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ABSTRACT 

Summary 

In the current context of transcriptomics democratization, there is an unprecedented surge 

in the number of studies and datasets. However, advances are hampered by aspects such 

as the reproducibility crisis, and lack of standardization, in particular with scarce 

reanalyses of secondary data. reanalyzerGSE, is a user-friendly pipeline that aims to be 

an all-in-one automatic solution for locally available transcriptomic data and those found 

in public repositories, thereby encouraging data reuse. With its modular and expandable 

design, reanalyzerGSE combines cutting-edge software to effectively address simple and 

complex transcriptomic studies ensuring standardization, up to date reference genome, 

reproducibility, and flexibility for researchers. 

Availability and implementation 

The reanalyzerGSE open-source code and test data are freely available at both 

https://github.com/BioinfoIPBLN/reanalyzerGSE and 10.5281/zenodo.XXXX under the 

GPL3 license. 

Supplementary data are available. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.548663doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.12.548663
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Latest technological advances now allow laboratories to sequence any sample with 

relatively low investment. Transcriptomics is one of the most popular -omics and 

researchers routinely apply RNA-seq-related techniques to estimate gene and transcript 

expression [1]. However, while wet-lab protocols have been greatly democratized and the 

field jumps at the so-called single-cell and spatial revolutions [2-5], average users 

generally face major challenges due to the lack of computational expertise to perform 

data analyses. Bioinformatics is up to the challenge and many statistical approaches and 

protocols have been popularized [6, 7]. However, despite remarkable efforts, their 

performance may be variable and all are far from being a standard all-in-one solution, 

with methods being adjusted almost on a case-by-case basis [8-12]. In the current context 

of reproducibility crisis [13-18], published results are also typically incorporated in 

following studies, but new hypotheses would often require updating reference genome 

and annotation and fine-tuned reanalyses, which are rare. Therefore, while deposited in 

public databases that increasingly try to facilitate the accessibility and use of raw data 

[19-21], countless transcriptomics datasets are largely unexplored beyond their original 

publication (i.e., remain restricted). This is crucial because the reuse of data is one of the 

most important FAIR principles that should sustain the new era of Open Science [22], 

particularly regarding the field of Bioinformatics [23, 24]. Overall, there is an urgent need 

for standardization to address several issues hampering transcriptomics that can lead to 

errors in biological interpretations and conclusions. These may include: 1) the use of 

obsolete genomic references [25, 26], 2) the presence of contamination (e.g. 

microorganisms [27] or rRNA [28]), 3) the use of inappropriate software or statistical 

approaches (e.g. overlooked covariables and confounders [29], unexpected batch effects 

[30], variable filtering of noise or low expression [31-33], differences in quantification 
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[8], normalization [34], pre-processing [35], differential gene expression [31, 36, 37], or 

functional enrichment [38-40]), and 4) diverse errors (e.g. insufficient reporting [41], 

errors in gene naming errors [42, 43], complex software [44-46], or data handling [47]) 

To overcome these, amongst others, we introduce here reanalyzerGSE, an easy-

to-use pipeline capable of addressing full RNA-seq and microarrays analyses in an 

automatic and standardized manner. From raw transcriptomics data and with minimum 

user input, ready-to-visualize reports are generated to be directly interpreted by any non-

expert user. The processing steps integrate dozens of tools in both mandatory and optional 

steps to achieve: 1) reorganization of local data or comprehensive download of raw reads 

and metadata from multiple public repositories following naming conventions, 2) 

subsampling of data and normalization, 3) quality control, contamination and adapter 

removal, 4) alignment to up-to-date reference sequences, 5) quantification and correction 

of batch effects, 6) flexible filtering of noise, 7) differential gene expression analyses, 8) 

functional enrichment, clustering and network analyses, and 9) generation of interactive 

human-readable results.  

reanalyzerGSE has been tested with datasets of organisms spanning different 

domains of life and technologies, including complex transcriptomic studies requiring 

unusual processing. As a case example, we used cortistatin, which is a neuropeptide with 

a prominent immunomodulatory role [48]. Despite its biological relevance, it is typically 

discarded as noise by the vast majority of software, due to its extremely low level of 

expression. To sum up, our aim is to facilitate transcriptomics data computation to both 

novel and expert users, enabling straight-forward implementation, reproducible and 

standardized analyses of primary data, and routine reanalyses of secondary data. Our 

pipeline is modular, parallelizable and scalable, and outperforms alternatives. 
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MATERIAL AND METHODS 

Implementation details 

reanalyzerGSE is implemented as a Bash pipeline integrated with multiple external 

software, including R and Perl scripts. The universality of Bash makes possible that 

researchers from any background can use or adapt tools easily, without the more specific 

knowledge required by more recent workflow management options. However, we 

implemented abundant Bash-based solutions and workflow rules to ensure modularity 

and compatibility systems-wide, such as 1) basing all execution on one-liners, 2) 

automatically setting default values to non-experienced users, 3) automatically resuming 

any interrupted run from the appropriate step, 4) when possible automatically performing 

RAM management and parallel processing (via GNU parallel [49]) and RAM 

management to make the most of any resources available, 5) creating a fine-tuned 

structure of folders, results and log files to guarantee the traceability of data, errors and 

resources, 6) dealing with all steps and saving all intermediate results independently to 

allow for compatibility with any other software or downstream analyses, or 7) achieving 

installation of dependencies effortlessly by a one-liner wrapper leveraging the conda 

package manager with isolated distributable environments and frozen versions that avoid 

dependencies conflicts, conforming to latest recommendations in the field [46, 50, 51]. 

 Our pipeline has been designed to be versatile and customizable, offering at the 

same time standardization, reproducibility and flexibility. reanalyzerGSE supports all the 

formats available for raw sequencing data, both locally available or public in a plethora 

of databases (e.g. GEO, SRA, ENA, DDBJ…). This would allow users to routinely 

reanalyze available secondary datasets, instead of directly integrating results (i.e. 

expression levels) by others, which may be inaccurate or erroneous in the context of 

different or tailored studies. While not recommended, users may also skip pre-processing 
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and alignments to only perform downstream analyses on already-available counting or 

expression matrices. An overview of the full and reliable transcriptomic analyses 

automatically performed by our pipeline is: 1) Data loading (i.e., gathering local data or 

downloading from public databases), 2) data pre-processing (i.e. decontamination, rRNA 

removal or downsampling), 3) data processing with alternatives, 3.1) full microarray 

pipeline, 3.2) summary of average profiles in single-cell data, 3.3) full RNA-seq pipeline 

(i.e. strandedness prediction, quality control, alignment, quantification, variable noise 

filtering, normalization, batch effect correction, replicability analyses), 4) differential 

gene expression analyses, 5) functional enrichment, network or clustering analyses, 6) 

plotting of results and transcriptomic profiles of genes of interest. The pipeline also 

detected whether the input data are any kind of RNA-seq or microarrays. Given the 

extensive requirements of a full scRNA-seq approach, if a reanalysis of a scRNA-seq 

dataset in a public database is requested, reanalyzerGSE will automatically look for the 

already-available counts and offer a restricted analyses of the collapsed counts in a bulk-

like manner. Figure 1 shows the summarized flowchart of our pipeline, and a more 

detailed description of the features and advantages of reanalyzerGSE when compared to 

other alternatives is available in Supplementary Table 1. 

 Notably, we have implemented up-to-date solutions anywhere possible to ensure 

proper processing, such as a novel statistical approach for larger large-sample differential 

gene expression analyses [37], a recent framework to avoid confounders in functional 

enrichment analyses [38, 52], or an extensive update of the miARma-seq suite for RNA-

seq analyses [53, 54]. 
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RESULTS 

The primary aim of reanalyzerGSE was to make possible that non-expert users perform 

reliable and reproducible analyses of transcriptomics data. To that end, we followed the 

most popular recommendations to create a full RNA-seq/microarrays workflow [35, 46, 

51]. When compared to others, Supplementary Table 1 shows that our tool is one of the 

most helpful and complete available, providing ready-to-interpretate biological results via 

integrated functional analyses and exploratory analyses and graphics any genes of interest 

provided by the user. Thanks to its iterative implementation, reanalyzerGSE is also fast, 

with a performance that allows a user to run it iteratively, fine-tuning any parameter 

Figure 1: reanalyzerGSE workflow with the most relevant steps and software 

highlighted at each step. 
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required after preliminary exploratory analyses. For instance, our pipeline performed the 

full analysis of a mouse dataset comprising 6 samples of oligodendrocytes (total of 7.7G 

bases, GSE118451) [55] in 40 minutes, and it scaled well, as it fully reanalyzed a larger 

study of 68 samples of endothelial cells from disease models (total of 750.2G bases, 

GSE95401) [56] in 21 hours (Supplementary Figure 1 and Supplementary Table 2). 
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Beyond securing robustness and completeness of typical use cases of 

transcriptomics, when developed reanalyzerGSE we focused on those processing steps 

that may be typically associated with non-trivial errors that lead to inconsistent results or 

biological interpretations, particularly to non-expert users. For example, filtering out the 

genes with low counts beforehand is an important step to improve statistical power in 

differential expression analyses, because low count genes will have more statistical noise 

and more variation in expression, being less likely to pass the significance threshold in 

the differential expression and producing large and inaccurate Fold Change values [31, 

33]. Therefore, they would be contributing to the number of multiple tests and affecting 

calculation of false discovery rate (FDR), while not contributing to the number of truly 

expressed or differentially expressed genes (DEGs). To address this point, users typically 

discard genes below an arbitrary threshold of raw counts, which is typically not reported, 

or use obscure approaches, such as “independent filtering” by DESeq2 [57] that 

automatically settles on a threshold that may be variable between studies. To account for 

this, we added alternative approaches to reanalyzerGSE, such as the filterByExpr function 

by edgeR [58], a “standard” filter that retains genes with more than 3 c.p.m counts, or a 

“bin” filter that retains genes if they were assigned more than one count in any sample. 

In general, genes with biological relevance may display low expression, close to the 

detection threshold of the techniques. Low expressed genes that are incorrectly discarded 

as noise may include diverse functions, such as hormones, neuropeptides, tumour 

Supplementary Figure 1: Gantt charts depicting the runtimes for each one of the main 

steps of the reanalysis of raw data by two studies/entries for GEO: GSE118451 (top) and 

GSE95401 (bottom). The time require by each step is shown in the format 

hours:minutes:seconds. The output of GNU’s time after the processing with 60 cores is 

shown (RSS and elapsed show the total RAM and processing time, respectively). 
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microenvironments [59] or responses against radiation [32]. It has also been reported that 

hundreds of relevant genes functionally-related to human disease are discarded in RNA-

seq analyses to measure group-level expression [8]. Here, we show the case example of 

the neuropeptide cortistatin in a human dataset of stem cell derived astrocytes and brain 

endothelial cells (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181332). Its 

expression would be deemed to be negligible if a standard filtering was performed, while 

our bin filtering would recover its meaningful expression with two of the most popular 

alignment software (Supplementary Figure 2). 

Apart from the tailored filtering, another strength of reanalyzerGSE is rapidly 

indexing any reference genome provided, archiving it for following runs. This way, our 

pipeline can be used to easily reanalyse secondary data with alternative versions of the 

reference sequences, which may be crucial. Supplementary Figure 3 shows the case 

example of a tobacco dataset used in a study addressing cold tolerance of different cultivar 

[60]. It can be observed how the number of DEGs, and ultimately the inference of function 

Supplementary Figure 2: Two reanalyses of the human dataset GSE181332. Lineplots 

show the expression level (RPKM) of the neuropeptide cortistatin (CORT) is shown with 

the “standard” filter (in gray, not detected), and the “bin” filter and the aligners HISAT2 

and STAR (red and blue color, respectively). 
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and biological interpretations, would greatly change in the case of non-model organisms 

or samples lacking gold-standard genomes, depending on the reference sequences used. 

CONCLUSIONS 

We present reanalyzerGSE, an automatic pipeline for the analysis of transcriptomics 

studies (i.e., RNA-seq, microarrays). It has been implemented using Bash and the conda 

package manager, offering the largest compilation to date of tools for RNA-seq data 

analyses. reanalyzerGSE will be actively maintained and in continuous development, 

incorporating new tools suggested by users and conforming to community standards. 

Future work will also include extending the functionality to state-of-the art single-cell 

Supplementary Figure 3: Lineplots show reanalyses of the dataset GSE173352 with 

three alternative tobacco genomes, including the one used in the original publication, the 

most recent collapsed reference in chromosomes, and an outdated version that is still the 

hallmark by NCBI. The number of DEGs is shown for a few comparisons between the two 

tobacco cultivars (taiyan, TT, or yanyan, YY) and two time points (0 and 8 hours). 
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approaches. The open-source code, together with full documentation and tutorials are 

available at https://github.com/BioinfoIPBLN/reanalyzerGSE. 
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