Stefan Bergander Large scale hydrogen storage systems eMove360° H2 & FCEV Conference 2019, München, 17. Oktober 2019

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

1. HYPOS-Initiative

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

H Y P O S HYDROGEN POWER STORAGE & SOLUTIONS EAST GERMANY

HYPOS – The Region

Second longest H2 pipeline in Germany

- 150 km, spreading between Zeitz and Bitterfeld
- connecting H2 production with consumption

Salt Caverns for large-scale storage

- high storage potential in underground storage units
- caverns just 20 km away from H2 pipeline

Existing high hydrogen demand

- 3,6 bn. m³/a in the Middle German Chemical Triangle
- 1,25 bn. m³/a substitutable

High potential for Renewables

- 105 TWh/a onshore wind power
- 33 TWh/a photovoltaic

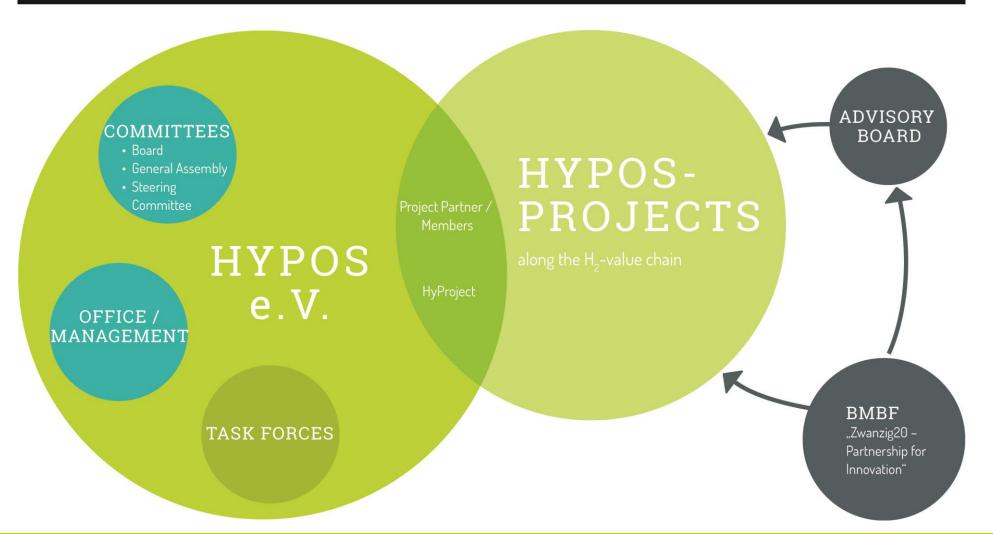
Utilization of existing infrastructure

HYPOS – The Idea

Vision Constitution of a widespread **Green Hydrogen Economy**.

Mission

HYPOS is connecting the power, natural gas and chemical grid in East Germany via Green Hydrogen. Through systemic innovation and research Green Hydrogen applications will reach **economic efficiency**.


Mission statement

HYPOS is a **long-term network** of small, medium and major sized companies as well as research institutions working on the entire hydrogen supply chain of **production**, **transportation**, **storage and utilisation**.

HYPOS – The Structure

HYPOS-INITIATIVE

HYPOS – The Projects

Chemical Conversion

PEM Electrolysis

MegaLyseurPlus: System design of 1.25 MW electrolysis unit and optimisation of power electronics and compression devices

ElyKon: Continuous degradation analysis of dynamic operation of PEM-electrolysis

Alkaline Electrolysis

ELKE: Continuous process of coating for electrodes

Reversible Electrolysis

rSOC: Demonstration of reversible high temperature electrolysis **REVAL:** Development of reversible alkaline membrane electrolysis

Other Systems

COLYSSY: Process development of CO-electrolysis **H2-Flex:** Flexibilisation of chloralkali process **RWTrockner:** Drying of hydrogen by radio waves

Transport & Storage

Grid

H2-PIMS: Conversion of natural gas infrastructure for hydrogen

H2-MEM: Development of carbon based membrane to separate natural gas and hydrogen

H2-Netz: Demonstration of hydrogen distribution grid based on synthetic materials

HyProS: Process and security sensor technology for hydrogen along the value chain

Storage

H2-UGS: Standardisation for assessment of underground cavern storage units

H2-Forschungskaverne: Construction and demonstration of hydrogen storage within an underground salt cavern

Storage Technology

MMH2P: Development of mobile storage solution including energy management systemH2-HD: Development of 1000 bar storage as trailer

INES: Multidisciplinary safety analysis

H2-Index: Multidisciplinary economic efficiency analysis

Utilization & Distribution

Energy supply

H2-Home: Development of fuel cell cogeneration unit based on PEM

Mobility

LocalHy: Development of hydrogen combustion engine and decentral hydrogen tank station concept

ImplaN: Design of optimal extension schedule for hydrogen tank stations in Germany

Chemicals and Refinery

COOMet: Development of one-step process for methanol production

FRAGRANCES: Decentral production of CO with reverse water-gas shift reaction

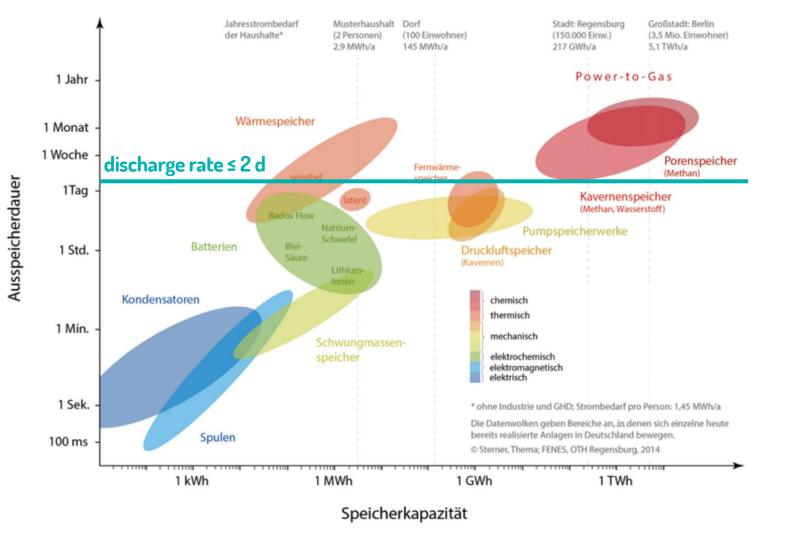
Hythanol eC02: Development of double membrane reactor for methanol production

eKeroSyn: Conceptual study on renewable kerosene production

H2-Chancendialog: Multidisciplinary research of acceptance conditions

2. Energy Storage

GEFÖRDERT VOM


Bundesministerium für Bildung und Forschung

H Y P O S HYDROGEN POWER STORAGE & SOLUTIONS EAST GERMANY

Technology – Large-scale Energy Storage

different qualification \succ in future most likely all technologies are necessary

Quelle: Sterner/Stadler 2014

Technology – Large-scale Energy Storage

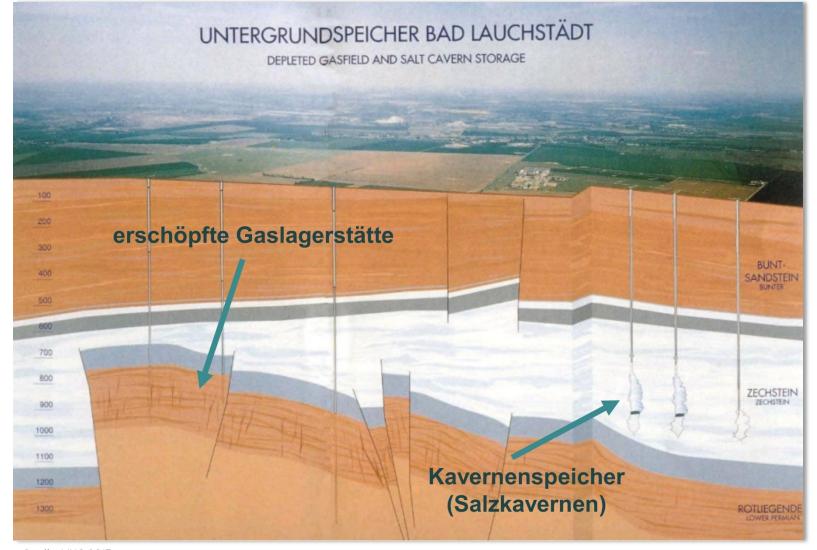
Porous reservoir storage

- seasonal storage with great capacities
- former deposits or acquifer
- gas-tight top level rock
 formation
- technically challenging

> not-suitable for hydrogen

Speicher von BVEG-Mitglieds- unternehmen	Speichertyp	Arbeitsgas- volumen Mio. m³ (Vn)
Rehden	ehem. Gasfeld	4.400
Bierwang	ehem. Gasfeld	1.000
Breitbrunn-Eggstätt	ehem. Gasfeld	992
Uelsen	ehem. Gasfeld	860
Bad Lauchstädt	ehem. Gasfeld	440
Inzenham-West	ehem. Gasfeld	425
Wolfersberg	ehem. Gasfeld	365
Schmidhausen	ehem. Gasfeld	154
Eschenfelden	Aquifer	72
Sandhausen	Aquifer	30
Fronhofen-Illmensee	ehem. Ölfeld	10
sonstige Porenspeicher in Deutschland		367
Summe		9.115

Technology – Large-scale Storage


Cavern storage

- facilities for trading activities
- high flexibility to charge/discharge
- artificial hollow space in salt domes
- through drilling and leaching with fresh water
- > suitable for hydrogen

Speicher von BVEG-Mitglieds- unternehmen	Anzahl Kavernen	-Arbeitsgas volumen Mio. m³ (Vn)
Etzel / ESE - Uniper	19	1916
Epe-Uniper	39	1804
Nüttermoor	21	1316
Bernburg	31	979
Jemgum-astora	9	754
Bad Lauchstädt	15	720
Staßfurt	9	649
Epe-innogy H-Gas	10	405
Jemgum-EWE	8	366
Empelde	5	355
Peckensen	5	349
Huntorf	7	308
Epe-NUON	7	300
Katharina	6	296
Epe-innogy NL	6	294
Kraak	4	259
Epe-Trianel	4	194
Epe-innogy L-Gas	4	178
Xanten	8	177
Krummhörn	3	154
Bremen-Lesum-Storengy	2	147
Harsefeld	2	110
Reckrod	3	110
Rüdersdorf	1	100
Kiel-Rönne	3	72
Bremen-Lesum-Wesernetz	2	68
Summe Quelle: BVES 2019	233	12.380

Technology – Large-scale Energy Storage

11

Quelle: VNG 2015

3. Hydrogen Storage in Salt Caverns

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

H2-Cavern – Basics

State of the Art

- H2-caverns are in operation in UK and USA
- no detailed information available
- other legislative requirements and different storage idea

Quelle: KBB UT

H2-Cavern – Technology

Requirements

- no fundamentally different requirements than with natural gas:
 - geomechanics
 - drilling construction
 - cementation
- but certainly hydrogen suitable materials necessary:
 - resistance and durability
 - impermeability

H2-Cavern – R&D Demand

Geomechanics

- hydrogen infiltration
- experimental assessment, in-situ tests
- Microbiology
- characterisation of life-forms
- laboratory assessment, in-situ tests

- modelling
- evaluating up-scaling options

 methods to hinder microbiological activity

H2-Cavern – R&D Demand

Thermodynamics

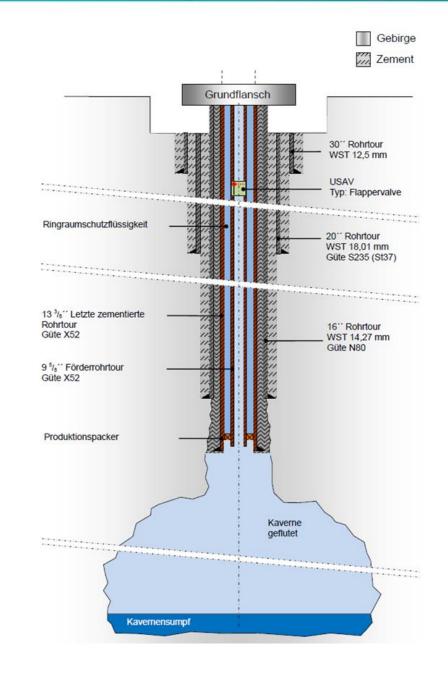
- gaschemics
- gas valuation

Storage Integrity

- degradation safety
- corrosion
- impermeability criteria

- modelling
- hydrogen adsorption

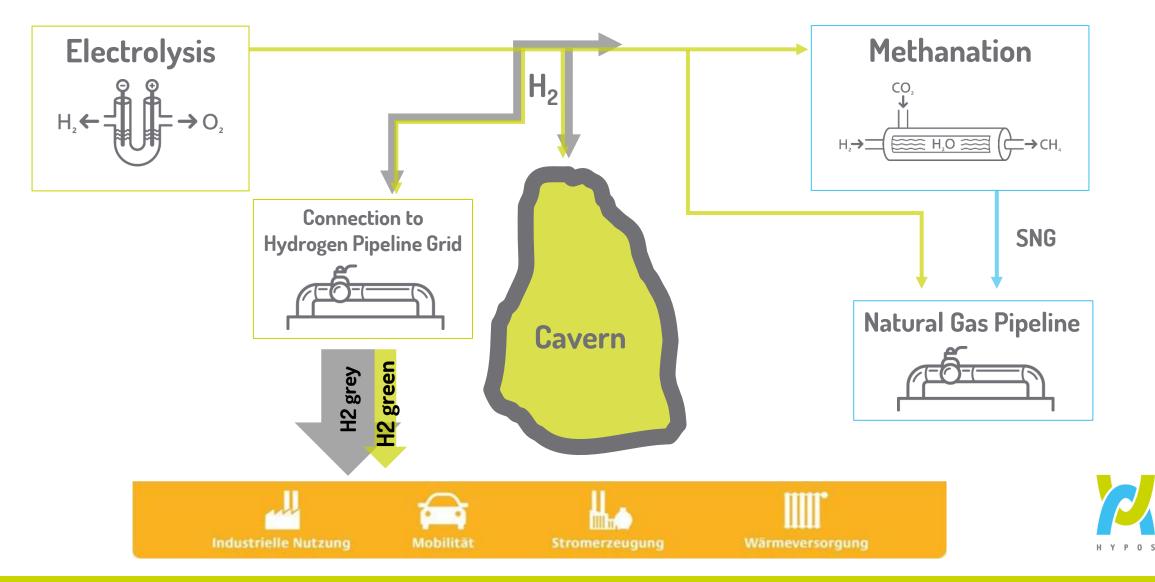
- operation scheme
- storage design
- associated facilities: purification, grid, etc.


H2-Cavern – Technology

Underground Facilities

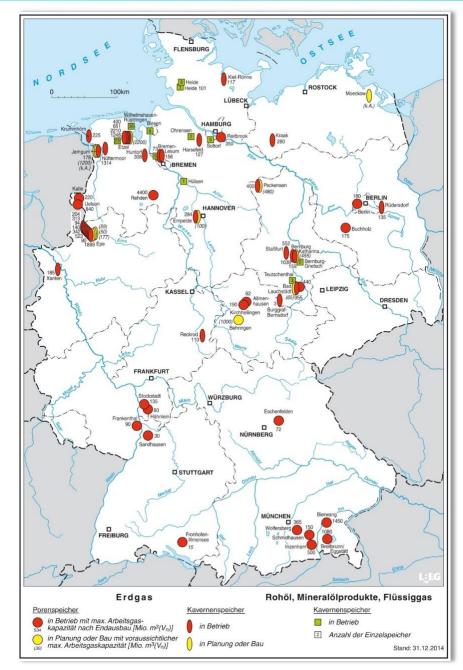
- drilling in rock to access cavern with more than one casing string
- cementation and tightening

Surface Facilities


- charge-/discharge facilities
- hydrogen purification
- hydrogen transportation

17

H2-Cavern – Integration with Energy System


H2-Cavern – Grid Connection

Utilisation of existing natural gas grid

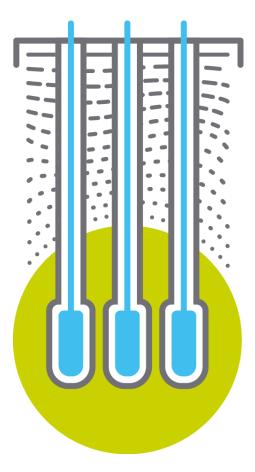
- grid length:
- storage volume:

479,000 km 260 TWh_{th}

- bridge technology:
 fuel switch to natural gas
- key technology:
 content switch to hydrogen

4. H2-Forschungskaverne

GEFÖRDERT VOM


Bundesministerium für Bildung und Forschung

H Y P O S HYDROGEN POWER STORAGE & SOLUTIONS EAST GERMANY

HYPOS – H2-Forschungskaverne

🖉 Fraunhofer

Development and construction of a large-scale underground storage for Green Hydrogen for 50 Mil. Nm³ H2

- Conversion of a salt-cavern in Bad Lauchstädt/Saxony Anhalt
- Conjunction with on-shore wind farm and multi-MW electrolysis
- Connection to natural gas grid and hydrogen grid
- Realisation within three project phases
- First filling scheduled for 2022

HYPOS – H2-Forschungskaverne

Total Volume	560.000 m ³
Cavern status	Filled with brine and blanket
Cavern neck	850 - 905 m
Cavern hight	905 - 1108 m
Cavern pressure	30 - 140 bar
Working pressure	30 - 115 bar
Storable H ₂ Volume	cushion gas: 15.5 Mio. Nm³, 1,380 t working gas: 49.9 Mio. Nm³, 4,486 t
H2 charging rate H2 discharging rate	10,000 Nm³/h 100,000 Nm³/h
Gas quality after cleaning, washing, etc.	99.999 % H2

THANK YOU FOR YOUR ATTENTION

SPONSORED BY THE

Federal Ministry of Education and Research

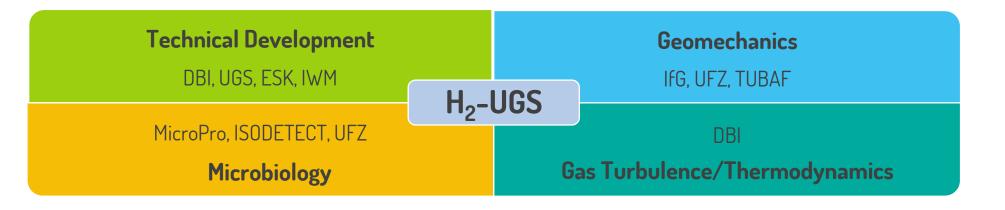
23

H Y P O S HYDROGEN POWER STORAGE & SOLUTIONS EAST GERMANY

BACKUP

H Y P O S HYDROGEN POWER STORAGE & SOLUTIONS EAST GERMANY

HYPOS – H2-UGS


- General methodology to construct hydrogen storage cavern
- scientifically proven and location-independent assessment of aptitude
- > catalogue for future investors and approval authorities
 - standardisation

MicroPro GmbH

- reduction of economical obstacles
- transferability increase of overall economic efficiency

🗾 Fraunhofer

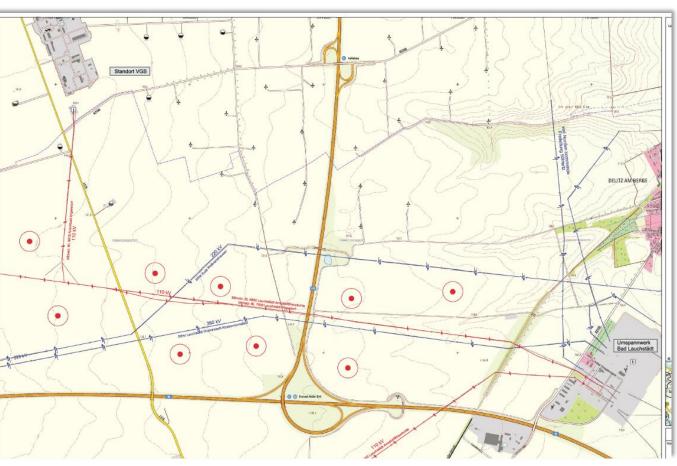
Isodetect

HELMHOLTZ ZENTRUM FÜR **VNG** Gasspeicher

Reallabor, Energiepark Bad Lauchstädt

Infrastructure, Power

- 30 MW PEM electrolyser
- island operation:
 40 MW_{peak} wind power
- grid connection:
 - GOOs for green power
 - substationBad Lauchstädt



UN

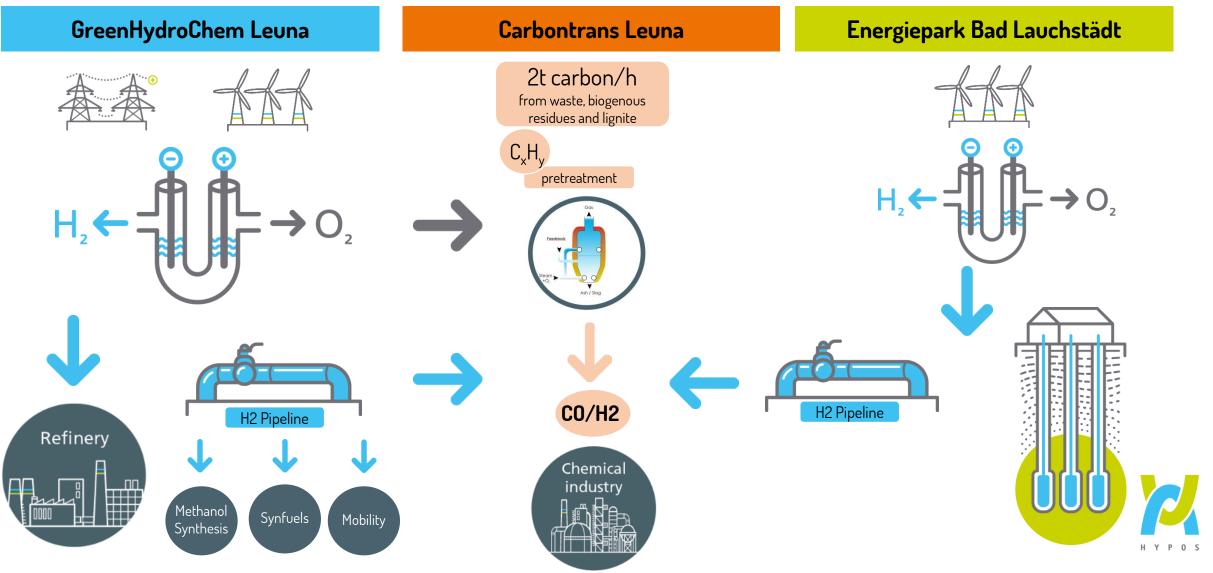
Reallabor, Energiepark Bad Lauchstädt

Infrastructure, Gas

- existing natural gas pipeline
 Bad-Lauchstädt Leuna
- 20 km, DN 500, PN 55 bar, operational pressure 30 bar
- connection to hydrogen pipeline grid at Leuna

UNI

Reallabor, Energiepark Bad Lauchstädt


Zusammenfassung

- 80 MW electrolysis power
- 50 Mio. Nm³ hydrogen storage capacity
- carbon cycle technologyies
- direct utilisation for intermediate products and final products
- transporation capacities via natural gas and hydrogen grid
- utilisation of existing infrastructure

closed cycle to demonstrate sector coupling

Reallabor – Approaches from the HYPOS-Region

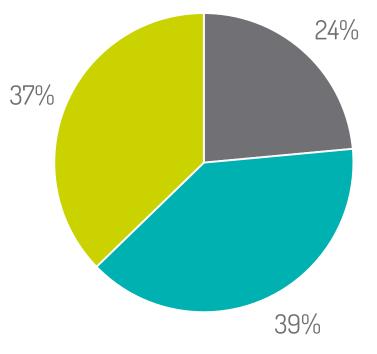
HYPOS – The Services

Services

- Extensive networking for hydrogen activities
- Increasing Visibility for model region Middle Germany
- Presence at fairs, events and conferences
- Support for search of project partners
- Presentation of research results
- Monitoring of relevant research and funding programs
- Contributions and publication in journals and periodicals
- Regular newsletters and press releases

Website

- HYPOS-Blog with news, dates, calls and studies
- English version available
- scheduled H2-project-, stakeholder- and expert catalogue with integrated search and filter functionality



HYPOS – The Members

102 Members

- 28 major enterprises
- 38 SME
- 36 research institutions, non-profit organisations and associations
- 76 members from East Germany
- 25 members from West Germany
- I member from outside EU
- 3 honorary member

- Ventures with \ge 10 Mio € yearly turnover
- Ventures with < 10 Mio € yearly turnover
- Research institutions, non-profits, associations

HYPOS – The Board

Dr. Joachim Wicke

Siemens AG Chairman

Prof. Dr. Ralf Wehrspohn

Fraunhofer IMWS 1st Deputy Chairman

Dr. Christoph Mühlhaus

Cluster Chemie Honorary Member

Dr. Kathrin Goldammer

Reiner Lemoine Institut

Thomas von der Heide

Terrawatt Planungsgesellschaft mbH

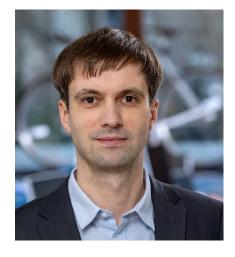
Stefan Kauerauf

Nouryon Industrial Chemicals GmbH

Kay Okon

VNG Gasspeicher GmbH Co-opted Boardmember

HYPOS – The Office


Juliane Renno

Association and Network Management

Stefan Bergander

Project and Knowledge Management

Florian Thamm

Marketing and Public Relations

