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Definition 1.1

A (full) lattice on a quadratic vector space (V , b) over Q is a

subset of the shape

L = {x1v1 + x2v2 + · · ·+ xnvn | x1, . . . , xn ∈ Z}

= Zv1 ⊕ Zv2 ⊕ . . .⊕ Zvn

for some basis v1, v2, . . . , vn of V .

The associated integral quadratic form is

Q(x1, . . . , xn) =
1
2

�

i ,j

b(vi , vj) xixj .
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Fig. 1: A lattice in dimension 2
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Definition 1.2

The Gram matrix of a lattice L w.r.t. a basis v1, . . . , vn is the

symmetric n × n-matrix (b(vi , vj)).

The determinant det L of L is the determinant of any Gram

matrix of L.

A quadratic lattice is called an integral lattice if b(L, L) ⊆ Z.
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Theorem 1.1 (Finiteness of Class Number)

For a given determinant d, the number of isometry classes of

(positive definite) integral lattices with determinant d is finite.

This is a consequence of reduction theory, which gives a lattice

basis with b(vi , vi ) ≤ C d1/n for some constant C .
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Let p be a prime number. Every quadratic vector space (V , b) over

Q embeds into a quadratic vector space (Vp, b) over Qp, its

completion at the prime p, where Vp := V ⊗Q Qp, and the

natural extension bp : Vp × Vp → Qp is simply denoted by b again.

This definition extends to p = ∞ with Q∞ := R.

The (weak) local-global principle of Minkowski and Hasse for

quadratic spaces says that (V , b) is determined up to isomorphism

by all its completions.
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Similarly, a quadratic lattice L embeds into its completion

Lp := L⊗Z Zp. One also sets L∞ = V∞.

The local-global principle of Minkowski and Hasse in general does

not hold for quadratic lattices. Therefore, the following notion is

introduced.

Definition 1.3

Two lattices L and M are in the same genus if Lp ∼= Mp for all

p ∈ P ∪ {∞}.
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Lattices in the same genus have the same determinant. Thus:

The number h(G) of isometry classes in a genus G is finite. It is

called the class number of the genus.

Basic task: Given a genus in terms of local data (e.g. modular

decomposition, genus symbol, discriminant quadratic form on the

discrimiminant group L#/L), determine a set of representatives, in

particular the class number of G.
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For a lattice L in a quadratic vector V space over Q, we denote by

Aut L := Aut(L, b) ⊂ O(V , b) its automorphism group. We always

aussume that b is positive definite, then

a(L) := |Aut L| < ∞.

Every finite rational matrix group can be embedded into a group

Aut(L, b). Any maximal f.r.m.g. can be realized as a group Aut L.
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Definition 2.1 (The mass of a genus)

Let L = L1, . . . , Lh be a system of representatives for a genus G of

positive definite lattices of dimension n. The sum of the inverses of

the orders of their automorphism groups is called the mass of G:

mass(G) :=
h�

j=1

1

a(Lj)
.

The notion goes back to G. Eisenstein; also H.J.S Smith used it

before Minkowski developed his theory.
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Theorem 2.1 (Minkowski’s mass formula)

Let L = L1, . . . , Lh be a system of representatives for a genus G of

positive definite lattices of dimension n. The mass of G is the

product of certain representation densities αp(Lp, Lp), where p

runs over all primes, with a certain factor “at infinity”:

mass(G) =
h�

j=1

1

|Aut(Lj)|
= γ(n)

�

p

α−1
p (Lp, Lp).
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We want to study automorphism groups of lattices in a given

genus G.

Notation:

- G0 := {L ∈ G | Aut L = {± id}

- G1 := {L ∈ G | Aut L �= {± id}

- h0(G) := cardG0, h1(G) := cardG1

- mass(G) =: m(G), define m0(G), m1(G) in the obvious way

Obvious facts:

- h(G) = h0(G) + h1(G), m(G) = m0(G) +m1(G)

- h0(G) = 2m0(G)

- h(G) ≥ 2m(G)
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Theorem 2.2 (Minkowski)

The order of finite subgroups of GLn(Z) is bounded by

ã(n) :=
�

p≤n+1

pµ(n,p),

where

µ(n, p) =
�

j≥0

�
n

(p − 1)pj

�

Minkowski obtained his bound by reducing the group modulo p

(respectively modulo 4, if p = 2).
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Example: ã(16) = 231 · 310 · 54 · 72 · 11 · 13 · 17
a(I16) = 231 · 36 · 53 · 72 · 11 · 13
a(2E8) = 229 · 310 · 54 · 72

Now we have an (again very crude) estimate between class number

and mass in the converse direction:

h(G) ≤ ã(m) ·m(G).

Notice that the bound ã(n) grows very fast (roughly like nn).

Clearly 2n · n! = a(In) is a lower bound.
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Theorem 2.3 (W. Magnus, 1937, H. Pfeuffer, 1971)

For genera G of positive definite lattices of dimension n ≥ 6 and

determinant d, one has

mass(G) > 2−n+1 ·
n�

k=1

Γ(k/2)

πk/2
· d

1
26 ,

similarly for 3 ≤ n ≤ 5.

Therefore, the mass, and thus also the class number h(G), goes to
infinity with the dimension (very rapidly), and also with the

determinant.
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Theorem 2.4 (Jürgen Biermann, 1980)

For genera G of positive definite lattices in fixed dimension

n ≥ 3, one has

h0(G)
h(G) → 1, if detG → ∞.

With h(G) = h0(G) + h1(G) one rewrites this as

h1(G)
h(G) → 0, if detG → ∞.

“Most lattices have trivial automorphism group.”
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Theorem 2.5 (Etsuko Bannai, 1988)

For the genus En of even or odd unimodular positive definite

lattices dimension n, one has

m1(En)
m(En)

→ 0, if n → ∞.

More precisely

m1(En)
m(En)

≤ 2 · (8π)
n/2

Γ(n/2)
if n ≥ 144.

Thus, “many” lattices with trivial group exist, for growing

dimension.
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Trying to transform Bannai’s estimate into an estimate of class

numbers, using the above upper and lower bounds, leads to

h1
h

≤ ã(n) ·m1

2 ·m ≤ ã(n) · (8π)
n/2

Γ(n/2)
.

Since ãn > n!, the right hand side tends to infinity.

Therefore, in order to prove that again “most lattices have trivial

automorphism group”, better upper estimates for the class number

h1 of lattices with non-trivial group are needed.
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Explicit classification of large genera

A general strategiy for classification

We want to look at the actual distribution of (orders of)

automorphism groups among all the lattices of some

(arithmetically interesting) large genera.

Enumerate a set of representatives for a specified genus G,
following these steps:

1. Generate lattices in G by some algebraic procedure

2. Test for isometry with lattices already constructed

3. Verify the completeness of the list
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Step 1 is typically handled by Kneser’s method of neighbouring

lattices: L and L� are neighbors, if their intersection L ∩ L� is of

index 2 in both of them.

All neigbours of L can be efficiently generated from (certain)

classes of L/2L.

Step 2 is a matter of invariants (theta series, order of

automorphism group, successice minima, ...) and of sophisticated

algorithms for testing isometry of a given pair of lattices (improved

backtracking), by Plesken and Souvignier.

Step 3 is handled best by the mass formula.
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The following is joint work with Boris Hemkemeier.

Theorem 3.1 (Level 11, dimension 12)

The genus II 12(116) has class number 67323. It contains precisely

27193 lattices with minimum 2

40036 lattices with minimum 4

94 lattices with minimum 6

no lattice with minimum 8.

This reproves the absence of “extremal” 11-modular lattices in this

genus, first shown by Nebe and Venkov using Siegel modular forms.
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The automorphism groups for the genus II 12(116):

recall a(L) := |Aut(L)|:

Among the 67323 lattices, there exist

16613 lattices (24.7%) with trivial group, i.e. a(L) = 2

6065 lattices for which 3 | a(L)
421 lattices for which 5 | a(L)
0 lattices for which 7 | a(L) or 13 | a(L)
1 lattice for which 11 | a(L)
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Theorem 3.2 (Level 14, dimension 14)

The genus II 14(77) has class number 83006. It contains precisely

46574 lattices with minimum 2

36431 lattices with minimum 4

1 lattice with minimum 6.

The unique extremal 7-modular lattice was not known before.
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The automorphism groups for the genus II 14(77):

recall a(L) := |Aut(L)|:

Among the 83006 lattices, there exist

12827 lattices (15.4%) with trivial group, i.e. a(L) = 2

11797 lattices for which 3 | a(L)
353 lattices for which 5 | a(L)
82 lattices for which 7 | a(L)
0 lattices for which 11 | a(L) or 13 | a(L)
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G 20, 210 16, 54 16, 56 16, 58 14, 75 14, 77 12, 116

mass .00117 .08047 1219.1 30325.2 284.1 13921.7 15096.9

h 546 848 34394 ≥ 229467 8664 83006 67323

avg(a) 18.83 13.36 4.81 2.91 4.93 2.57 2.15

a = 2 − − 174 ≥ 23398 24 12827 16613

a = 4 − − 1184 ≥ 39442 242 17238 17659

a = 8 − − 2700 ≥ 41676 644 16349 13069

3 | a 537 839 19085 ≥ 41800 5261 11797 6065

5 | a 295 529 2182 ≥ 2198 631 353 421

7 | a 95 155 156 ≥ 83 84 82 0

Table: Orders of automorphism groups of lattices in large genera
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Conclusion

- For genera of small level and dimension 12 ≤ n ≤ 20, small

masses (<< 1) occur with class numbers of several hundreds,

thus only large groups.

- For many genera with larger mass (∼ . . . 104), the class

number remains computable (∼ . . . 105), the average group

order goes down to less than 10.

- In large cases, the “typical” automorphism group is a 2-group

of “small” order (e.g. ≤ 64).

- Trivial groups occur, but are not the majority; their proportion

goes up from less than 1/100 to about 1/4.
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Outlook: A structure theory and a mass formula for orthogonal

representations of the cyclic group C�, � an odd prime or � = 4

should give more precise estimates of h1 and thus clarify the

asymptotic behaviour of h1/h.

Work in progress by Björn Hoffmann, Stefan Höppner, Timo

Rosnau (PhD thesis project).
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