Übung zur Vorlesung

Theoretische Informatik I

Prof. Dr. Christoph Kreitz / Holger Arnold Universität Potsdam, Theoretische Informatik, Wintersemester 2004

Blatt 9 (Version 1) — Abgabetermin: 07.01.2005, 10:00 Uhr

Quiz 9

]	Eine Grammatik ist genau dann kontextfrei, wenn die linke Seite jeder Regel nur aus einem Nichtterminalsymbol besteht.
]	Jedes Wort, das aus einer kontextfreien Grammatik abgeleitet werden kann, entspricht genau einem Ableitungsbaum über dieser Grammatik.
]	Wenn L eine reguläre (kontextfreie) Sprache ist, dann ist auch jede echte Teilmenge von L eine reguläre (kontextfreie) Sprache.
1	Es gibt kontextfreie Sprachen, für die keine eindeutige Grammatik existiert.

Aufgabe 9.1

Sei L die Menge der aussagenlogischen Formeln über den Terminalsymbolen $T = \{A, B, C, a, b, c, (,), \land, \lor, \Rightarrow, \neg\}$, wobei Aussagenvariablen mit einem Großbuchstaben (A, B oder C) beginnen, dem Kleinbuchstaben (a, b oder c) folgen können. Beispielsweise ist $(A \land B) \Rightarrow \neg (Ca \lor Cb)$ eine gültige Formel, $(X \land \land B) \neg \lor C$ dagegen nicht.

- 1. Geben Sie eine möglichst einfache kontextfreie Grammatik an, die genau die gültigen aussagenlogischen Formeln über T erzeugt (da die Grammatik möglichst einfach sein soll, wird sie wahrscheinlich mehrdeutig sein).
- 2. Geben Sie eine linksseitige und eine rechtsseitige Ableitung für den Ausdruck

$$A \land (A \Rightarrow Bac) \lor C \Rightarrow \neg C \Rightarrow Bac$$

an. Geben Sie für eine der Ableitungen einen Ableitungsbaum an.

3. Geben Sie eine eindeutige kontextfreie Grammatik für L an, welche die üblichen Vorrangsund Assoziativitätsregeln beachtet (Klammern binden am stärksten, dann folgen \neg , \wedge , \vee und \Rightarrow ; \wedge und \vee sind linksassoziativ, \Rightarrow ist rechtsassoziativ).

Aufgabe 9.2

Sei $G = (\{S\}, \{a, b\}, \{S \to aS, S \to aSbS, S \to \varepsilon\}, S)$ eine kontextfreie Grammatik.

- 1. Zeigen Sie, dass G mehrdeutig ist. Geben Sie dazu für die Zeichenkette $aab \in L(G)$ zwei verschiedene Ableitunsbäume, zwei verschiedene linksseitige Ableitungen und zwei verschiedene rechtsseitige Ableitungen an.
- 2. Beschreiben Sie, welche Sprache G erzeugt.
- 3. Geben Sie eine eindeutige Grammatik an, welche die Sprache L(G) erzeugt.

Aufgabe 9.3

Gegeben ist die kontrextfreie Grammatik $G = (\{S\}, \{a, b\}, P, S)$, wobei P die folgenden Regeln enthält: $S \to aS \mid Sb \mid a \mid b$.

- 1. Beweisen Sie durch Induktion über die Wortlänge, dass kein Wort aus L(G) das Teilwort ba enthält.
- 2. Beschreiben Sie die Sprache L(G) informell. Begründen Sie Ihre Antwort.

Hausaufgabe 9.4

Gegeben sind die folgenden Grammatiken $G_i = (\{A, B, C, S\}, \{a, b\}, P_i, S)$ mit den Regeln

$$\begin{split} P_1 &= \{S \rightarrow aAbB, A \rightarrow CaAb, B \rightarrow \varepsilon, C \rightarrow \varepsilon\} \\ P_2 &= \{S \rightarrow aa \mid bb \mid aAa \mid bAb \mid \varepsilon, A \rightarrow aAa \mid bAb \mid aa \mid bb\} \\ P_3 &= \{S \rightarrow AaB \mid B \mid \varepsilon, aB \rightarrow b \mid bb \mid \varepsilon, B \rightarrow bb \mid Bbb, A \rightarrow a \mid \varepsilon\} \\ P_4 &= \{S \rightarrow \varepsilon \mid aS \mid bA, A \rightarrow \varepsilon \mid Ab\} \end{split}$$

Bestimmen Sie die erzeugten Sprachen $L(G_1), \ldots, L(G_4)$.

Hausaufgabe 9.5

Sei L die Menge der regulären Ausdrücke über den Terminalsymbolen $T = \{a, b, (,), +, *, \emptyset, e\}$. Dabei sollen a und b die einzigen Zeichen sein, die von regulären Ausdrücken in L erzeugt werden können. Um Verwechslungen vorzubeugen, wird in L das leere Wort durch e statt durch e dargestellt. Ein gültiger regulärer Ausdruck aus L ist zum Beispiel $(a + b + e)^*ab$.

- 1. Geben Sie eine möglichst einfache kontextfreie Grammatik an, die genau die gültigen regulären Ausdrücke über T (d.h. die regulären Ausdrücke über dem Alphabet $\{a,b\}$) erzeugt (da die Grammatik möglichst einfach sein soll, wird sie wahrscheinlich mehrdeutig sein).
- 2. Geben Sie eine linksseitige und eine rechtsseitige Ableitung für den Ausdruck $a(a+b)^*ba$ an. Geben Sie für eine der Ableitungen einen Ableitungsbaum an.
- 3. Geben Sie eine eindeutige kontextfreie Grammatik für L an, welche die üblichen Vorrrangsund Assoziativitätsregeln beachtet (Klammern binden am stärksten, dann folgen *, Verkettung und +; Verkettung und + sind beide linksassoziativ).

Hausaufgabe 9.6

Beweisen Sie, dass die Grammatik $G = (\{S\}, \{a,b\}, \{S \to aS, S \to aSbS, S \to \varepsilon\}, S)$ genau die Zeichenketten aus den Symbolen a und b erzeugt, für die jedes Präfix mindestens so viele a's wie b's enthält.