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4.1 SIGMA NOTATION AND RIEMANN SUMS 
 

One strategy for calculating the area of a region is to cut the region into simple shapes, calculate the area of each 

simple shape, and then add these smaller areas together to get the area of the whole region.  We will use that 

approach, but it is useful to have a notation for adding a lot of values together: the sigma (Σ ) notation. 

Summation Sigma notation A way to read the sigma notation 
 

 
12 + 22 + 32 + 42 + 52   ∑

k=1

5
 k2   

 

the sum of k squared for k 

equals 1 to k equals 5 

 
 
1
3  + 

1
4  + 

1
5  + 

1
6  + 

1
7  ∑

k=3

7
  

1
k  

 

the sum of 1 divided by k for k 

equals 3 to k equals 7 

 
 
20 + 21 + 22 + 23 + 24 + 25  ∑

j=0

5
 2j   

 

the sum of 2 to the jth power 

for j equals 0 to j equals 5 

 
 
a2 + a3 + a4 + a5 + a6 +a7  ∑

i=2

7
 ai   

 

the sum of a  sub i  from  i 

equals 2  to  i equals 7 

 
 
The variable (typically i, j, or k)  used in the summation is called the counter or index variable.   

The function to the right of the sigma is called the summand, and the numbers below and above the sigma 

are called the lower and upper limits of the summation.  (Fig. 1) 
 
Practice 1: Write the summation denoted by each of the following:
  

 (a)  ∑
k=1

5
 k3  , (b)  ∑

j=2

7
 (–1)j 

1
j    , (c)  ∑

m=0

4
 (2m+1)  . 

 

In practice, the sigma notation is frequently used with the standard 

function notation: 
 
 

∑
k=1

3
 f(k+2)   = f(1+2) + f(2+2) + f(3+2) = f(3) + f(4) + f(5)  and  

 

∑
i=1

4
  f(xi)  = f(x1) + f(x2) + f(x3) + f(x4)  
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Example 1:    Use the values in Table 1  to evaluate    ∑
k=2

5
 2.f(k)   and  ∑

j=3

5
 (5 + f(j–2)) . 

   Solution: ∑
k=2

5
 2.f(k)  = 2.f(2) + 2.f(3) + 2.f(4) + 2.f(5) = 2.(3) + 2.(1) + 2.(0) + 2.(3) = 14 

 ∑
j=3

5
 (5 + f(j–2))  = (5+f(3–2)) + (5+f(4–2)) + (5+f(5–2)) = (5+f(1)) + (5+f(2)) + (5+f(3))  

  = (5+2) + (5+3) + (5+1) = 21. 
 
 
Practice 2: Use the values of f, g and h in Table 1 to evaluate the following: 

 (a)  ∑
k=2

5
 g(k)   (b)  ∑

j=1

4
 h(j)   (c)  ∑

k=3

5
 ( g(k) + f(k–1) )   

Example 2: For  f(x) = x2 + 1, evaluate  ∑
k=0

3
 f(k)  . 

Solution: ∑
k=0

3
 f(k)  = f(0) + f(1) + f(2) + f(3)   

 = (02 +1) + (12 +1) + (22 +1) + (32 +1) = 1 + 2 + 5 + 10 = 18. 

Practice 3: For g(x) = 1/x, evaluate  ∑
k=2

4
 g(k)    and  ∑

k=1

3
 g(k+1)  . 

The summand does not have to contain the index variable explicitly:  a sum from  k=2 to  k=4  of the 

constant function  f(k) = 5   can be written as 
 

∑
k=2

4
 f(k)    or  ∑

k=2

4
 5   = 5 + 5 + 5 = 3.5 = 15  .   Similarly,   ∑

k=3

7
 2   = 2 + 2 + 2 + 2 + 2 = 5.2 =10 . 

 
Since the sigma notation is simply a notation for addition, it has all of the familiar properties of addition. 
 
  
 Summation Properties 
 

  Sum of Constants: ∑
k=1

n
  C   =  C + C + C + . .  + C  (n terms) =  n.C 

 

  Addition: ∑
k=1

n
 (ak + bk)   =  ∑

k=1

n
  ak  + ∑

k=1

n
  bk  

 

  Subtraction: ∑
k=1

n
 (ak – bk)   =  ∑

k=1

n
  ak  – ∑

k=1

n
  bk  

 

  Constant Multiple: ∑
k=1

n
  C.ak   =  C. ∑

k=1

n
  ak  

 
 
Problems 16 and 17 illustrate that similar patterns for sums of products and quotients are not valid. 

x

1

2

3

4

5

f(x)

2

3

1

0

3

g(x)

4

1

–2

3

5

h(x)

3

3

3

3

3

Table 1
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Sums of Areas of Rectangles 
 

In Section 4.2  we will approximate the areas under curves by building rectangles as high as the curve, 

calculating the area of each rectangle, and then adding the rectangular areas together. 
 

Example 3: Evaluate the sum of the rectangular areas in Fig. 2, and write  

 the sum using the sigma notation.  
Solution:     
 { sum of the rectangular areas } = { sum of  (base).(height)  for each rectangle } 
 
   = (1).(1/3) + (1).(1/4) + (1).(1/5)  = 47/60. 
 
 Using the sigma notation,  

 (1).(1/3) + (1).(1/4) + (1).(1/5)  = ∑
k=3

5
 
1
k  . 

 
Practice 4: Evaluate the sum of the rectangular areas in Fig. 3, and write the  

 sum using the sigma notation. 
 

The bases of the rectangles do not have to be equal.   For the rectangular areas  

in Fig. 4 ,   

 rectangle base height area 

 1 3–1=2 f(2)=4 2.4 = 8 

 2 4–3=1 f(4)=16 1.16 = 16 

 3 6–4=2 f(5)=25 2.25 = 50 

so the sum of the rectangular areas is  8 + 16 + 50 = 74. 
 

Example 4: Write the sum of the areas of the rectangles in Fig. 5  using  

 the sigma notation.   
 
Solution:  The area of each rectangle is (base).(height).   
 

rectangle base height area 
1 x1 – x0  f(x1) (x1 – x0).f(x1) 

2 x2 – x1  f(x2) (x2 – x1).f(x2) 

3 x3 – x2  f(x3) (x3 – x2).f(x3) 
 

The area of the kth rectangle is  (xk  – xk–1).f(xk) , and the total area of the 

rectangles is the sum      ∑
k=1

3
 (xk – xk–1) .f(xk) . 
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Practice 5: Write the sum of the areas of the shaded rectangles in Fig. 6   

 using the sigma notation.  
 
 

Area Under A Curve –– Riemann Sums 
 

Suppose we want to calculate the area between the graph of a positive function  f  

and the interval [a, b]  on the  x–axis (Fig. 7).  The 

Riemann Sum method is to build several rectangles 

with bases on the interval [a, b] and sides that reach 

up to the graph of f  (Fig. 8).  Then the areas of the 

rectangles can be calculated and added together to 

get a number called a Riemann Sum of f on [a, b].  

The area of the region formed by the rectangles is 

an approximation of the area we want. 
 

 

Example 5: Approximate the area in Fig. 9a  

between the graph of  f  and the interval  [2, 5] 

on the x–axis by summing the areas of the 

rectangles in  Fig. 9b. 
 
Solution: The total area of rectangles is   

 (2)(3) + (1)(5) = 11  square units. 

 

In order to effectively describe this process, some new vocabulary is helpful: a partition of an interval and 

the mesh of the partition. 
 

A partition P of a closed interval [a,b] into  n  subintervals is a set 
of  n+1 points  { x0 = a,  x1,  x2,  x3, . . . ,  xn–1,  xn = b}  in  

increasing order,  a= x0 < x1 < x2 < x3 < . . . < xn–1 < xn = b.  

(A partition is a collection of points on the axis and it does not depend on the function in any way.) 
 

The points of the partition P divide the interval into n subintervals  
(Fig. 10):  [x0 , x1],  [x1 , x2],  [x2 , x3], . . . , and  [xn–1 , xn] with 

lengths  ∆x1 = x1 – x0, ∆x2 = x2 – x1, ∆x3 = x3 – x2, . . . , and   

∆xn = xn – xn–1.  The points  xk  of the partition P are the locations of 

the vertical lines for the sides of the rectangles, and the bases of the 
rectangles have lengths  ∆xk for k = 1, 2, 3, . . . , n. 
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The mesh or norm of partition P is the length of the longest of the subintervals  [xk–1 ,xk], 

or, equivalently,  the maximum of  ∆xk  for k = 1, 2, 3, . . . , n. 

For example, the set  P = {2, 3, 4.6, 5.1, 6} is a partition of the interval [2,6]  (Fig. 11)  and divides the 
interval [2,6] into 4 subintervals with lengths ∆x1 = 1, ∆x2 = 1.6, ∆x3 = .5 and  ∆x4 = .9.  The mesh of  

this partition is 1.6, the maximum of the lengths of the 

subintervals.  (If the mesh of a partition is "small," then the length 

of each one of the subintervals is the same or smaller.) 

 

Practice 6: P = {3, 3.8, 4.8, 5.3, 6.5, 7, 8} is a partition of what interval?  

How many subintervals does it create?  What is the mesh of the 
partition?  What are the values of x2 and ∆x2 ? 

 
A function, a partition, and a point in each subinterval determine a Riemann sum. 
 
Suppose f is a positive function on the interval [a,b] 
 
 P = { x0 = a, x1, x2, x3, . . . , xn–1, xn = b}  is a partition of [a,b] 

 ck is an x–value in the kth subinterval  [xk–1 , xk] :   xk–1 ≤ ck  ≤ xk . 
 
Then the area of the kth rectangle is  f(ck).( xk – xk–1) = f(ck).∆xk .  (Fig. 12)  

 Definition: A summation of the form    ∑
k=1

n
 f(ck).∆xk   

 
  is called a  Riemann Sum  of  f  for the partition  P. 
    
 
This Riemann sum is the total of the areas of the rectangular regions and is an approximation of the area 

between the graph of  f  and the  x–axis. 

 
Example 6: Find the Riemann sum for f(x) = 1/x and the partition  {1, 4, 5} using the values  c1 = 2  

 and c2 = 5.  (Fig. 13) 

Solution: The 2  subintervals are  [1,4] and [4,5]  so  ∆x1 = 3  and  ∆x2 = 1.   

 Then the Riemann sum for this partition is 

 ∑
k=1

n
  f(ck).∆xk = ∑

k=1

2
  f(ck).∆xk = f(c1).∆x1 + f(c2).∆x2  = f(2).(3) + f(5).(1)  

 

  = 
1
2 (3)  + 

1
5 (1)  =  1.7  . 
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Practice 7: Calculate the Riemann sum for  f(x) = 1/x  on the partition  {1, 4, 5} using the values   
 c1 = 3, c2  = 4 .   
 

Practice 8: What is the smallest value a Riemann sum for  f(x) = 1/x  and the partition   {1, 4, 5}   can 
have?  (You will need to select values for c1  and  c2.)  What is the largest value a Riemann 

sum can have for this function and partition? 
 

Table 2 shows the results of a computer program that calculated Riemann sums for the function  f(x) = 1/x 
with different numbers of subintervals and different ways of selecting the points  ci  in each subinterval.  

When the mesh of the partition is small (and the number of subintervals large), all of the ways of selecting 
the ci  lead to approximately the same number for the Riemann sums.  For this decreasing function, using 

the left endpoint of the subinterval always resulted in a sun that was larger than the area.  Choosing the 

right end point gave a value smaller that the area.  Why? 
 
  
 Table 2:   Riemann sums for  f(x) = 1/x  on the interval  [1,5]   
 
    Values of the Riemann sum for different choices of  ck 

 number of   mesh ck = left edge  ck = "random" point ck = right edge 
 subintervals   =  xk–1    in [xk–1 , xk ]  =  xk  

 
  4 1 2.083333  1.473523 1.283333 
  8 .5 1.828968  1.633204 1.428968  
  16 .25 1.714406  1.577806 1.514406  
  40 .1 1.650237  1.606364 1.570237  
  400 .01 1.613446  1.609221 1.605446  
  4000 .001 1.609838  1.609436 1.609038  
 
 As the mesh gets smaller, all of the Riemann Sums seem to be approaching  

 the same value, approximately  1.609 .  (ln 5 = 1.609437912) 
 
 

Example 7: Find the Riemann sum for the function  f(x) = sin(x) on the interval [0, π] using the 
partition  {0, π/4, π/2, π}  with  c1 = π/4, c2 = π/2, c3 = 3π/4. 

 
Solution:  The 3 subintervals  (Fig. 14)  are  [0, π/4], [π/4, π/2], and [π/2,π]  so  ∆x1 = π/4, ∆x2 = π/4 and  

∆x3 = π/2.  The Riemann sum for this partition is 
 

 ∑
k=1

3
  f(ck).∆xk = sin(π/4).(π/4) + sin(π/2).(π/4) + sin(3π/4).(π/2)  

  =   
2

2   . 
π
4    +  1 . 

π
4    + 

2
2    . 

π
2    ≈   2.45148 . 

 

Practice 9: Find the Riemann sum for the function and partition in the  
 previous example, but use    c1 = 0, c2 = π/2, c3 = π/2. 
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Two Special Riemann Sums: Lower & Upper Sums  
 
Two particular Riemann sums are of special interest because they represent the extreme possibilities for  

Riemann sums for a given partition. 
 
 
   Definition: Suppose  f is a positive function on [a,b], and P is a partition of [a,b]. 
 Let   mk  be the x–value in the kth subinterval so that f(mk) is the minimum value of  f  in   

 that interval, and let  Mk be the x–value in the kth subinterval so that f(Mk) is the maximum  

 value of  f  in that interval.  
 

  LSP: ∑
k=1

n
  f(mk).∆xk   is the lower sum of  f  for the partition P.  

  USP: ∑
k=1

n
  f(Mk).∆xk   is the upper sum of  f  for the partition P. 

   
Geometrically, the lower sum comes from building rectangles under the graph of  f  (Fig. 15a), and the 

lower sum (every lower sum) is less than or equal to the exact area A:  LSP ≤ A  for every partition  P.  The 

upper sum comes from building rectangles over the graph of  f  (Fig. 15b), and the upper sum (every upper 

sum) is greater than or equal to the exact area A:   

USP ≥ A   for every partition  P.  The lower and 

upper sums provide bounds on the size of the exact 

area:   
 LSP ≤ A ≤ USP.  
 
For any  ck  value in the kth subinterval,   

f(mk) ≤ f(ck) ≤ f(Mk) ;  so, for any choice of the  ck  values, the Riemann sum  RSP = ∑
k=1

n
  f(ck).∆xk  satisfies 

  ∑
k=1

n
  f(mk).∆xk ≤ ∑

k=1

n
  f(ck).∆xk  ≤ ∑

k=1

n
  f(Mk).∆xk  or, equivalently,   LSP ≤  RSP   ≤ USP.  

 
The lower and upper sums provide bounds on the size of all Riemann sums. 
 
The exact area A  and every Riemann sum  RSP  for partition P  both lie 

between the lower sum and the upper sum for P  (Fig. 16).  Therefore,  

if the lower and upper sums are close together then the area and any 

Riemann sum for P must also be close together.  If we know that the  

upper and lower sums for a partition P are within  0.001 units of each other, 

then we can be sure that every Riemann sum for partition P is  

within 0.001 units of the exact area. 
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Unfortunately, finding minimums and maximums can be a time–consuming business, and it is usually not 

practical to determine lower and upper sums for "wiggly" functions.  If  f  is monotonic, however, then it is 
easy to find the values for mk and   Mk , and sometimes we can explicitly calculate the limits of the lower 

and upper sums. 
 

For a monotonic bounded function we can guarantee that a Riemann sum is within a certain distance of the 

exact value of the area it is approximating. 
 

Theorem: If f  is a positive, montonically increasing,  bounded function on [a,b],  

 then for any partition P and any Riemann sum for P, 
 

  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫ distance between the

 Riemann sum and 
 the exact area 

   ≤  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫ distance between the 

 upper sum and 
 the lower sum 

  ≤ {f(b) – f(a)}.(mesh of P ). 

 

Proof: The Riemann sum and the exact area are both between the upper and lower sums so the distance 

between the Riemann sum and the exact area is less than or equal to the distance between the upper 

and lower sums.  Since  f  is monotonically increasing, the areas representing the difference of the 

upper and lower sums can be slid into a rectangle 

(Fig. 17) whose height equals  f(b)–f(a) and 

whose base equals the mesh of P.  Then the total 

difference of the upper and lower sums is less 

than or equal to the area of the rectangle, {f(b)–

f(a)}.(mesh of P) . 

 

 
PROBLEMS 
 
In problems 1 – 6 , rewrite the sigma notation as a summation and perform the indicated addition. 
 

1. ∑
k=2

4
  k2  2. ∑

j=1

5
 (1 + j)   3. ∑

n=1

3
 (1 + n) 2  

 

4. ∑
k=0

5
 sin(πk)   5. ∑

j=0

5
 cos(πj)   6. ∑

k=1

3
 1/k   

 
In problems 7 – 12, rewrite each summation using the sigma notation.  Do not evaluate the sums. 
 
7. 3 + 4 + 5 + . . . + 93 + 94 8. 4 + 6 + 8 + . . . + 24 9. 9 + 16 + 25 + 36 + . . . + 144 
 

10. 
3
4  + 

3
9  + 

3
16  + . . . + 

3
100   11. 1.21 + 2.22 + 3.23 + . . . + 7.27   12. 3 + 6 + 9 + . . . + 30 
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In problems  13  – 15 , use the values of  ak  and  bk  in Table 3  and  verify that the value in part (a) does 

equal the value in part (b). 
 k ak bk       
 1 1 2 
 Table  3 2 2 2  
 3 3 2 

 

13. (a) ∑
k=1

3
 (ak + bk)  (b) ∑

k=1

3
  ak  + ∑

k=1

3
  bk  14. (a) ∑

k=1

3
 (ak – bk)  (b)  ∑

k=1

3
  ak  – ∑

k=1

3
  bk   

 

15. (a) ∑
k=1

3
  5ak (b) 5. ∑

k=1

3
  ak  

 
For problems  16  – 18 , use the values of  ak  and  bk  in Table 3  and  verify that the value in part (a) does 

not equal the value in part (b). 
 

16. (a) ∑
k=1

3
  ak.bk (b) ∑

k=1

3
  ak . ∑

k=1

3
  bk  17. (a) ∑

k=1

3
 (ak

2)  (b) ( ∑
k=1

3
  ak  )2

  

 

18. (a) ∑
k=1

3
  ak/bk (b) ( ∑

k=1

3
  ak) / ( ∑

k=1

3
  bk)  

 
For problems 19 – 30 ,  f(x) = x2 , g(x) = 3x , and  h(x) = 2/x.  Evaluate each sum. 
 

19. ∑
k=0

3
 f(k)  20. ∑

k=0

3
 f(2k)  21. ∑

j=0

3
 2f(j)  22. ∑

i=0

3
 f(1+i)  

 

23. ∑
m=1

3
 g(m)  24. ∑

k=1

3
 g( f(k) )  25. ∑

j=1

3
  g2(j) 26. ∑

k=1

3
  k.g(k) 

 

27. ∑
k=2

4
 h(k)  28. ∑

i=1

4
 h(3i)  29. ∑

n=1

3
  f(n).h(n) 30. ∑

k=1

7
 g(k).h(k)  

 

For problems 31 – 36 , write out each summation and simplify the result.  These are examples of 

"telescoping sums". 
 

31. ∑
k=1

7
  ( (k)2 – (k–1)2 )  32. ∑

k=1

6
  ( (k)3 – (k–1)3 )  33. ∑

k=1

5
  ( 

1
k  – 

1
k+1 )  

 

34. ∑
k=0

4
  ( (k+1)3 – (k)3 )  35. ∑

k=0

8
  ( k+1 – k )  36. ∑

k=1

5
 (xk – xk–1 )  
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For problems 37– 43 , (i)  list the subintervals determined by the partition P,  (ii)  find the values of ∆xi ,  

(iii)  find the mesh of P,  and   (iv)  calculate  ∑
i=1

n
  ∆xi  . 

37. P = { 2, 3, 4.5, 6, 7 } 38. P = { 3, 3.6, 4, 4.2, 5, 5.5, 6 } 39. P = {–3, –1, 0, 1.5, 2 } 
 
40. P is given in Fig. 18. 41. P is given in Fig. 19. 42. P is given in Fig. 20. 
 

 

43. For   ∆xi  =  xi – xi–1 ,  verify that    ∑
i=1

n
   ∆xi  = length of the interval  [a, b] .      

 
For problems  44 – 48 , (i) sketch the graph of  f  on the given interval,  (ii)  draw vertical lines at each  
point of the given partition,  (iii)  evaluate each  f(ci )  and sketch the corresponding rectangle, and (iv)  

calculate and add together the areas of the rectangles. 
44. f(x) = x + 1 ,  P = { 1, 2, 3, 4 } (a) c1 = 1, c2 = 3, and  c3 = 3. (b) c1 = 2, c2 = 2, and  c3 = 4. 
 
45. f(x) = 4 – x2 ,  P = { 0, 1, 1.5, 2 } (a) c1 = 0, c2 = 1, and  c3 = 2. (b) c1 = 1, c2 = 1.5, and  c3 = 1.5. 
 
46. f(x) = x  ,  P = { 0, 2, 5, 10 } (a) c1 = 1, c2 = 4, and  c3 = 9. (b) c1 = 0, c2 = 3, and  c3 = 7. 
 
47. f(x) = sin(x),  P = {0, π/4, π/2, π } (a) c1 = 0, c2 = π/4, and  c3 = π/2. (b) c1 = π/4, c2 = π/2, and   

 c3 = π. 
 
48. f(x) = 2x ,  P = { 0, 1, 3 } (a) c1 = 0, c2 = 2. (b) c1 = 1, c2 = 3. 
  

For problems  49 – 52 , sketch the function and find the smallest possible value and the largest possible 

value for a Riemann sum of the given function and partition. 
49. f(x) = 1 + x2  (a) P = { 1, 2, 4, 5 } (b) P = { 1, 2, 3, 4, 5 } (c) P = { 1, 1.5, 2, 3, 4, 5 } 
 
50. f(x) = 7 – 2x (a) P = { 0, 2, 3 } (b) P = { 0, 1, 2, 3 } (c) P = { 0, .5, 1, 1.5, 2, 3 } 
 
51. f(x) = sin(x) (a) P = { 0, π/2, π } (b) P = { 0, π/4, π/2, π } (c) P = { 0, π/4, 3π/4, π } 
 
52. f(x) = x2 – 2x + 3 (a)  P = { 0, 2, 3} (b) P = { 0, 1, 2, 3 }  (c) P = { 0, .5, 1, 2, 2.5, 3 } 
 
Upper and Lower Sum Problems 
 
53. Suppose  LSP = 7.362  and  USP = 7.402   for a positive function  f  and a partition  P of the interval   

 [ 1, 5].  We can be certain that every Riemann sum for the partition P is within what distance of the 
exact value of the area between the graph of  f  and the interval  [ 1,5] ?  (b)  What if  LSP = 7.372  and  

USP = 7.390 ? 
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54. Suppose we divide the interval  [ 1, 4]  into 100 equally wide subintervals and calculate a Riemann 
sum  for  f(x) = 1 + x2  by randomly selecting a point  ci  in each subinterval.  We can be certain that 

the value of the Riemann sum is within what distance of the exact value of the area between the graph 

of  f  and the interval  [ 1, 4] ?  (b)  What if we take 200 equally long subintervals? 
 

55. If we divide the interval  [ 2, 4]  into 50 equally wide subintervals and calculate a Riemann sum  for  
f(x) = 1 + x3  by "randomly" selecting a point  ci  in each subinterval (any point ci  in the subinterval), 

then we can be certain that the Riemann sum is 

within what distance of the exact value of the  

 area between  f  and the interval  [ 2, 4] ? 
 

56. If  f  is monotonic decreasing on  [a , b]  and we 

divide the interval  [a, b] into  n  equally wide 

subintervals (Fig. 21), then we can be certain  

 that the Riemann sum is within what distance  

 of the exact value of the area between  f  and  

 the interval  [a, b].   
 
 
 
 

 
Summing Powers of Consecutive Integers 
 
Explicit formulas for some commonly encountered summations are known and are useful for explicitly  

evaluating some Riemann sums and their limits.  The formulas below are included here for your reference.  

They will not be used or needed in the following sections. 
 
The summation formula for the first n positive integers is relatively well–known, has several easy but  

clever proofs, and even has an interesting story.  
 

 1 + 2 + 3 + . . .  + (n–1) + n  =  ∑
k=1

n
 k   =   

n(n+1)
2   

 
Proof:  Let  S represent the sum  1 + 2 + 3 + . . .  + (n–2) + (n–1) + n .  Rearranging the summands, we  

also know  S =  n + (n–1) + (n–2) + . . . + 3 + 2 + 1.  Adding these 2 representations of  S  together, 
 
  S = 1 + 2  + 3 + . . . + (n–2)  + (n–1) +  n 
 + S = n + (n–1) + (n–2) + . . . + 3  +  2  +  1  

 2S = (n+1) + (n+1) + (n+1) + . . .  + (n+1) + (n+1) + (n+1) = n.(n+1) 
 

 so   S = 
n(n+1)

2    , the desired formula. 
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It is said that Gauss discovered this formula for himself at the age of  5.  His teacher, planning on keeping 

the class busy for a while, asked the students to add the integers from 1 to 100.  Gauss thought a few 

minutes, wrote his answer on his slate, and turned it in.  According to the story, he then sat smugly while 

his classmates struggled with the problem. 

 
57. Find the sum of the first 100 positive integers in 2 ways: (1)  using Gauss' formula, and (2) using  

 Gauss' method. 
 
58. Find the sum of the first 10 odd integers.   

 (Each odd integer can be written in the form  2k – 1 for k = 1, 2, 3, . . . )  
 
59. Find the sum of the integers from 10 to 20. 
 
Formulas for other integer powers of the first n integers have been discovered: 
 

∑
k=1

n
 k  =  

1
2  n2 + 

1
2  n  =  

n(n+1)
2    ∑

k=1

n
  k2 =  

1
3  n3 + 

1
2  n2 + 

2
12  n  =  

n(n+1)(2n+1)
6      

 

∑
k=1

n
  k3 =  

1
4  n4 + 

1
2  n3 + 

3
12  n2 + 0.n  =  ( 

n(n+1)
2    )2 

 

∑
k=1

n
  k4 =  

1
5  n5 + 

1
2  n4 + 

4
12  n3 + 0.n2 – 

1
30  n  =  

n(n+1)(2n+1)(3n2+3n–1)
30   

 
In problems 60 – 62 , use the properties of summation and the formulas for powers to evaluate each sum. 
 

60. ∑
k=1

10
 (3 + 2k + k2 )  61. ∑

k=1

10
  k.(k2 + 1)  62. ∑

k=1

10
  k2.(k – 3)  

 
 
 
 
 
 
 
 
 
Section 4.1 PRACTICE  Answers 
 

Practice 1: (a)  ∑
k=1

5
 k3  = 1 + 8 + 27 + 64 + 125 . (b)  ∑

j=2

7
 (–1)j 

1
j    = 

1
2   – 

1
3   + 

1
4   – 

1
5   + 

1
6   –  

1
7 

 . 

  (c)  ∑
m=0

4
 (2m+1)  = 1 + 3 + 5 + 7 + 9 . 
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Practice 2: (a)  ∑
k=2

5
 g(k)  = g(2) + g(3) + g(4) + g(5) = 1 + (–2) + 3 + 5 = 7 

 

 (b)  ∑
j=1

4
 h(j)   = h(1) + h(2) + h(3) + h(4) = 3 + 3 + 3 + 3 = 12 

 

 (c)  ∑
k=3

5
 ( g(k) + f(k–1) )  = (g(3) + f(2)) + (g(4) + f(3)) + (g(5) + f(4)) = (–2+3)+(3+1)+(5+0) = 10 

 
 

Practice 3: For g(x) = 1/x,  ∑
k=2

4
 g(k)   = g(2) + g(3) + g(4) = 

1
2  + 

1
3  + 

1
4   = 

13
12    and   

  ∑
k=1

3
 g(k+1)   = g(2) + g(3) + g(4) =  

13
12  . 

 

Practice 4: Rectangular areas = 1 + 
1
2  + 

1
3  + 

1
4   = 

25
12   =  ∑

j=1

4
  1

j     . 

 
Practice 5: f(x0)(x1 – x0) + f(x1)(x2 – x1) + f(x2)(x3 – x2)  
 

  =  ∑
j=1

3
   f( xj–1 ) (xj  –  xj–1 )  or  ∑

k=0

2
   f( xk ) (xk+1  –  xk ) . 

 
Practice 6: Interval is  [3, 8].  6 subintervals.  mesh = length of longest subinterval = 1.2 . 
  x2 = 4.8  and  ∆x2  = x2 – x1 = 4.8 – 3.8 = 1 . 

 

Practice 7: RS = (3)( 
1
3  ) + (1)( 

1
4  ) = 1.25 

 

Practice 8: smallest RS = (3)( 
1
4  ) + (1)( 

1
5  ) = 0.95 largest RS = (3)( 1 ) + (1)( 

1
4  ) = 3.25 

 

Practice 9: RS = (0)( 
π
4  ) + (1)( 

π
4  ) + (1)( 

π
2  ) ≈ 2.356 . 

 
 


