
Modular Lattices for Compositional Interprocedural Analysis

Ghila Castelnuovo Mayur Naik Noam Rinetzky Mooly Sagiv Hongseok Yang
Tel-Aviv University Georgia Institute of Technology Tel-Aviv University University of Oxford

Abstract
Interprocedural analyses are compositional when they compute
over-approximations of procedures in a bottom-up fashion. These
analyses are usually more scalable than top-down analyses which
compute a different procedure summary for every calling context.
However, compositional analyses are rare in practice, because it is
difficult to develop such analyses with enough precision. In this
paper, we establish a connection between a restricted class of com-
positional analyses and so called modular lattices, which require
certain associativity between the lattice join and meet operations.
Our connection provides sufficient conditions for building a com-
positional analysis that is as precise as a top-down analysis.

We developed a compositional version of the connection pointer
analysis by Ghiya and Hendren which is slightly more conservative
than the original top-down analysis in order to meet our modular-
ity requirement. We implemented and applied our compositional
connection analysis to real-world Java programs. As expected, the
compositional analysis scales much better than the original top-
down version. The top-down analysis times out in the largest two of
our five programs, and the loss of precision due to the modularity
requirement in the remaining programs ranges only between 2-5%.

1. Introduction
Scaling program analysis to large programs is an ongoing challenge
for program verification. Typical programs include many relatively
small procedures. Therefore, a promising direction for scalability
is analyzing each procedure in isolation, using pre-computed sum-
maries for called procedures and computing a summary for the ana-
lyzed procedure. Such analyses are called bottom-up interprocedu-
ral analysis or compositional analysis. Notice that the analysis of
the procedure itself need not be compositional and can be costly. In-
deed, bottom-up interprocedural analyses have been found to scale
well [3, 5, 8, 14, 21].

The theory of bottom-up interprocedural analysis has been stud-
ied in [7]. In practice, designing and implementing a bottom-up
interprocedural analysis is challenging for several reasons: it re-
quires accounting for all potential calling contexts of a procedure
in a sound and precise way; the summary of the procedures can be
quite large leading to infeasible analyzers; and it may be costly to
instantiate procedure summaries. An example of the challenges un-
derlying bottom-up interprocedural analysis is the unsound original
formulation of the compositional pointer analysis algorithm in [21].
A corrected version of the algorithm was subsequently proposed
in [19] and recently proven sound in [15] using abstract interpre-
tation. In contrast, top-down interprocedural analysis [6, 17, 20] is
much better understood and has been integrated into existing tools
such as SLAM [1], Soot [2], WALA [9], and Chord [16].

This paper contributes to a better understanding of bottom-up
interprocedural analysis. Specifically, we attempt to characterize
the cases under which bottom-up and top-down interprocedural
analyses yield the same results. To guarantee scalability, we limit
the discussion to cases in which bottom-up and top-down analyses

use the same underlying abstract domains.
We use connection analysis [11], which was developed in the

context of parallelizing sequential code, as a motivating example
of our approach. Connection analysis is a kind of pointer analysis
that aims to prove that two references can never point to the same
weakly-connected heap component, and thus ignores the direction
of pointers. Despite its conceptual simplicity, connection analysis is
flow- and context-sensitive, and the effect of program statements is
non-distributive. In fact, the top-down interprocedural connection
analysis is exponential, and indeed our experiments indicate that
this analysis scales poorly.

Main Contributions. The main results of this paper can be sum-
marized as follows:
• We formulate a sufficient condition on the effect of commands

on abstract states that guarantees bottom-up and top-down inter-
procedural analyses will yield the same results. The condition is
based on lattice theory. Roughly speaking, the idea is that the
abstract semantics of primitive commands and procedure calls
and returns can only be expressed using meet and join opera-
tions with constant elements, and that elements used in the meet
must be modular in a lattice theoretical sense [13].

• We formulate a variant of the connection analysis in a way
that satisfies the above requirements. The main idea is to over-
approximate the treatment of variables that point to null in all
program states that occur at a program point.

• We implemented two versions of the top-down interprocedural
connection analysis for Java programs in order to measure the
extra loss of precision of our over-approximation. We also im-
plemented the bottom-up interprocedural analysis for Java pro-
grams. We report empirical results for five benchmarks of sizes
15K–310K bytecodes. The original top-down analysis times out
in over six hours on the largest two benchmarks. For the remain-
ing three benchmarks, only 2-5% of precision was lost by our
bottom-up analysis due to the modularity requirement compared
to the original top-down version.
This work is based on the master thesis of [4] which contains

additional experiments, elaborations, and proofs.

2. Informal Explanation
This section presents the use of modular lattices for compositional
interprocedural program analyses in an informal manner.

2.1 A Motivating Example
Fig. 1 shows a schematic artificial program illustrating the poten-
tial complexity of interprocedural analysis. The main procedure in-
vokes procedure p0, which invokes p1 with an actual parameter a0
or b0. For every 1 ≤ i ≤ n, procedure pi either assigns ai with
formal parameter ci-1 and invokes procedure pi+1 with an actual
parameter ai or assigns bi with formal parameter ci-1 and invokes
procedure pi+1 with an actual parameter bi. Procedure pn either as-
signs an or bn with formal parameter cn-1. Fig. 2 depicts the two

1

// a0,...,an,b0,...,bn,g1, and g2 are static variables

static main() {
g1 = new h1; g2 = new h2; a0 = new h3; b0 = new h4;
a0.f = g1; b0.f = g2;
p0();

}

p0() {if(*) p1(a0) else p1(b0)}

p1(c0) {
if(*) {a1 = c0; p2(a1)} else {b1 = c0; p2(b1)} }

p2(c1) {
if(*) {a2 = c1; p3(a2)} else {b2 = c1; p3(b2)} }

...
pn-1(cn-2) {

if(*) {an-1 = cn-2; pn(an-1)}
else {bn-1 = cn-2; pn(bn-1)}

}

pn(cn-1) if(*) {an = cn-1 else bn = cn-1}

Figure 1. Example program.

dconn = {{g1, a0, c0}, {g2, b0}, {a1}, {b1}, . . . , {an}, {bn}}
d′point = {〈a0, h3〉, 〈b0, h4〉, 〈c0, h3〉, 〈h3, f, h1〉, 〈h4, f, h2〉, 〈g1, h1〉, 〈g2, h2〉}

dconn = {{g1, a0}, {g2, b0, c0}, {a1}, {b1}, . . . , {an}, {bn}}
d′point = {〈a0, h3〉, 〈b0, h4〉, 〈c0, h4〉, 〈h3, f, h1〉, 〈h4, f, h2〉, 〈g1, h1〉, 〈g2, h2〉}

Figure 2. Concrete states at the entry of procedure p1 (see Fig. 1)
and the corresponding connection and points-to abstractions.

concrete states that can occur when the procedure p1 is invoked.
There are two different concrete states corresponding to the then-
and the else-branch in p0.

2.2 Connection Analysis and Points-to Analysis
Connection Analysis. We say that two heap objects are con-
nected in a state when we can reach from one object to the other by
following fields forward or backward. Two variables are connected
when they point to connected heap objects.

The goal of the connection analysis is to soundly estimate con-
nection relationships between variables. The abstract states d of
the analysis are families {Xi}i∈I of disjoint sets of variables. Two
variables x, y are in the same set Xi, which we call a connection
set, when x and y may be connected. Fig. 2 depicts two abstract
states at the entry of procedure p1. There are two calling contexts
for the procedure. In the first one, a0 and c0 point to the same heap
object, whose f field goes to the object pointed to by g1. In addi-
tion to these two objects, there are two further ones, pointed to by
b0 and g2 respectively, where the f field of the object pointed to

d1 = {{g1, a0, a1, a2, . . . , an-1, cn-1}, {g2, b0},
{an}, {b1}, . . . , {bn-1}, {bn}}

d2 = {{g1, a0, a1, a2, . . . , bn-1, cn-1}, {g2, b0},
{an-1}, {an}, {b1}, . . . , {bn}}

...
d(2n−1) = {{g1, a0, b1, b2, . . . , bn-1, cn-1}, {g2, b0},

{a1}, . . . , {an-1}, {an}, {bn}}
d(2n−1+1) = {{g1, a0}, {g2, b0, a1, a2, . . . , an-1, cn-1},

{an}, {b1}, . . . , {bn-1}, {bn}}
...

d2n = {{g1, a0}, {g2, b0, b1, b2, . . . , bn-1, cn-1},
{a1}, . . . , {an-1}, {an}, {bn}}

Figure 3. Connection abstraction at the entry of procedure pn of
the program in Fig. 1.

by b0 points to the object pointed to by g2. As a result, there are
two connection sets {a0, g1, c0} and {b0, g2}. The second calling
context is similar to the first, except that c0 is aliased with b0 in-
stead of a0. The connection sets are changed accordingly, and they
are {a0, g1} and {b0, g2, c0}. In both cases, the other variables are
pointing to null, and thus are not connected to any variable.
Points-to Analysis. The purpose of the points-to analysis is to
compute points-to relations between variables and objects (which
are represented by allocation sites). The analysis expresses points-
to relations as a set of tuples of the form 〈x, h〉 or 〈h1, f, h2〉. The
pair 〈x, h〉 means that variable x may point to an object allocated
at the site h, and the tuple 〈h1, f, h2〉 means that the f field of an
object allocated at h1 may point to an object allocated at h2. Fig. 2
depicts the abstract states at the entry to procedure p1. Also in this
case, there are two calling abstract contexts for p1. In one of them,
c0 may point to h3, and in the other, c0 may point to h4.

2.3 Top-Down Interprocedural Analysis
A standard approach for the top-down interprocedural analysis is to
analyze each procedure once for each different calling context. This
approach often has scalability problems. One of the reasons is the
large number of different calling contexts that arise. In the program
shown in Fig. 1, for instance, for each procedure pi there are two
calls to procedure pi+1, where for each one of them, the connection
and the points-to analyses compute two different calling contexts
for procedure pi+1. Therefore, in both the analyses, the number of
calling contexts at the entry of procedure pi is 2i.

Fig. 3 shows the connection-abstraction at the entry of proce-
dure pn. Each abstract state in the abstraction corresponds to one
path to pn. For example, the first state corresponds to selecting the
then-branch in all p0,...,pn-1, while the second state corresponds to
selecting the then-branch in all p0,...,pn-2 , and the else-branch in
pn-1. Finally, the last state corresponds to selecting the else-branch
in all p0,...,pn-1.

2.4 Bottom-Up Compositional Interprocedural Analysis
Bottom-up compositional analyses avoid the explosion of calling
context by computing for each procedure a summary which is in-
dependent of the input, and instantiating as a function of particular
calling contexts. Unfortunately, it is hard to analyze a procedure
independently of its calling contexts and at the same time compute
a summary that is sound and precise enough. One of the reasons is
that the abstract transfer functions may depend on the input abstract
state, which is often unavailable for the compositional analysis. For
example, in the program in Fig. 1, the abstract transformer for the
assignment ai = ci-1 in the points-to analysis is

[[ai = ci-1]]
](d) = (d\{〈ai, z〉|z ∈ Var})∪{〈ai, w〉|〈ci-1, w〉 ∈ d} .

2

Note that the rightmost set depends on the input abstract state d.

2.5 Modular Lattices for Compositional Interprocedural
Analysis

This paper formulates a sufficient condition for performing com-
positional interprocedural analysis using lattices theory. Our condi-
tion requires that the abstract domain be a lattice with a so-called
modularity property, and that the effects of primitive commands
(such as assignments) on abstract elements be expressed by apply-
ing the u and t operations to the input states. If this condition
is met, we can construct a bottom-up compositional analysis that
summarizes each procedure independently of particular inputs.

DEFINITION 1. Let D be a lattice. A pair of elements 〈d0, d1〉 is
called modular, denoted by d0Md1, iff

d v d1 implies that (d t d0) u d1 = d t (d0 u d1)

An element d1 is called right-modular if d0Md1 holds for all
d0 ∈ D. D is called modular if d0Md1 holds for all d0, d1 ∈ D.

Intuitively, a lattice is modular when it satisfies a restricted form
of associativity between its t and u operations [13]. (Note, for ex-
ample, that every distributive lattice is modular, but not all modular
lattices are distributive.) In our application to the interprocedural
analysis, the left-hand side of the equality in Def. 1 represents the
top-down computation and the right-hand side corresponds to the
bottom-up computation. Therefore, modularity ensures that the re-
sults coincide.

Our approach requires that transfer functions of primitive com-
mands be defined by the combination of − u d0 and − t d1 for
some constant abstract elements d0 and d1, independent of the in-
put abstract state where d0 elements are right-modular. Our encod-
ing of points-to analysis described in Sec. 2.2 does not meet this
requirement on transfer functions, because it does not use t with
a constant element to define the meaning of the statement x = y.
In contrast, in connection analysis the transfer function of the state-
ment x = y is defined by

[[x = y]]] = λd. (d u Sx) t Uxy
where Sx, Uxy are fixed abstract elements and do not depend on
the input abstract state d. In Sec. 4, we formally prove that the
connection analysis satisfies both the modularity requirement and
the requirement on the transfer functions.

We complete this informal description by illustrating how the
two requirements lead to the coincidence between top-down and
bottom-up analyses. Consider again the assignment [[ai = ci-1]]

],
in the body of some procedure pi. Let {dk}k denote abstract states
at the entry of pi, and suppose there is some d such that

∀k : ∃d′k v Sai : dk = d t d′k.

The compositional approach first chooses the input state d, and
computes [[ai = ci-1]]

](d). This result is then adapted to any dk
by being joined with d′k, whenever this procedure is invoked with
the abstract state dk. This adaptation of the bottom-up approach
gives the same result as the top-down approach, which applies
[[ai = ci-1]]

] on dk directly, as shown below:

[[ai = ci-1]]
](d) t d′k = ((d u Sai) t Uaici-1) t d′k

= ((d u Sai) t d′k) t Uaici-1

= ((d t d′k) u Sai) t Uaici-1

= (dk u Sai) t Uaici-1

= [[ai = ci-1]]
](dk).

The second equality uses the associativity and commutativity of the
t operator, and the third holds due to the modularity requirement.

3. Programming Language
Let PComm, G, L, and PName be sets of primitive commands,
global variables, local variables, and procedure names, respec-
tively. We use the following symbols to range over these sets:

a, b ∈ PComm, g ∈ G, x, y, z ∈ G ∪ L, p ∈ PName.

We formalize our results for a simple imperative programming
language with procedures:

Commands C ::= skip | a | C;C | C + C | C∗ | p()
Declarations D ::= proc p() = {var ~x;C}

Programs P ::= var ~g;C | D;P

A program P in our language is a sequence of procedure declara-
tions, followed by a sequence of declarations of global variables
and a main command. Commands contain primitive commands
a ∈ PComm, left unspecified, sequential composition C;C′, non-
deterministic choice C+C′, iteration C∗, and procedure calls p().
We use + and ∗ instead of conditionals and while loops for theoreti-
cal simplicity: given appropriate primitive commands, conditionals
and loops can be easily defined.

Declarations D give the definitions of procedures. A procedure
is comprised of a sequence of local variables declarations ~x and a
command, which we refer to as the procedure’s body. Procedures
do not take any parameters or return any values explicitly; values
can instead be passed to and from procedures using global vari-
ables. To simplify presentation, we do not consider mutually recur-
sive procedures in our language; direct recursion is allowed. We
denote by Cbodyp and Lp the body of procedure p and the set of its
local variables, respectively.

We assume that L and G are fixed arbitrary finite sets. Also, we
consider only well-defined programs where all the called proce-
dures are defined.

Standard Semantics. The standard semantics propagates every
caller’s context to the callee’s entry point and computes the effect
of the procedure on each one of them. Formally,

[[p()]]](d) = [[return]]](([[Cbodyp]]
] ◦ [[entry]]])(d), d)

where Cbodyp is the body of the procedure p, and

[[entry]]] : D → D and [[return]]] : D ×D → D

are the functions which represent, respectively, entering and return-
ing from a procedure.

Relational Collecting Semantics. The semantics of our program-
ming language tracks pairs of memory states 〈σ, σ′〉 coming from
some unspecified set Σ of memory states. σ is the entry memory
state to the procedure of the executing command (or if we are exe-
cuting the main command, the memory state at the start of the pro-
gram execution), and σ′ is the current memory state. We assume
that we are given the meaning [[a]] : Σ → 2Σ of every primitive
command, and lift it to sets of pairs ρ ⊆ R = 2Σ×Σ of memory
states by applying it in a pointwise manner to the current states:

[[c]](ρ) = {〈σ, σ′〉 | 〈σ, σ〉 ∈ ρ ∧ σ′ ∈ [[c]](σ)} .

The meaning of composed commands is standard:

[[C1 + C2]](ρ) = [[C1]](ρ) ∪ [[C2]](ρ)
[[C1;C2]](ρ) = [[C2]]([[C1]](ρ))

[[C∗]](ρ) = leastFixλρ′. ρ ∪ [[C]](ρ′).

The effect of procedure invocations is computed using the auxiliary
functions entry, return, combine, and ·|G, which we explain below.

[[p()]](ρc) = [[return]]([[Cbodyp]] ◦ [[entry]](ρc), ρc), where

3

[[entry]] : R→ R
[[entry]](ρc) = {〈σe, σe〉 | σe = σc|G ∧ 〈σc, σc〉 ∈ ρc}

[[return]] : R×R → R
[[return]](ρx, ρc) = {combine(σc, σc, σx|G) | 〈σc, σc〉 ∈ ρc

∧ 〈σx, σx〉 ∈ ρx ∧ σc|G = σe|G}

[[combine]] : Σ× Σ× Σ→R (assumed to be given)
(· |G) : Σ→ Σ (assumed to be given)

Function entry computes the relation ρe at the entry to the invoked
procedure. It removes the information regarding the caller’s local
variables from the current states σc coming from the caller’s rela-
tion at the call-site ρc using function (· |G), which is assumed to
be given. Note that in the computed relation, the entry state and the
calling state of the callee are identical.

Function return computes relation ρr , which updates the caller’s
current state with the effect of the callee. The function computes
triples 〈σc, σc, σx|G〉 out of relations 〈σc, σc〉 and 〈σx, σx〉 com-
ing from the caller at the calls site and to the callee at the return site.
return considers only relations where the global part of the caller’s
current state matches that of the callee’s entry state. Note that at the
triple, the middle state, σc, contains the values of the caller’s local
variables, which the callee cannot modify, and the last state, σx|G,
contains the updated state of the global parts of the memory state.
Procedure combine combines these two kinds of information and
generates the updated relation at the return site.

EXAMPLE 2. For memory states 〈sg, sl, h〉 ∈ Σ comprised of
environments sg and sl, giving values to global and local variables,
respectively, and a heap h, (· |G) and combine are defined as

〈sg, sl, h〉|G = 〈sg,⊥, h〉,
[[combine]](〈sg, sl, h〉,〈sg, sl, h〉,〈s′g,⊥, h′〉)=(〈sg, sl, h〉,〈s′g, sl, h′〉).

4. Intraprocedural Analysis using Modularity
In this section we show how the modularity properties of lattice
elements can help in the analysis of programs without procedures.
(Programs with procedures are handled in Sec. 5.) The main idea is
to require that only meet and join operators are used to define the
abstract semantics of primitive commands and that the argument of
the meet is right-modular. We begin with the connection analysis
example, and then describe the general case.

4.1 Intraprocedural Connection Analysis
Abstract Domain. The abstract domain consists of equivalence
relations on the variables from L ∪ G and a minimal element ⊥.
Intuitively, variables belong to different partitions if they never
point to connected heap objects (i.e., those that are not connected
by any chain of pointers even when the directions of these pointers
are ignored). For instance, if there is a program state occurring
at a program point pt in which x.f and y denote the same heap
object, then it must be that x and y belong to the same equivalence
class of the analysis result at pt. We denote by Equiv(Υ) the set of
equivalence relations over a set Υ. Every equivalence relation on Υ
induces a unique partitioning of Υ into its equivalence classes and
vice versa. Thus, we use these binary-relation and partition views
of an equivalence relation interchangeably throughout this paper.

DEFINITION 3. A partition lattice over a set Υ is a 6-tuple
Dpart(Υ) = 〈Equiv(Υ),v,⊥part,>part,t,u〉 .
• For any equivalence relations d1, d2 in Equiv(Υ),

d1 v d2 ⇔ ∀v1, v2 ∈ Υ, v1

d1∼= v2 ⇒ v1

d2∼= v2,

where v1

di∼= v2 means that v1 and v2 are related by di.
• The minimal element ⊥part = {{a} | a ∈ Υ} is the identity

relation, relating each element only with itself.

[[x = null]]](d) = [[y = new]]](d) = d u Sx̂
[[x = y]]](d) = [[x = y.f]]](d) = (d u Sx̂) t Ux̂ŷ
[[x.f = y]]](d) = d t Ux̂ŷ

where Sx̂ = {{x̂}} ∪ {{z | z ∈ Υ \ {x̂}}
Ux̂ŷ = {{x̂, ŷ}} ∪ {{z} | z ∈ Υ \ {x̂, ŷ}}

Table 1. Abstract semantics of primitive commands in the connec-
tion analysis for d 6= ⊥. [[a]]](⊥) = ⊥ for any command a. Ux̂ŷ is
used to merge the connection sets of x̂ and ŷ. Sx̂ is used to separate
x̂ from its current connection set. In Sec. 4.1, x̂ is x and ŷ is y. In
Sec. 5, x̂ denotes x′ and ŷ denotes y′.

• The maximum element>part = {Υ} is the complete relation, re-
lating each element to every element in Υ. It defines the partition
with only one equivalence class:

• The join is defined by d1 t d2 = (d1 ∪ d2)+, where we take the
binary-relation view of equivalence relations d1 and d2 and−+

is the transitive closure operation.
• The meet is defined by d1 u d2 = d1 ∩ d2. Here again we take

the binary-relation view of di’s.

For an element x ∈ Υ, the connection set of x in d ∈
Equiv(Υ), denoted [x], is the equivalence class of x in d.

Throughout the paper, we refer to an extended partition domain
D = Dpart∪{⊥}, which is the result of adding a bottom element⊥
to the original partition lattice, where for every d ∈ Dpart, ⊥ < d.

Abstract Semantics. Table 1 shows the abstract semantics of
primitive commands for the connection analysis.

Assigning null or a newly allocated object to a variable x
separates x from its connection set. Therefore, the analysis takes
the meet of the current abstract state with Sx — the partition with
two connection sets {x} and the rest of the variables.

The effect of the statement x = y is to separate the variable
x from its connection set and to add x to the connection set of y.
This is realized by performing a meet with Sx, and then a join with
Uxy — a partition with {x, y} as a connection set and singleton
connection sets for the rest of the variables.

The abstraction does not distinguish between the objects pointed
to by y and y.f . Thus, following [11], we set x to be in the same
connection set as y after the assignment x = y.f . As a result, the
same abstract semantics is used for both x = y.f and x = y.

The concrete semantics of x.f = y redirects the f field of
the object pointed to by x to the object pointed to by y. The
abstract semantics treats this statement in a rather conservative way,
performing “weak updates”: We merge the connection sets of x and
y by joining the current abstract state with Uxy .

4.2 Conditionally Compositional Intraprocedural Analysis
DEFINITION 4 (Conditionally Adaptable Functions). Let D be a
lattice. A function f : D → D is conditionally adaptable if it
has the form f = λd.((d u dp) t dg) for some dp, dg ∈ D and
the element dp is right-modular. We refer to dp as f ’s meet element
and to dg as f ’s join element.

We focus on static analyses where the transfer function for every
atomic command a is some conditionally adaptable function [[a]]].
We denote the meet elements of [[a]]] by P [[a]]]. For a command
C, we denote by P [[C]]] the set of meet elements of primitive sub-
commands occurring in C.

LEMMA 5. LetD be a lattice. Let C be a command which does not
contain procedure calls. For every d1, d2 ∈ D if d2 v dp for
every dp ∈ P [[C]]], then [[C]]](d1 t d2) = [[C]]](d1) t d2 .

4

Lem. 5 can be used to justify compositional summary-based in-
traprocedural analyses in the following way: Take a command C
and an abstract value d2 such that the conditions of the lemma hold.
Computing the abstract value [[C]]](d1 t d2) can be done by com-
puting d = [[C]]](d1), possibly caching (d1, d) in a summary for
C, and then adapting the result by joining d with d2.1

LEMMA 6. The transfer functions of primitive commands in the
intraprocedural connection analysis are conditionally adaptable.

In contrast, and perhaps counter-intuitively, our framework for the
interprocedural analysis has non-conditional summaries, which do
not have a proviso like d2 v P [[C]]]. It achieves this by requiring
certain properties of the abstract domain used to record procedures
summaries, which we now describe.

5. Compositional Analysis using Modularity
In this section, we define an abstract framework for compositional
interprocedural analysis using modularity and illustrate the frame-
work using the connection analysis. To make the material more ac-
cessible, we formulate some of the definitions specifically for the
connection analysis and defer the general definitions to [4].

The main message is that the meet elements of atomic com-
mands are right-modular and greater than or equal to all the ele-
ments in a sublattice of the domain which is used to record the
effect of the caller on the callee’s entry state. This allows to sum-
marize the effects of procedures in a bottom-up manner, and to get
the coincidence between the results of the bottom-up and top-down
analyses.

5.1 Partition Domains for Ternary Relations
We first generalize the abstract domain for the intraprocedural
connection analysis described in Sec. 4.1 to the interprocedural
setting.

Recall that the return operation defined in Sec. 3 operates on
triplets of states. For this reason, we use an abstract domain that
allows representing ternary relations between program states. We
now formulate this for the connection analysis. For every global
variable g ∈ G, g denotes the value of g at the entry to a procedure
and g′ denotes its current value. The analysis computes at every
program point a relation between the objects pointed to by global
variables at the entry to the procedure (represented by G) and the
ones pointed to by global variables and local variables at the current
state (represented by G′ and L′, respectively).

For technical reasons, described later, we also use the set Ġ
to compute the effect of procedure calls. These sets are used to
represent partitions over variables in the same way as in Sec. 4.1.
Formally, we define D = Equiv(Υ) ∪ {⊥} in the same way as in
Def. 3 of Sec. 4.1 where Υ = G ∪ G′ ∪ Ġ ∪ L′ and

G′ = {g′ | g ∈ G} G = {ḡ | g ∈ G}
Ġ = {ġ | g ∈ G} L′ = {x′ | x ∈ L}

1 Interestingly, the notion of condensation in [12] is similar to the impli-
cations of Lem. 5 (and to the frame rule in separation logic) in the sense
that the join (or ∗ in separation logic) distributes over the transfer func-
tions. However, [12] requires the distribution S(a+ b) = a+ S(b) hold
for every two elements a and b in the domain. Our requirements are less re-
strictive: In Lem. 5, we require such equality only for elements smaller than
or equal to the meet elements of the transfer functions. This is important for
handling the connection analysis in which condensation property does not
hold. (In addition, the method of [12] is developed for domains for logical
programs using completion and requires the refined domain to be compati-
ble with the projection operator, which is specific to logic programs. and be
finitely generated [12, Cor. 4.9].)

RX = {{x | x ∈ X}} ∪ {{x} | x ∈ Υ \X}
Din = {d ∈ D | d v RG}
Dout = {d ∈ D | d v RG′}
Dinout = {d ∈ D | d v RG∪G′}
Dinoutloc = {d ∈ D | d v RG∪G′∪L′}

Table 2. Constant projection element RX for an arbitrary set X
and the sublattices of D used by the interprocedural relational
analysis. RX is the partition that contains a connection set for all
the variables in X and singletons for all the variables in Υ \ X .
Each one of the sublattices represents connection relations in the
current state between objects which were pointed to by local or
global variables at different stages during the execution.

REMARK 1. Formally, the interprocedural connection analysis
computes an over-approximation of the relational concrete seman-
tics defined in Sec. 3. A Galois connection between the D and a
standard (concrete collecting relational) domain for heap manipu-
lating programs is defined in [4].

5.2 Triad Partition Domains
We first informally introduce the concept of Triad Domain. Triad
domains are used to perform abstract interpretation to represent
concrete domains and their concrete semantics as defined in Sec. 3.
A triad domain D is a complete lattice which conservatively repre-
sents binary and ternary relations (hence the name “triad”) between
memory states arising at different program points such as the entry
point to the caller procedure, the call-site, and the current program
point. The analysis uses elements d ∈ D to represent ternary re-
lations when computing procedure returns. For all other purposes
binary relations are used. More specifically, the analysis makes spe-
cial use of the triad sublattices of D defined in Table 2, which we
now explain.

Each sublattice is used to abstract binary relations between sets
of program states arising at different program points. We construct
these sublattices by first choosing projection elements dproji from
the abstract domain D, and then defining the sublattice Di to be
the closed interval [⊥, dproji], which consists of all the elements
between ⊥ and dproji according to the v order (including ⊥ and
dproji). Moreover, for every i ∈ {in, out, inout, inoutloc}, we
define the projection operation (· |i) as follows: d|i = d u dproji .
Note that d|i is always in Di.

In the connection analysis, projection elements dproji are defined
in terms of RX ’s in Table 2:

dprojin =RG, dprojout =RG′ , dprojinout =RG∪G′ , dprojinoutloc =RG∪G′∪L′ .

RX is the partition that contains a connection set containing all the
variables in X and singleton sets for all the variables in Υ \X .

Each abstract state in the sublattice Dout represents a partition
on heap objects pointed to by global variables in the current state,
such that two such heap objects are grouped together in this parti-
tion when they are weakly connected, i.e., we can reach from one
object to the other by following pointers forward or backward. For
example, suppose that a global variable g1 points to an object o1

and a global variable g2 points to an object o2 at a program point
pt, and that o1 and o2 are weakly connected. Then, the analysis re-
sult will be an equivalence relation that puts g′1 and g′2 in the same
equivalence class.

Each abstract state in Din represents a partition of objects
pointed to by global variables upon the procedure entry where
the partition is done according to weakly-connected components.

The sublattice Dinout is used to abstract relations in the current
heap between objects pointed to by global variables upon proce-
dure entry and those pointed to by global variables in the current
program point. For example, if at point pt in a procedure p an ob-

5

ιentry =
⊔
g∈G

Ug′ḡ = {{g′, g}, {ġ} | g ∈ G}

[[entry]]](d) = (d uRG′) t ιentry
[[return]]](dexit, dcall) = (fcall(dcall) t fexit(dexit uRG∪G′)) uRG∪G′∪L

[[p()]]](d) = [[return]]](([[Cbodyp]]
] ◦ [[entry]]])(d), d)

[[p()]]]BU(d) = [[return]]]([[Cbodyp]]
](ιentry), d)

Table 3. The definition of ιentry and the interprocedural abstract
semantics for the top-down and bottom-up connection analyses.
ιentry is the element that represents the identity relation between
input and output, and Cbodyp is the body of procedure p.

ject is currently pointed to by a global variable g1 and it belongs
to the same weakly connected component as an object that was
pointed to by a global variable g2 at the entry point of p, then the
partition at pt will include a connection set with g1 and g′2.

Similarly, the sublattice Dinoutloc is used to abstract relations in
the current heap between objects pointed to by global variables
upon procedure entry and global and local variables in the current
program point.

5.3 Interprocedural Top Down Triad Connection Analysis
We describe here the abstract semantics for the top-down inter-
procedural connection analysis. The intraprocedural semantics is
shown in Table 1. Notice that there is a minor difference between
the semantics of primitive commands for the intraprocedural con-
nection analysis defined in Sec. 4.1 and for the analysis in this sec-
tion. In the analysis without procedures we use x, whereas in the
analysis of this section we use x′.

The abstract meaning of procedure calls in the connection anal-
ysis is defined in Table 3. Again, we refer to the auxiliary constant
elements RX for a set X defined in Table 2.

When a procedure is entered, local variables of the procedure
and all the global variables g at the entry to the procedure are
initialized to null. This is realized by applying the meet operation
with auxiliary variable RG′ . Then, each of the g is initialized with
the current variable value g′ using ιentry. The ιentry element denotes
a particular state that abstracts the identity relation between input
and output states. In the connection analysis, it is defined by a
partition containing {g, g′} connection sets for all global variables
g. Intuitively, this stores the current value of variable g into g, by
representing the case where the object currently pointed to by g is
in the same weakly connected component as the object that was
pointed to by g at the entry point of the procedure.

The effect of returning from a procedure is more complex. It
takes two inputs: dcall, which represents the partition at the call-
site, and dexit, which represents the partition at the exit from the
procedure. The meet operation of dexit with RG∪G′ emulates the
nullification of local variables of the procedure. The computed
abstract values emulate the composition of the input-output relation
of the call-site with that of the return-site. Variables of the form
ġ are used to implement a natural join operation for composing
these relations. fcall(dcall) renames global variables from g′ to ġ and
fexit(dexit) renames global variables from g to ġ to allow natural
join. Intuitively, the old values g of the callee at the exit-site are
matched with the current values g′ of the caller at the call-site.
The last meet operation represents the nullification of the temporary
values ġ of the global variables.

In [4] we generalize these definitions to generic triad analyses.

5.4 Bottom Up Triad Connection Analysis
In this section, we introduce a bottom-up semantics for the connec-
tion analysis. Primitive commands are interpreted in the same way

as in the top-down analysis. The effect of procedure calls is com-
puted using the function [[p()]]]BU(d), defined in Table 3, instead
of [[p()]]](d). The two functions differ in the first argument they use
when applying [[return]]]: [[p()]]]BU(d) uses a constant value, which
is the abstract state at the procedure exit computed when analyzing
p() with ιentry. In contrast, [[p()]]](d) uses the abstract state result-
ing at the procedure exit when analyzing the call to p() with d.

5.5 Coincidence Result in Connection Analysis
We are interested in finding a sufficient condition on an analysis,
for the following equality to hold:

∀d ∈ D. [[p()]]]BU(d) = [[p()]]](d) .

We sketch the main arguments of the proof, substantiating their va-
lidity using examples from the interprocedural connection analysis
in lieu of more formal mathematical arguments, given in [4].

5.5.1 Uniform Representation of Entry Abstract States
Any abstract state d arising at the entry to a procedure in the top-
down analysis is uniform, i.e., it is a partition such that for every
global variable g, variables g and g′ are always in the same connec-
tion set. This is a result of the definition of function entry, which
projects the abstract element at the call-site into the sublattice Dout

and the successive join with the ιentry element. The projection re-
sults in an abstract state where all connection sets containing more
than a single element are comprised only of primed variables. Then,
after joining d|out with ιentry, each old variable g resides in the same
partition as its corresponding current primed variable g′.

We point out that the uniformity of the entry states is due to the
property of ιentry that its connection sets are comprised of pairs of
variables of the form {x′, x}. One important implication of this
uniformity is that every entry abstract state d0 to any procedure has
a dual representation. In one representation, d is the join of ιentry
with some elements Ux′y′ ∈ Dout. In the other representation, d is
expressed as the join of ιentry with some elements Uxy ∈ Din. In the
following, we use the function o that replaces relationships among
current variables by those among old ones: o(Ux′y′) = Uxy; and
o(d) is the least upper bounds of ιentry and elements Uxy for all x, y
such that x′ and y′ are in the same connection set of d.

5.5.2 Delayed Evaluation of the Effect of Calling Contexts
Elements of the form Uxy , coming from Din, are smaller than or
equal to the meet elements of intraprocedural statements. In Lem. 6
of Sec. 4 we proved that the semantics of the connection analysis is
conditionally adaptable. Thus, computing the composed effect of
any sequence τ of intraprocedural transformers on an entry state
of the form d0 t Ux1y1 . . . t Uxnyn results in an element of the
form d′0 t Ux1y1 . . . t Uxnyn , where d′0 results from applying
the transformers in τ on d0. Using the observation we made in
Sec. 5.5.1, this means that we can represent any abstract element
d resulting at a call-site as d = d1 t d2, where d1 is the effect of τ
on ιentry and d2 ∈ Din is a join of elements of the form Uxy ∈ Din:

d = d1 t Ux1y1 . . . t Uxnyn . (1)

5.5.3 Counterpart Representation for Calling Contexts
Because of the previous reasoning, we can now assume that any
abstract value at the call-site to a procedure p() is of the form
d1 t d3, where d3 ∈ Din and it is a join of elements of form Uxy .

For each Uxy , the entry state resulting from analyzing p() when
the calling context is d1tUxy is either identical to the one resulting
from d1 or can be obtained from d1 by merging two of its connec-
tion sets. Furthermore, the need to merge occurs only if there are
variables w′ and z′ such that w′ and x are in one of the connection
sets of d1 and z′ and y are in another. This means that the effect of

6

Uxy on the entry state can be expressed via primed variables:

d1 t Uxy = d1 t Uw′z′ .

This implies that if the abstract state at the call-site is d1 t d3, then
there is an element d′3 ∈ Dout such that

(d1 t d3)|out = d1|out t d′3 (2)

We refer to the element d′3 ∈ Dout, which can be used to represent
the effect of d3 ∈ Din at the call-site as d3’s counterpart, and
denote it by d̂3.

5.5.4 Representing Entry States with Counterparts
The above facts imply that we can represent an abstract state d at
the call-site as

d = d1 t d3 t d4, (3)
where d3, d4 ∈ Din. d3 is a join of the elements of the form
Uxy such that x and y reside in d1 in different partitions, which
also contain current (primed) variables, and thus possibly affect the
entry state; d4 is a join of all the other elements Uxy ∈ Din, which
are needed to represent d in this form, but either x̄ or ȳ resides in
the same partition in d1 or one of them is in a partition containing
only old variables. As explained in the previous paragraph, there is
an element d′3 = d̂3 that joins elements of the form Ux′y′ such that

(d1 t d3)|out = (d1 t d′3)|out (4)

and
d = d1 t d3 t d4 = d1 t d′3 t d4 . (5)

Thus, after applying the entry’s semantics, we get that abstract
states at the entry point of procedure are always of the form

[[entry]]](d) = (d1 t d′3)|out t ιentry (6)

where d′3 represents the effect of d3 t d4 on partitions containing
current variables g′ in d1. Because Ux′y′ v RG′ and d′3 joins
elements of form Ux′y′ , the modularity of the lattice gives that

(d1 t d′3)|out t ιentry = (d1|out t d′3) t ιentry
This implies that every state d0 at an entry point to a procedure is
of the following form:

d0 = ιentry t (Ux′y′ . . . t Ux′
l
y′
l
)︸ ︷︷ ︸

d1|out

t (Ux′
l+1

y′
l+1

. . . t Ux′ny′n)︸ ︷︷ ︸
d′3

.

Using the dual representation of entry state, we get that

ιentry t Ux′1y′1 . . . t Ux′ny′n = ιentry t o(Ux′1y′1 . . . t Ux′ny′n)

and thus the form of a state d0 at an entry point to a procedure is

d0 = ιentry t Ux1y1 t . . . t Uxnyn (7)

5.5.5 Putting It All Together
We now show that the interprocedural connection analysis can be
done compositionally. Intuitively, the effect of the caller’s calling
context can be carried over procedure invocations. Alternatively,
the effect of the callee on the caller’s context can be adapted
unconditionally for different caller’s calling contexts.

We sketch here an outline of the proof for case C = p() using
the connection analysis domain. The proof goes by induction on
the structure of the program. In Eq.3 we showed that every abstract
value that arises at the call-site is of the form d1 t d3 t d4, where
d3, d4 ∈ Din. Thus, we show that

[[C]]](d1 t d3 t d4) = [[C]]](d1) t d3 t d4 . (8)

Say we want to compute the effect of invoking p() on abstract
state d according to the top-down abstract semantics.

[[p()]]](d) = [[return]]]
((

([[Cbodyp]]
] ◦ [[entry]]])(d)

)
, d
)

First, let’s compute the first argument to [[return]]].

([[Cbodyp]]
] ◦ [[entry]]])(d)

= [[Cbodyp]]
]([[entry]]](d1 t d3 t d4))

= [[Cbodyp]]
](((d1 t d3 t d4)|out) t ιentry)

= [[Cbodyp]]
](((d1 t d3)|out) t ιentry)

= [[Cbodyp]]
]((d1)|out t d′3 t ιentry)

= [[Cbodyp]]
]((d1)|out t o(d′3) t ιentry)

= [[Cbodyp]]
]((d1)|out t ιentry) t o(d′3) (9)

The first equalities are mere substitutions based on observations we
made before. The last one comes from the induction assumption.

When applying the return semantics, we first compute the nat-
ural join and then remove the temporary variables. Hence, we get

(fcall(d1td3td4)tfexit([[Cbodyp]]
]((d1)|outtιentry)to(d′3)))|inoutloc

Let’s first compute the result of the inner parentheses.

fcall(d1 t d3 t d4) t fexit([[Cbodyp]]
]((d1)|out t ιentry) t o(d′3))

= fcall(d1 t d′3 t d4) t fexit([[Cbodyp]]
]((d1)|out t ιentry) t o(d′3))

= fcall(d
′
3) t fcall(d1 t d4) t

fexit(o(d
′
3)) t fexit([[Cbodyp]]

]((d1)|out t ιentry)) (10)

The first equality is by the definition of d′3 and the last equality
is by the isomorphism of the renaming operations fcall and fexit.

Note, among the join arguments, fexit(o(d′3)) and fcall(d
′
3).

Let’s look at the first element. o(d′3) replaces all the occurrences of
Ux′y′ in d′3 with Uxy . fexit replaces all the occurrences of Uxy in
o(d′3) with Uẋẏ . Thus, the first element is

Uẋ1ẏ1 t . . . t Uẋnẏn
which is the result of replacing in d′3 all the occurrences of Ux′y′
with Uẋẏ . Consider the second element. fexit replaces all occur-
rences of Ux′y′ in d′3 with Uẋẏ . Thus, also the second element is

Uẋ1ẏ1 t . . . t Uẋnẏn
Thus, we get that

(10) = fcall(d
′
3) t fcall(d1 t d4) t fexit([[Cbodyp]]

]((d1)|out t ιentry))

Moreover, fcall is isomorphic and by Eq.5

= fcall(d3 t d1 t d4) t fexit([[Cbodyp]]
]((d1)|out t ιentry))

Remember (Eq.1) that d3 and d4 are both of form

Ux1y1 t . . . t Uxnyn
and that fcall(d) only replaces g′ occurrences in d; thus

fcall(Ux1y1 t . . . t Uxnyn) = Ux1y1 t . . . t Uxnyn
Finally, we get

= fcall(d1) t fexit([[Cbodyp]]
]((d1)|out t ιentry) t (d3 t d4)

= [[p()]]](d1) t d3 t d4

5.5.6 Precision Coincidence
We combine the observations we made to informally show the coin-
cidence result between the top-down and the bottom-up semantics.
According to Eq.3, every state d at a call-site can be represented as

7

d = d1 t d3 t d4, where d3, d4 ∈ Din

[[p()]]](d) = [[return]]]([[Cbodyp]]]([[entry]]](d)), d)

= [[return]]]([[Cbodyp]]](d1|out t ιentry t d′3), d)

= [[return]]]([[Cbodyp]]](ιentry t o(d1|out) t o(d′3)), d) .(11)

The second equivalence is by Eq.6, and the second equivalence is
because d1|out, d′3 ∈ Dout and

ιentry t o(d1|out) t o(d′3) = ιentry t d1|out t d′3
We showed that for every d = d1td3td4, such that d3, d4 ∈ Din,

[[C]]](d1 t d3 t d4) = [[C]]](d1) t d3 t d4

for any command C. Therefore, since o(d′3), o(d1|out) ∈ Din,

(11) = [[return]]]([[Cbodyp]]](ιentry) t o(d1|out) t o(d′3), d1 t d3 t d4) .

By Eq.5, d1 t d3 t d4 = d1 t d′3 t d4 Thus, we can remove
o(d′3) because fexit(o(d′3)) will be redundant in the natural join of
the [[return]]] operator. Using a similar reasoning, we can remove
fexit(o(d1|out)), since fcall(d1|out) v fcall(d1). Hence, finally,

(11) = [[return]]]([[Cbodyp]]](ιentry), d1 t d3 t d4) = [[p()]]]BU(d) .

6. Experimental evaluation
In this section, we evaluate the effectiveness of our approach in
practice using the connection analysis for concreteness. We imple-
mented three versions of this analysis: the original top-down ver-
sion from [11], our modified top-down version, and our modular
bottom-up version that coincides in precision with the modified
top-down version. We next briefly describe these three versions.

The original top-down connection analysis does not meet the
requirements described in Sec. 5, because the abstract transformer
for destructive update statements x.f = y depends on the abstract
state; the connection sets of x and y are not merged if x or y points
to null in all the executions leading to this statement. We therefore
conservatively modified the analysis to satisfy our requirements,
by changing the abstract transformer to always merge x’s and y’s
connection sets. Our bottom-up modular analysis that coincides
with this modified top-down analysis operates in two phases. The
first phase computes a summary for every procedure by analyzing it
with an input state ιentry. The summary over-approximates relations
between all possible inputs of this procedure and each program
point in the body of the procedure. The second phase is a chaotic
iteration algorithm which propagates values from callers to callees
using the precomputed summaries, and is similar to the second
phase of the interprocedural functional algorithm of [18, Figure 7].

We implemented all three versions of connection analysis de-
scribed above using Chord [16] and applied them to five Java
benchmark programs whose characteristics are summarized in Ta-
ble 4. They include two programs (grande2 and grande3) from
the Java Grande benchmark suite and two (antlr and bloat) from
the DaCapo benchmark suite. We excluded programs from these
suites that use multi-threading, since our analyses are sequential.
Our larger three benchmark programs are commonly used in eval-
uating pointer analyses. All our experiments were performed using
Oracle HotSpot JRE 1.6.0 on a Linux machine with Intel Xeon 2.13
GHz processors and 128 Gb RAM.

We next compare the top-down and bottom-up approaches in
terms of precision (Sec. 6.1) and scalability (Sec. 6.2). We omit
the modified top-down version of connection analysis from further
evaluation, as we found its performance difference from the orig-
inal top-down version to be negligible, and since its precision is
identical to our bottom-up version (in principle, due to our coinci-
dence result, as well as confirmed in our experiments).

6.1 Precision
We measure the precision of connection analysis by the size of the
connection sets of pointer variables at program points of interest.
Each such pair of variable and program point can be viewed as a
separate query to the connection analysis. To obtain such queries,
we chose the parallelism client proposed in the original work on
connection analysis [11], which demands the connection set of
each dereferenced pointer variable in the program. In Java, this
corresponds to variables of reference type that are dereferenced
to access instance fields or array elements. More specifically, our
queries constitute the base variable in each occurrence of a getfield,
putfield, aload, or astore bytecode instruction in the program. The
number of such queries for our five benchmarks are shown in the
“# of queries” column of Table 5. To avoid counting the same set of
queries across benchmarks, we only consider queries in application
code, ignoring those in JDK library code. This number of queries
ranges from around 0.6K to over 10K for our benchmarks.

A precise answer to a query x.f (a field access) or x[i] (an
array access) is one that is able to disambiguate the object pointed
to by x from objects pointed to by another variable y. In the
connection analysis abstraction, x and y are disambiguated if they
are not connected. We thereby measure the precision of connection
analysis in terms of the size of the connection set of variable x,
where a more precise abstraction is one where the number of other
variables connected to x is small. To avoid gratuitously inflating
this size, we perform intra-procedural copy propagation on the
intermediate representation of the benchmarks in Chord.

Fig. 4 provides a detailed comparison of precision, based on the
above metric, of the top-down and bottom-up versions of connec-
tion analysis, separately for field access queries (column (a)) and
array access queries (column (b)). Each graph in columns (a) and
(b) plots, for each distinct connection set size (on the X axis), the
fraction of queries (on the Y axis) for which each analysis com-
puted connection sets of equal or smaller size. Graphs marked (*)
indicate where the sizes of connection sets computed by the top-
down analysis are not plotted because the analysis timed out after
six hours. This happens for our two largest benchmarks (weka and
bloat). The graphs for the remaining three benchmarks (grande2,
grande3, and antlr) show that the precision of our modular bottom-
up analysis closely tracks that of the original top-down analysis: the
points for the bottom-up and top-down analyses, denoted N and ◦,
respectively, overlap almost perfectly in each of the six graphs. The
ratio of the connection set size computed by the top-down analysis
to that computed by the bottom-up analysis on average across all
queries is 0.977 for grande2, 0.977 for grande3, and 0.952 for antlr.
While we do not measure the impact of this precision loss of 2-5%
on a real client, we note that for our largest two benchmarks, the
top-down analysis does not produce any useful result.

6.2 Scalability
Table 5 compares the scalability of the top-down and bottom-up
analyses in terms of three different metrics: running time, memory
consumption, and the total number of computed abstract states. As
noted earlier, the bottom-up analysis runs in two phases: a summary
computation phase followed by a summary instantiation phase. The
above data for these phases is reported in separate columns of the
table. On our largest benchmark (bloat), the bottom-up analysis
takes around 50 minutes and 873 Mb memory, whereas the top-
down analysis times out after six hours, not only on this benchmark
but also on the second largest one (weka).

The “# of abstract states” columns provide the sum of the sizes
of the computed abstractions in terms of the number of abstract
states, including only incoming states at program points of queries
(in the “queries” sub-column), and incoming states at all program
points, including the JDK library (in the “total” sub-column). Col-

8

(a) Precision comparison for field accesses. (b) Precision comparison for array accesses. (c) Scalability comparison.

Figure 4. Comparison of the precision and scalability of the original top-down and our modular bottom-up versions of connection analysis.
Each graph in columns (a) and (b) shows, for each distinct connection set size (on the X axis), the fraction of queries (on the Y axis) for
which the analyses computed connection sets of equal or smaller size. This data is missing for the top-down analysis in the graphs marked
(*) because this analysis timed out after six hours on those benchmarks. For the remaining benchmarks, the near perfect overlap in the points
plotted for the two analyses indicates very minor loss in precision of the bottom-up analysis over the top-down analysis. Column (c) compares
scalability of the two analyses in terms of the total number of abstract states computed by them. Each graph in this column shows, for each
distinct number of incoming abstract states computed at each program point (on the X axis), the fraction of program points (on the Y axis)
with equal or smaller number of such states. The numbers for the top-down analysis in the graphs marked (*) were obtained at the instant of
timeout. These graphs clearly show the blow-up in the number of states computed by the top-down analysis over the bottom-up analysis.

9

description # classes # methods # bytecodes
app only total app only total app only total

grande2 Java Grande kernels 17 61 112 237 8,146 13,724
grande3 Java Grande large-scale applications 42 241 231 1,162 27,812 75,139
antlr Parser and translator generator 116 358 1,167 2,400 128,684 186,377
weka Machine-learning library for data-mining tasks 62 530 575 3,391 40,767 223,291
bloat Java bytecode optimization and analysis tool 277 611 2,651 4,699 194,725 311,727

Table 4. Benchmark characteristics. The “# of classes” column is the number of classes containing reachable methods. The “# of methods”
column is the number of reachable methods computed by a static 0-CFA call-graph analysis. The “# of bytecodes” column is the number of
bytecodes of reachable methods. The “total” columns report numbers for all reachable code, whereas the “app only” columns report numbers
for only application code (excluding JDK library code).

of queries Bottom-Up analysis Top-Down analysis
summary computation summary instantiation

time memory time memory # of abstract states time memory # of abstract states
queries total queries total

grande2 616 0.6 sec 78 Mb 0.9 sec 61 Mb 616 1,318 1 sec 37 Mb 616 3,959
grande3 4,236 43 sec 224 Mb 1:21 min 137 Mb 4,373 8,258 1:11 min 506 Mb 4,354 27,232
antlr 5,838 16 sec 339 Mb 30 sec 149 Mb 6,207 21,437 1:23 min 1.1 Gb 8,388 79,710
weka 2,205 46 sec 503 Mb 2:48 min 228 Mb 2,523 25,147 > 6 hrs 26 Gb 5,694 688,957
bloat 10,237 3:03 min 573 Mb 30 min 704 Mb 36,779 131,665 > 6 hrs 24 Gb 139,551 962,376

Table 5. The number of queries to connection analysis and three metrics comparing the scalability of the original top-down and our modular
bottom-up versions of the analysis on those queries: running time, memory consumption, and number of incoming abstract states computed
at program points of interest. These points include only query points in the “query” sub-columns and all points in the “total” sub-columns.
All three metrics show that the top-down analysis scales much more poorly than the bottom-up analysis.

umn (c) of Fig. 4 provides more detailed measurements of the lat-
ter numbers. The graphs there show, for each distinct number of
incoming states computed at each program point (on the X axis),
the fraction of program points (on the Y axis) with equal or smaller
number of incoming states. The numbers for the top-down analysis
in the graphs marked (*) were obtained at the instant of timeout.
The graphs clearly show the blow-up in the number of states com-
puted by the top-down analysis over the bottom-up analysis.

7. Conclusions
We show using lattice theory that when an abstract domain has
enough right-modular elements to allow transfer functions to be
expressed as joins and meets with constant elements—and the
elements used in the meet are right-modular—a compositional
(bottom-up) interprocedural analysis can be as precise as a top-
down analysis. Using the above, we developed a new bottom-up
interprocedural algorithm for connection pointer analysis of Java
programs. Our experiments indicate that, in practice, our algorithm
is nearly as precise as the existing algorithm, while scaling signif-
icantly better. In [4] we apply the same technique to derive a new
bottom-up analysis for a variant of the copy-constant propagation
problem [10]. The algorithm utilizes a sophisticated join to com-
pute the effect of copy statements of the form x:=y. Notice that
this is not simple under our restrictions since constant values of y
are propagated into x. Indeed, we found that designing the right
join operator is the key step when using our approach.

Acknowledgments. Noam Rinetzky was supported by the EU
project ADVENT, grant number: 308830.

References
[1] T. Ball and S. Rajamani. Bebop: a path-sensitive interprocedural

dataflow engine. In PASTE, pages 97–103, 2001.
[2] E. Bodden. Inter-procedural data-flow analysis with ifds/ide and soot.

In ACM SIGPLAN SOAP Workshop, pages 3–8, 2012.
[3] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Composi-

tional shape analysis by means of bi-abduction. J. ACM, 58(6), 2011.

[4] G. Castelnuovo. Modular lattices for compositional interprocedural
analysis. Master’s thesis, School of Computer Science, Tel Aviv
University, 2012.

[5] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference.
In POPL, pages 133–146, 1999.

[6] P. Cousot and R. Cousot. Static determination of dynamic properties
of recursive procedures. In E. Neuhold, editor, Formal Descriptions of
Programming Concepts, pages 237–277. North-Holland, 1978.

[7] P. Cousot and R. Cousot. Modular static program analysis. In CC,
pages 159–178, 2002.

[8] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In
PLDI, pages 567–5–77, 2011.

[9] J. Dolby, S. Fink, and M. Sridharan. T. J. Watson Libraries for
Analysis. http://wala.sourceforge.net/, 2006.

[10] C. N. Fischer, R. K. Cytron, and R. J. LeBlanc. Crafting A Compiler.
Addison-Wesley Publishing Company, USA, 1st edition, 2009.

[11] R. Ghiya and L. Hendren. Connection analysis: A practical interpro-
cedural heap analysis for C. IJPP, 24(6):547–578, 1996.

[12] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract domains
condensing. ACM Trans. Comput. Log, 6(1):33–60, 2005.

[13] G. Grätzer. General Lattice Theory. Birkhäuser Verlag, 1978.

[14] B. Gulavani, S. Chakraborty, G. Ramalingam, and A. Nori. Bottom-up
shape analysis using lisf. ACM TOPLAS, 33(5):17, 2011.

[15] R. Madhavan, G. Ramalingam, and K. Vaswani. Purity analysis: An
abstract interpretation formulation. In SAS, pages 7–24, 2011.

[16] M. Naik. Chord: A program analysis platform for Java. Available at
http://pag.gatech.edu/chord/, 2006.

[17] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, pages 49–61, 1995.

[18] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. TCS, 167, 1996.

[19] A. Salcianu and M. Rinard. Purity and side effect analysis for Java
programs. In VMCAI, pages 199–215, 2005.

[20] M. Sharir and A. Pnueli. Two approaches to interprocedural data

10

flow analysis. In S. Muchnick and N. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 7. 1981.

[21] J. Whaley and M. Rinard. Compositional pointer and escape analysis
for java programs. In OOPSLA, pages 187–206, 1999.

8. Compositional Constant Propagation Analysis
In this section we describe an encoding of a bottom-up interproce-
dural copy constant propagation analysis as a triad analysis.

8.1 Programming Language
We define a simple programming language which manipulates in-
teger variables. The language is defined according to the require-
ments of our general framework. (See Sec. 3.) In this section, we
assume that programs have only global integer variables g ∈ G
which are initialized to 0. We also assume that the primitive com-
mands a ∈ PComm are of the form

x := c , x := y , and x := * ,

pertaining to assignments to a variable x of a constant value c, of
the value of a variable y, or of an unknown value, respectively. We
denote by KP ⊂fin N the finite set of constants which appear in a
program P . We assume KP contains 0. We denote by GP ⊂fin G
the finite set of global variables which appear in a program P .

In the following, we assume a fixed arbitrary program P and
denote by K = KP the (fixed finite) set of constants that appear in
P , and by G = GP the (fixed finite) set of global variables of P .

For technical reasons, explained in Sec. 8.5, we assume that the
analyzed program contains a special global variable t which is not
used directly by the program, but is used only to implement copy
assignments of the form x := y using the following sequence of
assignments

t:=y; y:=0; x:=0; y:=t; x:=t; t:=0.

(Note that, in particular, we assume that there are no statements of
the form x := x.)

8.2 Concrete Semantics
8.2.1 Standard Intraprocedural Concrete Semantics
A standard memory state s ∈ S = G 7→ N maps variables to their
integer values. The meaning of primitive commands a ∈ AComm
is standard, and defined below.

[[x := c]](s) = {(s[x 7→ [[c]]])}
[[x := y]](s) = {(s[x 7→ s(y)])}
[[x := ∗]](s) = {(s[x 7→ n]) | n ∈ N}

Note that [[a]] : S → 2S for a primitive a.

8.2.2 Relational Concrete Semantics
An input-output pair of standard memory states r = (s, s′) ∈ R =
S × S records the values of variables at the entry to the proce-
dure (s) and at the current state (s′). The meaning of intraprocedu-
ral statements in lifted to input-output pairs as described in Sec. 3.
The interprocedural semantics is defined, as described in Sec. 3, us-
ing the functions ·|G : S → S and [[combine]] : S × S × S → R,
whose meaning is defined below:

s|G = s
[[combine]](s1, s2, s3) = (s1, s3)

Informally, the projection of the state on its global part does not
modify the state due to our assumption a state is a mapping of
global variables to values. For a similar reason, the combination of
the caller’s input-output pair at the call-site with that of the callee
at the exit-site results in a pair of memory states where the first one

records the memory at the entry-site of the caller and the second
one records the state at the exit-site of the callee.

8.3 Abstract Semantics
Notations. For every global variable g ∈ G, g denotes the value
of g at the entry to a procedure and g′ denotes its current value.
Similarly to the connection analysis, we use an additional set Ġ of
variables to compute the effect of procedure calls. We denote by
υ ∈ Υ = G′ ∪ G ∪ Ġ the set of all annotated variables which are
ranged by a meta variable υ.

We denote by ζ ∈ VAL = Υ ∪ K ∪ {∗} the set of abstract
values ranged over by ζ. VAL is comprised of annotated variables,
constants which appear in the program, and the special value ∗.

8.3.1 Abstract Domain
Let Dmap be the set of all maps from variables υ ∈ Υ to 2VAL

Dmap = Υ 7→ 2VAL .

We denote the set Dtrans ⊆ Dmap of transitively closed maps by

Dtrans = {dde | d ∈ Dmap} ,
where

dde = λυ ∈ Υ.{υ} ∪
{
ζ ∈ d(υn)

∣∣∣∣ ∃υ0, . . . , υn. υ0 = υ ∧
∀0 ≤ i < n. υi+1 ∈ d(υi)

}
.

Note that a map d ∈ Dmap is transitively closed, i.e., d ∈ Dtrans ,
if and only if it associates υ to a set containing υ, i.e., υ ∈ d(υ),
and for any υ′ ∈ d(υ) it holds that d(υ′) ⊆ d(υ).

The abstract domain D of the copy constant propagation analy-
sis is an augmentation of Dtrans with an explicit bottom element.

D = 〈Dconst ,v,⊥,>,t,u〉, where

Dconst = Dtrans ∪ {⊥}

d1 v d2 ⇔ d1 = ⊥ ∨ ∀υ ∈ Υ. d1(υ) ⊆ d2(υ)

> = λυ ∈ Υ .VAL

d1 t d2 =


d1 d2 = ⊥
d2 d1 = ⊥
dd1 ∪ d2e otherwise

d1 u d2 =

{
⊥ d1 = ⊥ ∨ d2 = ⊥
d1 ∩ d2 otherwise

8.3.2 Abstract Intraprocedural Transformers
The abstract meaning of the primitive intraprocedural statements is
defined as follows:

[[x := c]]] = (λd.d u Sx′) t Ux′c
[[x := y]]] = (λd.d u Sx′) t Ux′y′
[[x := ∗]]] = (λd.d u Sx′) t Ux′∗

where

Sx′(υ) = λυ ∈ Υ.

{
{x′} υ = x′

VAL \ {x′} υ 6= x′

Ux′ζ = λυ ∈ Υ.

{
{x′, ζ} υ = x′

{υ} υ 6= x′

In the following, we show that the abstract transfer functions of
the copy constant propagation analysis are conditionally adaptable.
We first prove a simple lemma that holds for every lattice.

11

LEMMA 7. For any lattice (D,v) and elements d, d′, ds ∈ D such
that d′ v ds it holds that

d′ t (d u ds) v (d′ t d) u ds .

Proof By the definition of t it holds that

d v (d′ t d) and d′ v (d′ t d) .

By the monotonicity of u, we get that

d u ds v (d′ t d) u ds and d′ u ds v (d′ t d) u ds .
By the monotonicity and the idempotence of t, we get that

(d′ u ds) t (d u ds) v (d′ t d) u ds .
By the assumption d′ v ds. Hence, d′ u ds = d′, and it follows
that

d′ t (d u ds) v (d′ t d) u ds .

2

DEFINITION 8 (General projection and separation elements). Let
X ⊆ Υ. We denote by

SX(υ) = λυ ∈ Υ.

{
{υ} υ ∈ X
VAL \X υ 6∈ X

the separation element of X and by

RX = SΥ\X

the projection element of X .

LEMMA 9. For every X ⊆ Υ, SX is right-modular.

Proof We need to prove that for all d, d′ ∈ D such that d′ v SX it
holds that

(d′ t d) u SX = d′ t (d u SX) .

By Lem. 7, it holds that

(d′ t d) u SX w d′ t (d u SX) .

Thus it suffices to show that

d1 = (d′ t d) u SX v d′ t (d u SX) = d2 . (∗)
We prove (*) by induction on the size of X .

Base Case. For |X| = 1, we get that SX = S{υ} for some
υ ∈ Υ. Pick υ0 ∈ Υ. We need to show that d1(υ0) ⊆ d2(υ0).
There can be two case: either υ0 = υ or not.

If υ0 = υ, then d1(υ0) ⊆ S{υ′}(υ0) = {υ0}. By definition
of the domain, which includes only transitively closed maps, υ0 ∈
d′(υ0). Hence, d1(υ0) ⊆ {υ0} ⊆ d2(υ0).

Otherwise, υ0 6= υ. Pick υ1 ∈ d1(υ0). By the definition of S{υ}
and the meet operation, υ1 6= υ, and again by the definition of the
meet operation, υ1 ∈ (d′ t d)(υ0). Thus, there exists a minimal
sequence ζ0, . . . , ζn such that ζ0 = υ0 ∧ ζn = υ1 and for all
0 ≤ i < n, ζi+1 ∈ d′(ζi) ∪ d(ζi).

CLAIM 10. For all 0 ≤ j < n, ζj 6= υ.

Proof ζ0 = υ′ 6= υ, by the assumption.
Assume that there exists some 0 < j < n such that ζj =

υ. By the minimality of the sequence, ζj−1 6= υ and ζj+1 6=
υ, and since d′ v S{υ}, ζj = υ /∈ d′(ζj−1) and ζj+1 /∈
d′(ζj) = d′(υ) and thus ζj ∈ d(ζj−1) and ζj+1 ∈ d(ζj).
d is transitively closed and from this, ζj+1 ∈ d(ζj−1). Thus,
the sequence ζ0, . . . , ζj−1, ζj+1, . . . , ζn is a valid sequence for
υ′, υ′′, and this is a contradiction to the minimality of the original
sequence.

2

By the claim, we got that for all 0 ≤ j < n,

ζi+1 ∈ (d′(ζi) ∪ d(ζi)) \ {υ} By the previous claim
⇒ ζi+1 ∈ (d′(ζi) ∪ d(ζi)) ∩ S{υ}(ζi) By the definition of S{υ}

= (d′(ζi) ∩ S{υ}(ζi)) ∪ (d(ζi) ∩ S{υ}(ζi))
= d′(ζi) ∪ (d(ζi) ∩ S{υ}(ζi)) By d′(ζi) ⊆ S{υ}(ζi)
= d′(ζi) ∪ (d u S{υ})(ζi) .

Therefore we can create a sequence for υ′, υ′′, by taking elements
only from d′ ∪ (duS{υ}), and hence υ′′ ∈ (d′ t (duS{υ}))(υ′).

Induction Step. Assume that the induction assumption holds for
sets X such that |X| = n, we will prove for sets X such that
|X| = n+ 1. Let υ ∈ X be an arbitrary element. Notice that by its
definition

SX = SX\{υ} u S{υ} .
Therefore,

(d′ t d) u SX = (d′ t d) u (SX\{υ} u S{υ})
= ((d′ t d) u SX\{υ}) u S{υ}
v (d′ t (d u SX\{υ})) u S{υ}
= d′ t ((d u SX\{υ}) u S{υ})
= d′ t (d u (SX\{υ} u S{υ}))
= d′ t (d u SX)

2

LEMMA 11. The abstract transfer functions of the atomic com-
mands are conditionally adaptable.

Proof By Lem. 9, S′x = S{x′} is right-modular and all the transfer
functions are of form

f = λd.((d u dp) t dg) .
where dp = Sx′ for some x′ ∈ Υ.

2

8.4 Soundness of the Top Down Analysis
The soundness of the copy constant propagation analysis is formal-
ized by the concretization function γ : D → 2S×S , where

(s, s′) ∈ γ(d) ⇐⇒(
∀x ∈ G. (s(x) ∈ d(x) ∩ K) ∨ (∗ ∈ d(x))

)∧(
∀x′ ∈ G′. s′(x) ∈ ((d(x) ∩ K) ∪ {s(y) | y ∈ d(x))}) ∨ (∗ ∈ d(x))

)
.

Intuitively, an input-output pair (s, s′) is conservatively repre-
sented by an abstract element d if and only if (a) the input state
maps a variable g to n if n is one of the constants mapped to g by d
or if ∗ ∈ d(g) and (b) the output state maps a variable g to n if n is
one of the constants mapped to g′ by d, the value of global variable
y at the entry state that is mapped to g′ by d, or if ∗ ∈ d(g′).

LEMMA 12 (Soundness). The abstract transformers pertaining
to intraprocedural primitive commands, |G, and combine over-
approximate the concrete ones.

8.5 Precision Improving Transformations
In Sec. 8.1, we place certain restrictions on the analyzed programs.
Specifically, we forbid copy assignments of the form x:=y between
arbitrary global variables x and y, and, instead, require that the
value of y be copied to x through a sequence of assignments that use
a temporary variable t. In the concrete semantics, our requirements
do not affect the values of the program’s variables outside of the
sequences of intermediate assignments. In the abstract semantics,
however, adhering to our requirements can improve the precision
of the analysis, as we explain below.

12

Consider the execution of the sequence of abstract transformers
pertaining to the (non deterministic) command x:=y + y:=3 on an
abstract state d, in which 3 6∈ d(y′). Applying the abstract trans-
former [[x := y]]] to d results in an abstract element d′, where
y′ ∈ d(x′). Applying [[y := 3]]] to d results in an abstract state
d′′, where 3 ∈ d′′(y′). Perhaps surprisingly, in the abstract state
d′′′ = d′ t d′′, which conservatively represent the possible states
after the non-deterministic choice (+), we get that 3 ∈ d′′′(x′).
This is sound, but imprecise. The reason for the imprecision is
that our domain includes only transitively closed maps and having
y′ ∈ d′(x′) results in an undesired correlation between the possible
values of x in d′′′ and that of y in d′′. In particular, the assignment
of 3 to y is propagated to x in a flow-insensitive manner.

Rewriting the copy assignment using t according to our restric-
tions breaks such undesired correlations. Consider, for example, the
sequence of abstract transformers pertaining to the aforementioned
command: t:=y; y:=0; x:=0; y:=t; x:=t; t:=0, and apply
this sequence to d. In the abstract state d̂ arising just before t is
assigned 0 we get that t′ ∈ d̂(x′) and t′ ∈ d̂(y′) but y′ 6∈ d̂(x′)

and x′ 6∈ d̂(y′). Assigning 0 to t breaks the correlation between t
and x and y.

8.6 Copy Constant Propagation as a Triad Analysis
8.6.1 Triad Domain
LEMMA 13. D is a triad domain.

Projection Elements

Proof We define the projection elements

dprojin = RG
dprojtmp

= RĠ

dprojout = RG′

By Lem. 9, dprojin , dprojtmp
and dprojout are right-modular.

Isomorphism functions We define the renaming functions

fΥ
call, f

Υ
exit, f

Υ
inout : Υ→ Υ

fΥ
call(υ̃) =


υ̇ υ̃ = υ′

υ′ υ̃ = υ̇

υ̃ otherwise

fΥ
exit(υ̃) =


υ̇ υ̃ = υ

υ υ̃ = υ̇

υ̃ otherwise

fΥ
inout(υ̃) =


υ υ̃ = υ′

υ′ υ̃ = υ

υ̃ otherwise

Let fVAL
call , fVAL

exit , fVAL
inout be the renaming function induced on 2VAL

and finally let fcall, fexit, finout be the renaming functions induced
on D,

fi(d) =

{
⊥ d = ⊥
λυ ∈ Υ. fVAL

i (d(fΥ
i
−1

(υ))) otherwise
(12)

where i ∈ [call, inout, exit].

CLAIM 14.
fcall(RG′) = RĠ, fcall(RG) = RG, fcall(RĠ) = RG′

fexit(RG′) = RG′ , fexit(RG) = RĠ, fexit(RĠ) = RG
finout(RG′) = RG, finout(RG) = RG′ , finout(RĠ) = RĠ

Proof We prove the claim on fcall and RG′ . The other cases are
symmetric.

fcall(RG′) = fcall

(
λυ ∈ Υ.

{
{υ} υ ∈ Υ \ G′

K ∪ G′ υ ∈ G′

)

= λυ ∈ Υ.

{
{υ} υ ∈ Υ \ Ġ
K ∪ Ġ υ ∈ Ġ

= RĠ

2

CLAIM 15. For all d ∈ Dout

fexit(finout(d)) = fcall(d)

Proof Let d ∈ Dout and let υ ∈ Υ. If d = ⊥ then

fcall(d) = fexit(finout(d)) = ⊥ .

Otherwise, by Eq.12,

fcall(d)(υ) = fVAL
call (d(fΥ

call
−1

(υ)))

and

((fexit ◦ finout)(d))(υ) = fexit(finout(d))(υ)

= fVAL
exit (finout(d)(fΥ

exit
−1

(υ))

= fVAL
exit (fVAL

inout(d(fΥ
inout
−1

(fΥ
exit
−1

(υ))

= (fVAL
exit ◦ fVAL

inout)(d(fΥ
inout
−1 ◦ fΥ

exit
−1

)(υ))

If υ /∈ Ġ, then

fΥ
call
−1

(υ) /∈ G′

and

fΥ
inout
−1 ◦ fΥ

exit
−1

(υ) /∈ G′

and therefore

d(fΥ
call
−1

(υ)) = {fΥ
call
−1

(υ)}
and

d(fΥ
inout
−1 ◦ fΥ

exit
−1

(υ)) = {fΥ
inout
−1 ◦ fΥ

exit
−1

(υ)}

Hence,

fcall(d)(υ) = fVAL
call ({fΥ

call
−1

(υ)}) = {υ}
and

(fexit◦finout)(d)(υ) = (fVAL
exit ◦fVAL

inout)({fΥ
inout
−1◦fΥ

exit
−1

(υ)}) = {υ}

Otherwise, if υ ∈ Ġ, by the definition of the renaming functions

fΥ
call
−1

(υ) = (fΥ
inout
−1 ◦ fΥ

exit
−1

)(υ)

and by the definition of Dout,

d(fΥ
call
−1

(υ)) ⊆ G′

and therefore again by the definition of the renaming functions

fVAL
call (d(fΥ

call
−1

(υ))) = (fVAL
exit ◦ fVAL

inout)(d(fΥ
call
−1

(υ)))

2

CLAIM 16. For all d ∈ Din

fcall(d) = d

Proof By the definition of Din and of fcall.

2

13

ιentry element We define

ιentry = [υ′ 7→ {υ′, υ} | υ ∈ G]∪[υ 7→ {υ′, υ} | υ ∈ G]∪[υ̇ 7→ {υ̇} | υ ∈ G]

CLAIM 17. For every d ∈ Dout, d t ιentry = finout(d) t ιentry.

Proof
d t ιentry = dd ∪ ιentrye

=

λυ ∈ Υ.


d(g′) ∪ {g′, ḡ} υ = g′ ∈ G′

{ḡ} ∪ {g′, ḡ} υ = ḡ ∈ G

{ġ} ∪ {ġ} υ = ġ ∈ Ġ


= λυ ∈ Υ.

{
{h̄, h′ | h′ ∈ d(g′)} υ = g′ ∈ G′ ∨ υ = ḡ ∈ G

{ġ} υ = ġ ∈ Ġ

=

λυ ∈ Υ.


{g′} ∪ {g′, ḡ} υ = g′ ∈ G′

{h̄ | h′ ∈ d(g′)} ∪ {g′, ḡ} υ = ḡ ∈ G

{ġ} ∪ {ġ} υ = ġ ∈ Ġ


=

λυ ∈ Υ.


{g′} ∪ {g′, ḡ} υ = g′ ∈ G′

finout(d)(ḡ) ∪ {g′, ḡ} υ = ḡ ∈ G

{ġ} ∪ {ġ} υ = ġ ∈ Ġ


= finout(d) t ιentry

2

2

14

