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Abstract

Many human activities involve object manipulations

aiming to modify the object state. Examples of common

state changes include full/empty bottle, open/closed door,

and attached/detached car wheel. In this work, we seek to

automatically discover the states of objects and the associ-

ated manipulation actions. Given a set of videos for a par-

ticular task, we propose a joint model that learns to identify

object states and to localize state-modifying actions. Our

model is formulated as a discriminative clustering cost with

constraints. We assume a consistent temporal order for the

changes in object states and manipulation actions, and in-

troduce new optimization techniques to learn model param-

eters without additional supervision. We demonstrate suc-

cessful discovery of seven manipulation actions and corre-

sponding object states on a new dataset of videos depicting

real-life object manipulations. We show that our joint for-

mulation results in an improvement of object state discovery

by action recognition and vice versa.

1. Introduction

Many of our activities involve changes in object states.

We need to open a book to read it, to cut bread before eat-

ing it and to lighten candles before taking out a birthday

cake. Transitions of object states are often coupled with

particular manipulation actions (open, cut, lighten). More-

over, the success of an action is often signified by reaching

the desired state of an object (whipped cream, ironed shirt)

and avoiding other states (burned shirt). Recognizing ob-

ject states and manipulation actions is, hence, expected to

become a key component of future systems such as wear-

able automatic assistants or home robots helping people in

their daily tasks.

Human visual system can easily distinguish different

states of objects, such as open/closed bottle or full/empty

coffee cup [8]. Automatic recognition of object states and
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Figure 1: We automatically discover object states such as

empty/full coffee cup along with their corresponding ma-

nipulation actions by observing people interacting with the

objects.

state changes, however, presents challenges as it requires

distinguishing subtle changes in object appearance such as

the presence of a cap on the bottle or screws on the car tire.

Despite much work on object recognition and localization,

recognition of object states has received only limited atten-

tion in computer vision [22].

One solution to recognizing object states would be to

manually annotate states for different objects, and treat the

problem as a supervised fine-grained object classification

task [14, 15]. This approach, however, presents two prob-

lems. First, we would have to decide a priori on the set of

state labels for each object, which can be ambiguous and not

suitable for future tasks. Second, for each label we would

need to collect a large number of examples, which can be

very costly.

In this paper we propose to discover object states directly

from videos with object manipulations. As state changes are

often caused by specific actions, we attempt to jointly dis-

cover object states and corresponding manipulations. In our

setup we assume that two distinct object states are tempo-

rally separated by a manipulation action. For example, the

empty and full states of a coffee cup are separated by the

“pouring coffee” action, as shown in Figure 1. Equipped

with this constraint, we develop a clustering approach that
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jointly (i) groups object states with similar appearance and

consistent temporal locations with respect to the action and

(ii) finds similar manipulation actions separating those ob-

ject states in the input videos. Our approach exploits the

complementarity of both subproblems and finds a joint so-

lution for states and actions. We formulate our problem by

adopting a discriminative clustering loss [4] and a joint con-

sistency cost between states and actions. We introduce an

effective optimization solution in order to handle the result-

ing non-convex loss function and the set of spatial-temporal

constraints. To evaluate our method, we collect a new video

dataset depicting real-life object manipulation actions in re-

alistic videos. Given this dataset for training, our method

demonstrates successful discovery of object states and ma-

nipulation actions. We also demonstrate that our joint for-

mulation gives an improvement of object state discovery by

action recognition and vice versa.

2. Related work

Below we review related work on person-object interac-

tion, recognizing object states, action recognition and dis-

criminative clustering that we employ in our model.

Person-object interactions. Many daily activities involve

person-object interactions. Modeling co-occurrences of ob-

jects and actions have shown benefits for recognizing ac-

tions in [11, 19, 26, 35, 47]. Recent work has also focused

on building realistic datasets with people manipulating ob-

jects, e.g. in instructional videos [3, 32, 37] or while per-

forming daily activities [38]. We build on this work but fo-

cus on joint modeling and recognition of actions and object

states.

States of objects. Prior work has addressed recognition of

object attributes [15, 33, 34], which can be seen as differ-

ent object states in some cases. Differently from our ap-

proach, these works typically focus on classifying still im-

ages, do not consider human actions and assume an a pri-

ori known list of possible attributes. Closer to our setting,

Isola et al. [22] discover object states and transformations

between them by analyzing large collections of still images

downloaded from the Internet. In contrast, our method does

not require annotations of object states. Instead, we use

the dynamics of consistent manipulations to discover object

states in the video with minimal supervision. In [10], the au-

thors use consistent manipulations to discover task relevant

objects. However, they do not consider object states, rely

mostly on first person cues (such as gaze) and take advan-

tage of the fact that videos are taken in a single controlled

environment.

Action recognition. Most of the prior work on action

recognition has focused on designing features to describe

time intervals of a video using motion and appearance [30,

39, 43, 44]. This is effective for actions such as dancing

or jumping, however, many of our daily activities are best

distinguishable by their effect on the environment. For ex-

ample, opening door and closing door can look very simi-

lar using only motion and appearance descriptors but their

outcome is completely different. This observation has been

used to design action models in [16, 17, 45]. In [45], for

example, the authors propose to learn an embedding in

which a given action acts as a transformation of features

of the video. In our work we localize objects and recog-

nize changes of their states using manipulation actions as

a supervisory signal. Related to ours is also the work of

Fathi et al. [16] who represent actions in egocentric videos

by changes of appearance of objects (also called object

states), however, their method requires manually annotated

precise temporal localization of actions in training videos.

In contrast, we focus on (non-egocentric) Internet videos

depicting real-life object manipulations where actions are

performed by different people in a variety of challenging in-

door/outdoor environments. In addition, our model jointly

learns to recognize both actions and object states with only

minimal supervision.

Discriminative clustering. Our model builds on unsu-

pervised discriminative clustering methods [4, 41, 46] that

group data samples according to a simultaneously learned

classifier. Such methods can incorporate (weak) supervi-

sion that helps to steer the clustering towards a preferred

solution [5, 13, 21, 24, 42]. In particular, we build on

the discriminative clustering approach of [4] that has been

shown to perform well in a variety of computer vision prob-

lems [5]. It leads to a quadratic optimization problem where

different forms of supervision can be incorporated in the

form of (typically) linear constraints. Building on this for-

malism, we develop a model that jointly finds object states

and temporal locations of actions in the video. Part of

our object state model is related to [25], while our action

model is related to [7]. However, we introduce new spatial-

temporal constraints together with a novel joint cost func-

tion linking object states and actions, as well as new effec-

tive optimization techniques.

Contributions. The contributions of this work are three-

fold. First, we develop a new discriminative clustering

model that jointly discovers object states and temporally lo-

calizes associated manipulation actions in video. Second,

we introduce an effective optimization algorithm to handle

the resulting non-convex constrained optimization problem.

Finally, we experimentally demonstrate that our model dis-

covers key object states and manipulation actions from in-

put videos with minimal supervision.

3. Modeling manipulated objects

We are given a set of N clips that contain a common

manipulation of the same object (such as “open an oys-

ter”). We also assume that we are given an a priori model

of the corresponding object in the form of a pre-trained ob-
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Figure 2: Given a set of clips that depict a manipulated object, we wish to automatically discover the main states that the

object can take along with localizing the associated manipulation action. In this example, we show one video of someone

filling a coffee cup. The video starts with an empty cup (state 1), which is filled with coffee (action) to become full (state

2). Given imperfect object detectors, we wish to assign to the valid object candidates either the initial state or the final state

(encoded in Y ). We also want to localize the manipulating action in time (encoded in Z) while maintaining a joint action-state

consistency.

ject detector [18]. Given these inputs, our goal is twofold:

(i) localize the temporal extent of the action and (ii) spa-

tially/temporally localize the manipulated object and iden-

tify its states over time. This is achieved by jointly clus-

tering the appearances of an object (such as an “oyster”)

appearing in all clips into two classes, corresponding to the

two different states (such as “closed” and “open”), while at

the same time temporally localizing a consistent “opening”

action that separates the two states consistently in all clips.

More formally, we formulate the problem as a minimization

of a joint cost function that ties together the action predic-

tion in time, encoded in the assignment variable Z, with

the object state discovery in space and time, defined by the

assignment variable Y :

minimize
Y ∈{0,1}M×2

Z∈{0,1}T

f(Z) + g(Y ) + d(Z, Y ) (1)

s.t. Z ∈ Z
︸ ︷︷ ︸

saliency of action

Action localization

and Y ∈ Y
︸ ︷︷ ︸

ordering + non overlap

Object state labeling

where f(Z) is a discriminative clustering cost to tempo-

rally localize the action in each clip, g(Y ) is a discrimi-

native clustering cost to identify and localize the different

object states and d(Z, Y ) is a joint cost that relates object

states and actions together. T denotes the total length of

all video clips and M denotes the total number of tracked

object candidate boxes (tracklets). In addition, we impose

constraints Y and Z that encode additional structure of the

problem: we localize the action with its most salient time

interval per clip (“saliency”); we assume that the ordering

of object states is consistent in all clips (“ordering”) and that

only one object is manipulated at a time (“non overlap”).

In the following, we proceed with describing different

parts of the model (1). In Sec. 3.1 we describe the cost

function for the discovery of object states. In Sec. 3.2 we

detail our model for action localization. Finally, in Sec. 3.3

we describe and motivate the joint cost d.

3.1. Discovering object states

The goal here is to both (i) spatially localize the manipu-

lated object and (ii) temporally identify its individual states.

To address the first goal, we employ pre-trained object de-

tectors. To address the second goal, we formulate the dis-

covery of object states as a discriminative clustering task

with constraints. We obtain candidate object detections us-

ing standard object detectors pre-trained on large scale ex-

isting datasets such as ImageNet [12]. We assume that each

clip n is accompanied with a set of Mn tracklets1 of the

object of interest.

We formalize the task of localizing the states of ob-

jects as a discriminative clustering problem where the goal

is to find an assignment matrix Yn ∈ {0, 1}Mn×2, where

(Yn)mk = 1 indicates that the m-th tracklet represents the

object in state k. We also allow a complete row of Yn to

be zero to encode that no state was assigned to the corre-

sponding tracklet. This is to model the possibility of false

1In this work, we use short tracks of objects (less than one second) that

we call tracklet. We want to avoid long tracks that continue across a state

change of objects. By using the finer granularity of tracklets, our model

has the ability to correct for detection mistakes within a track as well as

identify more precisely the state change.
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positive detections of an object, or that another object of

the same class appears in the video, but is not manipulated

and thus is not undergoing any state change. In detail, we

minimize the following discriminative clustering cost [4]:2

g(Y ) = min
Ws∈Rds×2

1

2M
‖Y −XsWs‖2F

︸ ︷︷ ︸

Discriminative loss on data

+
µ

2
‖Ws‖2F

︸ ︷︷ ︸

Regularizer

(2)

where Ws is the object state classifier that we seek to learn,

µ is a regularization parameter and Xs is a M×ds matrix of

features, where each row is a ds-dimensional (state) feature

vector storing features for one particular tracklet. The min-

imization in Ws actually leads to a convex quadratic cost

function in Y (see [4]). The first term in (2) is the discrim-

inative loss on the data that measures how easily the input

data Xs is classified by the linear classifier Ws when the ob-

ject state assignment is given by matrix Y . In other words,

we wish to find a labeling Y for given object tracklets into

two states (or no state) so that their appearance features X
are easily classified by a linear classifier. To steer the cost

towards the right solution, we employ the following con-

straints (encoded by Y ∈ Y in (1)).

Only one object is manipulated at a time : non overlap

constraint. As it is common in instructional videos, we

assume that only one object can be manipulated at a given

time. However, in practice, it is common to have multiple

(spatially diverse) tracklets that occur at the same time, for

example, due to a false positive detection in the same frame.

To overcome this issue, we impose that at most one track-

let can be labeled as belonging to state 1 or state 2 at any

given time. We refer to this constraint as “non overlap” in

problem (1).

state 1 → Action → state 2: ordering constraints. We

assume that the manipulating action transforms the object

from an initial state to a final state and that both states are

present in each video. This naturally introduces two con-

straints. The first one is the ordering constraints on the la-

beling Yn, i.e. the state 1 should occur before state 2 in each

video. The second constraint imposes that we have at least

one tracklet labeled as state 1 and at least one tracklet la-

beled as state 2. We call this last constraint the “at least

one” constraint in contrast to forcing “exactly one” ordered

prediction as previously proposed in a discriminative clus-

tering approach on video for action localization [7]. This

new type of constraint brings additional optimization chal-

lenges that we address in Section 4.2.

3.2. Action localization

Our action model is equivalent to the one of [7] applied

to only one action. More precisely, the goal is to find an

assignment matrix Zn ∈ {0, 1}Tn for each clip n, where

2We concatenate all the variables Yn into one M×2 matrix Y.

Znt = 1 encodes that the t-th time interval of video is as-

signed to an action and Znt = 0 encodes that no action is

detected in interval t. The cost that we minimize for this

problem is similar to the object states cost:

f(Z) = min
Wv∈Rdv

1

2T
‖Z −XvWv‖2F

︸ ︷︷ ︸

Discriminative loss on data

+
λ

2
‖Wv‖2F

︸ ︷︷ ︸

Regularizer

, (3)

where Wv is the action classifier, λ is a regularization pa-

rameter and Xv is a matrix of visual features. We constrain

our model to predict exactly one time interval for an ac-

tion per clip, an approach for actions that was shown to be

beneficial in a weakly supervised setting [7] (referred to as

“action saliency” constraint). As will be shown in experi-

ments, this model alone is incomplete because the clips in

our dataset can contain other actions that do not manipulate

the object of interest. Our central contribution is to propose

a joint formulation that links this action model with the ob-

ject state prediction model, thereby resolving the ambiguity

of actions. We detail the joint model next.

3.3. Linking actions and object states

Actions in our model are directly related to changes in

object states. We therefore want to enforce consistency be-

tween the two problems. To do so, we design a novel joint

cost function that operates on the action video labeling Zn

and the state tracklet assignment Yn for each clip. We want

to impose a constraint that the action occurs in between the

presence of the two different object states. In other words,

we want to penalize the fact that state 1 is detected after the

action happens, or the fact that state 2 is triggered before the

action occurs.

Joint cost definition. We propose the following joint sym-

metric cost function for each clip:

d(Zn, Yn) =
∑

y∈S1(Yn)

[ty − tZn
]+ +

∑

y∈S2(Yn)

[tZn
− ty]+, (4)

where tZn
and ty are the times when the action Zn and the

tracklet y occur in a clip n, respectively. S1(Yn) and S2(Yn)
are the tracklets in the n-th clip that have been assigned to

state 1 and state 2, respectively. Finally [x]+ is the posi-

tive part of x. In other words, the function penalizes the

inconsistent assignment of objects states Yn by the amount

of time that separates the incorrectly assigned tracklet and

the manipulation action in the clip. The overall joint cost is

the sum over all clips weighted by a scaling hyperparameter

ν > 0:

d(Z, Y ) = ν
1

T

N∑

n=1

d(Zn, Yn). (5)

4. Optimization

Optimizing problem (1) poses several challenges that

need to be addressed. First, we propose a relaxation of the
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integer constraints and the distortion function (Section 4.1).

Second, we optimize this relaxation using Frank-Wolfe with

a new dynamic program able to handle our tracklet con-

straints (Section 4.2). Finally, we introduce a new round-

ing technique to obtain an integer candidate solution to our

problem (Section 4.3).

4.1. Relaxation

Problem (1) is NP-hard in general [31] due to its specific

integer constraints. Inspired by the approach of [6] that was

successful to approximate combinatorial optimization prob-

lems, we propose to use the tightest convex relaxation of

the feasible subset of binary matrices by taking its convex

hull. As our variables now can take values in [0, 1], we also

have to propose a consistent extension for the different cost

functions to handle fractional values as input. For the cost

functions f and g, we can directly take their expression on

the relaxed set as they are already expressed as (convex)

quadratic functions. Similarly, for the joint cost function d
in (4), we use its natural bilinear relaxation:

d(Zn, Yn) =

Mn∑

i=1

Tn∑

t=1

(

(Yn)i1Znt[tni − t]+ +

(Yn)i2Znt[t− tni]+

)

, (6)

where tni denotes the video time of tracklet i in clip n. This

relaxation is equal to the function (4) on the integer points.

However, it is not jointly convex in Y and Z, thus we have

to design an appropriate optimization technique to obtain

good (relaxed) candidate solutions, as described next.

4.2. Joint optimization using Frank­Wolfe

When dealing with a constrained optimization problem

for which it is easy to solve linear programs but difficult to

project on the feasible set, the Frank-Wolfe algorithm is an

excellent choice [23, 29]. It is exactly the case for our re-

laxed problem, where the linear program over the convex

hull of feasible integer matrices can be solved efficiently

via dynamic programming. Moreover, [28] recently showed

that the Frank-Wolfe algorithm with line-search converges

to a stationary point for non-convex objectives at a rate of

O(1/
√
k). We thus use this algorithm for the joint optimiza-

tion of (1). As the objective is quadratic, we can perform

exact line-search analytically, which speeds up convergence

in practice. Finally, in order to get a good initialization for

both variables Z and Y , we first optimize separately f(Z)
and g(Y ) (without the non-convex d(Z, Y )), which are both

convex functions.

Dynamic program for the tracklets. In order to apply

the Frank-Wolfe algorithm, we need to solve a linear pro-

gram (LP) over our set of constraints. Previous work has

explored “exact one” ordering constraints for time localiza-

tion problems [6]. Differently here, we have to deal with

the spatial (non overlap) constraint and finding “at least

one” candidate tracklet per state. To deal with these two

requirements, we propose a novel dynamic programming

approach. First, the “at least one” constraint is encoded by

having a memory variable which indicates whether state 1

or state 2 have already been visited. This variable is used

to propose valid state decisions for consecutive tracklets.

Second, the challenging “non-overlap” tracklet constraint is

included by constructing valid left-to-right paths in a cost

matrix while carefully considering the possible authorized

transitions. We provide details of the formulation in the ap-

pendix [2]. In addition, we show in section 5.2 that these

new constraints are key for the success of the method.

4.3. Joint rounding method

Once we obtain a candidate solution of the relaxed prob-

lem, we have to round it to an integer solution in order to

make predictions. Previous works [3, 7] have observed that

using the learned W ∗ classifier for rounding gave better re-

sults than other possible alternatives. We extend this ap-

proach to our joint setup by proposing the following new

rounding procedure. We optimize problem (1) but fix the

values of W in the discriminative clustering costs. Specifi-

cally, we minimize the following cost function over the in-

teger points Z ∈ Z and Y ∈ Y:

1

2T
‖Z −XvW

∗
v ‖2F +

1

2M
‖Y −XsW

∗
s ‖2F + d(Z, Y ), (7)

where W ∗
v and W ∗

s are the classifier weights obtained at the

end of the relaxed optimization. Because y2 = y when y
is binary, (7) is actually a linear objective over the binary

matrix Yn for Zn fixed. Thus we can optimize (7) exactly

by solving a dynamic program on Yn for each of the Tn

possibilities of Zn, yielding O(MnTn) time complexity per

clip (see the appendix [2] for details).

5. Experiments

In this section, we first describe our dataset, the object

tracking pipeline and the feature representation for object

tracklets and videos (Section 5.1). We consider two exper-

imental set-ups. In the first weakly-supervised set-up (Sec-

tion 5.2), we apply our method on a set of video clips which

we know contain the action of interest but do not know its

precise temporal localization. In the second, more chal-

lenging “in the wild” set-up (Section 5.3), the input set of

weakly-supervised clips is obtained by automatic process-

ing of text associated with the videos and hence may contain

erroneous clips that do not contain the manipulation action

of interest. The data and code are available online [1].

5.1. Dataset and features

Dataset of manipulation actions. We build a dataset of

manipulation actions by collecting videos from different
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sources: the instructional video dataset introduced in [3],

the Charades dataset from [38], and some additional videos

downloaded from YouTube. We focus on “third person”

videos (rather than egocentric) as such videos depict a va-

riety of people in different settings and can be obtained on

a large scale from YouTube. We annotate the precise tem-

poral extent of seven different actions3 applied to five dis-

tinct objects4. This results in 630 annotated occurrences of

ground truth manipulation action.

To evaluate object state recognition, we define a list of

two states for each object. We then run automatic object

detector for each involved object, track the detected ob-

ject occurrences throughout the video and then subdivide

the resulting long tracks into short tracklets. Finally, we la-

bel ground truth object states for tracklets within ±40 sec-

onds of each manipulation action. We label four possible

states: state 1, state 2, ambiguous state or false positive de-

tection. The ambiguous state covers the (not so common)

in-between cases, such as cup half-full. In total, we have

19,499 fully annotated tracklets out of which: 35% cover

state 1 or state 2, 25% are ambiguous, and 40% are false

positives. Note that this annotation is only used for eval-

uation purpose, and not by any of our models. Detailed

statistics of the dataset are given in the appendix [2].

Object detection and tracking. In order to obtain detec-

tors for the five objects, we finetune the FastRCNN net-

work [18] with training data from ImageNet [12]. We use

bounding box annotations from ImageNet when available

(e.g. the “wheel” class). For the other classes, we manually

labeled more than 500 instances per class. In our set-up with

only moderate amount of training data, we observed that

class-agnostic object proposals combined with FastRCNN

performed better than FasterRCNN [36]. In detail, we use

geodesic object proposals [27] and set a relatively low ob-

ject detection threshold (0.4) to have good recall. We track

objects using a generic KLT tracker from [5]. The tracks

are then post-processed into shorter tracklets that last about

one second and thus are likely to have only one object state.

Object tracklet representation. For each detected object,

represented by a set of bounding boxes over the course of

the tracklet, we compute a CNN feature from each (ex-

tended) bounding box that we then average over the length

of the tracklet to get the final representation. The CNN fea-

ture is extracted with a ROI pooling [36] of ResNet50 [20].

The ROI pooling notably allows to capture some context

around the object which is important for some cases (e.g.

wheel “on” or “off” the car). The resulting feature descrip-

tor of each object tracklet is 8,192 dimensional.

Representing video for recognizing actions. Following

3put the wheel on the car (47 clips), withdraw the wheel from the car

(46), place a plant inside a pot (27), open an oyster (28), open a refriger-

ator (234), close a refrigerator (191) and pour coffee (57).
4car wheel, flower pot, oyster, refrigerator and coffee cup.

the approach of [3, 6, 7], each video is divided into chunks

of 10 frames that are represented by a motion and appear-

ance descriptor averaged over 30 frames. For the motion we

use a 2,000 dimensional bag-of-word representation of his-

togram of local optical flow (HOF) obtained from Improved

Dense Trajectories [44]. Following [3], we add an appear-

ance vector that is obtained from a 1,000 dimensional bag-

of-word vector of conv5 features from VGG16 [40]. This

results in a 3,000 dimensional feature vector for each chunk

of 10 frames.

5.2. Weakly supervised object state discovery

Experimental setup. We first apply our method in a weakly

supervised set-up where for each action we provide an input

set of clips, where we know the action occurs somewhere in

the clip but we do not provide the precise temporal localiza-

tion. Each clip may contain other actions that affect other

objects or actions that do not affect any object at all (e.g.

walking / jumping). The input clips are about 20s long and

are obtained by taking approximately ± 10s of each anno-

tated manipulation action.

Evaluation metric: average precision. For all variants

of our method, we use the rounded solution that reached

the smallest objective during optimization. We evaluate

these predictions with a precision score averaged over all

the videos. A temporal action localization is said to be cor-

rect if it falls within the ground truth time interval. Simi-

larly, a state prediction is correct if it matches the ground

truth state.5 Note that a “precision” metric is reasonable in

our set-up as our method is forced to predict in all videos,

i.e. the recall level is fixed to all videos and the method

cannot produce high precision with low recall.

Hyperparameters. In all methods that involve a discrim-

inative clustering objective, we used λ = 10−2 (action lo-

calization) and µ = 10−4 (state discovery) for all 7 actions.

For joint methods that optimize (1), we set the weight ν of

the distortion measure (5) to 1.

State discovery results. Results are shown in the top part

of Table 1. In the following, we refer to “State only” when-

ever we use our method without looking at the action cost or

the distortion measure (1). We compare to two baselines for

the state discovery task. Baseline (a) evaluates chance per-

formance. Baseline (b) performs K-means clustering of the

tracklets with K = 3 (2 clusters for the states and 1 for false

positives). We report performance of the best assignment

for the solution with the lowest objective after 10 differ-

ent initializations. Baseline (c) is obtained by running our

“State only” method while using random features for track-

let representation as well as ”at least one ordering” and ”non

overlap” constraints. We use random features to avoid non-

trivial analytic derivation for the ”Constraints only” perfor-

mance. This baseline reveals the difficulty of the problem

5In particular, we count “ambiguous” labels as incorrect.
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put remove fill open fill open close
Method

wheel wheel pot oyster coff.cup fridge fridge
Average

(a) Chance 0.10 0.11 0.10 0.07 0.06 0.10 0.10 0.09

(b) Kmeans 0.25 0.12 0.11 0.23 0.14 0.19 0.22 0.18

(c) Constraints only 0.35 0.38 0.35 0.36 0.31 0.29 0.42 0.35

(d) Salient state only 0.35 0.48 0.35 0.38 0.30 0.40 0.37 0.38

(e) At least one state only 0.43 0.55 0.46 0.52 0.29 0.43 0.39 0.44

(f) Joint model 0.52 0.59 0.50 0.45 0.39 0.47 0.47 0.48

(g) Joint model + det. scores. 0.47 0.65 0.50 0.61 0.44 0.46 0.43 0.51

State

discovery

(h) Joint + GT act. feat. 0.55 0.56 0.56 0.52 0.46 0.45 0.49 0.51

(i) Chance 0.31 0.20 0.15 0.11 0.40 0.23 0.17 0.22

(ii) [7] 0.24 0.13 0.11 0.14 0.26 0.29 0.23 0.20

(iii) [7] + object cues 0.24 0.13 0.26 0.07 0.84 0.33 0.37 0.32

(iv) Joint model 0.67 0.57 0.48 0.32 0.82 0.57 0.44 0.55

Action

localization

(v) Joint + GT stat. feat. 0.72 0.66 0.44 0.46 0.86 0.55 0.44 0.59

Table 1: State discovery (top) and action localization results (bottom).

and quantifies improvement brought by the ordering con-

straints. The next two methods are “State only” variants.

Method (d) corresponds to a replacement of the “at least

one constraint” by an “exactly one constraint” while the

method (e) uses our new constraint. Finally, we report three

joint methods that use our new joint rounding technique (7)

for prediction. Method (f) corresponds to our joint method

that optimizes (1). Method (g) is a simple improvement

taking into account object detection score in the objective

(details below). Finally, method (h) is our joint method but

using the action ground truth labels as video features in or-

der to test the effect of having perfect action localization for

the task of object state discovery.

We first note that method (e) outperforms (d), thus high-

lighting the importance of the “at least one” constraint for

modeling object states. While the saliency approach (tak-

ing only the most confident detection per video) was useful

for action modeling in [7], it is less suitable for our set-

up where multiple tracklets can be in the same state. The

joint approach with actions (f) outperforms the “State only”

method (e) on 6 out of 7 actions and obtains better aver-

age performance, confirming the benefits of joint modeling

of actions and object states. Using ground truth action lo-

cations further improves results (cf. (h) against (f)). Our

weakly supervised approach (f) performs not much lower

compared to using ground truth actions (h), except for the

states of the coffee cup (empty/full). In this case we observe

that a high number of false positive detections confuses our

method. A simple way to address this issue is to add the ob-

ject detection score into the objective of our method, which

then prefers to assign object states to higher scoring ob-

ject candidates further reducing the effect of false positives.

This can be done easily by adding a linear cost reflecting the

object detection score to objective (1). We denote this mod-

ified method “(g) Joint model + det. scores”. This method

achieves the best average performance and highlights that

additional information can be easily added to our model.

Action localization results. We compare our method to

three different baselines and give results in the bottom part

of Table 1. Baseline (i) corresponds to chance performance,

where the precision for each clip is simply the proportion

of the entire clip taken by the ground truth time interval.

Baseline (ii) is the method introduced in [7] used here with

only one action. It also corresponds to a special case of

our method where the object state part of the objective in

equation (1) is turned off (salient action only). Interest-

ingly, this baseline is actually worse than chance for sev-

eral actions. This is because without additional informa-

tion about objects, this method localizes other common ac-

tions in the clip and not the action manipulating the object

of interest. This also demonstrates the difficulty of our ex-

perimental set-up where the input video clips often contain

multiple different actions. To address this issue, we also

evaluate baseline (iii), which complements [7] with the ad-

ditional constraint that the action prediction has to be within

the first and the last frame where the object of interest is

detected, improving the overall performance above chance.

Our joint approach (iv) consistently outperforms these base-

lines on all actions, thus showing again the strong link be-

tween object states and actions. Finally, the approach (v)

is the analog of method (g) for action localization where

we use ground truth state labels as tracklet features in our

joint formulation showing that the action localization can

be further improved with better object state descriptors. In

addition, we also compare to a supervised baseline. The av-

erage obtained performance is 0.58 which is not far from

our method. This demonstrates the potential of using object

states for action localization. More details on this experi-

ment are provided in the appendix [2].

Benefits of joint object-action modeling. We observe that

the joint modeling of object states and actions benefits both

tasks. This effect is even stronger for actions. Intuitively,

knowing perfectly the object states reduces a lot the search

space for action localization. Moreover, despite the recent

major progress in object recognition using CNNs, action

recognition still remains a hard problem with much room

for improvement. Qualitative results are shown in Fig. 3

and failure cases of our method are discussed in [2].
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Figure 3: Qualitative results for joint action localization (middle)

and state discovery (left and right) (see Fig. 1 for “fill coffee cup”).

5.3. Object state discovery in the wild

Towards the discovery of a large number of manipula-

tion actions and state changes, we next apply our method in

an automatic setting, where action clips have been obtained

using automatic text-based retrieval.

Clip retrieval by text. Instructional videos [3, 32, 37] usu-

ally come with a narration provided by the speaker describ-

ing the performed sequence of actions. In this experiment,

we keep only such narrated instructional videos from our

dataset. This results in the total of 140 videos that are 3 min-

utes long in average. We extract the narration in the form

of subtitles associated with the video. These subtitles have

been directly downloaded from YouTube and have been ob-

tained either by Youtube’s Automatic Speech Recognition

(ASR) or provided by the users.

We use the resulting text to retrieve clip candidates that

may contain the action modifying the state of an object. Ob-

taining the approximate temporal location of actions from

the transcribed narration is still very challenging due to am-

biguities in language (“undo bolt” and “loosen nut” refer to

Method
put

wheel

remove

wheel

fill

pot

open

oyster

fill

coff.cup
Ave.

State

disc.

(c) Cstrs only 0.23 0.34 0.25 0.29 0.11 0.24

State + det. sc. 0.33 0.48 0.28 0.40 0.13 0.32

(g) Joint 0.38 0.53 0.25 0.43 0.20 0.36

(g) Curated 0.63 0.68 0.63 0.63 0.53 0.62

Action

local.

(i) Chance 0.14 0.10 0.06 0.10 0.15 0.11

(iii) Action 0.05 0.10 0.00 0.15 0.25 0.11

(iv) Joint 0.30 0.30 0.20 0.20 0.20 0.24

(iv) Curated 0.53 0.35 0.32 0.40 0.59 0.44

Table 2: Results on noisy clips automatically retrieved by text.

the same manipulation) and only coarse temporal localiza-

tion of the action provided by the narration. Given a manip-

ulation action such as “remove tire”, we first find positive

and negative sentences relevant for the action from an in-

struction website such as Wikihow. We then train a linear

SVM classifier [9] on bigram text features. Finally, we use

the learned classifier to score clips from the input instruc-

tional videos. In detail, the classifier is applied in a slid-

ing window of 10 words finding the best scoring window in

each input video. The clip candidates are then obtained by

trimming the input videos 5 seconds before and 15 seconds

after the timing of the best scoring text window to account

for the fact that people usually perform the action after hav-

ing talked about it. We apply our method on the top 20

video clips based on the SVM score for each manipulation

action. More details about this process are provided in the

appendix [2].

Results. As shown in Table 2, the pattern of results, where

our joint method performs the best, is similar to the weakly

supervised set-up described in Sec. 5.2. This highlights

the robustness of our model to noisy input data – an im-

portant property for scaling-up the method to Internet scale

datasets. To assess how well our joint method could do with

perfect retrieval, we also report results for a “Curated” set-

up where we replace the automatically retrieved clips with

the 20s clips used in Sec. 5.2 for the corresponding videos.

6. Conclusion and future work
We have described a joint model that relates object states

and manipulation actions. Given a set of input videos, our

model both localizes the manipulation actions and discov-

ers the corresponding object states. We have demonstrated

that our joint approach improves performance of both object

state recognition and action recognition. More generally,

our work provides evidence that actions should be modeled

in the larger context of goals and effects. Finally, our work

opens up the possibility of Internet-scale learning of manip-

ulation actions from narrated video sequences.
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