
is not cyclic. It follows that BC/C cannot have a faithful irreducible representation.
Now, BC/C acts faithfully on H/M and thus not all irreducible constituents can
have the same kernel and the first statement follows.

Suppose p#2. We have P/C acts irreducibly on H/M and is not cyclic so it
follows by a theorem of Roquette, (p. 248 of [5]), that there exists a subgroup
P,/C of index p in P/C such that the representation of P,/C on H/M splits into p
irreducible constituents. Since BS P,, the result follows.

(6.3) PROPOSITION. Let C=Cp(H|M). If B/(B N C) is cyclic then pt[y, 1].

Proof. Let A=B N C. If A=B then B acts trivially on H/M and it is clear that
yp=e-1 and since pfe, there is nothing further to prove in this case. Suppose then
A<B. We claim that B/A4 acts in a Frobenius manner on H/M. Suppose then
be B and Cyu(b)>1. Let E=<b, A> so L{M=Cy;(E)>1. Now B/A is cyclic
so E/A is characteristic and thus EAP. Thus P N(L) and by the irreducibility
of the action of P on H/M we have L=H. Thus be ESCyz(H/M)=A and the
action of B/A on H/M is indeed Frobenius.

Now, AMABH and the action of B on H/M is isomorphic with its action
on AH|AM. We may calculate ¢4 (viewed as a character of B for convenience)
by applying (5.2) to BH/AM and we conclude that kery=4 and ¢=en+
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(e—¢)/[B : A)p where p is the regular character of B/A viewed as a character of
B and p?=1 and p=1 unless p=2 and (e—¢)/[B : 4] is odd.

Suppose p#2. We claim that p[B: A] divides [H: M]—1. Certainly,
[B : A]|([H : M]—1) since the action is Frobenius. If P/C is not cyclic, then by
(6.2), B acts reducibly on H/M and the number of irreducible constituents, »,
is divisible by p. If each constituent has order k (as an elementary abelian g-group)
then since B/A acts fixed point freely on each constituent, [B : A]|(k—1) and
k*=[H : M]. Thus

[H: M]-1=k'=1=(k=1)(1+k+---+k*1)

and to establish the claim it suffices to show that the second factor is divisible by p.
However k=1 modp and so 1+k+---+k*"1=n=0 mod p. If P/C is cyclic,
it acts in a Frobenius manner on H/M and [P : C]|([H : M]—1). Now [B : A]=
[BC : C]<[P : C] so the claim is fully established.

Now [H: M]—1=e?—1=(e—¢)(e+¢) and [B : A]|(e—e). Since p#2 is being
assumed, pf(e+e) so the full p-part of [H: M]—1 divides e—e and thus
P[B : A]|(e—e) so (e—¢)/[B : A] is divisible by p and we have [, 1]=e#£0 mod p
if p#£2.

Suppose then that p=2. If (e—¢)/[B : A] is even we have [, 1]=¢#0 mod 2
and the result follows. If (e—e)/[B : 4] is odd then p+#1 so [¢, 1]=(e—¢)/[B : 4]
#0 mod 2 and thus the result follows in this case also and the proof is complete.

We now give the

Proof of (6.1). Let C be as in (6.3). If p=2 then since P is assumed to be regular,
it is abelian and since P/C is represented irreducibly and faithfully on H/M,
P|C is cyclic. Thus BC/C~ B|(B N C) is cyclic and the result follows from (6.3).
We assume then that p#2. By (6.3) and (6.2) we may assume that B acts reducibly
and inhomogeneously on H/M. Since the action is completely reducible, we may
let Li/M, 1<i<p°® be the distinct homogeneous constituents of the action of B
on H/M. By Clifford’s Theorem, the L, are all conjugate in G. Let K;=TT;.; L;
so H|K,~L,/M as B-modules. We claim that H/K; and (K,/M)* have no B-
constituent in common, so we may apply (5.3). Since the dual of a homogeneous
module is homogeneous, the only way our claim can fail is if L;/M~(L;/M)* for
some i#j. If this occurs, then since all L; are conjugate under the action of P, a
pairing will be established among the integers i, 1<i<p® where i« j iff LM
~(L;/M)*. Since p is odd, i< i for some i and this forces j« j for all j. Thus
L/M~(L;/M)*~L;/M contradicting i#j and the claim is established.

From (5.3) it follows that 6|K;=f¢, and from (5.4) it follows that the class func-
tion n; on B is a rational valued character, where 7;(b)= + (|Cyx (b)) and the
sign is chosen so that n,(b)=fmod p. Now |Cy;,(b)| =TT |Crym(®)| =TTi | Crijie,(B)|
and it follows that $(b)= +IT; n(b). Since ¥(b)=e=f"* mod p, the sign is + and
¢= T n;. Also since the L, are all conjugate under the action of P it follows that the
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n; are all conjugate. (They are not necessarily all distinct, however.) We put the
remainder of the proof into a separate result.

(6.4) PROPOSITION. Let P be a regular metabelian p-group and suppose that
P'cB< ®(P). Let J be an index set with |J|=p®>1 and let n; be a rational valued
character of B for each j € J. Suppose that P acts transitively on J in such a manner
that v;..=(n,)* and B is in the kernel of the action. Let =] ];c; n; and suppose that

pip(l). Then ptly, 1].

Proof. Choose a particular element, say 1 €J and write 5;= > a;p{"’ where
the ¢’ e Irr (B) are distinct and [ is a suitable index set. For j € J, fix a particular
X; eP with 1-x;=j (take x,=1) so we have

) = () = > agf’

iel
where ¢’ = (¢{’)* € Irr (B).
Let & be the set of functions f: J — I. Then
2) Z ap? = Z n G PF
jEJ iel fe# jel
We write a;, =11, a,;, so that we obtain

€) b= g 1’[ P

fey

Now let T be the stabilizer of 1 in the action of P onJ so P’'SB<T <P and yt =1,
for t € T. Therefore T permutes the irreducible constituents of »; and we may define
an action of T on I by ¢{1)=(g{V)!. Note that a,=a;.,. Now let T act on & by
fY)=f(j)-t. We have then a;t=a,. Also

©) ) (1) V%, — ({1 )t (1) \xt
Pit) = Piiny-t = = (@fth.0" = (PN = (Prh)™,

where the last equality follows since P’< B. Thus

‘Pft(j) = (‘P )j))t
and

t
4 ast l_[ Py = (af H 9’/(8)) .
jeJ jelJ

Thus in (3), the contributions of the f and f* terms are equal when calculating either
Y(1) or [, 1]. In evaluating these integers mod p we may therefore neglect all those
f which lie in T-orbits of size divisible by p, i.e. all those f which are not fixed by T.

Let I,={iel|i-t=i, VteT}, and let Lo={fe & | f(j)e I, VjeJ}. The ele-
ments of &, are precisely the f which are invariant under T and thus we have
Y(1)=y(1) and [, 11=[ifo, 1] mod p where

) = Z as 1—[ -

fe&o
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Now let P act on &, according to the formula f¥(j)=f(j-y~'). We have then
ayv=a,;. Now suppose k=j-y. Then 1-x,=k=j.y=1-x,;y so x;y=tx, for some
t € T. We obtain for fe &%,

(@)Y = @) = (@)™ = (¢th) ™
where the last equality follows because f(j) € I,. Thus
(@5 = ofh = ¢id,

and this yields
(6) (af I;[ ‘P}j&))y = ay I?[ ?}Q(;)-

Therefore, reasoning as before we have ¢(1)=4,(1) and [¢, 1]=[¢,, 1] mod p
where
™ =2 o] o
f €& 1 j
and S ={fe % | f*=f, VyeP}. In other words, & consists of the constant
functions from J to I,. Thus we have
®) o =D (@ [ | of.
ielg j
Let £ be a primitive |P| root of unity and &, a primitive pth root of 1. Let
U=9(Q(¢)/ O(o)) so U is a p-group and U acts on Irr (B). This induces an action

of U on I and since 7, has rational values, a,=a;., for all u € U. Clearly, I, is an
invariant subset of I so U acts on I,. We have

@) = @) = ) = ol
Let I,={ie I, | i-u=i, Vue U} and set
©) o= 2 @"]]ef

iely i

so that reasoning as before we have $(1)=4,(1) and [, 1]= [, 1] mod p. If we can
show for i € I, that

(10) [1, I;_[ <P§”] = H ¢”(1) mod p,

then we will have ,(1)=[¢,, 1] mod p and the result will follow. We shall show
that because of the hypotheses on P, all of these ¢{” are linear characters and that
ITe=1.

Suppose then that ¢ € Irr (B), ¢(1) > 1 and that ¢ is invariant under U. It follows
that Z(B/ker ¢) has order p. Since the hypotheses that P is metabelian and regular
are inherited by factor groups, we may assume that (N),.r ker ¢*=1. Now let
z € Z(B) so that z? € ker . It follows that z? € ker ¢* for all x e P so z?=1 and



226 I. M. ISAACS [July

Z(B) is elementary abelian. Let C=B N Z(®(P)). Since ®(P)=B, C<Z(B)< B,
where the latter inequality follows from the assumed existence of a nonlinear ¢.
Choose AAP with C< A< B and [4 : C]=p. Furthermore, since P'c B, if P'C>C
we may assume that A<P’C and since P'C is abelian we have in this case that
C(A)=P'. Otherwise, P'C=C so P'c Z(B) and thus here too we have P'c C(4).
Note that A4 is abelian. Let ye A—C and x € P so y*=yc for c€ C. Thus 1=c¢?
=(y~*x"lyx)P=(y~*x~Py)(x*)u’ where u € (x~¥, x)' =<{x, y)’ by regularity. How-
ever, {x, y>'<C since [x, y]€ C and C is elementary so u?=1. Thus 1=[y, x*]
and x* € C(p). Also x? € ®(P) so x? centralizes C and hence x* € C(4) for all
x € P. Now P'=C(A) so P|C(A) is an elementary abelian p-group and ®(P)< C(4)
s0 ASB N Z(P(P))=C< A. This contradiction shows that ¢(1)>1 is impossible
for ¢ € Irr (B), ¢ invariant under U.

Finally, we suppose that ¢{’=A, a linear character invariant under T and U
and we show that [, A*=1 as x runs over a transversal for T in P. Since A is
fixed by U, we have A?=1. Now [P : T]=p®>1 so we may choose x e P—T and
let m be the order of xmod T. Let W be a transversal for <T, x) in P so
{x'w|1Si<m, we W} is a transversal for T in P. Let p=]T], A** and pick
b e B. We have

pd) = [ [ ¥2@) = [ [ Ax'wbw=1x"9).
i, w i,w

For given w e W, let by=wbw~'. We shall show that [, A(x'b,x~*)=1 and it
will follow that w(b)=1. We must show that [ [, x'b,x~* € ker A. However,

(ebox ™) (x%box %) - - (X™box~™) = (xbo)™x ™.

Since P is regular, this equals #”x™b7x~™ where u € {x, bo)'<={x, B)'S B. Since

A?=1 we have

[T Mxtbox=t) = A@PA(xmbox~m)m =

i=1
since p|m. Thus u(b)=1 for all b € B and so =1 and the proof is complete.

It is of interest to note that the use of the assumptions that P is regular and
metabelian in Theorem (6.1) has been rather minimal. The assumption of regu-
larity was used to handle the case p=2 and then was used twice in proving (10)
of (6.4). That P is metabelian was used only once, in proving (10).

7. In this section we prove the two theorems which were stated in the introduction.
We assume the situation described there.

(7.1) THEOREM B. Let H be solvable and let C=G/H. Suppose that for all primes
p|[C : C'] that a Sylow p-subgroup of C is regular and metabelian. Then % is
extendible to G.

Proof. Let 0, I, § and x be as in §1. By (2.1) we are done if we show that m(x)
is prime to [G : H]. By (3.2), this will follow if for every U, Hc U< G such that
U/H is a p-group and I N U/HS ®(U[H), we have mg(xy) is prime to p. If
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pt[C : C'] then since I/H2C’, we must have U< whenever U/H is a p-group.
Then U N I=U and the condition of (3.2) is vacuously satisfied for such primes
because U/H¢ ®(U/H) unless U/H=1. Suppose then U/H is a p-group for a
prime p|[C : C']. Then U/H is contained in a regular metabelian p-group by
hypothesis, so U/H satisfies these conditions and by (6.1), condition (*) holds for
each of its subgroups. The result now follows by (4.1).

(7.2) THEOREM A. If H is nilpotent then X is extendible to G.

Proof. First, suppose that H is a p-group. Let ¢ be a primitive |H| root of unity
s0 F(0)< F(e) and 9(F(6)/F) is cyclic unless p=2 in which case it is a 2-group. If
I is as in §l1, then G/I is isomorphic with a p’-subgroup of %(F(6)/F) so in any
case G/I is cyclic. Let HSU<G be such that U/H is a g-group and U N I/H
S®(U/[H). Now U/UN I is cyclic and it follows that U/H is cyclic. Then by
(6.3), every subgroup satisfies (*). Thus by (4.1) and (3.2), m(x) is prime to
[G : H].

Now we prove by induction on the number of prime divisors of |H| that m(x)
is prime to [G : H] and the result will follow by (2.1). By the above we may assume
that H is not a p-group and write H=H, x H, where H, is a Sylow subgroup of
H and |H,| is divisible by fewer primes than is |H|. Let 6, and 6, be irreducible
characters of H/H, and H|H, respectively such that 6=6,0,. If g € G then 6°= 6969
=07=0%6] for some o € (F(0)/F) since F(6;)< F(6). By the uniqueness of the
decomposition, it follows that each 6; is F-semi-invariant in G. Let I,=.J(8).
Clearly, I, N I, =I=#4(0). Let 8, be the canonical extension of 0, to I, and let
x:=08. By the inductive hypothesis we have me(x)=my, is prime to [G : H] for
i=0, 1. Let &,=%(F(6))/F) and Aj=m, >,.6; x{ 0 A, is the character of an F-
representation of G. It follows that AyA, is also the character of an F-representation
of G so me(x)|[x, AoA;]. Now

AgAy = m x5
0/} omlaeﬁo,z:eo')l XoX1
We claim that [x, x¢xi]1=0 unless o=1=r. Suppose 0+ [x, x3xi1=1[8, IDK3|D)].
Thus 0#[6, (x§| H)(xi|H)]. Now all irreducible constituents of x§|H have H, in
their kernels and similarly for xi|H and thus the irreducible constituents of
(3| H)(xi|H) are the products of the irreducible constituents of each factor.
Since 6=0,6, is a constituent of this, we must have [8,, x3| H]#0%[6;, xi|H]
and by (1.4) this yields o=1=r. Therefore my(x) divides mom;[x, xox:] and it
suffices to show that [, xox.] is prime to [G : H].

Now [x, xox1]1=10, (xo|I)(x1|1)] and since I,21, we have xilI=3, 07| where x
runs over a transversal for I, in G. Suppose § is a constituent of (95‘[1)(9’1’|I).
By considering degrees we have, §= (9:,‘ |1 )(9}‘]1) and hence 0= 6%6Y. It follows that
0o=05 and 8, =06Y%. Thus x € I, and y € I, and we have

[9, (ol DO D1 = 18, (Bl D)8, D]
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However, (8,|I)(8,|I) is an extension of 8= 6,0, to I with determinantal order prime
to [G : H] so by the uniqueness of 8 this yields 8= (8,|I)(8,|I) and it follows that
[x> xox1]=1 and the result follows.
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