otivation Call-string

-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method 00000

Interprocedural Analysis: Sharir-Pnueli's Call-Strings Approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

12 September 2022

Motivation 0000000000	Call-strings method	Correctness 00000000	Bounded call-string method	Approximate call-string method
Outline				

- **2** Call-strings method
- **3** Correctness
- Bounded call-string method
- **5** Approximate call-string method

all-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method

Handling programs with procedure calls

How would we extend an abstract interpretation to handle programs with procedures?

main(){ f(){ g(){
 x := 0; x := x+1; f();
 f(); return; return;
 g(); }
 print x;
}

Call-strings method

Correctness

Bounded call-string method 00000000

Approximate call-string method 00000

Handling programs with procedure calls

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){ f(){ g(){
  x := 0; x := x+1; f();
  f(); return; return;
  g(); } } ; } ;
```

Question: what is the collecting state before the print x statement in main?

Call-strings method

Correctness

Bounded call-string method 00000000

Approximate call-string method 00000

Handling programs with procedure calls

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){ f(){ g(){
    x := 0; x := x+1; f();
    f(); return; return;
    g(); } } ; } ;
```

Question: what is the collecting state before the print x statement in main? Answer: $x \mapsto 2$.

Call-strings method

Correctness

Bounded call-string method 00000000

Approximate call-string method

- Add extra edges
 - call edges: from call site (call p) to start of procedure (p)
 - ret edges: from return statement (in p) to point after call sites ("ret sites") (call p).

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

- Assume only global variables.
- Transfer functions for call/return edges?

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

- Assume only global variables.
- Transfer functions for call/return edges? Identity function

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

- Assume only global variables.
- Transfer functions for call/return edges? Identity function
- Now compute JOP in this extended control-flow graph.

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method

Problem with JOP in this graph

Ex. 1. Actual collecting state at C?

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method 00000

Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$.

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method

Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis?

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method

Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis? $\{x \mapsto 1, x \mapsto 2, x \mapsto$ $3, \ldots\}$.

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method

Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis? $\{x \mapsto 1, x \mapsto 2, x \mapsto$ $3, \ldots\}$.

- JOP is sound but very imprecise.
- Reason: Some paths don't correspond to executions of the program: Eg. ABDFGILC.

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method 00000

Problem with JOP in this graph

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis? $\{x \mapsto 1, x \mapsto 2, x \mapsto$ $3, \ldots\}$.

- JOP is sound but very imprecise.
- Reason: Some paths don't correspond to executions of the program: Eg. ABDFGILC.

What we want is Join over "Interprocedurally-Valid" Paths (JVP).

Approximate call-string method 00000

Interprocedurally valid paths and their call-strings

- Informally a path ρ in the extended CFG G' is inter-procedurally valid if every return edge in ρ "corresponds" to the most recent "pending" call edge.
- For example, in the example program the ret edge *E* corresponds to the call edge *D*.
- The call-string of a valid path ρ is a subsequence of call edges which have not been "returned" as yet in ρ .
- For example, cs(ABDFGEKJHF) is "KH".

MotivationCall-strings methodCorrectness0000000000000000000000000

Bounded call-string method 00000000

Approximate call-string method 00000

Interprocedurally valid paths and their call-strings

• A path $\rho = ABDFGEKJHF$ in $IVP_{G'}$ for example program:

- Associated call-string $cs(\rho)$ is KH.
- For $\rho = ABDFGEK \ cs(\rho) = K$.
- For $\rho = ABDFGE \ cs(\rho) = \epsilon$.

Motivation Call-strings method 0000000000

Bounded call-string method

Approximate call-string method

Interprocedurally valid paths and their call-strings

More formally: Let ρ be a path in G'. We define when ρ is interprocedurally valid (and we say $\rho \in IVP(G')$) and what is its call-string $cs(\rho)$, by induction on the length of ρ .

- If $\rho = \epsilon$ then $\rho \in IVP(G')$. In this case $cs(\rho) = \epsilon$.
- If $\rho = \rho' \cdot N$ then $\rho \in IVP(G')$ iff $\rho' \in IVP(G')$ with $cs(\rho') = \gamma$ say, and one of the following holds:
 - N is neither a call nor a ret edge. In this case $cs(\rho) = \gamma$.
 - 2 N is a call edge. In this case $cs(\rho) = \gamma \cdot N$.
 - **3** N is ret edge, and γ is of the form $\gamma' \cdot C$, and N corresponds to the call edge C. In this case $cs(\rho) = \gamma'$.
- We denote the set of (potential) call-strings in G' by Γ . Thus $\Gamma = \mathcal{C}^*$, where \mathcal{C} is the set of call edges in G'.

Correctness 00000000 Bounded call-string method 00000000

Approximate call-string method 00000

Join over interprocedurally-valid paths (JVP)

- Let P be a given program, with extended CFG G'.
- Let $path_{I,N}(G')$ be the set of paths from the initial point I to point N in G'.
- Let $\mathcal{A} = ((D, \leq), f_{MN}, d_0)$ be an abstract interpretation for P.
- Then we define the join over all interprocedurally valid paths (JVP) at point N in G' to be:

$$\bigsqcup_{\rho \in path_{I,N}(G') \cap IVP(G')} f_{\rho}(d_0).$$

Call-strings method

Correctness 00000000 Bounded call-string method 00000000

Approximate call-string method 00000

Sharir and Pnueli's approaches to interprocedural analysis

Micha Sharir and Amir Pnueli: Two approaches to interprocedural data flow analysis, in *Program Flow Analysis: Theory and Applications* (Eds. Muchnick and Jones) (1981).

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method

One approach to obtain JVP: Call-Strings

- Find JOP over same graph, but modify the abs int.
- Modify transfer functions for call/ret edges to detect and invalidate invalid edges.
- Augment underlying data values with some information for this.
- Natural thing to try: "call-strings".

Call-strings method •0000000 Correctness

Bounded call-string method

Approximate call-string method 00000

Overall plan

- Define an abs int A' which extends given abs int A with call-string data.
- Show that JOP of \mathcal{A}' on \mathcal{G}' coincides with JVP of \mathcal{A} on \mathcal{G}' .
- Use Kildall (or any other technique) to compute LFP of A' on G'. This value over-approximates JVP of A on G'.

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method 00000

Call-string abs int \mathcal{A}' : Lattice (D', \leq')

• Elements of D' are maps $\xi: \Gamma \to D$

ε.	ε	<i>c</i> 1	c1c2	c1c2c2	
ς.	d ₀	d_1	<i>d</i> ₂	d3	

• Ordering on D': \leq' is the pointwise extension of \leq in D. That is

$$\xi_1 \leq' \xi_2$$
 iff for each $\gamma \in \mathsf{\Gamma}, \xi_1(\gamma) \leq \xi_2(\gamma).$

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method 00000

Call-string abs int \mathcal{A}' : Lattice (D', \leq')

• Induced join is:

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method 00000

Call-string abs int \mathcal{A}' : Lattice (D', \leq')

• Induced join is:

• Check that (D', \leq') is also a complete lattice.

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

Meaning of abstract values in \mathcal{A}'

- A call-string table ξ at program point N represents the fact that, for each call-string γ , and each concrete state s in $\gamma_{\mathcal{A}}(\xi(d))$, there may be an execution following a path with call-string γ , leading to s at N.
- The transfer functions of \mathcal{A}' should keep this meaning in mind.

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method 00000

Call-string abs int \mathcal{A}' : Initial value ξ_0

• Initial value ξ_0 is given by

$$\xi_0(\gamma) = \begin{cases} d_0 & \text{if } \gamma = \epsilon \\ \bot & \text{otherwise.} \end{cases}$$

c	ε	<i>c</i> 1	c1 c2	$c_1 c_2 c_2$	
ς0·	<i>d</i> 0	\perp	\perp	\perp	

Motivation Call

Call-strings method

Correctness 00000000 Bounded call-string method

Approximate call-string method 00000

Call-string abs int \mathcal{A}' : transfer functions

• Transfer functions for non-call/ret edge N:

$$f_{MN}'(\xi)=f_{MN}\circ\xi.$$

• Transfer functions for call edge N:

$$f'_{MN}(\xi) = \lambda \gamma. \begin{cases} \xi(\gamma') & \text{if } \gamma = \gamma' \cdot N \\ \bot & \text{otherwise} \end{cases}$$

• Transfer functions for ret edge *N* whose corresponding call edge is *C*:

$$f'_{MN}(\xi) = \lambda \gamma . \xi(\gamma \cdot C)$$

• Transfer functions f'_{MN} is monotonic (distributive) if each f_{MN} is monotonic (distributive).

Call-strings method

Correctness

Bounded call-string method 00000000

Approximate call-string method 00000

Transfer functions f'_{MN} for example program

Motivation 0000000000	Call-strings method 0000000●	Correctness 00000000	Bounded call-string method	Approximate call-string method
_	4			

Exercise 1

Let \mathcal{A} be the standard collecting state analysis. For brevity, represent a set of concrete states as $\{0, 1\}$ (meaning the 2 concrete states $x \mapsto 0$ and $x \mapsto 1$). Assume an initial value $d_0 = \{0\}$.

Show the call-string tagged abstract states (in the lattice \mathcal{A}') along the paths

- ABDFGEKJHFGIL (interprocedurally valid)
- ABDFGIL (interprocedurally invalid).

 Motivation
 Call-strings method
 Correctness
 Bounded call-string method
 Approximate call-string method

 000000000
 00000000
 00000000
 0000000
 0000000
 0000000

Correctness claim

Assumption on \mathcal{A} : Each transfer function satisfies $f_{MN}(\perp) = \perp$.

Claim

Let N be a point in G'. Then

$$JVP_{\mathcal{A}}(N) = \bigsqcup_{\gamma \in \Gamma} JOP_{\mathcal{A}'}(N)(\gamma).$$

Proof: Use following lemmas to prove that LHS dominates RHS and vice-versa.

IVP Paths reaching N

Paths reaching N

Call-strings method 00000000 Correctness

Bounded call-string method

Approximate call-string method

Correctness claim: Lemma 1

Lemma 1

Let ρ be a path in $IVP_{G'}$. Then

$$f'_{\rho}(\xi_0) = \lambda \gamma. \begin{cases} f_{\rho}(d_0) & \text{if } \gamma = cs(\rho) \\ \bot & \text{otherwise.} \end{cases}$$

ε	<i>c</i> 1	$cs(\rho)$	c1c2c2	
\perp	\perp	d	\perp	

Proof: by induction on the length of ρ .

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method 00000

Correctness claim: Lemma 2

Lemma 2

Let ρ be a path not in $IVP_{G'}$. Then

$$f'_{\rho}(\xi_0) = \lambda \gamma. \bot.$$

ε	c1	c2	c1c2c2	
\perp	\perp	\perp	\perp	

Proof:

- ρ must have an invalid prefix.
- Consider smallest such prefix α · N. Then it must be that α is valid and N is a return edge not corresponding to cs(α).
- Using previous lemma it follows that $f'_{\alpha \cdot N}(\xi_0) = \lambda \gamma \perp$.
- But then all extensions of α along ρ must also have transfer function $\lambda \gamma . \bot$.

Motivation 0000000000	Call-strings method	Correctness 00000000	Bounded call-string method	Approximate call-string method
Exercise	e 2			

Motivation 0000000000	Call-strings method	Correctness 00000000	Bounded call-string method	Approximate call-string method
Exercise	- 2			

Motivation 0000000000	Call-strings method	Correctness 00000000	Bounded call-string method	Approximate call-string method
Exercise	- 2			

Motivation 0000000000	Call-strings method	Correctness 00000000	Bounded call-string method	Approximate call-string method
Exercise	- 2			

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

Computing JOP for abs int \mathcal{A}'

• Problem is that D' is infinite in general (even if D were finite). So we cannot use Kildall's algo to compute an over-approximation of JOP (it may not terminate when the program has recursive procedures).

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method 00000

Available expressions

- An expression (like "a * b") is available along an execution if there is a point where the expression is evaluated and thereafter none of the constituent variables (like a and b) are written to.
- An expression is available at a point N in a program, if along every execution reaching N, the expression is available.
- Is *a* * *b* available at program point *N*?

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method 00000

Available expressions

- An expression (like "a * b") is available along an execution if there is a point where the expression is evaluated and thereafter none of the constituent variables (like a and b) are written to.
- An expression is available at a point N in a program, if along every execution reaching N, the expression is available.
- Is a * b available at program point N? Yes.

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

Available expressions analysis

0 (not available)
1 (available)
⊥

Lattice for Av-Exp analysis for a * b.

- "0" concretizes to the set *States* × {*A*, *NA*}; while "1" concretizes to *States* × {*A*}. "⊥" concretizes to Ø.
- JOP of analysis says *a* * *b* is not available at program point *N*.

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

Available expressions analysis

0 (not available)
1 (available)
⊥

Lattice for Av-Exp analysis for a * b.

- "0" concretizes to the set *States* × {*A*, *NA*}; while "1" concretizes to *States* × {*A*}. "⊥" concretizes to Ø.
- JOP of analysis says *a* * *b* is not available at program point *N*.
- JVP says it is available.

 Motivation
 Call-strings method
 Correctness
 Bounded call-string method
 Approximate call-string method

 000000000
 00000000
 00000000
 0000000
 0000000
 0000000

Computing JOP for abs int \mathcal{A}'

- We give two methods to bound the number of call-strings we need to consider, when underlying lattice (*D*, ≤) is finite.
 - Give a bound on largest call-string needed.
 - Use "approximate" call-strings.

Approximate call-string method 00000

Bounded call-string method for finite underlying lattice D

- \bullet Possible to bound length of call-strings Γ we need to consider.
- For a number *I*, we denote the set of call-strings (for the given program *P*) of length at most *I*, by Γ_I .
- Define a new analysis \mathcal{A}'' (*M*-bounded call-string analysis) in which call-string tables have entries only for Γ_M for a certain constant *M*, and transfer functions ignore entries for call-strings of length more than *M*.
- We will show that JOP(G', A'') = JOP(G', A').

 $\operatorname{JOP}(G',\mathcal{A}'') \quad \operatorname{JOP}(G',\mathcal{A}') \quad \operatorname{JVP}(G',\mathcal{A})$

Approximate call-string method 00000

LFP of \mathcal{A}'' is more precise than LFP of \mathcal{A}'

- Consider any fixpoint V' (a vector of tables) of \mathcal{A}' .
- Truncate each entry of V' to (call-strings of) length M, to get V''.
- Clearly V' dominates V''.
- Further, observe that V'' is a post-fixpoint of the transfer functions for \mathcal{A}'' .
- By Knaster-Tarski characterisation of LFP, we know that V'' dominates LFP(A'').

Call-strings method

Correctness 00000000 Bounded call-string method 0000000

Approximate call-string method 00000

Sufficiency (or safety) of bound

Let k be the number of call sites in P.

Claim

For any path p in $IVP(r_1, N)$ with a prefix q such that $|cs(q)| > k|D|^2 = M$ there is a path p' in $IVP(r_1, N)$ with $|cs(q')| \le M$ for each prefix q' of p', and $f_p(d_0) = f_{p'}(d_0)$.

Paths with bounded call-strings

Motivation 0000000000	Call-strings method	Correctness 00000000	Bounded call-string method 000●0000	Approximate call-string method

Proving claim

Claim

For any path p in $IVP(r_1, N)$ such that for some prefix q of p, $|cs(q)| > M = k|D|^2$, there is a path p' in $IVP_{\Gamma_M}(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0)$.

• Sufficient to prove:

Subclaim

For any path p in $IVP(r_1, N)$ with a prefix q such that |cs(q)| > M, we can produce a smaller path p' in $IVP(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0)$.

• ...since if $|p| \leq M$ then $p \in IVP_{\Gamma_M}$.

Call-strings method

Correctness 00000000 Bounded call-string method 00000000

Approximate call-string method 00000

Proving subclaim: Path decomposition

A path ρ in $IVP(r_1, n)$ can be decomposed as

 $\rho_1 \| (c_1, r_{\rho_2}) \| \rho_2 \| (c_2, r_{\rho_3}) \| \sigma_3 \| \cdots \| (c_{j-1}, r_{\rho_j}) \| \rho_j.$

where each ρ_i (i < j) is a valid and complete path from r_{p_i} to c_i , and ρ_j is a valid and complete path from r_{p_j} to n. Thus c_1, \ldots, c_{i-1} are the unfinished calls at the end of ρ .

- Let p_0 be the first prefix of p where $|cs(p_0)| > M$.
- Let decomposition of p_0 be

$$\rho_1 \| (c_1, r_{\rho_2}) \| \rho_2 \| (c_2, r_{\rho_3}) \| \sigma_3 \| \cdots \| (c_{j-1}, r_{\rho_j}) \| \rho_j.$$

- Tag each unfinished-call c in p_0 by $(c, f_{q \cdot c}(d_0), f_{q \cdot cq'e}(d_0))$ where e is corresponding return of c in p.
- If no return for c in p tag with $(c, f_{q \cdot c}(d_0), \bot)$.
- Number of distinct such tags is $k \cdot |D|^2$.
- So there are two calls qc and qcq'c with same tag values.

Notivation C

all-strings method

Correctness

Bounded call-string method

Approximate call-string method

Proving subclaim – tag values are \perp

all-strings method 0000000 Correctness

Bounded call-string method

Approximate call-string method 00000

Proving subclaim – tag values are not \perp

Call-strings method

Correctness

Bounded call-string method 00000000

Approximate call-string method •0000

Approximate (suffix) call-string method

Idea:

- Consider only call-strings of up to length $\leq I$.
- For *l* = 2, call strings can be of the form "*c*₁" or "*c*₁*c*₂" etc. So each table ξ is now a finite table.
- Transfer functions for non-call/ret edges remain same.
- Transfer functions for call edge C: Shift γ entry to γ · C if |γ · C| ≤ I; else shift it to γ' · C where γ is of the form A · γ', for some call A.
- Transfer functions for ret edge N:
 - If $\gamma = \gamma' \cdot C$ and N corresponds to call edge C, then shift $\gamma' \cdot C$ entry to $A \cdot \gamma'$ which are "feasible" at the return site;

Call-strings method

Correctness 00000000 Bounded call-string method 00000000

Approximate call-string method 00000

From Sharir-Pnueli 1981, p136 of typed version

string. As long as the length of a call string is less than j, update it as in Section 4. However, if q is a call string of length j, then, when appending to it a call edge, discard the first component of q and add the new call block to its end. When appending a return edge, check if it matches the last call in q and, if it does, delete this call from q and add to its start all possible call blocks which call the procedure containing the first call in q. This approximation may be termed a <u>call-string suffix approximation</u>. Correctness

Approximate call-string method 00000

Exercise: approximate call-strings

tivation Call-strings method Correctness Bounded call-string m

Approximate call-string method 00000

Exercise: approximate call-strings

tivation Call-strings method Correctness Bounded call-string me

Approximate call-string method 00000

Exercise: approximate call-strings

tivation Call-strings method Correctness Bounded call-string me

Approximate call-string method 00000

Exercise: approximate call-strings

tivation Call-strings method Correctness Bounded call-string m

Approximate call-string method 00000

Exercise: approximate call-strings

Call-strings metho 00000000 Correctness

Bounded call-string method 00000000

Approximate call-string method

Example

Call-strings method

Correctness

Bounded call-string method

Approximate call-string method

Transfer functions f'_{MN} for Example 2

