Übungsblatt 12

Aufgabe 1. Geben Sie einen Kellerautomaten und eine kontextfreie Grammatik an, die die folgende Sprache akzeptiert:

$$L = \{a^m b^n \mid m, n \ge 0, m \ne n\}$$

Aufgabe 2. Betrachten Sie noch einmal Aufgabe 2 (c) von Blatt 11. Eine kontextfreie Grammatik, die die Sprache $L = \{w \in \{a,b\}^* \mid w = w^r\}$ erzeugt, ist $G = (V, \Sigma, P, S)$ mit $V = \{S\}, \Sigma = \{a,b\}$ und

$$P = \{S \to \varepsilon \mid a \mid b \mid aSa \mid bSb\}.$$

Wandeln Sie die Grammatik mit dem Verfahren der Vorlesung (Folie 279) in einen PDA um. Überprüfen Sie, ob ihr Automat richtig arbeitet, indem Sie ihn auf den Eingaben

- $w_1 = abbabba$ und
- $w_2 = abb$

laufen lassen.

Aufgabe 3. Sind die folgenden Aussagen wahr oder falsch?

- (a) Wenn L eine Sprache mit index $(R_L) = \infty$ ist, dann ist L kontextfrei.
- (b) Wenn L eine nicht kontextfreie Sprache ist, dann ist index $(R_L) = \infty$.
- (c) Wenn G eine Grammatik in CNF ist, dann ist L(G) kontextfrei und nicht regulär.
- (d) Es existieren kontextfreie Sprachen L_1 und L_2 so, dass $L_1 \cap L_2$ auch kontextfrei ist.
- (e) Für jede Sprache L mit $L = L_1 \cap L_2$, wobei L_1 nicht regulär und L_2 nicht kontextfrei ist, ist L nicht regulär.
- (f) Für jedes nicht unäre Alphabet Σ existieren unendlich viele kontextfreie, nicht reguläre Sprachen $L_i \subseteq \Sigma^*$ mit folgender Eigenschaft: Sei \mathcal{H} die Menge aller Homomorphismen $h: \Sigma^* \to \Sigma^*$. Dann ist $\bigcup_{h \in \mathcal{H}} h(L_i)$ regulär.