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Introduction

Main topic: random permutations

Classical questions: look at some statistics, like the number of cycles
(of given length), pattern occurrences, longest increasing
subsequences, . . .
(usually for uniform, Ewens or Mallows distributions)

a more recent approach: look for a limit for the rescaled permutation
matrix; such limits are called permutons.
(interesting for non-uniform models or constrained permutations)

This talk: very biased presentation of the notion of permutons and some
literature on them.
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A few random permutations

Uniform Mallows (P(σ) ∝ qinv(σ)) Sorting network,
half way ( c©AHRV ’07)

Uniform random pattern-avoiding permutations
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First part

The theory of permutons
(Hoppen, Kohayakawa, Moreira, Rath, Sampaio, ’13)
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence.
This defines a nice compact Polish space.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Note: the projection on µπ on each axis is the Lebesgue measure on [0, 1]
(in other words, µπ has uniform marginals).
→ potential limits also have uniform marginals.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Definition

A permuton is a probability measure on [0, 1]2 with uniform marginals.

Next few slides: connection with permutation patterns.
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Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . . σik that is
order-isomorphic to τ , i.e. σis < σit ⇔ τs < τt .

Example (occurrences of 2 1 3)

2 4 5 3 6 1
8 2 3 4 6 1 7 5

Visual interpretation
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Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set

õcc(τ, σ) :=

(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

In other terms: take k elements uniformly at random in σ, the probability
to find a pattern τ is õcc(τ, σ).

This probabilistic interpretation extends to permutons:
replacing σ with a permuton µ

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

where U(1), · · · ,U(k) are i.i.d. points in [0, 1]2 with
distribution µ.

a “231 pattern”
in a permuton
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An approximation lemma

Reminder:

õcc(τ, σ) :=

(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

In general, õcc(τ, σ) 6= õcc(τ, µσ).

V. Féray (UZH) Random permutations Banff, 2019–03 8 / 32



An approximation lemma

Reminder:

õcc(τ, σ) :=

(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

In general, õcc(τ, σ) 6= õcc(τ, µσ).

But we have the following approximation lemma:

Lemma
If π and σ are permutations of size k and n, resp., then

| õcc(π, σ)− õcc(π, µσ)| ≤ 1
n

(
k

2

)
.
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Pattern density convergence and permuton convergence

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013)

Weak convergence of permutons is equivalent to the pointwise convergence
of õcc(τ, ·) for all τ , i.e.

µ(n) → µ ⇔ for all τ, õcc(τ, µ(n))→ õcc(τ, µ).

As a consequence, for a sequence of permutation σ(n) of size tending to
infinity,

µσ(n) → µ ⇔ for all τ, õcc(τ, σ(n))→ õcc(τ, µ).

(In terms of permutations, õcc(τ, σ(n)) is much more concrete!)
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Permuton convergence of random permutations

Theorem (Bassino-Bouvel-F.-Gerin-Maazoun-Pierrot, 17)

Let σn be a random permutation of size n. The following assertions are
equivalent.
(a) µσn converges in distribution for the weak topology to some random

permuton µ.
(b) The random infinite vector

(
õcc(π,σn)

)
π∈S converges in distribution

in the product topology to some random infinite vector (Λπ)π∈S.
(c) For every π in S, there is a ∆π ≥ 0 such that

E[õcc(π,σn)]
n→∞−−−→ ∆π.

Note: (a)⇔ (b) expected (random version of the previous result),
(b)⇔ (c) might be more surprising (cv in expectation is enough!).
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Second part

A partial literature review on permutons
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Limit permuton for Mallows permutations (Starr, ’09)

Mallows model on Sn: P(σn) ∝ q
inv(σn)
n ,

where inv(σ) = #{(i , j) with i < j and σ(i) > σ(j)}.

Theorem (Starr, ’09)

Take qn = 1− β/n. Then µσ(n) converge to the deterministic permuton
with density

u(x , y) =
(β/2) sinh(β/2)(

eβ/4 cosh(β[x − y ]/2)− e−β/4 cosh(β[x + y − 1]/2)
)2 .

Simulation (n = 10000, β = 6) β = 6 β = 2
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A large deviation principle

Definition (entropy of a permuton µ with density g)

H(µ) =

∫
[0,1]2

−g(x , y) log g(x , y)dxdy ≤ 0.

If µ has no density, H(µ) := −∞.

Theorem (Trashorras, ’08, Kenyon, Král, Radin, Winkler, ’15)

Let Λ be a set of permutons, Λn the set of permutations π ∈ Sn with
µπ ∈ Λ. Then:

1 If Λ is closed, lim supn→∞
1
n log

|Λn|
n! ≤ supµ∈Λ H(µ);

2 If Λ is open, lim infn→∞ 1
n log

|Λn|
n! ≥ supµ∈Λ H(µ).

Informally, the number of permutations of size n close to a permuton µ is

n! e(H(µ)+o(1))n.
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A large deviation principle

Definition (entropy of a permuton µ with density g)

H(µ) =

∫
[0,1]2

−g(x , y) log g(x , y)dxdy ≤ 0.

If µ has no density, H(µ) := −∞.

Theorem (Trashorras, ’08, Kenyon, Král, Radin, Winkler, ’15)

Let Λ be a set of permutons, Λn the set of permutations π ∈ Sn with
µπ ∈ Λ. Then:

1 If Λ is closed, lim supn→∞
1
n log

|Λn|
n! ≤ supµ∈Λ H(µ);

2 If Λ is open, lim infn→∞ 1
n log

|Λn|
n! ≥ supµ∈Λ H(µ).

Q: which permutons maximize the entropy under some constraints? (such
as fixing some pattern densities)
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A nice picture (Kenyon, Král, Radin, Winkler, ’15)

x-axis: õcc(12, µ)
y -axis: õcc(123, µ)

blue zone: zone
where there exists
a permuton µ with
such pattern densi-
ties.

Displayed permutons
are entropy maximiz-
ers for fixed 12 and
123 densities.

c©KKRW, ’15
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And more. . .

limit shape of Erdős-Szekeres permutations (i.e. permutations with a
square RSK shape): limiting permuton supported by the interior of an
explicit degree 4 algebraic curve (Romik ’06).

Random sorting networks (Angel, Holroyd, Romik, Virág, ’06;
Dauvergne ’18) define some dynamics on permutations and permutons
(Rahman, Virág, Vizer, ’16).

Mukherjee (’16): permuton limits of other biased random permutation
models, convergence of number of cycles of fixed length in Mallows
permutations.
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Third part

Limits of permutation classes
with a finite specification
(joint work with Bouvel, Bassino,

Gerin, Maazoun, Pierrot,
next week on arXiv)
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Permutation classes

Definition
A set C of permutations (of all sizes) is a class if for all permutations π in
C, and all patterns τ of π, τ is also in C.

Equivalently, a class is the set of permutations avoiding given patterns.

Traditionally analyzed from an enumerative point of view: how many
permutations of size n are there in a given class?
More recently from a probabilistic point of view: what does a uniform
random permutation in a given class look like?
(Bevan, Borga, Hoffman, Janson, Madras, Miner, Pak, Rizzolo,
Slivken, . . . )

Note: large deviation theory does not apply.
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Substitution in permutations (1/2)

Definition

Let θ be a permutation of size d and π(1), . . . , π(d) be permutations. The
diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132, 21, 1, 12] =
12

= = 24387156
132

21

1

Definition
A permutation is called simple if it cannot be obtained as a nontrivial
substitution.

Examples: 12, 21, 3142, 2413, , 25314, , . . .
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Substitution in permutations (2/2)

Proposition (Albert, Atkinson, ’05)

Every permutation σ of size n ≥ 2 can be uniquely decomposed as either:
α[π(1), . . . , π(d)], where α is simple of size d ≥ 4,
12[π(1), π(2)], where π(1) is 12-indecomposable,
21[π(1), π(2)], where π(1) is 21-indecomposable.

Not very interesting for uniform random permutation: the simple
permutation α has typically size n − O(1).

But interesting for permutations in classes! It has been used for
enumerating many classes.
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Classes with finitely many simple permutations (1/2)

Assume we have a finite number of simple permutations in a class C.

First thought: great, the substitution decomposition gives us a system of
equation for the class

C ?
= {•}

⊎
12[Cnot⊕, C]

⊎
21[Cnot	, C]

⊎ (⊎
|α|≥4 α[C, . . . , C]

)
Cnot⊕ ?

= {•}
⊎

21[Cnot	, C]
⊎ (⊎

|α|≥4 α[C, . . . , C]

)
Cnot	 ?

= {•}
⊎

12[Cnot⊕, C]
⊎ (⊎

|α|≥4 α[C, . . . , C]

)
.

not quite, we can create forbidden patterns in the substitution!

→ we need to replace some of the C above by some subfamilies of C,
consider cases, resolve ambiguities and iterate. . .
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Classes with finitely many simple permutations (2/2)

Theorem (Bassino-Bouvel-Pierrot-Pivoteau-Rossin ’17)

Any class C with finitely many simple permutations admits a finite
combinatorial specification of the form

Ci = εi{•} ]
⊎

α∈SCi

⊎
(k1,...,k|α|)∈K i

α

α[Ck1 , · · · , Ck|α| ] (0 ≤ i ≤ d) (1)

where the C = C0 ⊃ C1, · · · , Cd and the εi are in {0, 1}.

The system can be obtained algorithmically (implemented by Maazoun).

→ gives an algebraic system of equations for the GF of C.

→ yields a random sampler for the class C (used for simulations in the
introduction).
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Finite specification: the example of Av(132)



C = {•}
⊎
⊕[Cnot⊕, C〈21〉]

⊎
	[Cnot	, C]

Cnot⊕ = {•}
⊎
	[Cnot	, C]

Cnot	 = {•}
⊎
⊕[Cnot⊕, C〈21〉]

C〈21〉 = {•}
⊎
⊕[Cnot⊕

〈21〉 , C〈21〉]

Cnot⊕
〈21〉 = {•}.

Associated dependency graph indicating families with maximal growth rate
(called critical families):

C

Cnot⊕

critical series

Cnot	

C〈21〉

Cnot⊕
〈21〉
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Main theorem

Theorem (BBFGMP, ’19)

Let C be a family of permutations with a finite analytic specification (e.g. a
permutation class with finitely many simple permutations). Assume that
the dependency graph restricted to critical families is strongly connected
(plus some weak aperiodicity assumption).

essentially linear case If the specification contains no products of critical
families, then a uniform random permutation in the class
converges to an X -permuton with computable parameters.

essentially branching case If the specification contains a product of critical
families, then a uniform random permutation in the class
converges to a Brownian separable permuton with
computable parameters.

Description of the limit permutons and examples in the next few slides. . .
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The X -permuton

Parameter: a quadruple of sum 1

(pleft
+ , pright

+ , pleft
− , pright

− ).

We set a = pleft
+ + pleft

−
and b = pleft

+ + pright
−

(to ensure the uniform marginal condi-
tion).

(a, b)mass pleft−

mass pleft+

mass pright−

mass pright+

Note: this is a deterministic permuton. When random permutations
converge to the X -permuton, we have a concentration phenomenon, i.e.
two independent random permutations are closed to each other.
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The essentially linear case: examples

Av(2413, 3142,
2143, 34512)

Av(231, 21543)
Av(2413, 1243,

2341, 41352, 531642)

Note: in the second (resp. third) case, one (resp. two consecutive)
parameters are 0. Diagonals are also degenerate X -permutons (with 2
opposite or 3 parameters equal to 0).
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The Brownian separable permuton (Maazoun ’17)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

e is a Brownian excursion and S : LocalMin(e)→ {⊕,	} is a
independent assignment of signs to local minima of e (the probability
to get a ⊕ is p).
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The Brownian separable permuton (Maazoun ’17)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

σ : [0, 1]→ [0, 1] is the unique Lebesgue preserving function s.t. (x , y)
is an inversion if and only if the sign of min[x ,y ] e is 	.
The Brownian separable permuton is the “graph of the function σ”.
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The Brownian separable permuton (Maazoun ’17)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

Note: this a random permuton. No concentration phenomenon here.
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The essentially branching case: examples

Av(2413, 3142)
separable permutations

Av(2413, 31452,
41253, 41352, 531246)

Av(231)

The limit in the last case is a degenerate Brownian permuton with p = 1,
that is the diagonal of the square. This convergence to the diagonal (and
much more precise results) was already known.
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The essentially linear case: an almost-example

10 THEODORE DOKOS AND IGOR PAK

(a) (b)

Figure 5. Horizontal slices of the limit surface.

6.6. Let us note that for the case of size 3 patterns mentioned in §6.3, the random restricted
permutations do in fact resemble their limit shapes, due to exponentially small decay of proba-
bilities away from the anti-diagonal. However, in the the case of random σ ∈ Bn, permutations
tend to exhibit a high degree or structure, and do not resemble the limit surface Φ(x, y). This
suggests that computing square-to-square correlations would an interesting problem. While we
expect this to be doable, this goes outside the scope of our project.

(a) σ ∈ B2000 (b) σ ∈ B4000

Figure 6. Randomly sampled permutations σ ∈ B2000 and B4000.

6.7. It would be interesting to compute the limit shape of random Baxter permutations. While
they can be sampled exactly uniformly (see e.g. [FFNO,Vie]), the underlying bijection does not
seem to give any useful formulas. In fact, a special effort is required to sample beyond n = 20.
Still, the apparent connection to Φ(x, y) is undeniable (see Figure 7).

A possible explanation lies in the “flat structure” of alternating permutations. As evident
from Figure 7 for n = 500, there seem to be a limit surface of alternating permutations, with
no spikes except at the boundary. In fact, the existence of such a flat surface follows from the
asymptotics of Entringer numbers given in [DW]. This suggests that all spikes in Φ(·, ·) come
from the “Baxter condition”.

Acknowledgments: The authors are grateful to Stephen DeSalvo, Scott Garrabrant, Neal
Madras and Sam Miner for useful remarks and help with the references. The second author
was partially supported by the NSF.

Doubly alternating Baxter
permutations ( c©Dokos, Pak)

The main result of Dokos-Pak ar-
ticle is the limit

P
[
σn(bαnc) = bβnc

]
.

The question of studying of σn

itself (and this picture) is in the
open problem section.

Our result does not apply as is because of periodicity issues, but proving
the convergence to the Brownian permuton should not be difficult.

V. Féray (UZH) Random permutations Banff, 2019–03 28 / 32



The essentially linear case: an almost-example

10 THEODORE DOKOS AND IGOR PAK

(a) (b)

Figure 5. Horizontal slices of the limit surface.

6.6. Let us note that for the case of size 3 patterns mentioned in §6.3, the random restricted
permutations do in fact resemble their limit shapes, due to exponentially small decay of proba-
bilities away from the anti-diagonal. However, in the the case of random σ ∈ Bn, permutations
tend to exhibit a high degree or structure, and do not resemble the limit surface Φ(x, y). This
suggests that computing square-to-square correlations would an interesting problem. While we
expect this to be doable, this goes outside the scope of our project.

(a) σ ∈ B2000 (b) σ ∈ B4000

Figure 6. Randomly sampled permutations σ ∈ B2000 and B4000.

6.7. It would be interesting to compute the limit shape of random Baxter permutations. While
they can be sampled exactly uniformly (see e.g. [FFNO,Vie]), the underlying bijection does not
seem to give any useful formulas. In fact, a special effort is required to sample beyond n = 20.
Still, the apparent connection to Φ(x, y) is undeniable (see Figure 7).

A possible explanation lies in the “flat structure” of alternating permutations. As evident
from Figure 7 for n = 500, there seem to be a limit surface of alternating permutations, with
no spikes except at the boundary. In fact, the existence of such a flat surface follows from the
asymptotics of Entringer numbers given in [DW]. This suggests that all spikes in Φ(·, ·) come
from the “Baxter condition”.

Acknowledgments: The authors are grateful to Stephen DeSalvo, Scott Garrabrant, Neal
Madras and Sam Miner for useful remarks and help with the references. The second author
was partially supported by the NSF.

Doubly alternating Baxter
permutations ( c©Dokos, Pak)

The main result of Dokos-Pak ar-
ticle is the limit

P
[
σn(bαnc) = bβnc

]
.

The question of studying of σn

itself (and this picture) is in the
open problem section.

Our result does not apply as is because of periodicity issues, but proving
the convergence to the Brownian permuton should not be difficult.

V. Féray (UZH) Random permutations Banff, 2019–03 28 / 32



A word on the proofs

1 Reminder: enough to prove that, for any τ ,

E
[
õcc(τ,σn)

]
→ E

[
õcc(τ,ν)

]
,

where ν is the targeted limit random permuton.

2 The RHS can be evaluated easily (elementary for X -permuton, using
some results on Brownian excursion for the Brownian one).

3 The LHS can be computed combinatorially:

E[õcc(π,σn)] =
#{σ ∈ Cn, I ⊂ [n] : patI (σ) = π}(n

k

)
|Cn|

.

We will estimate that through analytic combinatorics.
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Analytic combinatorics

The strongly connectedness hypothesis ensures that
in the essentially linear case,

C (z) ∼ a
1

1− z
ρ

, implying |Cn| ∼ aρ−n.

in the branching case,

C (z) ∼ a− b
√

1− z
ρ , implying |Cn| ∼

b

2
√
π
n3/2ρ−n

The difficulty is to estimate

{#{σ ∈ Cn, I ⊂ [n] : patI (σ) = π}}.

We need to write some equations for the corresponding generating function
and to find the behavior at the singularity.
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A picture of a combinatorial decomposition

(where permutations are encoded by trees thanks to the specification.)

B0:
counted by T

i(∅)
→i0

Bbottom
∅ :

”spine”

Bright
∅ :

ϕ(∅)

ϕ(2)

ψ′(∅)

Bleft
2 :

Bright
2 :

ψ′(1) Bbottom
2 :

Bbottom
1 :

Bleft
1 :

Bright
1 :

Bleft
∅ : T

i(1)
→j(∅)

ψ(2)
ψ′(2)

ϕ(1)

ψ(∅)

ψ(1)

E−i(1)j(1)j′(1)

T ′→j(1)

T ′→j′(1)

∅

1 2

T
i(2)
→j′(∅)

counted by E+
i(∅)j(∅)j′(∅)

T ′→j(2)

T ′→j′(2)

E−i(2)j(2)j′(2)

∅
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Thank you for your attention

Uniform Mallows (P(σ) ∝ qinv(σ)) Sorting network,
half way ( c©AHRV ’07)

Uniform random pattern-avoiding permutations
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Extra slide 1: is the strong connectivity condition necessary?

Yes!
Here is a class with finitely many simple permutations and a “double X”
limit:

Av(214365, 3412, 52143, 32541)

We can treat such examples on a case-by-case basis from their finite
specification, but we have no general theorem!
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Extra slide 2: the intensity of the Brownian permuton

Since the Brownian permuton µp is a random measure, we can consider its
intensity measure Eµp, defined by

(Eµp)(R) = E(µ(R)), for any rectangle R ⊆ [0, 1]2.

Theorem (Maazoun ’17)

The intensity measure Eµp has density w.r.t to Lebesgue measure
fp(x , y) =

∫ min(x ,y)

max(0,x+y−1)

3p2(1− p)2da

2π(a(x − a)(1− x − y + a)(y − a))3/2
(
p2

a + (1−p)2

(x−a) + p2

(1−x−y+a) + (1−p)2

(y−a)

)5/2 .

Concretely, if σn tends to µp, then, for any rectangle R ⊆ [0, 1]2

E
[
#{(i , j) ∈ nR : σ(i) = j}

]
∼ n

∫
(x ,y)∈R

fp(x , y)dxdy .
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Extra slide 2bis: picture of Eµp

density of Eµ.4 density of Eµ.5
For p = .5, this function was found (under a different form) by Pak and
Dokos, in the context of doubly alternating Baxter permutations.
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Extra slide 3: underlying random trees

essentially linear case essential branching case
Av(2413, 1243, 2341, 41352, 531642) Av(2413, 31452, 41253, 41352, 531246)
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