Master Brewers Association of the Americas

事 MANA

Dedicated to the technology of brewing.

2014 MBAA Annual Conference

FLASH PASTEURIZATION

Advantages, weak points, remarkable points

2014 MBAA Annual Conference June 5 - 7 Palmer House, Chicago, IL

Henri Fischer, Krones Inc., Franklin, WI

Submitter ID: 50 Abstract ID: 10413

Hygienic Filling - Introduction

- Maximum biological safety
- Maximum product quality and sensory purity
- Minimum installation costs
- Minimum energy costs
- Maximum product flexibility

Photo: Thanks to Krones AG

Why Pasteurization of Beer?

Pasteurization is the selective inactivating or killing of vegetative germs

- Prevents contamination of beverages
- ensures a safe (hygienic)product

- → maximal biological safety
- → maximal product quality

Pasteurization is part of the barrier concept of the preservation of beverages

Shelf live

➤ Extended shelf live → maximal transportation / storage stability

Pasteurization Units (PU)

Pasteurization units (PU) are a function of D- and Z-value and a dimension for the effect realized through the heat impact:

Elimination of beer spoiling MO's:

$$PU = t \cdot 1.393^{(Tp - 60 \, ^{\circ}C)}$$

- Elimination of CSD spoiling MO's: $PU = t \cdot 1.393^{(Tp-80°C)}$
- Elimination of juice spailing MO's: $PU = t \cdot 1.2589$ (Tp = 80 C)

t = heat holding time (min) T_p = pasteurization temperature (°C) 60°C - 140°F 80°C - 176°F

- Holding time is linear to the PU double holding time results in double PU
- Temperature is power to PU
 2 Kelvin more temperature results in double PU

The effect of thermal treatment alternatively is monitored just by the temperature at a certain holding time!

Reference PU Values

Bottom fermented beers (lagers)	15 – 30 PU
Top fermented beers	Up to 100 PU
Shandies / Alcohol free	> 100 PU

Pasteurization of Beer: Comparison

Tunnel / Chamber

(Beer $143 - 158 \, \text{F}_{[62-70\,^{\circ}\text{C}]}$, low/no alc. $154 - 167 \, \text{F}_{[68-75\,^{\circ}\text{C}]}$) 20 minutes to $143 \, \text{F}_{[62\,^{\circ}\text{C}]}$

- hold for 20 min
- 20 min cool down

■ Flash Pasteurizer (plate)

(Beer 152 – 167 F $_{[67-75\,^{\circ}\text{C}]}$, low/no alc. 158 – 172 F $_{[70-78\,^{\circ}\text{C}]}$) heating up and cool down beer flow – less thermal load (O $_2$ reactions) holding time of about 30 seconds at 161.6 F $_{[72}\,^{\circ}\text{C}]}$

Comparing Tunnel Pasteurization with Flash Pasteurization

Flash Pasteurization

- Thermal product treatment before filling process
- Short thermal treatment
- Separate container & closure treatment ?, hygiene level ?
- Lower costs for installation, energy
- Smaller footprint
- Filling temperature warmer needed? (condensation)

Tunnel Pasteurization

- Product, container and closure are thermally treated after filling process – very safe!
- Container internal pressure, glass break (delta T)
- Long thermal treatment, thermal load cold spot
- Relatively higher costs for installation and energy
- Bigger footprint

Graphics: Thanks to Krones AG

Flash Pasteurizer

- Beer connection (BBT, filler)
- Water connection
- Inlet pump, booster pump, (pump to filler)
- Heat exchanger
 - with secondary water loop for heating (steam or superheated water connection, recirculation pump, controls
 - (cooling media circuit)
- Holding tube
- Buffer tank with CO₂, sterile air connection

Complete Concept with Flash pasteurization

Filler concept:

- Hygienic conditions at filler (room, floor, air recirculation, conveyors...)
- Hygienic filler design (incl. flush system for valves and capper)
- Automatic controls
- External cleaning / desinfection
- Optional: rinser, housing
- Reliable CIP of all pipework and machines!
- Fresh / flush water treatment

Photo: Thanks to Krones AG

Buffer / Flow control

Filler consumption (flow)	1	↓
Tank level		1
Flash Flow	1	

- Heat exchanger minimum flow rate!
- Reliability of measurements and controls
- Adaption speed
- Buffer tank size
- Effective buffer time
- Push out frequency

Design and Control System MUST Ensure Product safety

- Over pasteurization: thermal overload to the beer-> flavor change
- Under pasteurization: microbiological conditions are not safely guaranteed
- Under shooting saturation pressure : degassing in product --> undefined pasteurization with insulating gas bubbles
- Fault set points that are adapted to the product and overall conditions – flash internal purge to drain or rework tank
- Product recirculation: advantage of lowest product losses, disadvantage of high thermal effect (other risks?)
- Internal push out: no thermal overload to the sensible product
- Re-sterilization (with water) after undershooting flash internal

Photo: Thanks to Krones AG

Effects on Functionality

- Constant feed pressures and temperatures of product, water, steam (or superheated water)
- Exact design of
 - control valves (cv, control accuracy...)
 - pumps (pressure, control accuracy...)
 - pipe size and geometry (turbulences)
 - heat exchanger (delta T)
 - holding (length, bows..)
- Exact adaption to local situation is basics for correct engineering

Water

- Fast / big pressure changes can not be balanced by flow and pressure control
 - → flow change → PU change
 - → pressure change → flow change → PU change
 - → pressure change → deficient saturation pressure
- Water feed system design matters
 - Pressure control
 - Set point multiple pumps
 - Position of pressure sensor
 - Control speed and deviation
 - Dead end / ring pipe
 - Interaction with other big consumers

Corrosion

- Chloride content of water
- Salt content of special products
- → heat exchanger material with high temperatures
- → otherwise corrosion (at least by time)
 - Material fatigue/ damage micro cracks
 - Worse functionality
 - No product safety with mixture

Heat Exchanger

- Positive pressure differential
- Secondary circuit de-aeration
- Correct installation of plates (maintenance) (order, direction change end plates, amount, glue etc.)
- Min. / max. wide! (support points, flexible piping!)
- Leaks
 - Visible to outside
 - Seals after overpressure
 - Seal with wear
 - Not visible inside
 - Corrosion
 - Breaks / micro cracks
 - Checks recommended in maintenance intervals!
 - Pressurizing even little leaks visible
 - Colored liquids
 - Gas
 - Gels
- Fouling
 - Biological → caustic CIP
 - Stone → Acid

Steam

- Fast / huge pressure deviations can not be balanced by control → PU deviation
- Balancing with (mechanical) pressure reducer / control valve
- Respect design / pipework
 - Interaction with other big consumers
 - Adequate dimensioning of pipework
- Condensate system
 - Counter pressure not too high
 - Respect pressure losses
 - Adequate dimensioning of pipework
 - Prevent "U-legs"

Cleaning - CIP/SIP

A lot of different suppliers and brand products Different active chemicals, basic effect similar

- Compatibility of chemicals with materials (Chlorine!)
- Temperature and recirculation time
- Wash off (residuals, flush amounts)
- CO₂ NaOH reaction
- Effective NaOH concentration

Photo: Thanks to Krones AG

<u>CIP</u>

- Time
 - Check best by automatic system (CIP master)
 - Pulsing of valves
 - Tank spray
- Temperature
 - Production temperatures (heat exchanger)
 - Chemicals (cleaning optimum, corrosion)
- Flow rates
 - Flow rate / turbulences (Reynolds)
 - During pulsing of valves / sections / dead legs
 - Flow / pressure to filler
- Sample valves
- Vacuum valve of buffer tank (hard to clean, best: vacuum proof tank)
- Spray ball buffer tank
 - pressure
 - blocking

Saturation Pressure

- Low pressure: de-aeration of beer -> insulation at resulting bubbles undefined heat transfer - undefined / low pasteurization effect!!
- Has to be respected in every spot in the flash, especially in the hot zone
 - Most critical after pre-warming before booster pump
 - Stay always above theoretical saturation pressure plus safety (+ 1 bar)
 - No foaming!

Backpressure valves at drains

Manually pressure maintaining valves – spring loaded Set to respective pressure at about 43 PSI [3 barG]!

Saturation Isotherme (beer)

Relation:

A certain amount of CO₂ is bound in a certain liquid at a certain temperature at a certain pressure!

Temperature and Pressure Diagram

Pressure Situation During the Process

- Pressure in the whole system at every temperature
 - \rightarrow Min. saturation of the beer respecting the CO₂ content

Defined by:

- Design
 - Pump design
 - Feed pressure
 - Booster pressure
 - Pos. Pressure differential (heat exchanger)
 - Buffer tank pressure control
- Control
 - Measures
 - Alarm deviations

<u>Beer Supply Problems – Mistakes in the BBC</u>

Admission

- Keep saturation pressure → otherwise foam → results in issues (pressure, flow, sensors...)
- Correct amount → otherwise losses, dilution
- Pipe end opposite to emptying flow filled too? → undefined amount for push out, dilution with tank

Tank Changeover

- Water plug between tanks? → Dilution
- Swing bends de-aerated → gas bubbles
- Gas bubbles between tanks? → flow / pressure / sensor issues
- Pressure fluctuation when switching tanks? → flow / pressure issues
- Signal exchange
 - No short signal fall offs → flash control will react with push out / interruptions
- No signal if no product available \rightarrow flow / pressure issues, wrong reaction of flash
- → Mistakes in the cellar result in issues at the flash pasteurizer!

Oxygen Intake

- Cellar
- D/A-water
 - Water from cellar at beginning
 - Internal push outs with flash internal water supply
 - D/A-water for intermediate sterilization (saturation pressure!!)
- Filter
- Buffer tank
- Components
 - Seals
 - Pumps
 - Pipe connections (screw connections, clamps...)
- Admission to filler

Beer Dilution

- Cellar
- Mix phases
- Leakage proof connections
- Counted / calculated amounts (espec. before flash)
- Sensor delay times

Calibration of Sensors

- More often:
 - O₂
 - Orig. gravity
 - Alcohol
 - Turbidity
 - Conductivity
 - Conductivity water and flow meter
- Rarely / (never):
 - Pressure sensors
 - Flow meter
 - Temperature sensors

MAINTENANCE!

- Maintenance interval
- Preventive action!

An ounce of prevention is worth a pound of cure. [Benjamin Franklin]

- → qualified personnel
- → external maintenance, vendor maintenance programs

Photos: Thanks to Krones AG

Microbiological checks - Step control

- Isolate / detect contamination spot
- Duration / time to respect
 - Sporadic results point more to periphery
- Layers in buffer tank

Fault diagnostics – Bug Fix

- "Keep calm, act carefully"
- Defined and factual fault detection and description
- When did the issue happen?E.g. program step, exact situation

- Collect as much information as possible for the experts
- "Murphy's Law" is not always the reason for a fault!
 - Very often it is the most obvious, most simpliest reasons which result in issues. (e.g. proxy loose)
- Use the advantage of diagnostic (IT-) tools if possible

Example: Trending Curves, Fault messages

Photo: Thanks to Krones AG

Graphics: Thanks to Krones AG

Conclusion

Often external factors result in issues at the flash pasteurizer

Master Brewers Association of the Americas

THAT WE SEE THE SECOND SECOND

Dedicated to the technology of brewing.
2014 MBAA Annual Conference

QUESTIONS?

Henri Fischer

Educated Brewmaster
Product Manager Processing
KRONES Inc., Franklin, WI

414-409-4740

henri.fischer@kronesusa.com