Bauvorhaben:

Neubau EDEKA Markt

Cuxhaven - Altenbruch

Bauherr:

HG Projektgesellschaft mbH

Cuxhavener Straße 36 - 21762 Otterndorf

		NGSN	

ÜBERFLUTUNGSNACHWEIS						
Grundstücksgröße:		10.211,84 m ²				
			Ab	flussbeiwert (;	
Dachfläche Hauptdache	D1	2.248,27 m ²	Х	1,0	=	2.248,27 m ²
Dachfläche Vordach	D2	143,72 m²	х	1,0	=	143,72 m²
A _{Dach}	=	2.391,99 m²				
Pflasterfläche		2.809,94 m ²	x	0,75	=	2.107,46 m ²
Parkplätze		1.351,00 m ²	Х	0,75	=	1.013,25 m ²
A _{FaG}	=	4.160,94 m ²				
A ges	=	6.552.93 m ²	Α,	1	=	5.512.70 m ²

	DN	70	DN	80	DN	190	DN	100	DN	125	DN	150	DN:	200	DN	225	DN	250	DN	300
Gefälle	$d_1 = 6$	$d_i \approx 68 \text{ mm}$		d _i = 75 mm		dj = 79 mm		dj = 96 mm		d ₁ = 113 mm		di = 146 mm		d ₁ = 184 mm		07 mm	dj = 230 mm		di = 290 mm	
1	0	W:	Q		Q	+	0	v	Q	y	Q	v	0	v	Q	¥	Q	v	Q	
cm/m	1/5	m/s	1/s	m/s	1/s	m/s	1/s	m/s	1/s	m/s	1/8	m/s	1/s	m/s	1/s	m/s	1/s	m/s	1/s	п
0,20													12,5	0,5	17,2	0,5	22,7	0,5	42,1	0
0,30											8,3	0,5	15,4	0,6	21,1	0,6	27,9	0,7	51,7	0
0,40									4,9	0,5	9,6	0,6	17,8	0,7	24,4	0,7	32,3	0,8	59,7	0
0,50							3,5	0,5	5,4	0,5	10,8	0,6	20,0	8,0	27,3	0,8	36,2	0,9	66,9	1
0,60					2,3	0,5	3.9	0,5	6,0	0,6	11,8	0,7	21,9	0,8	30,0	0,9	39,7	1,0	73,3	1
0,70	1,6	0,5	2,1	0,5	2,5	0,5	4,2	0,6	6,5	0,6	12,8	0,8	23,7	0,9	32,4	1,0	42,9	1,0	79,3	1
0.80	1,8	0,5	2,3	0,5	2,6	0,5	4,5	0,6	6,9	0,7	13,7	0,8	25,3	1,0	34,7	1,0	45,9	1,1	84,8	1
0,90	1,9	0,5	2,4	8,6	2,8	0,6	4,7	0,7	7,3	0,7	14,5	0,9	26,9	1,0	36,8	1,1	48,7	1,2	90,0	1
1,00	2,0	0,5	2,6	0,6	3.0	0,6	5,0	0,7	7,7	8,0	15,3	0,9	28,4	1,1	36,8	1,2	51,3	1,2	94,9	7
1,10	2,1	0,6	2,7	0,6	3,1	0,6	5,2	0,7	8,1	0,8	16,1	1,0	29,8	1,1	40,7	1,2	53,8	1,3	99,5	1
1,20	2,2	0,6	2,8	0,6	3,2	0,7	5,5	0,8	8,5	0,8	16,8	1,0	32,1	1,2	42,5	1,3	56,2	1,4	104,0	3
1,30	2,3	0,6	2,9	0,7	3,4	0,7	5,7	0,8	8,8	0,9	17,5	1,0	32,4	1,2	44,3	1,3	58,6	1,4	108,2	1
1,40	2,3	0,6	3,1	0,7	3,5	0.7	5,9	0,8	9,2	0,9	18,2	1.1	33,6	1,3	46,0	1,4	60,8	1,5	112,4	1
1,50	2,4	0,7	3,2	0,7	3,6	0,7	6,1	0,8	9,5	0,9	18,8	1,1	34,8	1,3	47,6	1,4	62,9	1,5	116,3	1
2,00	2,8	8,0	3,7	8,0	4,2	0,9	7,1	1,0	11,0	1,1	21,7	1,3	40,2	1,5	55,0	1,6	72,7	1,8	134,4	2
2,50	3,1	0,9	4,1	0.9	4,7	1,0	7,9	1,1	12,3	1,2	24,3	1,5	45,0	1,7	61,5	1,8	81,4	2,0	150,4	2
3,00	3,5	1,0	4,5	1,0	5,2	1,1	8,7	1,2	13,5	1,3	26,7	1,6	49,3	1,9	67,4	2,0	89,2	2,1	164,8	2
3,50	3,7	1,0	4,9	1,1	5,6	1,1	9,4	1,3	14,5	1,5	28,8	1,7	53,3	2,0	72,9	2,2	96,4	2,3		_
4,00	4,0	1,1	5,2	1,2	6,0	1,2	10,1	1,4	15,6	1,6	30,8	1,8	57,0	2,1	77,9	2,3	103,0	2,5		
4,50	4,2	1,2	5,5	1,2	6,3	1,3	10,7	1,5	16,5	1,6	32,7	2,0	60,5	2,3	82,7	2,5				
5,00	4,5	1,2	5,8	1,3	6,7	1,4	11,3	1.6	17.4	1.7	34.5	2.1	63.8	2,4						

Berechnung Überflutungsnachweis mit Gleichung 20

r _(5,30)	430 l/(s x ha)	30 jähriges Regenereignis je nach Ort
r _(5,2)	220 I/(s x ha)	2 jähriges Regenereignis je nach Ort

 $V_{\text{R\"uck}}$ 48,15 m³ Ergebnis

$$V_{R\"uck} = \left(r_{D,30} \times A_{ges} - \left(r_{D,2} * \times A_{Dach} \times C_{S,Dach} + r_{D,2} * \times A_{FaG} \times C_{S,FaG}\right)\right) \times \frac{D \times 60}{10000 \times 1000}$$

Berechnung maximaler Abfluss Grundstücksanschlussleitung bei Vollfüllung Qvoll für Gleichung 21

Q, 107,54 I/s $Q_r = \frac{{{A_{Dach}} \times {C_{Dach}} \times {r_{(D,2)}}}}{{10000}} + \frac{{{A_{FaG}} \times {C_{FaG}} \times {r_{(D,2)}}}}{{10000}}$

 $Q_{voll=}$

Diesen Wert in Tabelle A.5 ermitteln und höheren oder gleichen Wert entnehmen

Gefälle Durchmesser 1,30 **DN300**

Abflussvermögen 108,20 l/s

Berechnung Überflutungsnachweis mit Gleichung 21

	430 l/(s x ha)	30 jähriges Regenereig	nis je nach Ort
	312 l/(s x ha)	30 jähriges Regenereig	gnis je nach Ort
	252 I/(s x ha)	30 jähriges Regenereig	gnis je nach Ort
	6.552,93 m ²		
	108,20 l/s	Abfluss bei Füllungsgr	rad 100 % - DN300 nach Tabelle A.5 bei 2 Gefälle
5 Min	52,07 m³	Ergebnis	(race × 4
10 Min	57,63 m ³	Ergebnis	$V_{R\ddot{ ext{u}}ck} = \left(rac{r_{D,30} imes A_{ges}}{10000} - Q_{voll} ight) imes rac{D imes 60}{1000}$
15 Min	51,36 m ³	Ergebnis	(10000 / 1000
	57,63 m³	höchstes Ergebnis	
	10 Min	252 I/(s x ha) 6.552,93 m² 108,20 I/s 5 Min 52,07 m³ 10 Min 57,63 m³ 15 Min 51,36 m³	312 I/(s x ha) 252 I/(s x ha) 30 jähriges Regenereig 50 jähriges Reg

Vergleich der Ergebnisse aus Gleichung 20 und 21

48,15 m³ 57,63 m³

Gewählter Vrück 57,63 m³

Berechnung des vorhanden Rückhalteraumes

vorgesehene mittlere Fläche	Amit.	3.987,27 m ²
gewählte maximal Stauhöhe	Δh	0,05 m
Speicherkoeffizient	Sr	0,35
zurückgehaltene Regenwassermenge	V Rück.RRR.	62.80 m ³

VRück.RRR = Amit. x Δh x sr

Der vorgesehene Rückhalteraum kann Die zurückzuhaltende Wassermenge von 62,80 m³ 57,63 m³ Wasser aufnehmen. kann somit zurückgehalten werden.

m3 = Benötiger Rückhalteraum

 $V_{RRR} = A_u \times \frac{r_{D,T}}{10000} \times D \times f_z \times 0.06 - D \times f_z \times Q_{Dr} \times 0.06$

Berechnung Rückhalteräume bei Einleitungsmengenbeschränkung nach Gleichung 22

$A_{\rm u}$	5.512,70	m2	Fläche mit Faktor Abflussbeiwert
r _{DT}	13	I/(s x ha)	Regenspende I/s (s.ha) der Regendauer D/ Jährlichkeit T - angesetzt auf alle 2 Jahre
f _z	1,15	Faktor	ist 1,15 - beim einfachen Verfahren Standardwert (15 % Erhöhung)
D	360	min	Regendauer in Minuten Höchster Wert
T	2	Jahre	Jährlichkeit
Q _{Dr}	1,50	I/s	Drosselabfluss I/s ab Speicherbeginnn bis Vollfüllung

S P E C K M A N N
ARCHITEKTEN & INGENIEURE

Datum, Unterschrift Entwurfsverfasser