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Overview 

• Why model and analyze concurrent systems? 
• How are concurrent systems modeled? 
• How are concurrent systems analyzed? 
• What tools are available for modeling and 

analyzing concurrent systems? 
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References 
Principles of Model Checking 

Christel Baier and Joost-Pieter Katoen, MIT 
Press 

Some of the slides use diagrams and text 
extracted from the above book 

 
Tool: UPPAAL model checker 
http://www.uppaal.org/ 
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Overview 

• Why model and analyze concurrent systems? 
• How are concurrent systems modeled? 
• How are concurrent systems analyzed? 
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Why model concurrent systems? 
• Distributed, concurrent systems are becoming 

commonplace, but they are notoriously difficult to 
develop 
– network applications, data communication protocols, multithreaded code, 

client-server applications 

• Concurrency-specific errors: deadlock, livelock 
– A deadlock occurs when the system has reached a state in 

which no work is done but at least one process in the system 
needs to complete its tasks 

– A livelock occurs when the processes in a system are stuck in 
a repetitive task and make no progress towards their 
functional goals. 

• These types of behavioral errors can be mechanically 
detected if the systems are properly modeled and 
analyzed 5 



Common flaws in concurrent system 
modeling 

• Underspecification: Model is incomplete, imprecise or allows behavior 
that should not be allowed (i.e., model is too permissive). 

• Overspecification: Model disallows behavior that should be allowed, that 
is, model is to restrictive 

• Violations of safety properties: A safety property is a property that must 
not be violated  
– “nothing bad happens”; a bad behavior should never occur 
– An invariant is an example of a safety property 
– Example 1: Mutual exclusion property – at most one process is in its critical section 

at any given time 
– Example 2: Absence of deadlocks 

• Violations of liveness properties: Set of  properties that a system must 
satisfy, i.e., properties that require desired events to eventually occur 
– “something good eventually happens” 
– Example 1: Starvation freedom, e.g., each process waiting to enter its critical 

section will eventually enter its critical section. 
– Example 2: Progress: A process will eventually perform a non-skip step 
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What is Model Checking? 
• “Model checking is an automated technique 

that, given a finite-state model of a system 
and a logical property, systematically checks 
whether this property holds for (a given initial 
state in) that model.” [Clarke & Emerson 
1981]: 

• Model checking tools automatically verify 
whether M∣=φ, holds, where M is a (finite-
state) model of a system and property φ is 
stated in some formal notation. 
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Model Checking process 

1. Construct a model of the system (M) 
2. Formalize the properties of the system that will 

be evaluated in the model (P) 
3. Use a model checker to determine if M satisfies 

P. Three results are possible: 
1. The model M satisfies the property P, i.e. M |= P 
2. M does not satisfy P; in this case a counterexample is 

produced 
3. No conclusive result is produced by the model 

checker (model checker ran out of space or time)  
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What is meant by “model” in “model 
checker”? 

• The term “model” as used in “model checker” is an 
assignment of values to variables in a logical formula 
that makes the formula true. Alternatively, a formula 
defines a family of “models” or instances (where an 
instance satisfies the formula) 
– For example, a model of a proposition is an assignment of 

truth values to the proposition variables that makes the 
proposition true (e.g., a line in a truth table is a model) 

• A model checker checks whether a system model is an 
instance of the property 
– That is, it checks if the system model is an assignment of 

values to variables in the property that makes the property 
true.    
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Model of a formula: An example 

• Some y: Year, All s:Student| advisedByRF(s) 
and completedThesis(s,y) implies 
academicPosition(s) 

• Model 
– Student = {DT, DS, RR, ES, EG} 
– advisedByRf = {DS, ES, RR, EG} 
– completeThesis = {(DT,98), (DS, 08), (RR,08), 

(ES,08), (EG,03)} 
– academicPositions = {EG, DS, RR, ES} 
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Is the Alloy Analyzer a Model Checker? 

• No! It is a Model Finder 
• The Analyzer generates an instance that 

satisfies the constraints in signatures, 
facts and the condition in the predicates 
or assertions. 
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Use of the term “model” in this course 

• We use the term “model” in this course to 
refer to an abstraction of a software system 

• We’ll continue to use the term in this sense 
• When model-checking a software model 

against a formally expressed property we’re 
checking that the software model is a 
mathematical model of the property. 
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Overview 

• Why model and analyze concurrent systems? 
• How are concurrent systems modeled? 
• How are concurrent systems analyzed? 
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How can we describe a system so that it 
can be mechanically model-checked? 

• Focus on linear temporal behavioral properties 
– Linear model of time; no branching in the timeline 

over which behaviors are observed 
• Behaviors expressed in terms of Transition 

Systems that describe the effect of operations on 
the system’s state. 

• A linear temporal (LT) property characterizes a 
set of state transitions 

• A model satisfies a linear temporal property if the 
state transitions it defines are all included in the 
transitions characterized by the LT property. 
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Transition systems 
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Using Transition Systems to model 
system behavior 

• A Transition System (TS) is a directed graph 
where nodes represent states and edges 
represent transitions between states 

• A state describes information about a system at a 
particular point in time (cf. state in Alloy) 
– E.g., the state of a traffic light indicates the color of 

the light that is illuminated at a point in time 

• A transition describes the conditions under which 
a system moves from one state to another. 
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A (toy) example of a simple TS 
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This image cannot currently be displayed.

Transitions are associated with action labels that indicate the actions 
that cause the transition. 

• insert_coin is a user action 
 
• get_soda, get_beer are actions performed by the machine 
 
• τ denotes an activity that is not of interest to the modeler (e.g., 
it represents an internal activity of the vending machine) 



Transition System (TS): Formal Definition 

A transition system TS is a tuple (S, Act,→, I,AP, L) where 
–  S is a set of states, 
– Act is a set of actions, 
– -> ⊆ S × Act × S is a transition relation (the first element in the triplet is the source state, 

the second element is an action and the third element is the target state of the transition) 
– I ⊆ S is a set of initial states, 
– AP is a set of atomic propositions, and 
–  L : S →2AP   is a labeling function (2AP  is the power set of AP) 

 
TS is called finite if S, Act, and AP are finite. 
 
(s, act, s’) in -> is written as s -act-> s’ 
 
L(s) are the atomic propositions in AP that are satisfied in state s. 
Given a formula, f, a state s satisfies f (i.e., is a model of f) if and only if f 

can be derived from the atomic propositions associated with state s 
via the labeling function L, that is: 

s |= f iff L(s) |= f 
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Toy example again 

S = {pay, select, soda, beer}  
I = {pay}  
Act = {insert_coin, get_soda, get_beer, T} 

-> = {(pay, insert_coin, select), (beer, get_beer, 
pay), (soda, get_soda, pay), (select, τ , soda), 
(select, τ , beer)} 19 

This image cannot currently be displayed.



Atomic propositions in the toy Example 

The atomic propositions in a 
transition system are chosen 
based on the properties the 
modeler wants to check. 
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This image cannot currently be displayed.

Example property to verify: The vending machine only delivers 
a drink after the user pays (inserts a coin). 

Relevant atomic propositions: AP = {paid, delivered}  
Appropriate Labeling function: 
 L(pay) = empty set 
 L(soda)=L(beer)={paid, delivered} 
L(select)={paid} 



Using non-determinism to under-
specify a problem 

• The toy model is non-deterministic: When the system 
enters the “select” state, the transition system non-
deterministically chooses to dispense beer or soda (i.e., it 
makes a choice that cannot be determined beforehand by 
examining the model). 

• In this case the model deliberately abstracts over the 
mechanism a vending machine customer uses to select 
soda or beer 
– In other words, the modeler is leaving open the choice of how 

this is done; someone implementing the model needs to resolve 
this non-determinism to make the system deterministic 

• Non-deterministic choice is also used to model concurrent 
(parallel) behavior as we will see later. 
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Action-Deterministic TS 
• TS = (S, Act, ->, I, AP, L) is action-deterministic 

if  
– There is at most one initial state  

• #(I) <= 1 (# returns the number of elements in its set 
argument) 

– For all states s in S and actions act in Act, there is 
at most one transition labeled with the action act 
that leaves the state s, i.e. 

• #(Post(s,act)) <= 1, where Post(s,act) are all the target 
states associated with s via transitions labeled with act; 
i.e., Post(s,act) = {s’: State | s –act-> s’} 
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AP-Deterministic TS 

• TS = (S, Act, ->, I, AP, L) is AP-deterministic if  
– There is at most one initial state  

• #(I) <= 1 

– For all states s in S and proposition A in 2AP, there 
is at most one next state s’ in which A holds 

• For all states s in S, and A in 2AP, #(Post(s) intersect 
{s’:State | L(s’) = A}) <= 1, where Post(s) consists of all 
the target states associated with s via transitions; i.e., 
Post(s) = Uact in Act Post(s,act) 
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Observable behavior 

• Often useful to have behavior that is observable 
by external agents be deterministic 

• Two observable views 
– Action-based view: only the actions are observable  
– State-based view: only the states, via the propositions 

associated with them, are observable 

The two notions of deterministic behavior 
discussed in the previous slides support these 
views. 
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Executions of a TS 
• TS Executions formalize the notion of behavior in a modeled 

system 
• A finite execution fragment of a TS is a sequence of state 

transitions.  
– For example, s0-act1->s1, s1-act2->s3, is written as an alternating 

sequence of states and actions that ends in a state, s0,act1,s1,act2,s3 

• An infinite execution fragment is an infinite sequence of 
transitions 

• A maximal execution fragment is either a finite execution 
fragment that ends in a final state, or an infinite execution 
fragment.  
– An execution fragment is called initial if it starts in an initial state. 

• An execution of a transition system is an initial maximal 
execution fragment 

25 



Executions of the vending machine 
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Reachability of states: A state in a transition 
system is reachable if there is an initial finite 
execution fragment that ends in s. 



Modeling concurrent systems that 
manipulate data 

• In software the transition from one state to 
another often depends on conditions expressed 
in terms of data 
– Conditional transitions are higher-level constructs 

used to describe actions that are performed only 
under certain conditions 

• Models with conditional transitions are called 
program graphs 
– Program graphs are “higher-level” in that they can be 

transformed into TSs (Note: TSs do not have 
conditional transitions) via a process called unfolding 
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Extended vending machine example 
• Vending machine extended to: 

– to maintain information on number of beers and 
soda in machine 

• nsoda: variable that stores number of soda in vending 
machine at a particular time 

• nbeer: variable that stores number of beer in vending 
machine at a particular time 

– return coins entered by user if product is not 
available 

• ret_coin: represents the return coin action 
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Program graph of the extended vending machine 

select and start are called locations 
nsoda, and nbeer are variables 
coin, refill, sget, bget, ret_coin are actions 29 



A simple text representation of the 
vending machine PG 

start:  
 coin; go to select 
 refill{nsoda := max; nbeer := max}; go to start 
select: 
 nsoda > 0:: sget{nsoda := nsoda -1}; go to start 
 nbeer > 0:: bget{nbeer := nbeer-1}; go to start 
 nsoda = 0 and nbeer = 0:: ret_coin; go to start 
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Unfolding the vending machine PG 
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bget sget 



Program Graphs 
• A program graph over a set of typed variables, 

Var, consists of nodes representing locations 
and edges representing conditional transitions 
– In the vending machine example Var = {nsoda, 

nbeer} 
• A program graph also defines effects of 

actions on the variables 
– An effect is a function that takes an action and an 

assignment of values to variables and returns a 
new assignment of values to variables (the new 
assignment is the effect of the action) 
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Program Graph (PG): Formal Definition 

A program graph PG over set Var of typed variables is a tuple 
(Loc, Act, Effect,->, Loc0, g0) where 

• Loc is a set of locations and Act is a set of actions, 
• Effect : Act × Eval(Var) --> Eval(Var) is the effect function, 

– Eval(Var) is the set of assignments of values to variables in Var, 
e.g.,{ <nbeer:= 10, nsoda:=20>, <nbeer:= 1, nsoda:=20>, 
<nbeer:=0, nsoda:=4>, …} is the set of assignments when Var = 
{nbeer, nsoda} 

• -> ⊆ Loc × Cond(Var) × Act × Loc is the conditional 
transition relation, 
– Cond(Var) is the set of all Boolean conditions (propositions) over 

Var 
• Loc0 ⊆ Loc is a set of initial locations, 
• g0 ∈ Cond(Var) is the initial condition. 
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Vending machine program graph 
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Loc={start, select} 
Var={nsoda, nbeer} 
Act={bget, sget, coin, ret_coin, refill} 
Effect(coin, η) = η 
Effect(ret_coin, η) = η 
Effect(sget, η) = η [nsoda’ = nsoda - 1] 
Effect(bget, η) = η [nbeer’ = nbeer - 1] 
Effect(refill, η) = η [nsoda’=max, nbeer’=max] 
In the above η is an assignment of values to variables in Var 
η[v’=f(v)] means that the new assignment to variable v is a 

function, f, of the previous assignment of v and all other 
variable assignments are unchanged 



TS semantics of program graphs 
• The TS is produced by unfolding the program graph 

– You can think of unfolding as a representation of the 
execution of a program described by a PG 

• A state consists of a location (a point in the program) 
and an assignment of values to variables: <l,η> 

• An initial state consists of an initial location and an 
assignment that satisfies the condition g0 defined in the 
PG 
–  <l0,η> is an initial state if l0 is an initial location and η|= g0 

• The propositions consists of the locations together 
with Cond(Var) 
– The proposition loc is true in any state of the form <loc, 

η>, and false otherwise 
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Transition System Semantics of a Program Graph 
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Structured Operational Semantics 

• The semantics defined previously is an 
example of SOS 

• The semantics uses inference rules of the form 
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Using transition systems to 
model concurrent behavior 
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Concurrent systems 

• A concurrent (parallel) system consists of 
multiple processes executing concurrently (in 
parallel). 

• If a concurrent system consists of n processes, 
in which each process, proci, is modeled by a 
transition system TSi, the concurrent system 
can be modeled by a transition system 
TS = TS1 || TS2 || … || Tsn 
– where || is a parallel composition operator 
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Types of parallel composition operators 
• Interleaving 

– Actions of concurrent processes are interleaved in a non-deterministic 
manner 

– Used to model processes whose behaviors are completely 
independent (asynchronous system of processes) 

• Communication via shared variables 
– A process can influence the behavior of another process by changing 

the value of a variable that is shared with the process 
• Handshaking 

– Two processes that want to interact must synchronize their actions 
such that they take part in the interaction at the same time 

• Channel systems 
– In a channel system processes interact by reading from and writing to 

channels connecting them 
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Interleaving 
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Interleaving of processes 
• When processes can execute in a completely 

independent manner (with no interactions) one 
can view the system of processes as one system 
consisting of the actions of each process merged 
(interleaved) in an arbitrary manner 
– In this system concurrency means that the order in 

which the actions are performed does not affect the 
final result; i.e., P1.act1;P2.act2 produces the same 
result as P2.act2;P1.act1, where Pi.acti is an action 
performed by process Pi (i=1 or i =2) 

• The interleaving view is an abstraction in which 
only one processor is assumed available to 
execute the processes 
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Interleaving of Traffic Light Transition Systems 
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Consider a system with two traffic  
lights, each modeled by a transition 
system 

Interleaved System 
Interleaving operator: ||| 



Effect of an interleaving operator 
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The above states that the order in which the 
actions α, β are performed does not matter.  

||| is the interleaving operator 
; is sequential composition 
+ represents non-deterministic choice 
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Note that 
variables are not 
shared across 
processes 

Effect of an interleaving operator: An 
example 



Formal definition of interleaving 
operator 
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Communication via Shared 
Variables 
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Modeling non-asynchronous systems 

• Interleaving operator requires that processes 
are completely independent 

• What happens if processes access data that is 
globally accessible (global data)? 

• See example on next slide 

48 



Interleaving in the presence of shared 
variables 
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This image cannot currently be displayed.

Consider the program graph describing 2 actions from 2 
processes, PG1, PG2, that access a global variable x 
(locations are omitted to simplify the presentations) 
α: x := 2 * x  
β: x := x + 1  
(α ||| β) = (x := 2 * x ||| x := x + 1)   

TS(PG1) TS(PG2) TS(PG1)|||TS(PG2) 



Modeling processes that access global 
variables 

• An interleaving operator, |||, on program 
graphs (rather than transition systems) is used 
– PG1 ||| PG2 

• TS(PG1 ||| PG2) describes a TS that treats 
shared variables appropriately 

• In general,  
– TS(PG1 ||| PG2) ≠ TS(PG1) ||| TS(PG2)  
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Interleaving of Two Example Program Graphs 
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location 
conditional 
transition with 
assignment action 

Interleaved 
PG 

Transition 
system for 
interleaved 
PG 



Interleaving of Program Graphs 
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Non-determinism 

• Non-determinism in a state of a TS produced by a 
interleaved PG can be interpreted in 3 ways: 
1. As an internal non-deterministic choice made in the 

PG 
2. As an interleaving of actions that access variables 

that are not shared (referred to as non-critical 
actions) 

3. As the resolution of a contention between actions of 
PG1 and PG2 that access global variables (referred to 
as critical actions) 
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Accessing global variables 

• Critical actions are those that access global 
variables 

• Access to global variables needs to be 
controlled 
– Only one critical action can access a global 

variable at any time 
– How do we ensure this? The mutual exclusion 

problem 
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Mutual exclusion using semaphores 
• Two processes with critical actions use a shared 

variable, y,  called a semaphore to determine 
when they can perform their critical actions, i.e., 
enter their critical sections. 
– y = 0 indicates that one process is executing its critical 

actions (i.e., is in its critical section), and thus the 
other cannot execute its critical actions; The process 
that is executing its critical section in essence locks 
access to the global variables. 

– y = 1 indicates that none of the processes are in their 
critical sections (access to the global variables is 
unlocked) 
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Critical vs. non-critical sections 
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Program graphs for semaphore-based 
mutual exclusion 
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Reachable states 



TS(PG1|||PG2) 
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Peterson’s mutual exclusion algorithm 
• In the semaphore approach the choice of which 

process enters its critical section is made non-
deterministically 
– That is, it is up to the implementer of the model to 

determine how the next process to enter its critical section 
is selected 

• Peterson’s algorithm makes an explicit choice 
• Uses variables b1, b2, and x 

– b1:Boolean - true if P1 is waiting to enter its critical section 
or is in its critical section (i.e., b1 = wait1 or crit1) 

– b2:Boolean - true if P2 is waiting to enter its critical section 
or is in its critical section 

– x:{1,2} - if x = 1 then P1 can enter its critical section; else (x 
= 2) P2 can enter its critical section 
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Transition System 

62 

As an exercise draw the interleaved program graph 
used to produce the transition system shown below. 
Notational shortcuts: 
n1, n2: noncrit1, noncrit2; w1, w2: wait1, wait2; c1, c2: 
critical1, critical2 



Atomicity 

• The assignment group (bi:=true; x:=i), where i = 1 
or 2, are atomic, i.e., together they are treated as 
a single action; the individual assignments cannot 
be interleaved with other actions 

• This is not essential for Petersen’s algorithm to 
work 
– Mutual exclusion can also be ensured when the 

processes perform these actions in the given order 
– Mutual exclusion is NOT guaranteed if the operations 

are performed in reverse  order, i.e., (x:=i,; bi:=true) 
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Example of violation of mutual 
exclusion 
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Handshaking 
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Synchronous interactions 
• Processes can also interact through a set of 

synchronizing actions, H, called handshake 
actions 

• Processes interact only if they all can perform the 
same handshake action at the same time 
– i.e., the models must “shake hands” for the 

interaction to take place 
• These actions may involve the transfer of data 

– This transfer will be ignored in the models we 
consider, i.e., we are interested only in the occurrence 
of the handshake and not in the data that is 
exchanged 
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Handshaking (Synchronous Message Passing) 
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Handshaking forms 

68 

Empty set of handshake actions reduces to interleaving 

Models broadcasting communication 



Mutual exclusion using an Arbiter 
process 

• Model the semaphore as a separate process, 
called an Arbiter 

• Example: TS1 and TS2 are the transition 
systems of the parallel processes and Arbiter 
is the semaphore process 

69 



70 

request 

release 

request 

request 
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release 
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Railroad crossing example 

• Three processes in the system: Train, Gate, 
Controller. 

• When the Controller receives a signal that a 
train is approaching it closes the gate 

• The gate is opened only after the train has 
sent a signal to the Controller indicating it has 
crossed the road. 
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Channel Systems 
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Asynchronous message passing 
• Processes interact by passing information to each 

other via channels of finite or infinite capacity 
– A channel is like a buffer 

• System thus consists of processes and channels 
• If channel capacity > 0 the processes do not need 

to wait for a response from receiver when 
sending a message 

• If channel capacity is 0 then this form of 
interaction reduces to handshaking 

• Each channel can accept messages of a specified 
type only 
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Communication actions 

76 

Processes can perform the following communication 
actions: 



Formal definition 
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Enabling communication actions 
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Example: Alternating Bit Protocol 
• System consists of two processes, S (sender), R (receiver) that 

communicate over two channels, c, d 
• Channel c is unreliable (“lossy”) in that it can lose messages during 

transmission; channel d is perfect 
• The goal of the design is to ensure that data units (datums) transmitted by 

S are received by R 
– S sends data of the form <m,b>, where m is a message and b is a control bit 

that cab be either 0 or 1 
– S transmits a message and waits for R to acknowledge receipt; if an 

acknowledgement is not received within a given time S retransmits the 
message 

– If R receives the message then it sends an acknowledgement consisting of the 
control bit it received 
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PG for Sender 
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PG for Receiver, Timer 
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TS Semantics 
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Coming up 

• Why model and analyze concurrent systems? 
• How can concurrent systems be modeled? 
• How can concurrent systems be analyzed? 
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