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0. Introduction. A little more than three quarters of a century ago, in the
Spring of 1921, Hilbert gave the first presentation of his new investigations
concerning the foundations of arithmetic in Kopenhagen and some months
later in Hamburg. Hilbert's 1922 paper Neubegriindung der Mathematik is
based on these talks.2 The paper is important for a variety of systematic
reasons, but also for its opening combative remarks against Weyl and
Brouwer. It is remarkable, how little is known about the intellectual
development that led to the logical work presented there; it is similarly
remarkable, how little is known about the intellectual climate that provoked
Hilbert's remarks. There is a personal edge to these remarks; after all, they are
in part directed to Weyl who had been Hilbert's own student and who had
joined the "revolutionary” movement of Brouwer's intuitionism in 1920.
Weyl had also published in 1921 the unabashedly "propagandistic” paper
Uber die neue Grundlagenkrise der Mathematik; note that "revolutionary"
and "propagandistic" are Weyl's characterizations, not mine. This was the
unfortunate beginning of the unfortunate "Grundlagenstreit” in the twenties
that, even more unfortunately, still colors our views on issues in the
foundations of mathematics. Here is a rich mine for fascinating historical,
logico-mathematical, and philosophical investigations that can make
substantive contributions to the contemporary discussion in the philosophy
of mathematics. In my remarks I am going to focus on the intellectual
developments within the Hilbert School.3

During the last ten or fifteen years a multi-faceted perspective on the
work of the Hilbert School has been emerging. That has been achieved
mainly by bringing out the rich context in which the work is embedded:
important connections have been established, on the one hand, to
foundational work of the 19th century (that had been viewed as largely
irrelevant) and, on the other hand, to a general reductive program (that
evolved out of Hilbert’s and underlies implicitly most modern proof
theoretic investigations). However, it is crucial to gain a better understanding

2 Thus, what more appropriate place than Kopenhagen to reflect on proof theory and Hilbert's broader
foundational investigations, but also on the work of those whom Hilbert criticized so sharply? -- I am
Frateful to the organizers, in particular Professor Pedersen and Dr. Hendricks, for bringing this workshop to
ife and providing the opportunity for such reflection!

3 There are many historical questions I don't know how to answer; some are mentioned in footnotes and for
particularly important ones I indicated what partial information I have. For additional information
concerning the period before 1917 see Abrusci and Peckhaus; Moore gives some information about the
development starting in 1917/18. As to a broader discussion of Hilbert's investigations, see the papers by
Feferman, Hallett, Steg, and Stein. -- Many of the relevant original texts have finally been translated into
English and can be found in (Ewald) and (Mancosu).
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of the development of Hilbert's thought on the foundations of arithmetic,
where arithmetic is understood in a broad sense that includes elementary
number theory and reaches all the way to set theory. Admittedly, this is just
one aspect of Hilbert’s work on the foundations of mathematics, as it
disregards the complex interactions with his foundational work on geometry
and the natural sciences; it is a most significant aspect though, as it reveals a
surprising internal dialectic progression and throws a distinctive light on the
origins of modern mathematical logic.

My paper is focused on developments between 1917 and 1922, a period
of very special interest. Standard wisdom partitions Hilbert’s work on the
foundations of arithmetic, with some justification, into two periods (and
suggests that the time in between was devoted to important other matters).
The first period is taken to extend from 1900 to 1905, the second from 1922 to
1931. The periods are marked by dates of outstanding publications. Hilbert
published in 1900 and 1905 respectively Uber den Zahlbegriff and Uber die
Grundlagen der Logik und Arithmetik. The considerations of the latter
paper, according to this view, were taken up around 1920, were quickly
expanded into the proof theoretic program and exposed in 1922 through
Hilbert’s Neubegriindung der Mathematik and Bernays’ Uber Hilberts
Gedanken zur Grundlegung der Arithmetik. Finally, it is argued that the
pursuit of the program was halted in 1931 by Godel’s paper Uber formal
unentscheidbare Sitze der Principia Mathematica und verwandter Systeme I.

This partition of Hilbert’s work does not include, or accomodate easily,
the programmatic paper Axiomatisches Denken published in 1918. The paper
had been presented already in September 1917 to the Swiss Mathematical
Society in Ziirich and advocates a logicist reduction of mathematics.t In
sharp contrast, the 1922 papers by Hilbert and Bernays set out the
philosophical and mathematical-logical goals of the Hilbert Program. This
remarkable progression is not at all elucidated by publications, but it can be

4 There is clear evidence of Hilbert’s growing familiarity with Russell’s work, starting in 1913/4; what I
know is presented in an Appendix to my (1997%). Bernays, in his (1935) minimizes the programmatic logicist
direction of Hilbert’s thinking. He also encourages the “standard view” of the development toward Hilbert’s
Program by describing it as follows: “In diesem vorlaufigen Stadium hat Hilbert [1905; WS] seine
Untersuchungen iiber die Grundlagen der Arithmetik fiir lange Zeit unterbrochen. Thre Wiederaufnahme
finden wir angeki'mdigt in dem 1917 gehaltenen Vortrag ‘Axiomatisches Denken’. ... Dem hiermit von neuem
gefaiten Plan einer Beweistheorie hat sich Hilbert in den nachfolgenden Jahren, insbesondere seit 1920,
vomehmlich gewidmet. Ein verstarkter Antrieb hierzu erwuchs ihm aus der O})Fosition, welche Weyl und
Brouwer gegen das iibliche Verfahren der Analysis und Mengenlehre richteten.” In a footnote to this remark
Bernlays lists the papers (1918), (1919), (1919A), and (1921) by Brouwer and (1918), (1919), and (1921) by
Weyl.



analysed by reference to notes for lectures Hilbert gave during that period in
Gottingen. It is this progression I want to depict. But before doing that in
parts 2 through 4, I recall very briefly some pertinent context.

1.BACKGROUND. Hilbert viewed the axiomatic method as holding the key
to a systematic organization of any sufficiently developed subject; he also saw
it as providing the basis for metamathematical investigations of
independence and completeness issues and for philosophical reflections.
However, consistency was Hilbert’s central concern ever since he turned his
attention to the foundations of analysis in the late nineties of the last century.
These 19-th century roots of Hilbert’s work are very important and reveal the
major intellectual forces that led Hilbert to the initial formulation of a
syntactic consistency program in 1904/5.5 As to the period from 1905 to 1917,
I emphasize that Hilbert gave lecture courses on the foundations of
mathematics almost every single year. We have notes for most of them;
some are written out meticulously, for example by Max Born and Richard
Courant. These lectures do not break new ground, in particular, they do not
push along the "proof theoretic" approach of Hilbert’'s 1905 paper (that was so
severely, yet fairly criticized by Poincaré in 1905/6). On the contrary, the notes
for his Set Theory course in the summer term of 1917 and the almost
contemporaneous paper Axiomatisches Denken reveal a logicist direction in
Hilbert’s work. In the notes Hilbert gives an axiom system for natural
numbers and remarks that this is only a first step for his foundational

investigation: ‘

.. if we set up the axioms of arithmetic, but forego their further reduction and take over
uncritically the usual laws of logic, then we have to realize that we have not overcome the
difficulties for a first philosophical-epistemological foundation; rather, we have just cut them
off in this way.

In the essay Axiomatisches Denken he presses the issues further; viewing the

examination of consistency as an “unavoidable task” he remarks:

... thus, it seems to be necessary to axiomatize logic itself and to show that number theory as
well as set theory are just parts of logic. This avenue, prepared for a long time, not least by the
deep investigations of Frege, has finally been taken most successfully by the penetrating
mathematician and logician Russell. The completion of this broad Russellian enterprise of
axiomatizing logic might be viewed quite simply as the crowning achievement of the work of
axiomatization.

5 Let me mention stenographically: Dedekind, consistency concerns and semantic ar%ument (1888) and (1890);
Kronecker, emphasis on a thoroughly constructive approach; Cantor, letters to Hilbert communicating the
inconsistency of Dedekind’s framework (1897); Hilbert, from semantic ariument to syntactic approach (1900;
1904/5). These connections are discussed in my papers (1990) and (1997A).
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At the end of the set theory notes Hilbert emphasizes that, if we try to achieve
such a reduction to logic, we are facing one of the most difficult problems of

mathematics; he continues:

Poincaré has even the view that this is not at all possible. But with that view one could rest
content only if it had been proved that the further reduction of the axioms for arithmetic is
impossible; but that is not the case. Next term I hope to be able to examine more closely a
foundation for logic.

One has the sense that the exigencies of academic life and the
complexity of the issues diverted Hilbert's attention to his own great
dissatisfaction. That motivated, I assume, Hilbert's action in the fall of 1917:
he invited Paul Bernays to assist him in efforts to examine the foundations of
mathematics. Bernays returned to Goéttingen where he had been a student
and started to work with Hilbert on lectures that were offered in the winter
term 1917/18 under the title Prinzipien der Mathematik. The collaboration of
Hilbert and Bernays led to a remarkable sequence of lectures. Prinzipien der
Mathematik is the very first lecture in this sequence; the others are: Logik-
Kalkiil (winter term 1920)%, Probleme der mathematischen Logik (summer
term 1920; with Schénfinkel), Grundlagen der Mathematik (winter term
1921/22), and Logische Grundlagen (winter term 1922/23). The notes from
lectures before the winter term of 1917/18 do not give any indication of what
is to come; even the most attentive reader is quite unprepared for the full-
blown creation of modern mathematical logic in the notes to be discussed
now.

2. MATHEMATICAL LOGIC. The notes for Prinzipien der Mathematik consist of
246 type-written pages and are divided into two parts. Part A, Axiomatische
Methode, gives on sixty-two pages Hilbert's standard account of the axiomatic
method, in particular as it applies to geometry. Part B, Mathematische Logik,
is a beautifully organized, almost definitive presentation of the very core of
modern mathematical logic. (This part of the notes is, incidentally, a polished
manuscript of Hilbert & Ackermann’s 1928 book; the structure is taken over,
and large sections of the book are identical with parts of the notes.) The
detailed pursuit of the logicist goal required the presentation of a formal
language for capturing the logical form of informal statements, the use of a
formal calculus for representing the structure of logical arguments, and the

6 Because of the end of the First World War and soldiers having returned to the university, an extra semester
was pressed into those two years: there was a “Zwischensemester” in 1919 (from September 22 to December
20); that was followed by the winter term 1920 and then by the regular summer term 1920, beginning on April
26.
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formulation of “logical” principles for defining mathematical objects. This is
carried through with remarkable focus, elegance, and directness. From the
very beginning, the logical and mathematical questions are driven by
philosophical reflections on the foundations of mathematics. The material is
organized under five chapter headings: The sentential calculus, The predicate
calculus and class calculus [i.e., monadic logic], Transition to the function
calculus [i.e., full first order logic], Systematic presentation of the function
calculus and, finally, The extended function calculus.

The first four chapters lead, in part, to a systematic formulation of first
order logic; every step taken in expanding the logical framework is
semantically motivated and carefully argued for. This material was novel at
the time; by now it is all too familiar and will not be discussed except to note
and emphasize one important difference: the languages contain sentential
and function (i.e., relation) variables. The last chapter takes a noteworthy
turn. If only a formalization of logical reasoning were aimed for, no
additional work beyond that of the earlier chapters would be needed.
However, the logical calculus is to play an important role for the

investigation of mathematical theories and their relation to logic:

Not only do we want to develop individual theories from their principles in a purely formal
way, but we also want to investigate the foundations of the mathematical theories and
examine, what their relation to logic is and how far they can be built up from purely logical
operations and concepts; and for this purpose the logical calculus is to serve as an auxiliary tool.

Detailed reflection leads “in the most natural way” to ramified type theory
together with Russell’s axiom of reducibility; this framework is then used for

the development of analysis. The notes end with the remark:

Thus it is clear that the introduction of the axiom of reducibility is the appropriate means to
turn the ramified calculus into a system out of which the foundations for higher mathematics
can be developed.”

The notes present more than a system for the development of parts of higher
mathematics. They constitute literally the first text presenting the core of
modern logic with its distinctive metamathematical turn: the careful
presentation of syntax and semantics provides the basis for the investigation
of completeness and consistency issues, as they are now standardly examined
in any first introduction to mathematical logic.

7 However, further discussions of the axiom of reducibility become increasingly critical and lead Hilbert and
Bernays ultimately to the rejection of the logicist enterprise in 1920. These discussions sound explicitly and
most clearly themes that are found in the literature, with equally good sense and balance, only in Godel’s
paper on “Russell’s Mathematical Logic”.



The formal frame I have been discussing is not only contentually
motivated, but its semantics is properly specified and the central semantic
notions are carefully formulated. First order theories are always viewed
together with suitable non-empty domains, Bereiche, indicating the range of
the individual variables of the theory and the interpretations of the non-
logical vocabulary (except, for sure, the sentential and function variables). In
modern terms, they are always presented together with a structure. How are
expressions of the formal language to be understood, given the associated
domain? After the discussion of the axiom system for the function calculus
there is the following remark clarifying where a semantic understanding is

needed and where pure formality is essential:

This system of axioms provides us with a procedure to carry out logical proofs strictly formally,
i.e., in such a way that we need not be concerned with the meaning of the judgements that are
represented by formulas, rather we just have to attend to the prescriptions contained in the
rules. However, we have to interpret the signs of our calculus when representing symbolically
the premises from which we start and when understanding the results obtained by formal
operations.

The logical signs are interpreted ... corresponding to the given linguistic reading; and
the occurrence of indeterminate statement-signs and function-signs in a formula is to be
understood as follows: for arbitrary replacements by determinate statements and functions the
claim that results from the formula is correct.

The underlying concept of correctness, Richtigkeit, with respect to a domain is
understood as follows: (1) statements involving no sentential or function
variables are “correct” if they are true in the domain (and that is informally
taken in exactly the same way as in the model theoretic arguments for
independence and relative consistency in Hilbert’'s Grundlagen der Geometrie
and in Godel’s 1929 dissertation); (2) if a statement does contain such
variables, then the clause “for arbitrary replacements ...” is invoked to define
“correctness” for this broader class of statements. Having clarified the basic
semantics, I turn to completeness.

For the very purpose of the calculus in the systematic investigation it is
crucial that the ordinary forms of logical argumentation can be recaptured

formally. This is clearly expressed in the 1917/18 lecture notes8:

As for any other axiomatic system, one can raise also for this system the questions concerning
consistency, logical dependencies, and completeness. The most important question is here that
concerning completeness. After all, the goal of symbolic logic is to develop ordinary logic from
the formalized assumptions. Thus it is essential to show that our axiom system suffices for the
development of ordinary logic.

8 Such metamathematical concerns for logic are found already in the very early notes, e.g., of 1905.
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The notes contain prominently only one precise concept of completeness for
logical calculi, namely what has come to be known as Post-completeness: a
calculus is Post-complete just in case “the addition of a formula, hitherto
unprovable, to the system of basic formulas always leads to an inconsistent
system”. That is quickly established for sentential logic; in a footnote® the
semantic completeness is proved. The latter notion is brought to the fore in
Bernays' Habilitationsschrift of 1918 where the completeness theorem
receives its first “classical” formulation, namely, “Every provable formula is a
valid (allgemeingiiltig) formula and vice versa.” For first order logic the
question of Post-completeness is also raised, and it is conjectured that the
answer is negative. The proof of this fact is given in Hilbert & Ackermann.
Excursion. The semantic completeness for first order logic is formulated as an
open problem only in Hilbert & Ackermann’s book: “Whether the axiom
system is complete at least in the sense that really all logical formulas, that are
correct for all domains of individuals, can be derived from it is an unsolved
question. We can only say purely empirically that this axiom system has
always sufficed for any application.” Some recent commentators have
viewed this formulation as oddly obscure (Goldfarb) or even circular (Dreben
& van Heijenoort). Those views rest on a very particular reading of “logical
formulas” that is narrowly correct, as Hilbert and Ackermann follow the
1917/18 notes verbatim and define them as those formulas that (i) do not
contain symbols for determinate individuals and functions, and (ii) can be
proved by appealing only to the logical axioms. Under this reading the
formulation is indeed close to non-sensical. However, if one takes into
account that “logische Formel” and “logischer Ausdruck” are used repeatedly
in the book also as indicating formulas satisfying just (i), then their
formulation together with the explication of correctness I reviewed earlier is
right: the statement of the completeness problem involves precisely the
definition of “allgemeingiiltig” found in Godel’s dissertation.

Let me come back to the 1917/18 notes and turn to consistency. Hilbert
and Bernays exploit the standard arithmetic interpretation of the logical
connectives to address the consistency problem; they show for both sentential
and first order logic (by induction on derivations) that every provable
formula is identically zero. Consistency of the logical calculi is a direct

9 on p- 153.



consequence.'’ In a note the reader is warned not to overestimate the
significance of this result, because “[i]t does not give us a guarantee that the
system of provable formulas remains free of contradictions after the symbolic
introduction of contentually correct assumptions”.'’ That much more
difficult problem has to be attacked in special ways, perhaps by a logicist
reduction or by quite new ways of proceeding. Notice that up to now no
specifically proof theoretic considerations for the consistency problem have
been mentioned. Indeed, the development toward the Hilbert Program as we
think of it was completed only in the lectures given in the winter term
1921/22. Hilbert arrived at its formulation after abandoning the logicist route
through two quite distinct steps, and only the second step takes up the earlier
suggestion of developing a theory of (formal) proofs.

3. CONSTRUCTIVE NUMBER THEORY. The first step is taken in the winter term
1920. Hilbert reviews the logical matters from the 1917/18 lectures in a
polished form, frequently referring back to them for additional details. The
last third of the notes is devoted, however, to a completely different topic and
develops number theory from a radically constructive point of view. Hilbert
argues that the set theoretic or logical developments of Dedekind and Frege
did not succeed in establishing the consistency of ordinary number theory and

concludes:

To solve this problem I don’t see any other possibility, but to rebuild number theory from the
beginning and to shape concepts and inferences in such a way that paradoxes are excluded at the
outset and that proof procedures become completely surveyable.

Now I will show how I think of the beginning of such a foundation for number theory.

The considerations are put back into the broader context of the earlier
investigations, emphasizing once more the semantic underpinnings for
axiom systems:

10 This is done on 6E)a§es 70 ff and 150 ff; the analogous considerations are contained in Hilbert & Ackermann
on pages 30 ff and 65 {f.

11 5n p. 156: Man darf dieses Ergebnis in seiner Bedeutung nicht iiberschitzen. Wir haben ja damit noch
keine Eewéhr, dass bei der symbolischen Einfﬁhrung von inhaltlich einwandfrejien Voraussetzungen das
System der beweisbaren Formeln widerspruchslos bleibt.

In Hilbert and Ackermann there is a significant expansion of this remark:

Man darf das Ergebnis dieses Beweises fiir die Widerspruchsfreiheit unserer Axiome iibrigens in seiner
Bedeutung nicht tiberschdtzen. Der angegebene Beweis der Widerspruchsfreiheit kommt namlich darauf
hinaus, dals man annimmt, der zugrunde gelegte Individuenbereich bestehe nur aus einem einzigen Element, sei
also endlich. Wir haben damit durchaus keine Gewihr, daf bei der symbolischen Einfiihrung von inhaltlich
einwandfreien Voraussetzunien das System der beweisbaren Formeln widerspruchsfrei bleibt. Z.B. bleibt die
Frage unbeantwortet, ob nicht bei der Hinzufiigung der mathematischen Axiome in unserem Kalkiil jede
beliebige Formel beweisbar wird. Dieses Problem, dessen Losung eine zentrale Bedeutung fiir die Mathematik
besitzt, 143t sich in bezug auf Schwierigkeit mit der von uns behandelten Frage garnicht vergleichen. Die
mathematischen Axiome setzen gerade einen unendlichen Individuenbereich voraus, und mit dem Begriff des
Unendlichen sind die Schwierigkeiten und Paradoxien verkniipft, die bei der Diskussion tiber die Grundlagen
der Mathematik eine Rolle spielen. (pp. 65-6)



We have analysed the language (of the logical calculus proper) in its function as a universal
instrument of human reasoning and laid open the mechanism of logical argumentation.
However, the kind of viewpoint we have taken is incomplete in so far as the application of the
logical calculus to a particular domain of knowledge requires an axiom system as its basis. Le.,
one system (or several systems) of objects must be given and between them particular relations
with particular assumed basic properties are considered.

This method is perfectly appropriate, Hilbert continues, when we are trying to
obtain new results or present a particular science systematically. However,
mathematical logic pursues also the goal of securing the foundations of

mathematics.

For this purpose it seems appropriate to connect the mathematical constructions to what can be
concretely exhibited and to interpret the mathematical inference methods in such a way that
one stays always within the domain of what is controllable. And obviously one is going to start
with arithmetic, as one finds here the most simple mathematical concepts.

In addition, it has been the endeavor in mathematics for a long time to reduce all conceptual
systems (geometry, analysis) to the integers.

This remark is followed by the development of what might be called strict
finitist number theory. The considerations are delicate, but one thing is
perfectly clear: here is a version of constructive arithmetic stricter than what
will appear a little later as finitist mathematics; it is stricter, because the
directly meaningful part consists only of closed numerical equations. Bernays
pointed to an evolution toward finitist mathematics at a number of places; in
(1954) he wrote for example: “Originally, Hilbert intended to take the
narrower standpoint that does not assume the intuitive general concept of
numeral. That can be seen, for example, from his Heidelberg lecture (1904). It
was already a kind of compromise that he accepted the finitist standpoint as
presented in his publications.” The narrower standpoint had been taken by
Hilbert in some contexts during the period between 1905 and 1917, and in
those contexts he scolds Kronecker for not being radical enough. Indeed, such
remarks run like a minor red thread through the earlier notes and connect up
with the 1905 paper; it is worthwhile to recall that Hilbert, under the impact
of the elementary contradictions in set theory discovered by Zermelo and
Russell, “temporarily thought that Kronecker had been probably right there.
[That is, right in insisting on restricted methods; WS.] But soon he changed
his mind. Now it became his goal, one might say, to do battle with Kronecker
with his own weapons of finiteness by means of a modified conception of
mathematics”. These remarks were made by Bernays and are recorded in
Constance Reid’s biography of Hilbert.
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In the lectures from the winter term 1920 this intuitive general concept
of numeral is not yet assumed; instead, general statements like x+y=y+x are

given a constructive and extremely rule-based interpretation:

Such an equation ... is not viewed as a claim for all numbers, rather it is interpreted in such a
way that its full meaning is given by a proof procedure: each step of the procedure is an action
that can be completely exhibited and that follows fixed rules.

Hilbert points out that, as a consequence of this view, the classical logical
relations between general and existential statements do not obtain. After all,
the truth of a general statement is usually equivalent to the non-existence of a
counterexample. Under the given constructive interpretation the alternative
between a general statement and the existence of a counterexample would be
evident only with the additional assumption “Every equation without a
counterexample is provable from the assumed arithmetic principles”, as the
meaning of the general statement depends on the underlying system of
inference rules. The lecture notes conclude with a judicious statement in

which Brouwer’s name appears for the very first time:
This consideration helps us to gain an understanding for the meaning of the paradoxical claim,
made recently by Brouwer, that for infinite systems the law of the excluded middle (the

"tertium non datur") loses its validity.12
It must have been a discouraging conclusion for Hilbert to see so very clearly
that this approach could not secure the foundations of classical mathematics
either. However, he overcame the setback by taking a second strategic step in
the lectures for the summer term 1920 that joined the considerations
concerning a thoroughly constructive foundation of number theory with
detailed formal logical work.

Already in his Heidelberg talk of 1904 and again in his Ziirich lecture of
1917 Hilbert had argued for a “Beweistheorie”, but had not pursued his
suggestion systematically. Here, in section 7 of the notes from the summer
term 1920, we find a consistency proof for an extremely restricted, quantifier-
free part of elementary number theory that involves negations only as
applied to equations. These considerations are based on Hilbert's 1905 paper
and form the first part of Hilbert's Neubegriindung der Mathematik. The
latter paper’s second part expands the basic framework in new ways. Bernays
pointed to this “break” repeatedly and describes the paper's first part, for

12 The obvious historical question here is, what did Hilbert know about Brouwer’s views. Bernays
mentions in his (1935) a number of papers; cf. notes 4 and 14. -- One should recall in this context that in 1919
Brouwer had been offered a professorship in Gottingen. More precisely, according to a private
communication of Dirk van Dalen, “ ... the decision of the Gottingen faculty to put Brouwer no 1 on the list for
the chair was made on 30.10.1919”.
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example in his (1935), as “a remnant from that stage, at which this separation
[between the formalism and metamathematical considerations] had not been
made yet”. The new ways are pursued in the lectures given during the winter
term 1921/22.

4. FINITIST PROOF THEORY. These lectures contain for the first time the terms
finite Mathematik, transfinite Schlussweisen, Hilbertsche Beweistheorie;
their third part is entitled Die Begriindung der Widerspruchsfreiheit der
Arithmetik durch die neue Hilbertsche Beweistheorie (The founding of the
consistency of arithmetic by the new Hilbertian proof theory). The clear
separation of mathematical and metamathematical considerations allows
Hilbert to address, finally, Poincaré’s critique by distinguishing between
contentual metamathematical and formal mathematical induction. This is
most clearly presented in 1927, when Hilbert gave-a second paper in Hamburg
and claimed that Poincaré arrived at “his mistaken conviction by not
distinguishing these two methods of induction, which are of entirely
different kinds”. Hilbert felt that “[u]nder these circumstances Poincaré had
to reject my theory, which, incidentally, existed at that time only in its
completely inadequate early stages”."

Weyl, no longer in the intuitionistic camp and no longer opposed to
Hilbert's approach, responded to Hilbert’s talk and turned the argument
around justly claiming that “... Hilbert’s proof theory shows Poincaré to have
been exactly right on this point”. After all, Hilbert had to be concerned not
just with particular numerals, but “with an arbitrary concretely given
numeral”, and the contentual arguments of proof theory must “be carried out
in hypothetical generality, on any proof, on any numeral”. Such an
understanding of quantification was explored already in the informal
presentation of “finitist number theory” in the 1921/22 lectures. The
interpretation is there no longer tied to a formal calculus that allows to
establish free-variable statements, rather it assumes the “intuitive general
concept of numeral” as part of the finitist standpoint.

13 p. 473 of (Hilbert 1927). How important this critique was can be seen from Weyl’s remarks below, but
also from the writings of others, for example, Skolem; see his papers (1922) and (1927). In the introduction to
(Weyl 1927) in From Frege to Gidel, pp. 480-1, one finds a very thoughtful discussion of the underlying issues.
— In his 1922 paper (based on the Igo enhagen and Hamburg talks given in the Spring and Summer of 1921)
Hilbert took stilfa different approach, consistent with the “strict finitist” view he had entertained, claimin
that his metamathematical arguments did not involve mathematical induction and directly refuted Poincaré;
however, in the contemporaneous (Bernays 1922) the distinction described above is made quite explicitly. -
In (Mancosu), 165-7, one can find a report on Becker’s criticism of Hilbert’s use of induction in
metamathematical considerations.
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In intuitive number theory the general sentences have a purely hypothetical sense. A sentence
like a+b = b+a only means: given two numerals a, b, the additive composition of a with b
yields the same numeral as the additive composition of b with a. There is no mention of the
totality of all numbers. Furthermore, the existential sentences have in intuitive number theory
only the meaning of partial-judgements, i.e.,, they are substatements of more precisely
determined statements whose precise content, however, is inessential for many applications.

... thus, in general, a more detailed sentence complements in intuitive number theory an
existential judgement; the sentence determines more precisely the content of that judgement.
The existential claim here has sense only as a pointer to a search procedure which one
possesses, but that ordinarily need not be elaborated, because it suffices generally to know that
one has it.

This is exactly the understanding formulated in 1925 in Uber das Unendliche
and, most extensively, in 1934 in the first volume of Grundlagen der
Mathematik; it is also strikingly similar to Weyl’s viewpoint in (1921)." With
this understanding of quantifiers the conclusion concerning the non-validity
of the law of the excluded middle is obtained again. Hilbert writes (in the
1921/22 notes):

Thus we see that, for a strict foundation of mathematics, the usual inference methods of
analysis must not be taken as logically trivial. Rather it is exactly the task for the
foundational investigation to recognize, why it is that the application of transfinite inference
methods as used in analysis and axiomatic set theory leads always to correct results.

As that recognition has to be obtained on the basis of finitist logic, Hilbert
argues, we have to extend our considerations in a different direction in order

to go beyond elementary number theory:

We have to extend the domain of objects to be considered; i.e., we have to apply our intuitive
considerations also to figures that are not number signs. Thus we have good reason to distance
ourselves from the earlier dominant principle according to which each theorem of pure
mathematics is in the end a statement concerning integers. This principle was viewed as
expressing a fundamental methodological insight, but it has to be given up as a prejudice.

This is a strong statement against a tradition that started with Dirichlet and
includes such distinguished mathematicians as Weierstrass and. Dedekind.
But what is the new extended domain of objects, and what has to be preserved
from the “fundamental methodological insight”? As to the domain of

14 Weyl’s paper must have been known to Hilbert in 1921: in Hilbert’s Neubegriindung der Mathematik one
finds the remark (on p. 160), “Wenn man von einer Krise spricht, so darf man jedenfalls nicht, wie es Weyl tut,
von einer neuen Krise sprechen.” This is obviously an allusion to the title of (Weyl 1921). According to (van
Dalen 1995), p. 145, a draft of Weyl’s paper was completed by May 1920, and a copy was sent to Brouwer. --
What is puzzling here is the circumstance that Weyl's views are, in some important respects (the
understanding of quantifiers is one such point) close to the finitist standpoint; Weyl presents them as being
different from Brouwer’s, and Brouwer in turn recognizes immediately that Weyl is “in the restriction of the
object of mathematics” even more radical than he himself; cf. (van Dalen 1995), p. 148 and p. 167. Why did it
take the peogle in the Hilbert school such a long time to recognize that finitism was more restrictive than
intuitionism? In a letter to Hilbert dated 25. X. 1925, Bernays mentions “a certain difference between the
finitist standpoint and that of Brouwer”; but there is no elaboration of what this difference might be, and I
don’t know of any place where it is discussed by members of the Hilbert school before 1933. Indeed, in
(Bernays 1930), the mathematical methods of finitism and intuitionism are viewed as co-extensional; it is only
in the context of the G6del-Gentzen reduction of classical to intuitionistic arithmetic that both Godel and
Gentzen §oint out that finitism is more restrictive than intuitionism; cf. (Gédel 1933), p. 294. This fact is then
discussed in (Bernays 1934), p. 77; the significance of the result is described in (Bernays 1967).
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objects, it is clear that the formulas and proofs from formal theories have to

be included; as to the methodological requirements, Hilbert remarks:
... the figures we take as objects must be completely surveyable and only discrete determinations
are to be considered for them. It is only under these conditions that our claims and
considerations have the same reliability and evidence as in intuitive number theory.

From this new standpoint Hilbert exploits the formalizability of a fragment
of number theory in full first order logic to formulate and prove its
consistency. Here we finally close the gap to the published record -- with a
fully developed programmatic perspective.

The dialectic of the developments that emerges from these lectures
given between 1917 and 1922 is reflected in Bernays paper of 1922. Bernays’
analysis brings out clearly the “Ansatzcharakter” of the proposed solution: in
order to provide a rigorous foundation for arithmetic (that includes analysis
and set theory) one proceeds axiomatically and starts out with the assumption
of a system of objects satisfying certain structural conditions. However, in the
assumption of such a system “lies something so-to-speak transcendental for
mathematics, and the question arises, which principled position is to be taken
[toward that assumption]”. Bernays considers two “natural positions”,
positions that had been thoroughly explored. The first, attributed to Frege
and Russell, attempts to prove the consistency of arithmetic by purely logical
means; this attempt is judged to be a failure.

The second position is seen in counterpoint to the logical foundations
of arithmetic: “As one does not succeed in establishing the logical necessity of
the mathematical transcendental assumptions, one asks oneself, is it not
possible simply to do without them.” Thus one attempts a constructive
foundation, replacing existential assumptions by construction postulates; that
is the second position and is associated with Kronecker, Poincaré, Brouwer,
and Weyl. The methodological restrictions to which this position leads are
viewed as unsatisfactory, as one is forced “to give up the most successful,
most elegant, and most proven methods only because one does not have a
foundation for them from a particular standpoint”.

Hilbert takes from these foundational positions, Bernays continues in
his analysis, what is “positively fruitful”: from the first, the strict
formalization of mathematical reasoning; from the second, the emphasis on
constructions. Hilbert does not want to give up the constructive tendency; on
the contrary, he emphasizes it in the strongest possible terms. Finitist

14



mathematics is viewed as part of an “Ansatz” to finding a principled position
toward the transcendental assumptions:

Under this perspective15 we are going to try, whether it is not possible, to give a foundation to
these transcendental assumptions in such a way that only primitive intuitive knowledge is
used.

The program is taken as a tool for an alternative constructive foundation of
all of classical mathematics. The great advantage of Hilbert's method is
judged to be this: “the problems and difficulties that present themselves in
the foundations of mathematics can be transferred from the epistemological-
philosophical to the properly mathematical domain.” So Bernays, without
great fanfare, gives an illuminating summary of about five years of quite
intense work!

5. Remarks & issues. I find remarkable the free and open way in which
Hilbert and Bernays joined, in the end, a number of different tendencies into
a sharply focused program with a special mathematical and philosophical
perspective. At first it seemed as if Hilbert's approach would yield results
rather quickly and decisively: Ackermann's “proof” of the consistency of
analysis was obtained already in 1923 and published in early 1924! However,
difficulties emerged and culminated in the real obstacles presented by Goédel's
Incompleteness Theorems.

The program has been transformed, quite in accord with the broad
strategy underlying Hilbert's proposal, to a general reductive one; here one
tries to give consistency proofs for strong classical theories relative to
“appropriate constructive” ones. The first encouraging result was Godel and
Gentzen's reduction of classical elementary arithmetic PA to ist intuitionistic
version HA. Even Godel found the mathematical reductive program with
its attendant philosophical one attractive in the thirties; his illuminating
reflections, partly in an examination of Gentzen's first consistency proof for
arithmetic, are presented in previously unpublished papers'® that are now
available in the third volume of his Collected Works. Foundationally
inspired work in proof theory is being continued, weaving strong set theoretic
and recursion theoretic strands into the metamathematical work.

15 o taking into account the tendency of the exact sciences to use as far as possible only the most primitive
"Erkenntnismittel”. That does not mean, as Bernays emphasizes, to deny any other, stronger form of intuitive
evidence.

6 I am thinking in particular of 1933A, 1938, and 1941.
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The expanding development of proof theory is one effect of Hilbert's
broad view on foundational problems and of his sharply articulated
questions. Another effect is plainly visible in the rich and varied
contributions that were given to us by Hilbert, Bernays, and other members of
the Hilbert School (Ackermann, von Neumann, Gentzen, Schiitte); finally,
we have to consider also the stimulus his approach and questions provided to
contemporaries outside the school (Herbrand, Gédel, Church, Turing and,
much earlier already, Zermelo). Indeed, there is no foundational enterprise
with a more profound and far-reaching effect on the emergence and
development of mathematical logic. If we were open, it could have a similar
effect on philosophical reflections on mathematical experience and help us
gain a perspective that includes traditional concerns, but that allows us to ask
questions transcending traditional boundaries.

Let me discuss briefly one such question. If we take the expansion of
the domain of objects for finitist considerations seriously, we are dealing not
just with numerals, but more generally with elements of inductively
generated classes. (The generation is to be elementary and deterministic, in
modern terminology.) A related point was already made by Poincaré, when
he emphasized after discussing the principle of induction for natural

numbers:

I did not mean to say, as has been supposed, that all mathematical reasonings can be reduced to
an application of this principle. Examining these reasonings closely, we there should see
applied many other analogous principles, presenting the same essential characteristics. In this
category of principles, that of complete induction is only the simplest of all and this is why I
have chosen it as a type.” (p. 1025)

Godel, following Poincaré and Hilbert, believed also that the method of
complete induction has a “particularly high degree of evidence”. But what is
the nature of this evidence? In spite of important work that has been done
for elementary number theory, this is still a significant question and should
be addressed in greater generality. The assumption that work for elementary
number theory covers all the bases, because of a simple effective Godel
numbering, prevents us from articulating the evidential features of
inductively generated objects in a general way. That suggests two directions
for interesting work.

First, there is ample room to improve our understanding of Hilbert’s
and Bernays’ views on the matter. For example, I take it that G6del’s attempt
to characterize the finitist standpoint in his 1958 paper is in conflict with their
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views and with his own earlier informal description of the central features of
finitist mathematics. At issue is whether the insights needed to carry out
proofs concerning finitist objects spring purely from the combinatorial
(spatiotemporal) properties of the sign combinations that represent them, or
whether an element of “reflection” is needed, reflection that takes into
account the uniform generation of the objects. The latter is explicitly affirmed
in (Bernays 1930) and, by my lights, implicit in Hilbert's description of the
“extra-logical concrete objects” that are needed to secure meaningful logical
reasoning: such objects must not only be surveyable, but the fact that they
follow each other, in particular, is immediately given intuitively together
with the objects and cannot be further reduced."”

Second, and closer to contemporary proof theoretic investigations,
there is an appropriate “generalization” of such considerations to classes that
are obtained through generalized inductive definitions. The higher
constructive number classes, already introduced by Brouwer and given a
more precise definition by Church and Kleene, are a prime example. These
i.d. classes have been used in reductions of impredicative subsystems of
analysis; cf. (Buchholz e.a.). Coming back to my introductory remarks, let me
emphasize that there is a mine for historical, logico-mathematical, and
philosophical investigations: join in!
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