Species Tree Estimation Lab: SVDQuartets and ASTRAL

Outline
(1) Species Tree Inference
(2) ASTRAL Method
(3) SVDQuartets Method
(4) Tutorial
(5) References

Species tree inference
full data nethods

- Recall our ideas about inference under the phylogenetic coalescent model

- ASTRAL is a summary statistic method for species tree estimation:
- Step 1. Estimate gene trees for each locus
- Step 2. Extract all quartet relationships from the estimated gene trees
- Step 3. Find the species tree that "agrees" with as many quartets as possible
- Recall our ideas about inference under the phylogenetic coalescent model

- ASTRAL is a summary statistic method for species tree estimation:
- Step 1. Estimate gene trees for each locus \checkmark
- Step 2. Extract all quartet relationships from the estimated gene trees
- Step 3. Find the species tree that "agrees" with as many quartets as possible

ASTRAL

- Step 2. Extract all quartet relationships from the estimated gene trees

- Recall our ideas about inference under the phylogenetic coalescent model

- ASTRAL is a summary statistic method for species tree estimation:
- Step 1. Estimate gene trees for each locus \checkmark
- Step 2. Extract all quartet relationships from the estimated gene trees \checkmark
- Step 3. Find the species tree that "agrees" with as many quartets as possible
- Step 3. Find the species tree that "agrees" with as many quartets as possible
- This is a non-trivial problem recall that we expect substantial incongruence among trees
- However, unrooted gene trees cannot be anomalous for four taxa in the absence of gene flow, so if the gene trees are correct, then this is easy
- ASTRAL uses the Weighted Quartet Score of a candidate species tree defined to be the number of quartets from the set of input gene trees that agree with the candidate species tree
- Optimization problem - need to search for the species tree that maximizes the Weighted Quartet Score
- Example:

Consider the species tree $T_{1}=$

$q_{1}=12 \mid 34 \rightarrow w\left(q_{1}, \tau\right)=1 \quad$ (appears in gene tree 1)
$q_{2}=12158 \rightarrow w\left(q_{2}, \tau\right)=2$ (appears in both miput gere true)
t all quartets in T_{1}

- Example:

Consider the species tree $T_{2}=$

$$
\operatorname{Score}\left(T_{2}\right)=\sum_{\substack{\text { juartetsin} \\ \operatorname{tra} \\ T_{2}, q}} w(q, \tau)
$$

$g_{1}=18 \mid 27 \longrightarrow w\left(g_{1}, \tau\right)=0$ (doeon't appear in either input gene tree)
$q_{2}=12 \mid 34 \longrightarrow w\left(q_{2}, \tau\right)=1 \quad$ (appears in gene tree 1)
$f_{3}=18 \mid 23 \rightarrow w\left(f_{3}, \tau\right)=0 \quad$ (docon't appear in either input gemetree)

+ all quartets in T_{2}
- Recall our ideas about inference under the phylogenetic coalescent model

SPECIES TREE
GENE TREE

- ASTRAL is a summary statistic method for species tree estimation:
- Step 1. Estimate gene trees for each locus \checkmark
- Step 2. Extract all quartet relationships from the estimated gene trees \checkmark
- Step 3. Find the species tree that "agrees" with as many quartets as possible \checkmark
- ASTRAL can also estimate branch lengths (in coalescent units)
- ASTRAL also provides a measure of uncertainty: local posterior probability

Sayyari and Mirarab, 2016

- Assume that the "clusters" on each edge of the branch under consideration are correct
- Use the gene trees to obtain quartet frequencies for the three possible arrangements of clusters
- Assume a prior distribution on the quartet trees (Yule prior with parameter λ)
- Compute the posterior probability that this branch appears in the true species tree, given the observed quartet frequencies
- ASTRAL is statistically consistent when the gene trees are known without error
- ASTRAL will perform well when the gene trees can be estimated well
- Computational efficiency: the estimation of gene trees is the time-consuming step, but can be parallelized
- Crucial assumption: true unrooted quartets have higher probability than other quartet relationships
- Assessment of uncertainty: use the local posterior probability (now recommended over the bootstrap)

SVDQuartets (or just SVDQ)

Goal of this work:
Develop a full data approach that is computationally feasible for large-scale data

How?

- Summarize data differently, so that model requires less computation
- Develop theory to infer relationships among quartets of taxa very accurately
- Use a quartet assembly method to build a large tree

Recall the phylogenetic coalescent model with mutation
Example: Want to compute the probability that taxon A has nucleotide T, taxon B has nucleotide G and taxon C has nucleotide T - call this $p_{T G T}$

$1-e^{-t}$
$\frac{1}{3} e^{-t}$
$\frac{1}{3} e^{-t}$
$\frac{1}{3} e^{-t}$

$$
\begin{array}{cccc}
0.63 & 0.12 & 0.12 & 0.12 \\
p_{T G T}^{1 a}=0.05 & p_{T G T}^{1 b}=0.025 & p_{T G T}^{2}=0.2 & p_{T G T}^{3}=0.025 \\
& \\
p_{T G T}=0.63 \times 0.05+0.12 \times 0.025+0.12 \times 0.2+0.12 \times 0.025=0.0615
\end{array}
$$

\Uparrow For intuition only, not completely correct ...

But there are a lot of histories!

Table 3. The number of valid coalescent histories when the gene tree and species tree have the same topology. The number of histories is also the number of terms in the outer sum in equation (12).

	Number of histories		
Taxa	Asymmetric trees	Symmetric trees	Number of topologies
4	5	4	15
5	14	10	105
6	42	25	945
7	132	65	10,395
8	429	169	135,135
9	1430	481	$2,027,025$
10	4862	1369	$34,459,425$
12	58,786	11,236	$13,749,310,575$
16	$9,694,845$	$1,020,100$	6.190×10^{15}
20	$1,767,263,190$	$100,360,324$	8.201×10^{21}

- This means that calculating the likelihood - and thus using likelihood-based methods for inference - will be difficult, especially for large-scale data
- Alternative approach: compute explicitly (i.e., write formulas for) the site pattern probabilities for 4-taxon trees, and look for "structure"

Taxon	Sequence
1	ACCAATGCCGATGCCAAA
2	ACCATTGCCGATGCCATA
3	ACGAAAGCGGAAGCGAAA
4	ATGAAAGCGGAAGCCAAA

$$
\text { Flat } 1_{12 \mid 34}(P)=\left(\begin{array}{ccccccc}
& {[A A]} & {[A C]} & {[A G]} & {[A T]} & {[C A]} & \cdots \\
{[A A]} & p_{A A A A} & p_{A A A C} & p_{A A A G} & p_{A A A T} & p_{A A C A} & \cdots \\
{[A C]} & p_{A C A A} & p_{A C A C} & p_{A C A G} & p_{A C A T} & p_{A C C A} & \cdots \\
{[A G]} & p_{A G A A} & p_{A G A C} & p_{A G A G} & p_{A G A T} & p_{A G C A} & \cdots \\
{[A T]} & p_{A T A A} & p_{A T A C} & p_{A T A G} & p_{A T A T} & p_{A T C A} & \cdots \\
{[C A]} & p_{\text {CAAA }} & p_{\text {CAAC }} & p_{\text {CAAG }} & p_{\text {CAAT }} & p_{\text {CACA }} & \cdots \\
{[\cdots]} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Taxon	Sequence
1	ACCAATGCCGATGCCAAA
2	ACCATTGCCGATGCCATA
3	ACGAAAGCGGAAGCGAAA
4	ATGAAAGCGGAAGCCAAA

$$
\text { Flat } 1_{12 \mid 34}(P)=\left(\begin{array}{ccccccc}
& {[A A]} & {[A C]} & {[A G]} & {[A T]} & {[C A]} & \cdots \\
{[A A]} & 5 & p_{A A A C} & p_{A A A G} & p_{A A A T} & p_{A A C A} & \cdots \\
{[A C]} & p_{A C A A} & p_{A C A C} & p_{A C A G} & p_{A C A T} & p_{A C C A} & \cdots \\
{[A G]} & p_{A G A A} & p_{A G A C} & p_{A G A G} & p_{A G A T} & p_{A G C A} & \cdots \\
{[A T]} & p_{A T A A} & p_{A T A C} & p_{A T A G} & p_{A T A T} & p_{A T C A} & \cdots \\
{[C A]} & p_{C A A A} & p_{C A A C} & p_{C A A G} & p_{C A A T} & p_{C A C A} & \cdots \\
{[\cdots]} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Looking for structure in site pattern probabilities

Taxon	Sequence
1	ACCAATGCCGGAGCCCAAA
2	ACCATTGACGGAGCCAATA
3	ACGAAAGACGGAAGCAAAA
4	ATGAAAGTCGGAAGCTAAA

$$
\text { Flat } 1_{12 \mid 34}(P)=\left(\begin{array}{ccccccc}
& {[A A]} & {[A C]} & {[A G]} & {[A T]} & {[C A]} & \cdots \\
{[A A]} & 5 & p_{A A A C} & p_{A A A G} & p_{A A A T} & p_{A A C A} & \cdots \\
{[A C]} & p_{A C A A} & p_{A C A C} & p_{A C A G} & p_{A C A T} & p_{A C C A} & \cdots \\
{[A G]} & p_{A G A A} & p_{A G A C} & p_{A G A G} & p_{A G A T} & p_{A G C A} & \cdots \\
{[A T]} & p_{A T A A} & p_{A T A C} & p_{A T A G} & p_{A T A T} & p_{A T C A} & \cdots \\
{[C A]} & p_{C A A A} & p_{C A A C} & p_{C A A G} & 2 & p_{C A C A} & \cdots \\
{[\cdots]} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Looking for structure in site pattern probabilities

Taxon	Sequence
1	ACCAATGCCGGAGCCCAAA
2	ACCATTGACGGAGCCAATA
3	ACGAAAGACGGAAGCAAAA
4	ATGAAAGTCGGAAGCTAAA

$$
\text { Flat }_{12 \mid 34}(P)=\left(\begin{array}{ccccccc}
& {[A A]} & {[A C]} & {[A G]} & {[A T]} & {[C A]} & \cdots \\
{[A A]} & 5 & p_{A A A C} & p_{A A A G} & p_{A A A T} & p_{A A C A} & \cdots \\
{[A C]} & p_{A C A A} & p_{A C A C} & p_{A C A G} & p_{A C A T} & p_{A C C A} & \cdots \\
{[A G]} & p_{A G A A} & p_{A G A C} & p_{A G A G} & p_{A G A T} & p_{A G C A} & \cdots \\
{[A T]} & p_{A T A A} & p_{A T A C} & p_{A T A G} & p_{A T A T} & p_{A T C A} & \cdots \\
{[C A]} & p_{C A A A} & p_{C A A C} & p_{C A A G} & 2 & p_{C A C A} & \cdots \\
{[\cdots]} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Looking for structure in site pattern probabilities

Taxon	Sequence
1	ACCAATGCCGGAGCCCAAA
2	ACCATTGACGGAGCCAATA
3	ACGAAAGACGGAAGCAAAA
4	ATGAAAGTCGGAAGCTAAA

$$
{\text { Flat } 1_{12 \mid 34}}(P)=\left(\begin{array}{ccccccc}
& {[A A]} & {[\mathrm{AC}]} & {[A G]} & {[A T]} & {[C A]} & \cdots \\
{[A A]} & 5 & p_{A A A C} & p_{A A A G} & p_{A A A T} & p_{A A C A} & \cdots \\
{[A C]} & p_{A C A A} & p_{A C A C} & p_{A C A G} & p_{A C A T} & p_{A C C A} & \cdots \\
{[A G]} & p_{A G A A} & p_{A G A C} & p_{A G A G} & p_{A G A T} & p_{A G C A} & \cdots \\
{[A T]} & p_{A T A A} & p_{A T A C} & p_{A T A G} & p_{A T A T} & p_{A T C A} & \cdots \\
{[C A]} & p_{C A A A} & p_{C A A C} & p_{C A A G} & 2 & p_{C A C A} & \cdots \\
{[\cdots]} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

These two columns are identical - matrix rank is reduced by one

Main Result:

- Species tree inference: For a flattening matrix constructed on the true four-taxon tree, the matrix rank is $\mathbf{1 0}$ under the following model
- species tree \rightarrow gene tree ::: coalescent process
- gene tree \rightarrow data ::: nucleotide substitution models: GTR $+\mathrm{I}+\Gamma$ and submodels
- This result still holds when the species tree violates the molecular clock and/or when there is variation in effective population size across the branches and/or when there is gene flow between sister taxa

What about the incorrect tree?

Taxon	Sequence
1	ACCAATGCCGGAGCCCAAA
2	ACCATTGACGGAGCCAATA
3	ACGAAAGACGGAAGCAAAA
4	ATGAAAGTCGGAAGCTAAA

$$
\text { Flat }_{12 \mid 34}(\mathrm{P})=\left(\begin{array}{ccccccc}
& {[A A]} & {[A C]} & {[A G]} & {[A T]} & {[C A]} & \cdots \\
{[A A]} & 5 & p_{A A A C} & p_{A A A G} & p_{A A A T} & p_{A A C A} & \cdots \\
{[A C]} & p_{A C A A} & p_{A C A C} & p_{A C A G} & p_{A C A T} & p_{A C C A} & \cdots \\
{[A G]} & p_{A G A A} & p_{A G A C} & p_{A G A G} & p_{A G A T} & p_{A G C A} & \cdots \\
{[A T]} & p_{A T A A} & p_{A T A C} & p_{A T A G} & p_{A T A T} & p_{A T C A} & \cdots \\
{[C A]} & p_{C A A A} & p_{C A A C} & p_{C A A G} & 2 & p_{C A C A} & \cdots \\
{[\cdots]} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

These two columns are no longer identical - full rank matrix in both cases (rank $=16$)

- Basic idea:

- Data: aligned DNA sequences for multiple loci or for a collection of SNPs
- Estimate the flattening matrix for each of the following trees:

- Compute a measure of how close each of the three observed flattening matrices is to a matrix with rank 10 - we use the SVDScore
- Pick the tree relationship that gives the smallest SVDScore

Simulation study 1 - can we detect the correct split?

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine split scores First row: 5,000 SNP sites; Second row: 10 genes of 500bp

Simulation study 1 - can we detect the correct split?

Simulate data from the GTR $+\mathrm{I}+\Gamma$ model for a 4-taxon tree and examine split scores First row: 5,000 SNP sites; Second row: 10 genes of 500bp

Simulation study 1 - can we detect the correct split?

Change in scores as amount of data increases


```
How do we assess variability?
```

- How can we measure confidence in the inferred split?
- Use a nonparametric bootstrap procedure
- Generate bootstrap data sets from the original data matrix
- Compute split scores on all three splits for each bootstrap data matrix
- Record the number of bootstrap data sets for which each split is inferred, and use the proportion of these as a bootstrap support measure
- Evaluate performance of the bootstrap procedure using the same simulated data

Assessing support using the bootstrap

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine bootstrap support scores

Assessing support using the bootstrap

Simulate data from the GTR $+\mathrm{I}+\Gamma$ model for a 4-taxon tree and examine bootstrap support scores

Extension to larger trees

Algorithm

(1) Generate all quartets (small problems) or sample quartets (large problems)
(2) Estimate the correct quartet relationship for each sampled quartet
(3) Use a quartet assembly method to build the tree - PAUP* uses the method of Reaz-Bayzid-Rahman (2014), called QFM, to build the tree.

$12 \mid$	34	
35	217	
$\rightarrow \quad 196 \mid 161$		
5	22	37

Extension to larger trees

- Multiple lineages are handled as follows:
(1) Sample four species
(2) Select one lineage at random from each species
(3) Estimate the quartet relationships among the four sampled lineages
(9) Restore the species labels (but lineage quartets are saved, too)
- Quantify uncertainty using the bootstrap

- Data: 7 (sub)species, 26 individuals (52 sequences), 19 genes

Species	Location	No. of individuals per gene
S. catenatus catenatus	Eastern U.S. and Canada	9
S. c. edwardsii	Western U.S.	4
S. c. tergeminus	Western and Central U.S.	5
S. miliarius miliarius	Southeastern U.S.	1
S. m. barbouri	Southeastern U.S.	3
S. m. streckerii	Southeastern U.S.	2
Agkistrodon sp. (outgroup)	U.S.	2

Empirical example: Sistrurus rattlesnakes

All quartets and 100 bootstrap replicates
~ 11 minutes

Empirical example: Sistrurus rattlesnakes

All quartets and 100 bootstrap replicates
~ 11 minutes

Comparison between methods

- SVDQuartets

- Statistically consistent for estimating the quartet trees
- Will perform well when there are a lot of data (multilocus or SNP) available
- More complex model \Longrightarrow more data needed
- Valid when the molecular clock is violated
- Valid when there is gene flow between sister taxa
- Computationally efficient, including bootstrapping
- Will soon include estimates of branch lengths
- ASTRAL
- Statistically consistent when gene trees are known without error
- Will perform well when gene trees can be estimated well
- Gene flow can cause the method to fail (because then quartets can be anomalous)
- Computationally efficient after individual gene trees have been estimated
- Can provide estimates of branch lengths
- Local posterior probabilities used to quantify uncertainty in the data

Comparison between methods

- How do these compare to Bayesian methods, such as STARBEAST2 and BPP?
- STARBEAST2 and BPP carry out estimation under the model, including all model components
- Estimation of the posterior distribution provides a natural way to quantify uncertainty
- ASTRAL and SVDQ use features of the model to assess fit of the data to the model
* ASTRAL: gene trees
« SVDQ: site pattern probabilities
- Trade-offs involved in choosing among methods: computational efficiency, robustness to the model, etc.

Now on to the tutorial!

The tutorial is available at http://phylosolutions.com/tutorials/ wh2019-svdq-astral/species-trees-tutorial.html

- ASTRAL
- Zhang, Chao, Maryam Rabiee, Erfan Sayyari, and Siavash Mirarab. 2018. "ASTRAL-III: Polynomial Time Species Tree Reconstruction from Partially Resolved Gene Trees." BMC Bioinformatics 19 (S6): 153. doi:10.1186/s12859-018-2129-y.
- Sayyari, Erfan, and Siavash Mirarab. 2016. "Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies." Molecular Biology and Evolution 33 (7): 1654-68. doi:10.1093/molbev/msw079.
- Mirarab, Siavash, Rezwana Reaz, Md. Shamsuzzoha Bayzid, Theo Zimmermann, M. S. Swenson, and Tandy Warnow. 2014. "ASTRAL: Genome-Scale Coalescent-Based Species Tree Estimation." Bioinformatics 30 (17): i541-48. doi:10.1093/bioinformatics/btu462.
- Mirarab, Siavash, and Tandy Warnow. 2015. "ASTRAL-II: Coalescent-Based Species Tree Estimation with Many Hundreds of Taxa and Thousands of Genes." Bioinformatics 31 (12): i44-52. doi:10.1093/bioinformatics/btv234.

- SVDQuartets

- Chifman, J. and L. Kubatko. 2014. Quartet inference from SNP data under the coalescent model, Bioinformatics 30(23): 3317-3324.
- Chifman, J. and L. Kubatko. 2015. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites, Journal of Theoretical Biology 374: 35-47.
- Swofford, D. PAUP* (* Phylogenetic Analysis Using PAUP), Version 4.0a165, available at https://paup.phylosolutions.com.

