
Energietechnik

Repetitorium:

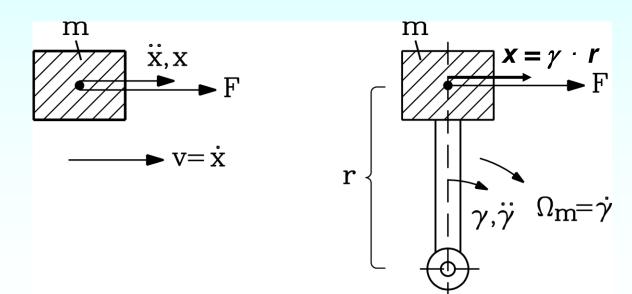
Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

Energietechnik

Repetitorium

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
- Grundgesetze der Drehstromtechnik


Kraft und Drehmoment

• Kraft = Masse x Beschleunigung (NEWTON) :

$$F = m \times (d^2x/dt^2)$$

Drehmoment = Trägheitsmoment x Winkelbeschleunigung

$$M = J \times (d^2\gamma/dt^2)$$
 mit: $M = Fr$, $J = m \cdot r^2$

Drehzahl n: $n = \Omega_{\rm m}/(2\pi)$

Mechanische Energie und Leistung

Energie als geleistete Arbeit = Kraft x Weg:

$$W = F \cdot x$$

$$W = \int_{X} F \cdot dx$$

Leistung = Energie / Zeit = Kraft x Geschwindigkeit

$$P = W/t = F \cdot x/t = F \cdot v$$

$$P = dW/dt = F \cdot dx/dt = F \cdot x = F \cdot v$$

Leistung = Energie / Zeit = Drehmoment x Winkelgeschwindigkeit

$$P = W/t = (F \cdot r) \cdot (x/r) / t = M \cdot \gamma / t = M \cdot \Omega_m$$

 Gespeicherte mechanische Energie W als kinetische Energie (z. B. Schwungmassenspeicher):

$$dW = P \cdot dt = F \cdot v \cdot dt = m \cdot \mathcal{A} \times dt = m \cdot d(\mathcal{A}/2) \Longrightarrow W = m \cdot v^2 / 2$$

$$W = m \cdot v^2 / 2$$
 (translatorisch)

$$W = J \cdot \Omega_m^2/2$$
 (rotatorisch)

Repetitorium

Zusammenfassung Grundgesetze der Mechanik

- NEWTON'sche Bewegungsgleichung, Kraft und Drehmoment
- Lineare und drehende Bewegung
- Mechanische Leistung
- Mechanische kinetische Energie
- Masse und polares Trägheitsmoment

Repetitorium

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
 - OHM'sches Gesetz, AMPERE'scher Durchflutungssatz
 - Magnetische Werkstoffe
 - FARADAY'sches Induktionsgesetz, LORENTZ-Kraft
 - Flüsse und Induktivitäten, Ummagnetisierungsverluste
 - Momentanleistung, Effektivwert
 - Sinusbetrieb: Wirk-, Blind- und Scheinleistung einphasig
- Grundgesetze der Drehstromtechnik

Erzeugung magnetischer Felder

Stromdurchflossene Spulen	Permanentmagnete
- Erregerverluste (Abhilfe: Supraleitung)	+ keine Verluste
- Stromversorgung nötig	+ einfacher Aufbau der E-Maschine
+ (beliebig) hohe Felder möglich	- Magnetfeld begrenzt auf ca. 1 T
+ Magnetfeld veränderbar	- Gefahr der Entmagnetisierung
+ bei großen E-Maschinen kostengünstiger	

Material: Kupfer, Aluminium Isolierstoff

Eisen-Nickel-Kobalt-Legierungen u. Sinterwerkstoffe mit Seltenen Erden

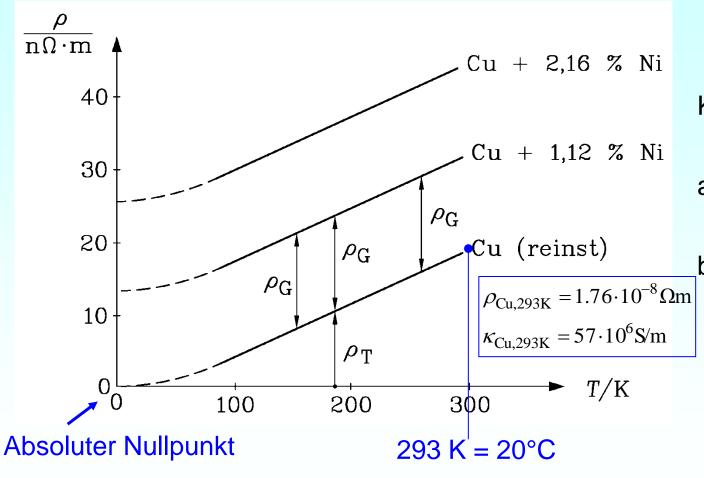
Das Ohm'sche Gesetz

$$R = \frac{U}{I} = \rho \cdot \frac{l}{A} = \frac{1}{\kappa} \cdot \frac{l}{A}$$

R: Ohm'scher Widerstand

G = 1/R: elektrischer Leitwert

 ρ : spezifischer Widerstand


 $\kappa = 1/\rho$: elektrischer Leitfähigkeit

I: Länge des Leiters

A: Querschnitt des Leiters

Temperaturabhängigkeit des elektrischen Widerstands (1)

Mathiessen sche Regel: ρ ist temperaturabhängig

$$\rho(T) = \rho_G + \rho_T(T)$$

Kollision der Leitungselektronen

- a) mit Störstellen im Kristallgitter = ρ_G
 - o) mit schwingenden $\text{Atomrümpfen} = \rho_T$

Quelle: Clausert, H.; Elektrotechnik

Temperaturabhängigkeit des elektrischen Widerstands (2)

$$\rho(\mathcal{S}) = \rho(\mathcal{S}_0) \cdot \left[1 + \alpha(\mathcal{S}_0) \cdot (\mathcal{S} - \mathcal{S}_0) \right] = \rho(\mathcal{S}_0) \cdot \left[1 + \alpha(\mathcal{S}_0) \cdot \Delta \mathcal{S} \right]$$

T: absolute Temperatur (Kelvin K)

 $\theta = T - 273.15$: Temperatur (Grad Celsius °C)

 $\Delta \theta = \theta - \theta_0$: Temperaturdifferenz = "Erwärmung" (Kelvin K)

*9*₀: Bezugstemperatur (Grad Celsius °C)

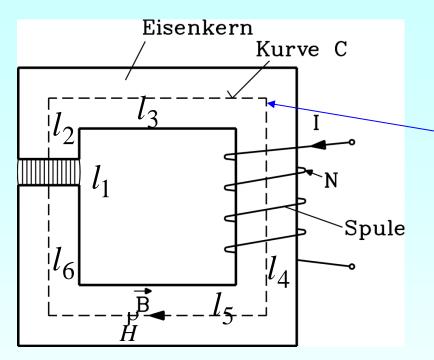
 $\alpha(\theta_0)$: Temperaturkoeffizient bei θ_0 (1/K)

Temperaturbestimmung über Widerstandsmessung

Kupfer: Temperaturkoeffizient:

$$\alpha(\theta_0 = 20^{\circ}C) = \alpha_{20} = \frac{1}{235 + 20} = \frac{1}{255} = 0.0039 / \text{K}$$

Temperaturbestimmung: Aus $R_{\mathcal{G}} = R_{20} \cdot (1 + \alpha_{20} \cdot \Delta \mathcal{G})$ folgt


$$\Delta \mathcal{G} = \frac{R_{\mathcal{G}} - R_{20}}{\alpha_{20} \cdot R_{20}} = \frac{1}{\alpha_{20}} \cdot \left(\frac{R_{\mathcal{G}}}{R_{20}} - 1\right) = \mathcal{G} - 20^{\circ}C$$

<u>Beispiel:</u> $R_g / R_{20} = 1.45$

$$\theta = 20^{\circ}\text{C} + \frac{1}{\alpha_{20}} \cdot \left(\frac{R_{\theta}}{R_{20}} - 1\right) = 20 + \frac{1}{0.0039} \cdot (1.45 - 1) = \underline{135^{\circ}\text{C}}$$

Stromerregte Magnetfelder – AMPERE'scher Durchflutungssatz

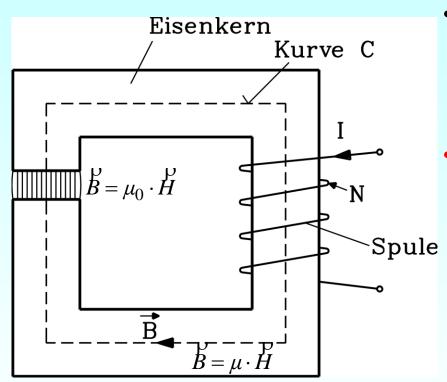
Geschlossene Kurve C = z. B. Feldlinie von H, Strom I, Spulenwindungszahl N (= 4 im Bild)

Magnetische Flussdichte *B* (Tesla, T) Magnetische Feldstärke *H* (A/m)

Der Durchflutungssatz:

In einem magnetischen Feld ist das Linienintegral über die magnetische Feldstärke H entlang einer in sich geschlossenen Linie C stets gleich dem gesamten elektrischen Strom N I (als Durchflutung Θ), der durch die von dieser Linie gebildeten Fläche hindurch tritt.

$$\oint \overset{\mathcal{P}}{H} \cdot d\overset{\mathcal{O}}{S} = \Theta = N \cdot I \cong \overset{\mathcal{H}}{=} H_1 \cdot l_1 + H_2 \cdot l_2 + \dots + H_n \cdot l_n \qquad \text{Im Bild: } n = 6 \text{ Abschnitte}$$


Repetitorium

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
 - OHM'sches Gesetz, AMPERE'scher Durchflutungssatz
 - Magnetische Werkstoffe
 - FARADAY'sches Induktionsgesetz, LORENTZ-Kraft
 - Flüsse und Induktivitäten, Ummagnetisierungsverluste
 - Momentanleistung, Effektivwert
 - Sinusbetrieb: Wirk-, Blind- und Scheinleistung einphasig
- Grundgesetze der Drehstromtechnik

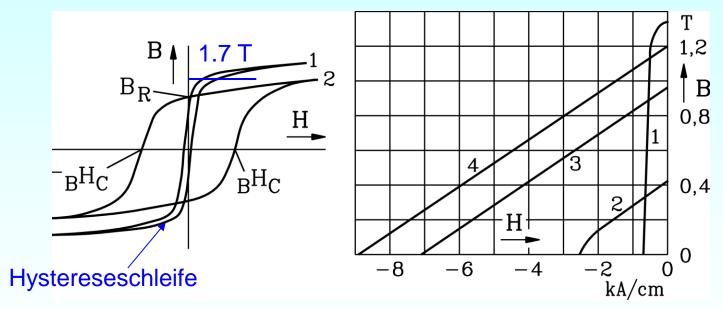
Verstärkung des Magnetfelds durch Eisen = = Verringerung des Magnetisierungsbedarfs

• In Luft ist die magnetische Flussdichte B zur magnetischen Feldstärke H über μ_0 direkt proportional:

$$B = \mu_0 \cdot H$$
 $\mu_0 = 4\pi \cdot 10^{-7} \text{ V·s/(A·m)}$

 Eisen besteht aus vielen kleinen "Elementarmagneten", die sich im Feld H der Spule möglichst parallel zu H ausrichten und damit ein eigenes Magnetfeld J erzeugen, welches das H-Feld verstärkt.

$$B = \mu_0 \cdot H + J = \mu \cdot H >> \mu_0 \cdot H$$


• Da *B* stetig an der Grenzfläche "Luft-Eisen" ist, wird *H* im Eisen um $\mu_0 I \mu$ verringert. Dieser Effekt funktioniert nur bis ca. B = 1.7 T, dann sind alle "Elementarmagnete" parallel, also *J* maximal (SÄTTIGUNGSEFFEKT).

Magnetische Werkstoffkennlinien

- Eisen: weichmagnetischer Werkstoff = schmale Hystereseschleife Kennwert: Sättigungsflussdichte ca. 1.7 T
- Permanentmagnete: Hartmagnetischer Werkstoff = breite Hystereseschleife
 z. B. Neodym-Eisen-Bor, <u>Kennwerte:</u> Remanenzflussdichte B_R, Koerzitivfeldstärke _BH_C

Quelle: Fischer, R., Ele. Maschinen, Hanser-Verlag

1: Eisen

2: Permanentmagnet

Permanentmagnete: 1: Al-Ni-Co, 2: Ba-Ferrit

3: Sm-Co, 4: Nd-Fe-B

Einfacher magnetischer Eisenkreis

Im ungesättigten Eisen: $\mu \approx 5000 \mu_0$, in Luft: $\mu = \mu_0$

Magnetfluss $\Phi = B \cdot A$ ist zwischen je 2 Feldlinien konstant.

 δ \uparrow H_{δ} A: Querschnittsfläche des Eisens (Luftquerschnitt = Eisenquerschnittsfläche)

Daher Flussdichte B in Eisen und Luftspalt gleich, daher H_{Fe} viel kleiner als in Luft

$$B_{Fe} = \frac{\Phi}{A} = B_{\delta}$$
 $H_{Fe} = \frac{B_{Fe}}{\mu_{Fe}} << H_{\delta} = \frac{B_{\delta}}{\mu_{0}}$

$$H_{Fe} \cdot s_{Fe} + H_{\delta} \cdot \delta = N \cdot I$$

$$H_{Fe} \cdot s_{Fe} + H_{\delta} \cdot \delta = N \cdot I$$

$$\frac{B_{Fe}}{\mu_{Fe}} \cdot s_{Fe} + \frac{B_{\delta}}{\mu_{0}} \cdot \delta = N \cdot I = V_{Fe} + V_{\delta}$$

• z. B. $s_{Fe}/\delta = 100$: daher $V_{Fe}/V_{\delta} = H_{Fe}s_{Fe}/(H_{\delta}\delta) = 100/5000 = 0.02 \sim 0$ Fast nur die Luftspaltweite δ muss magnetisiert werden: $|B_{\delta} \approx \mu_{o}NI/\delta|$

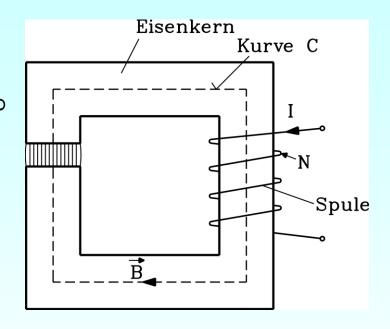
 $s_{\rm Fe}$

Eisenkern

Luftspalt

 H_{Fe}

Kurve C


Spule

Zahlenbeispiel: Magnetkreis

Beispiel:

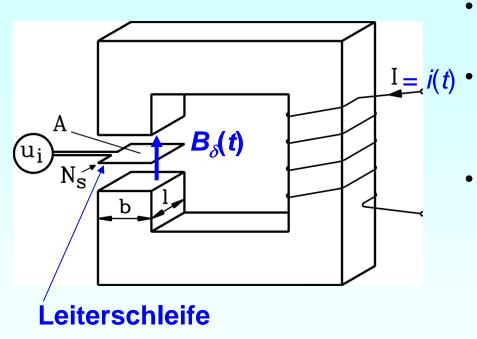
- ungesättigtes Eisen: $\mu >> \mu_0$, daher: $\mu \to \infty$
- Magnetfeld im Luftspalt soll B_{δ} = 1 T sein
- Luftspaltweite δ = 3 mm
- Wie groß ist Erregerbedarf N·I?

$$B_{\delta} = \mu_{0} N I / \delta = 1 T \Rightarrow N I = 2390 A$$

Auslegung der Erregerspule:

z. B. *N* =100 Windungen: *I* = 2390/100 = <u>23.9 A</u>

oder N = 250 Windungen: I = 2390/250 = 9.56 A

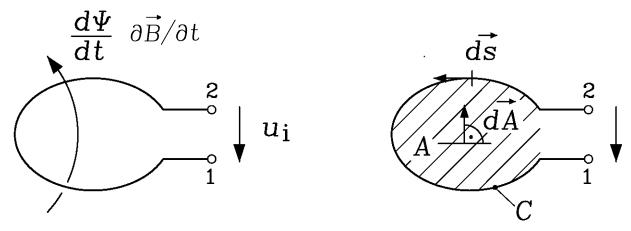

Repetitorium

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
 - OHM'sches Gesetz, AMPERE'scher Durchflutungssatz
 - Magnetische Werkstoffe
 - FARADAY'sches Induktionsgesetz, LORENTZ-Kraft
 - Flüsse und Induktivitäten, Ummagnetisierungsverluste
 - Momentanleistung, Effektivwert
 - Sinusbetrieb: Wirk-, Blind- und Scheinleistung einphasig
- Grundgesetze der Drehstromtechnik

Das Induktionsgesetz - Ruhinduktion

- Strom / ist zeitlich veränderlich: i(t)
- Daher ändert sich Luftspalt-Magnetfeld B_{δ} zeitlich: $B_{\delta}(t) \cong \mu_0 N \cdot i(t) / \delta$
- Es ändert sich der von der Leiterschleife (Fläche $A = b \cdot l$, N_s Windungen) umfasste magnetische Fluss $\Phi(t) = B_{\delta}(t) \cdot A$.
- $\Phi(t)$ induziert in Schleife elektrische Spannung $u_i(t)$ = "Ruhinduktion": (Schleife ruht relativ zum Messgerät).

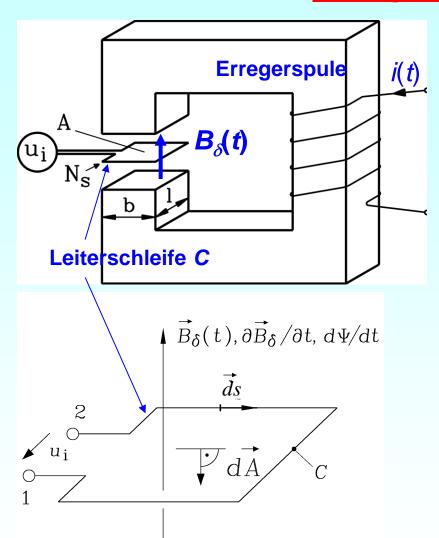

$$u_i(t) = -N_s \cdot \frac{d\Phi(t)}{dt} = -\frac{d\Psi(t)}{dt}$$

• Definition: Flussverkettung $\Psi(t) = N_s \cdot \Phi(t)$

Ruhinduktion – Positive Bezugsrichtungen

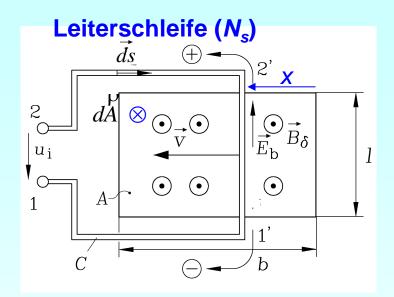
$$u_i(t) = -N_s \cdot \frac{d\Phi(t)}{dt} = -\frac{d\Psi(t)}{dt}$$

N_s Windungen der Schleife (Schleifen-Kurve *C*, Fläche *A*)


- Rechtswendige Verkettungsänderung zum Schleifendurchlauf von 2 nach 1:
- a) dB/dt in Richtung von Flächen-Normalenvektor dA
- b) Schleifenumlauf für Spannung in Richtung von Kurven-Tangentenvektor ds

 u_i ist von 2 nach 1 NEGATIV, wenn d \mathcal{Y} dt POSITIV ist

Beispiel: Ruhinduktion



- Strom I ist zeitlich veränderlich: i(t) > 0, di(t)/dt > 0
- Rechtswindige Erregerspule: Magnetfeld $B_s > 0$ von unten nach oben an Schleife wegen i(t) > 0
- $dB_A/dt > 0$ von unten nach oben wegen $dB_{\delta}(t)/dt \cong (\mu_0 N \cdot di/dt)/\delta > 0$
- Schleifen-Verkettung: $d\Psi(t)/dt = N_s \cdot (b \cdot l) \cdot dB_s/dt > 0$, ist LINKS-wendig zum Schleifendurchlauf von 2 nach 1 verkettet.
- Bei rechtswendiger Verkettung gilt: $u_i(t) = -d \Psi(t)/dt$
- Daher: Induzierte Spannung $u_i(t)$ positiv von 2 nach 1: Würde einen Strom in Richtung ds von 2 nach 1 treiben, dessen Eigenfeld $B_{\rm e}$ von oben nach unten gerichtet ist und daher dem $dB_{s}(t)/dt$ entgegen wirkt (LENZ'sche Regel)

u_i ist von 2 nach 1 POSITIV

Bewegte Leiterschleife: Berechnung von u_i über Ruhinduktion

- Strom *I* und damit Feld B_{δ} sind zeitlich konstant
- Leiterschleife (N_s) wird mit Geschwindigkeit ν relativ zum Eisenkreis bewegt, so dass sich Verkettung Ψ ändert.
- Es wird Spannung u_i induziert: Bewegungsinduktion

$$v$$
 u_i
 N_s
 b
 $l \cdot v \cdot B_\delta$

$$A(t) = (b-x) \cdot l$$
 $x = v \cdot t$

$$\begin{split} \Psi(t) &= -N_s \cdot A(t) \cdot B_{\delta} = -N_s \cdot (b - v \cdot t) \cdot l \cdot B_{\delta} \\ u_i &= -d \, \Psi \, / \, dt = -(-N_s \cdot (-v) \cdot l \cdot B_{\delta}) = -N_s \cdot l \cdot v \cdot B_{\delta} \end{split}$$

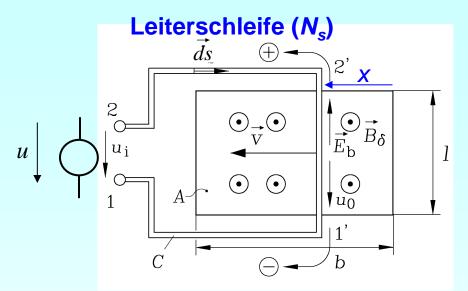
 u_i ist von 2 nach 1 NEGATIV

Induzierte Spannung u_i(t) negativ von 2 nach 1: Würde einen Strom gegen die Richtung ds von 1 nach 2 treiben, dessen Eigenfeld B_e von unten nach oben gerichtet ist und daher der Flussabnahme durch die Schleife entgegen wirkte (LENZ´sche Regel)

Das Induktionsgesetz – die Bewegungsinduktion

- Bewegter Leiter 1´-2´ (Geschwindigkeit v) im Magnetfeld B_{δ} :
 Bewegungsinduzierte Feldstärke: $E_b = \stackrel{\circ}{v} \times \stackrel{\circ}{B}_{\delta}$
- E_b ist maximal, wenn B und v zueinander rechte Winkel aufweisen: $E_b = v \cdot B_S$
- u_i ist maximal, wenn B, v und Leiterelement I zueinander rechte Winkel aufweisen:

$$u_{i, je \text{ Windung}} = \int_{2}^{1} E_{b}^{\rho} \cdot ds^{\rho} = \int_{2'}^{1'} E_{b} \cdot ds = -\int_{1'}^{2'} E_{b} \cdot ds = -v \cdot B_{\delta} \cdot l$$


Bewegungsinduzierte Spannung bei $N_{\rm s}$ Windungen : $u_i = -N_{\rm S} \cdot v \cdot B_{\rm O} \cdot l$

*u*_i ist von 2 nach 1 NEGATIV

(wie auf voriger Folie)

Induzierte Spannung u_i als Quellenspannung u_0 (1)

ui: "Äußere" Spannung zw. 2 und 1: treibt bei geschlossener Schleife über Schleifen-Innenwiderstand R den Strom i_s . (Positiver Stromfluss-Sinn: von 2 nach 1)

ui wirkt wie eine von außen zw. 2 und 1 angelegte Spannung u.

$$u + u_i = R \cdot i_s$$

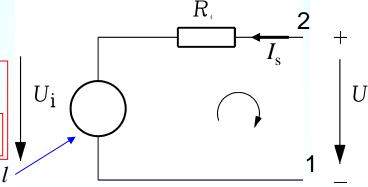
Alternativ: Darstellung von u_i als "Innere" Spannung (Quellenspannung u_0) zw. 2´ nach 1´

$$u = R \cdot i_s - u_i = R \cdot i_s + u_0$$
 $-u_i = u_0$ $u_0 = N_s \cdot v \cdot B_{\delta} \cdot l$

$$-u_i = u_0$$

$$u_0 = N_s \cdot v \cdot B_{\delta} \cdot l$$

 u_0 treibt Strom i_s gegen den Spannungspfeil von u_0


Bei E-Maschinen wird die induzierte Spannung als

"innere" Spannungsquelle $|u_i| = |u_0|$

dargestellt. Wir schreiben:

$$u = R \cdot i_{s} + u_{i}$$

$$u_{i} = N_{s} \cdot v \cdot B_{s} \cdot l$$

Induzierte Spannung u_i als Quellenspannung u_0 (2)

Induktionsgesetz: u_i als "äußere" Spannung: $u_i = -d\psi/dt$

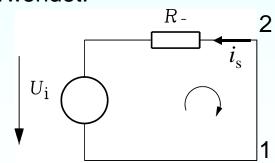
Schleife mit zusätzlicher "äußerer" Spannung u: $u + u_i = R \cdot i_{\scriptscriptstyle S}$

 $u - d\psi / dt = R \cdot i_s$

Übliche Schreibweise: $u = R \cdot i_s + d\psi/dt$

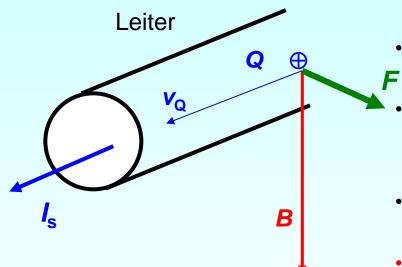
Entspricht einer Darstellung von $u_{\rm i}$ als "innere" Spannung: $u_0=d\psi/dt$

$$u = R \cdot i_s + u_0$$


Die "innere" Spannung u_0 wird hier gleich als u_i bezeichnet, obwohl eigentlich $-u_i=u_0$

Positiver Spannungsbezugspfeil von u_0 wird für "innere" u_i verwendet.

Beispiel: Kurzgeschlossene Leiterschleife:


$$0 = R \cdot i_s + u_0 = R \cdot i_s + "u_i" \rightarrow i_s = -"u_i" / R$$

Strom fließt gegen die induzierte Quellspannung, daher in Richtung von E_b (siehe vorige Folie)

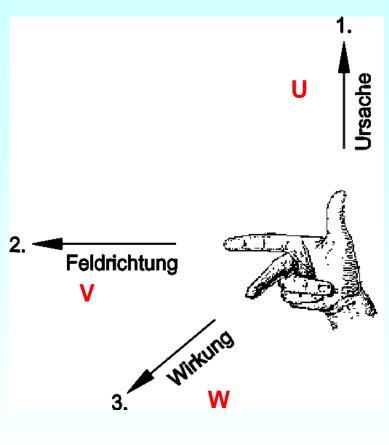
Die elektromagnetische Kraft

Strom I_s im Leiter im Magnetfeld B:

Mit v_Q bewegte Ladung Q im Leiter (Stromfluss I_s) im B
Feld erfährt bewegungsinduzierte Feldstärke E:

$$E = P_O \times B$$

Kraft auf bewegte Ladung: $F = Q \cdot E = Q \cdot Q \times B$

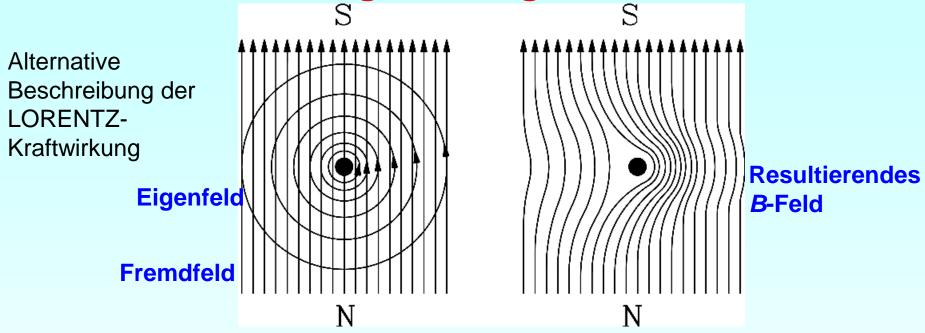

Umrechung der Kraftformel: $I_s = Q/t$ $v_Q = l/t$

$$F = Q \cdot (l/t) \times B = (Q/t) \cdot l \times B = I_s \cdot l \times B$$

- Wegelement ds in Stromrichtung ist Vektorgröße $dF = I_s \cdot dS \times B$
- Kraftwirkung F (LORENTZ-Kraft) maximal, wenn zwischen B- und Stromflussrichtung rechter Winkel

$$\stackrel{\mathsf{p}}{F} = \int_{0}^{l} I_{s} (ds^{\mathsf{p}} \times B) = \int_{0}^{l} I_{s} \cdot B \cdot ds = I_{s} \cdot B \cdot l$$
 Bei N_{s} Windungen: $F = N_{s} \cdot I_{s} \cdot B \cdot l$

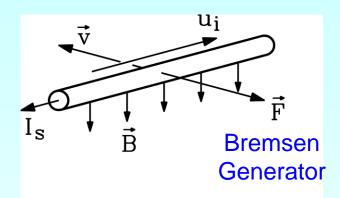
Dreifingerregel der rechten Hand (U-V-W-Regel)

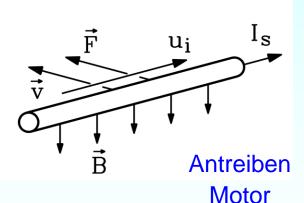


Quelle: Westphal, Physik Hält man die drei Finger der rechten Hand:

- 1. Daumen, 2. Zeigefinger, 3. Mittelfinger so, dass sie rechte Winkel miteinander bilden, und zeigt
- der 1. Finger in Richtung der <u>Ursache</u> (hier: in <u>Richtung des Stroms</u>),
- der 2. Finger in <u>Feldrichtung</u> = Richtung der Feldlinien, so gibt
- der 3. Finger die Richtung der Wirkung (hier: die Kraft) an.

Das magnetische Feld ist das Bindeglied, die Vermittlung, zwischen der Ursache und der Wirkung


Kraftwirkung des magnetischen Feldes



- Fremdfeld (homogenes Feld) von unten nach oben gerichtet
- Der Strom im Leiter fließt auf den Betrachter zu, erregt ein kreisförmiges Eigenfeld nach der Rechtsschraubenregel
- Überlagerung ergibt resultierendes B-Feld links kleiner als rechts vom Leiter
- Feldlinien = "elastische Gummischnüre" (MAXWELL'scher Zug) wollen sich verkürzen ⇒ Kraft nach links auf den Leiter!
- Zum selben Ergebnis kommt man mit der LORENTZ-Kraftformel!

Antreiben und Bremsen

Bewegungsinduzierte Spannung (als Quellenspannung):

$$u_i = \int_l \stackrel{\rho}{E} \cdot ds = \int_l (\stackrel{\rho}{v} \times \stackrel{\rho}{B}) \cdot ds$$

LORENTZ-Kraft:
$$F = \int_{I} I_{s} (ds \times B)$$

Generator:

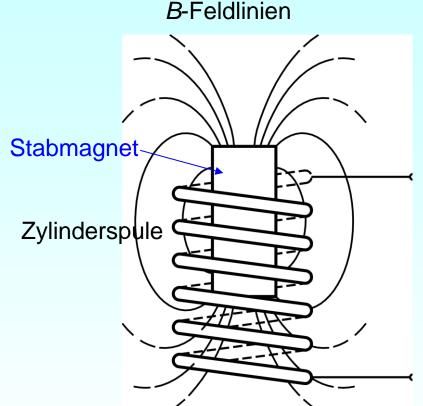
Stromfluss GEGEN die Richtung der induzierten Spannung

LORENTZ-Kraft gegen Leitergeschwindigkeit v: BREMST

Motor:

Stromfluss IN Richtung der induzierten Spannung

LORENTZ-Kraft in Richtung der Leitergeschwindigkeit *v*: TREIBT AN

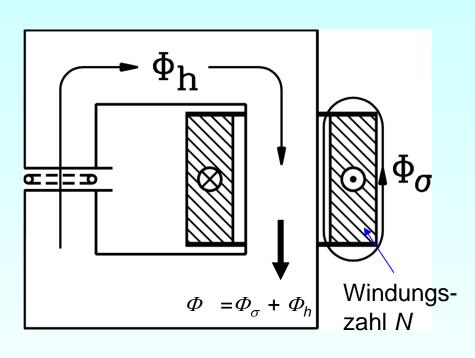

Repetitorium

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
 - OHM'sches Gesetz, AMPERE'scher Durchflutungssatz
 - Magnetische Werkstoffe
 - FARADAY'sches Induktionsgesetz, LORENTZ-Kraft
 - Flüsse und Induktivitäten, Ummagnetisierungsverluste
 - Momentanleistung, Effektivwert
 - Sinusbetrieb: Wirk-, Blind- und Scheinleistung einphasig
- Grundgesetze der Drehstromtechnik

Haupt- und Streufluss (1)

 Stabmagnet in Zylinderspule ohne Eisenrückschluss.


Die einzelnen Windungen sind mit unterschiedlich großem Fluss verkettet:

Flussverkettung Ψ <u>ändert</u> sich von Windung zu Windung

Quelle: Kleinrath, H.; Studientext

Haupt- und Streufluss (2)

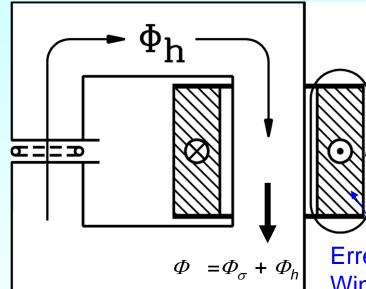
Bei Magnetkreisen mit Flussführung im Eisen ist der Fluss "gebündelt". Der Fluss in der umgebenden Luft ist viel kleiner!

Der Fluss ist in guter Näherung mit der gesamten Spule verkettet. Es kann zwischen

Hauptfluss Φ_h und Streufluss Φ_{σ} unterschieden werden.

Streuziffer:

$$\sigma = \Phi_{\sigma}/\Phi_{h}$$


soll klein sein!

 \Rightarrow Hauptflussverkettung: $\Psi_h = N \cdot \Phi_h$, Streuflussverkettung: $\Psi_\sigma = N \cdot \Phi_\sigma$

Selbstinduktivität

- Wechselstrom *i* in Erreger-Spule: Hauptfluss Φ_h im Eisen und Streufluss Φ_{σ} mit Spule verkettet; pulsieren mit Frequenz f.
- Spannungsinduktion in Erregerspule (Selbstinduktion, N Windungen):

$$u_{i,N} = -d\Psi_N(t)/dt = -N\cdot d\Phi_{h+\sigma}(t)/dt = u_{i,N} = -L\cdot di/dt$$

Mit $\Phi_h = B_{\delta}A$ und $B_{\delta} = \mu_0 N i/\delta$ folgt:

• Mit
$$\Phi_h = B_{\delta}A$$
 und $B_{\delta} = \mu_0 \cdot N \cdot i/\delta$

Erregerspule:

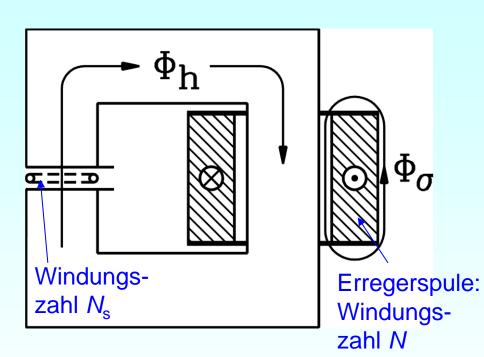
Windungs-
zahl N

$$L = \frac{\Psi_N}{i} = \frac{N \cdot (\Phi_h + \Phi_\sigma)}{i} = L_h + L_\sigma$$

$$L_{h} = \frac{N \cdot \Phi_{h}}{i} = \frac{N \cdot (\mu_{0} \cdot N \cdot i / \delta) \cdot A}{i} = N^{2} \cdot \mu_{0} \cdot \frac{A}{\delta} = N^{2} \cdot \Lambda_{h}$$

$$L_{\sigma} = N^{2} \cdot \Lambda_{\sigma}$$

$$L_{h} = \frac{N \cdot \Phi_{h}}{i} = \frac{N \cdot (\mu_{0} \cdot N \cdot i / \delta) \cdot A}{i} = N^{2} \cdot \mu_{0} \cdot \frac{A}{\delta} = N^{2} \cdot \Lambda_{h}$$


$$L_{h} = \frac{N \cdot \Phi_{h}}{i} = \frac{N \cdot (\mu_{0} \cdot N \cdot i / \delta) \cdot A}{i} = N^{2} \cdot \Lambda_{h}$$

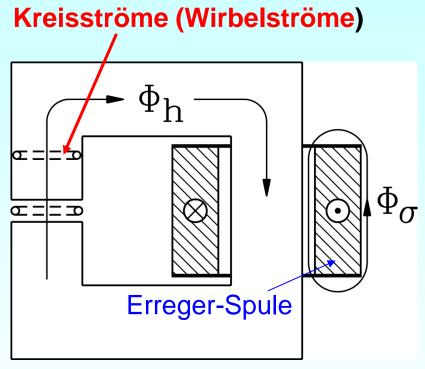
$$L_h = N^2 \cdot \Lambda_h$$

$$L_{\sigma} = N^2 \cdot \Lambda_{\sigma}$$

Gegeninduktivität

- Wechselstrom i in Erreger-Spule: Hauptfluss Φ_h mit Luftspalt-Spule verkettet; pulsiert mit Frequenz f.
- Spannungsinduktion in Luftspalt-Spule (Gegeninduktion, N_s Windungen):

$$u_{i,Ns} = -d\Psi_{Ns}(t)/dt = -N_s \cdot d\Phi_h(t)/dt = u_{i,Ns} = -M \cdot di/dt$$


• Mit $\Phi_h = B_{\delta}A$ und $B_{\delta} = \mu_0 Ni/\delta$ folgt:

$$M = \frac{\Psi_{Ns}}{i} = \frac{N_s \cdot (\mu_0 \cdot N \cdot i / \delta) \cdot A}{i} = N_s \cdot N \cdot \mu_0 \cdot \frac{A}{\delta}$$

$$M = N_s \cdot N \cdot \Lambda_h$$

Ummagnetisierungsverluste $P_{Fe} = P_{Ft} + P_{Hy}$

Ft: "Foucault"

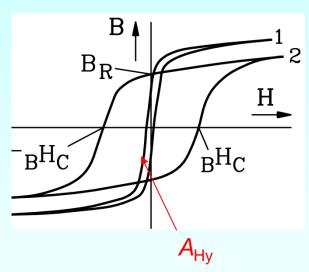
- Wechselstrom i in Erreger-Spule: Hauptfluss Φ_h im Eisen pulsiert mit Frequenz f.
- Im Eisen wird von Φ_h eine Spannung u_i induziert, die im elektrisch leitfähigen Eisen Kreisströme (Wirbelströme) treibt.
- Kreisströme verursachen Stromwärmeverluste P_{Ft} (Wirbelstromverluste).

Abhilfe:

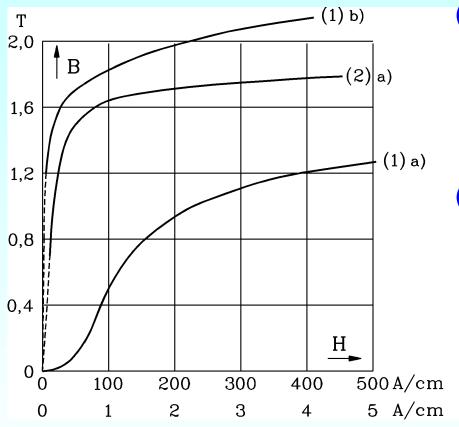
Magnetkreis aus isolierten Blechen schichten.

• Zusätzlich: Hysterese-Verluste P_{Hy} in den Blechen durch den Wechselfluss!

Hystereseverluste


Hystereseverluste pro Volumen des ferromagnetischen Materials durch pulsierendes Magnetfeld werden durch die Fläche der Hystereseschleife B(H) ausgedrückt: A_{Hv}

$$W_{Hy}/V = A_{Hy}(\hat{B}) \sim B_R \cdot_B H_C \sim \text{ca. } \hat{B}^2$$


$$B(t) = \hat{B} \cdot \sin(\omega \cdot t)$$

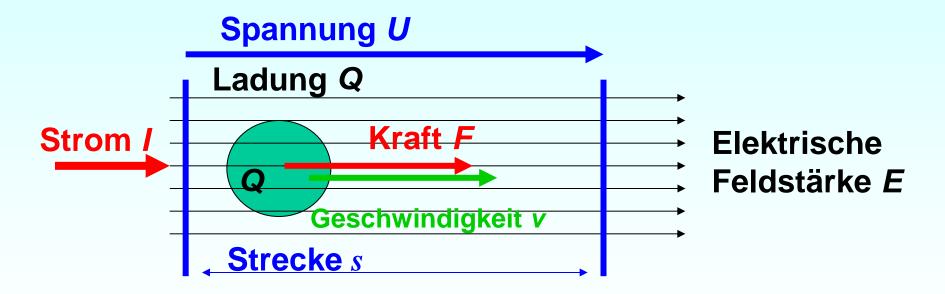
Hystereseverluste = Leistung = (Energie) x (Frequenz):

$$P_{Hy}/V = f \cdot A_{Hy} \sim \text{ca. } \hat{B}^2 \cdot f$$

Weicheisenwerkstoffe – B(H)-Kurve (ohne Hystereseschleife)

- (1) Absenken der Wirbelstromverluste: Siliziumbeimengung erhöht den Blechwiderstand, aber senkt die Permeabilität μ: Dynamoblech (Elektroblech)
- (2) Erhöhen der Permeabilität μ : Kornorientiertes Blech durch Kaltwalz-Technik:
 - in Walzrichtung (Vorzugsrichtung) erhöhte Flussdichte möglich (hohes μ),
 - in Querrichtung deutlich kleineres μ !
- (1) Elektroblech, Dicke 0.5 mm, $P_{Fe} = 3$ W/kg bei 50 Hz, 1 T, keine Vorzugsrichtung
- (2) Kornorientiertes Blech, Vorzugsrichtung, Dicke 0.35 mm, $P_{Fe} = 0.45$ W/kg bei 50 Hz, 1 T

Quelle: Fischer, R., Ele. Maschinen, Hanser-Verlag


Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
 - OHM'sches Gesetz, AMPERE'scher Durchflutungssatz
 - Magnetische Werkstoffe
 - FARADAY'sches Induktionsgesetz, LORENTZ-Kraft
 - Flüsse und Induktivitäten, Ummagnetisierungsverluste
 - Momentanleistung, Effektivwert
 - Sinusbetrieb: Wirk-, Blind- und Scheinleistung einphasig
- Grundgesetze der Drehstromtechnik

Elektrische Momentanleistung $P = I \cdot U$

- Strom I = Bewegte elektrische Ladung Q im elektrischen Feld E
- Spannung U = elektrische Potentialdifferenz auf der Strecke s im Feld E
- Kraftwirkung $F = Q \cdot E$, Geschwindigkeit: v = s/t
- Leistung $P = F \cdot v = (Q \cdot E) \cdot v = (Q \cdot E) \cdot (s/t) = (Q/t) \cdot (E \cdot s) = I \cdot U$

Effektivwert eines periodisch veränderlichen Stroms

Effektivwert I eines periodisch veränderlichen Stroms i = äquivalenter Gleichstrom I, der an einem Widerstand R während einer ganzen Zahl von Perioden T dieselbe Leistung P wie dieser periodische Stro \underline{m} verrichtet.

$$P = \overline{p} = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{1}{T} \int_{0}^{T} i^{2}(t) \cdot R \cdot dt = I^{2}R \quad \Rightarrow \quad I = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) \cdot dt}$$

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) \cdot dt}$$

Fazit: Aus der mittleren Leistung ermittelte Ersatzgröße einer allgemein periodischen Größe *i(t)* (Periode *T*), deren Leistung an einem Widerstand *R* gleich groß ist wie die einer Gleichgröße *I*.

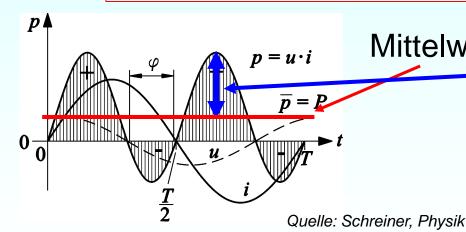
Sonderfall: Effektivwert *I* einer sinusförmig veränderlichen Größe i(t): $I = \hat{I} / \sqrt{2}$

Effektivwert einer Sinuswechselspannung: $U = \hat{U} / \sqrt{2}$

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
 - OHM'sches Gesetz, AMPERE'scher Durchflutungssatz
 - Magnetische Werkstoffe
 - FARADAY'sches Induktionsgesetz, LORENTZ-Kraft
 - Flüsse und Induktivitäten, Ummagnetisierungsverluste
 - Momentanleistung, Effektivwert
 - Sinusbetrieb: Wirk-, Blind- und Scheinleistung einphasig
- Grundgesetze der Drehstromtechnik

Einphasen-Momentan-Leistung


$$p(t) = \hat{U}\sin(\omega t + \varphi) \cdot \hat{I} \cdot \sin \omega t = \hat{U}[\sin \omega t \cdot \cos \varphi + \cos \omega t \cdot \sin \varphi] \cdot \hat{I} \cdot \sin \omega t$$

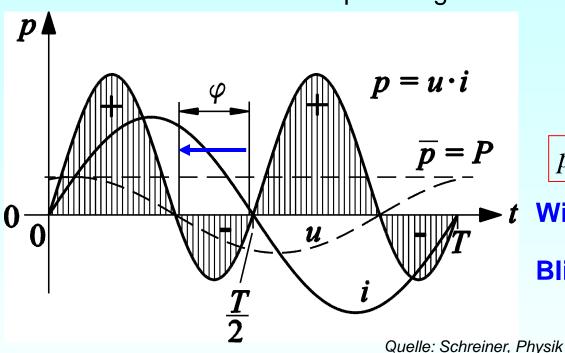
$$p(t) = \frac{\hat{U}\hat{I}}{2} \cdot \cos\varphi \cdot (1 - \cos 2\omega t) + \frac{\hat{U}\hat{I}}{2} \cdot \sin\varphi \cdot \sin 2\omega t =$$

$$= P \cdot (1 - \cos 2\omega t) + Q \cdot \sin 2\omega t$$

Scheinleistung S

$$p(t) = P + p_{\sim}(t) = UI \cos \varphi - UI \cos(2\omega t + \varphi)$$

Mittelwert P "Pendel"-Leistung S


$$S = U \cdot I$$

P und Q beim Phasenwinkel φ

Sinus-Wechselstrom und -Spannung: Phasenverschiebung φ

$$u(t) = \hat{U}\sin(\omega t + \varphi)$$

$$i(t) = \hat{I}\sin(\omega t)$$

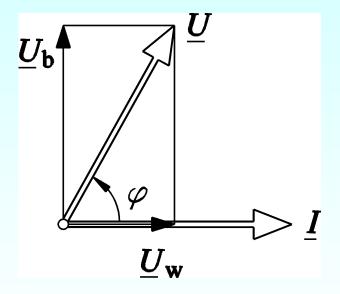
$$p(t) = P \cdot (1 - \cos 2\omega t) + Q \cdot \sin 2\omega t$$

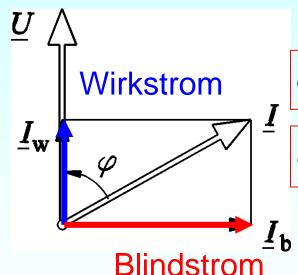
t Wirkleistung: $P = U \cdot I \cdot \cos \varphi$

Blindleistung: $Q = U \cdot I \cdot \sin \varphi$

Beispiel:

Momentanwerte von Spannung, Strom, $\varphi > 0$ Leistung an einem R-L-Glied: $0 < \varphi < 90^{\circ}$


Scheinleistung S, Wirk- und Blindstrom I_{w} , I_{b}


$$S = \sqrt{P^2 + Q^2} = U \cdot I$$

$$I_w = I \cdot \cos \varphi$$

$$I_b^{\prime\prime} = I \cdot \sin \varphi$$

$$I = \sqrt{I_w^2 + I_b^2}$$

$$U \cdot I_w = UI \cdot \cos \varphi = P$$

$$U \cdot I_b = UI \cdot \sin \varphi = Q$$

Quelle: Schreiner, Physik

Zusammenfassung: Einphasenleistung bei Sinus-Wechselstrom

- Bei Einphasensystemen pulsiert die Momentanleistung p(t) um den Mittelwert P (Wirkleistung), mit doppelter Frequenz 2f ($\omega = 2\pi f$) mit der Amplitude S (Scheinleistung)!

$$p(t) = u(t) \cdot i(t) = \hat{U}\sin(\omega t) \cdot \hat{I}\sin(\omega t - \varphi)$$

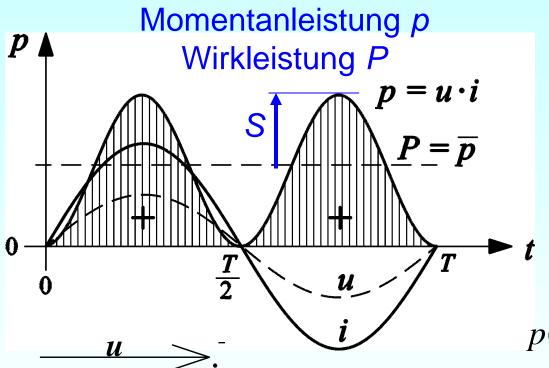
$$p(t) = (\hat{U} \cdot \hat{I}/2) \cdot \left[\cos \varphi - \cos(2\omega t - \varphi)\right] = (\hat{U} \cdot \hat{I}/2) \cdot \left[\cos \varphi - \cos 2\omega t \cdot \cos \varphi - \sin 2\omega t \cdot \sin \varphi\right]$$

$$p(t) = P - S \cdot \cos(2\omega t - \varphi) \quad P = U \cdot I \cdot \cos \varphi \quad S = U \cdot I$$

- Zerlegung der Momentanleistung p(t) in P und S oder P und Q:

$$p(t) = P \cdot [1 - \cos(2\omega t)] - Q \cdot \sin(2\omega t)$$

Wirkleistung
$$P = U \cdot I \cdot \cos \varphi$$
 Blindleistung $Q = U \cdot I \cdot \sin \varphi$


$$Q = U \cdot I \cdot \sin \varphi$$

 $P \cdot |1 - \cos(2\omega t)|$ pulsiert mit Amplitude P und Frequenz 2f um Mittelwert P pulsiert mit Amplitude Q und Frequenz 2f um Mittelwert Null. $Q \cdot \sin(2\omega t)$

- Scheinleistung: $S = \sqrt{P^2 + Q^2} = U \cdot I$

Beispiel: Einphasen-Wirkleistung (für $\varphi = 0$)

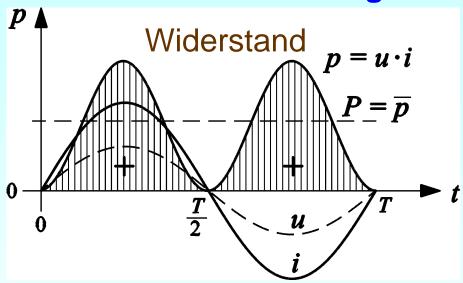
$$u(t) = \hat{U} \cdot \sin \omega t$$
$$i(t) = \hat{I} \cdot \sin \omega t = (\hat{U} / R) \cdot \sin \omega t$$

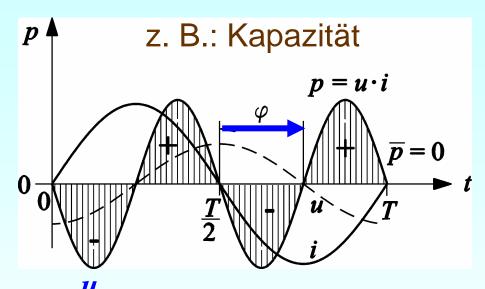
Momentanleistung:

$$p(t) = u(t) \cdot i(t) = \frac{\hat{U}^2}{R} \cdot \sin^2(\omega t)$$

$$p(t) = \frac{\hat{U}\hat{I}}{2} - \frac{\hat{U}\hat{I}}{2}\cos(2\omega t) = P + p_{\sim}(t)$$

Leistungs-Mittelwert:
$$P = \overline{p} = U \cdot I = U^2 / R$$


Quelle: Schreiner, Physik

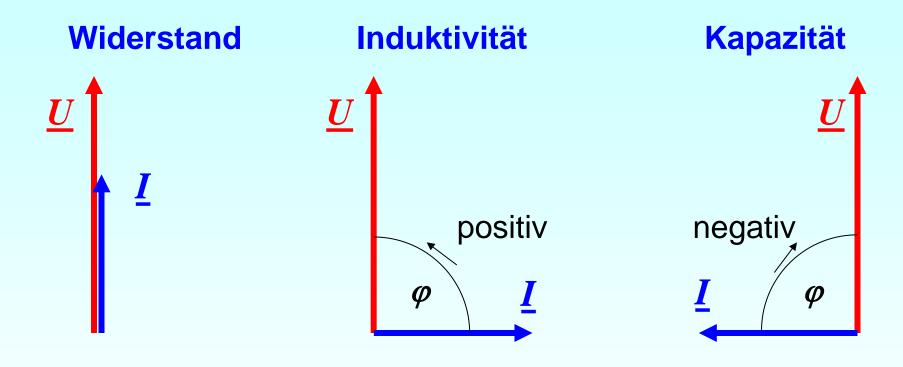

Beispiel: Elektrische Wirk- und Blindleistung

Wirkleistung

u \blacktriangleright Widerstand: $\varphi = 0^{\circ}$

Blindleistung

Kapazität: $\varphi = -90^{\circ}$

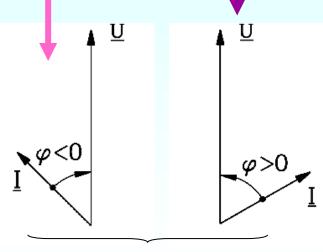


Widerstand, Induktivität & Kapazität

Der Phasenwinkel φ wird VOM Strom ZUR Spannung IM MATHEMATISCH POSITIVEN ZÄHLSINN (GEGEN-UHRZEIGERSINN) gezählt.

Induktivität: $\varphi = 90^{\circ}$

Widerstand: $\varphi = 0^{\circ}$

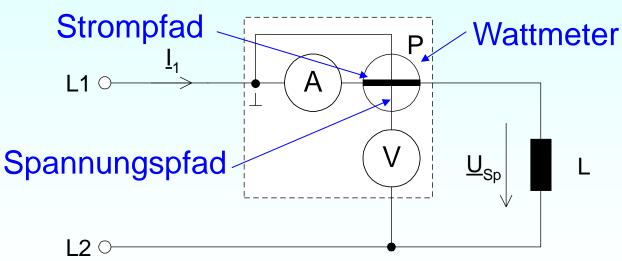

Kapazität: $\varphi = -90^{\circ}$

Zählweise von Wirk- und Blindleistung

		Wirkleistung	Blindleistung
		$P = UI \cos \varphi$	$Q = UI \sin \varphi$
	$-90^{\circ} \le \varphi < 0^{\circ}$	P > 0, Verbraucher	Q < 0, kapazitiver Verbraucher
	$0 \le \varphi < 90^{\circ}$	P > 0, Verbraucher	Q > 0, induktiver Verbraucher
,			

Kapazitive Blindleistung ist negativ

P > 0, Verbraucher


Messung der elektrischen Leistung

Wattmeter-Messung:

- Elektrodynamische Wattmeter: i. A. für sinusförmige Strom & Spannung
- Elektronische Wattmeter: beliebige Zeitverläufe von Strom & Spannung

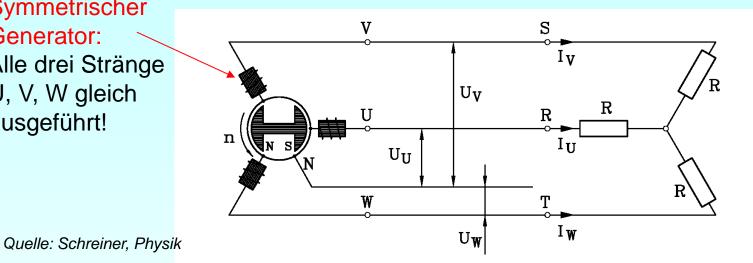
Beispiel:

Leistungsmessung an einer Drossel (reale Induktivität)

Zusammenfassung Grundgesetze der Elektromagnetik

- OHM'sches Gesetz und AMPERE'scher Satz
- FARADAY sches Induktionsgesetz, LORENTZ sche Kraftgleichung
- Ferromagnetische Materialien Eisen, Nickel, Kobalt; Permanentmagnete
- Magnetischer Fluss, Flussverkettung, Induktivitäten
- Momentanleistung, Effektivwert, Leistungsgrößen bei Sinusbetrieb

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik


- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
- Grundgesetze der Drehstromtechnik
 - Phasenspannung und verkettete Spannung
 - Symmetrisches Drehstromsystem, Wirk-, Blind-, Scheinleistung
 - Stern-, Dreieckschaltung
 - Unsymmetrisches Drehstromsystem Leistungsmessung
 - Spannungs- und Strom-Zeigerdiagramme

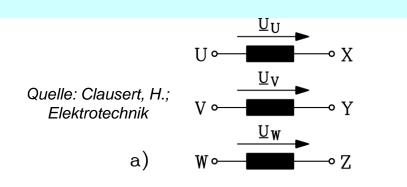
Symmetrischer Synchrongenerator erzeugt symmetrisches **Drehstromsystem**

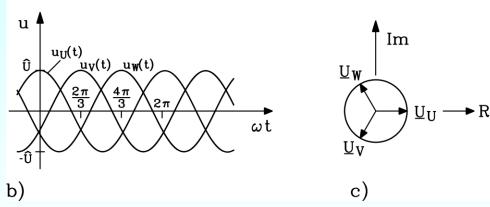
Symmetrischer Generator:

Alle drei Stränge U, V, W gleich ausgeführt!

Symmetrischer Verbraucher:

Alle drei Stränge U, V, W gleich ausgeführt!

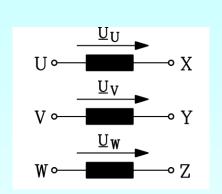

- Läufer (Rotor), elektrisch erregt über Schleifringe, rotiert, Turbine treibt an
- Läufer erzeugt **zweipoliges** Magnetfeld; dieses rotiert mit $\Omega_m = 2\pi n$ (n: Drehzahl)
- Drei Spulen auf Eisenkernen, um 120° räumlich versetzt angeordnet, bilden Stator.
- Flussverkettung je Spule ändert sich zeitlich etwa sinusförmig: $\Psi(t) = \hat{\Psi} \sin(\Omega_{...}t)$
- **Induktionsgesetz:** Induzierte Spannung je Spule: $u_i(t) = -\hat{\Psi} \cdot \Omega_m \cdot \cos(\Omega_m t)$
- Frequenz f = n, Spannung in Spulen U, V, W um 120°el. phasenverschoben



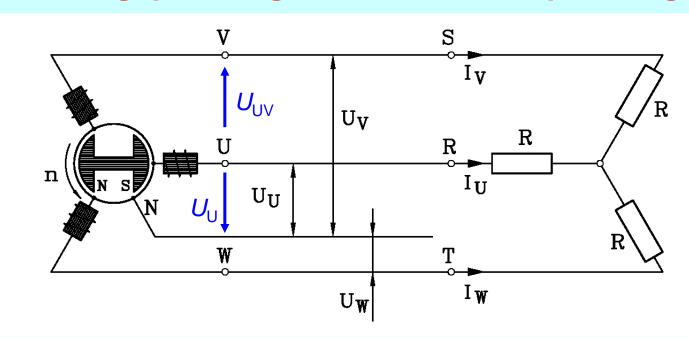
Symmetrisches Drehstromsystem

Prof. A. Binder: Energietechnik/El. Energiewandler

Repetitorium /54

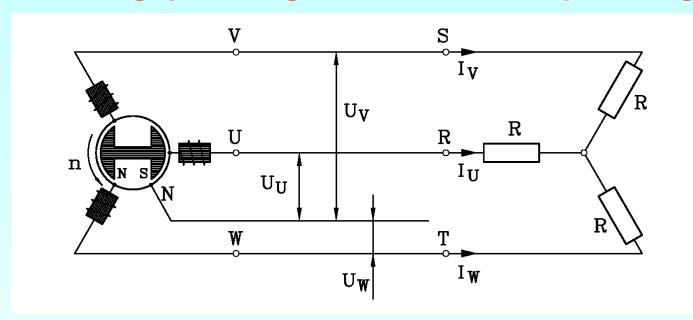


Projektion der Zeiger ($\cdot \sqrt{2}$!) auf Realteilachse liefert augenblicklichen Zeitwert:


Beispiel:
$$u_V(t) = \text{Re}\left\{\sqrt{2}\underline{U}_V e^{j2\pi f t}\right\}$$

- a) Dreiphasiges Spulensystem U, V, W, räumlich um 120° versetzt
- b) <u>Klemmenspannung je Spule</u>: *u_i* minus innerer Spannungsfall an Spulenwiderstand und –induktivität: *u_{i,i}*, u_{V} , u_{W} Zeitverlauf: 3 um 120° el. phasenverschobene Sinusspannungen mit der Amplitude $\rightarrow \hat{U} = \sqrt{2} \cdot U$, (*U*: Effektivwert) und Frequenz f
- c) Darstellung von $u_U(t)$, $u_V(t)$, $u_W(t)$ als drei komplexe Zeiger \underline{U}_U , \underline{U}_V , \underline{U}_W ("Zeigerdreibein"), Zeigerlänge U, rotiert mit Frequenz f.

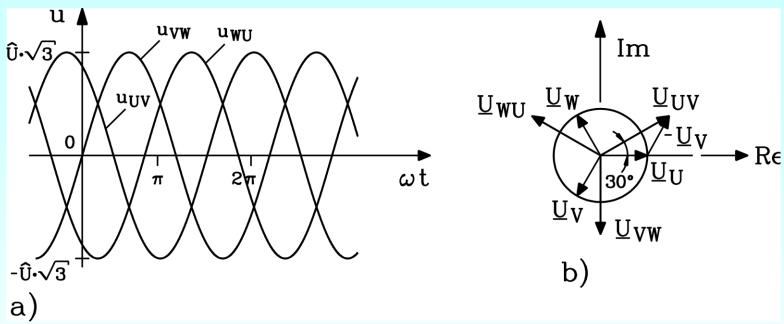
Symmetrische Strangspannungen & verkettete Spannungen



Quelle: Schreiner, Physik

- Zwischen zwei Klemmen eines Strangs: Strangspannung: z.B. zwischen U und X: u_{ij}
- Zwischen zwei Klemmen benachbarter Stränge: verkettete Spannung: z. B. zwischen U und V: u_{UV}

Beispiel: Symm. Strangspannungen & verkettete Spannungen



Quelle: Schreiner, Physik

Beispiel:

- Generator in Stern geschaltet: Strangspannung zwischen Sternpunkt N und Klemmen U, V, W messbar.
- Auf der Freileitung Sternpunkt NICHT mitgeführt: nur verkettete Spannung messbar.
- Belastung symmetrisch in U, V, W, in Stern geschaltet, daher Sternpunktspotential wie bei N: Strangspannung messbar.

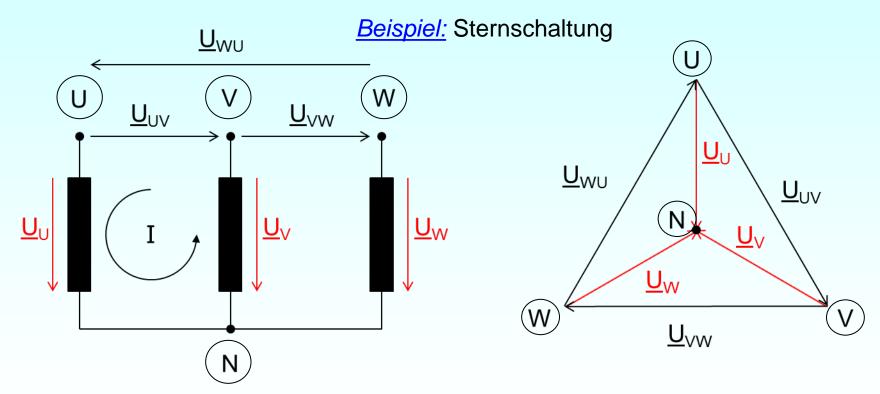
Symm. Strangspannungen & verkettete Spannungen (3)

Quelle: 6
Clausert, H.;
Elektrotechnik

Zeitverlauf der verketteten Spannungen $u_{UV} = u_U - u_V$ "Zeiger-Dreibein"

Aus Zeigerbild folgt:

Amplitude U_{UV} um $\sqrt{3}$ größer als Strangspannung U_U , U_V . u_{UV} eilt u_U um 30°el. VOR.

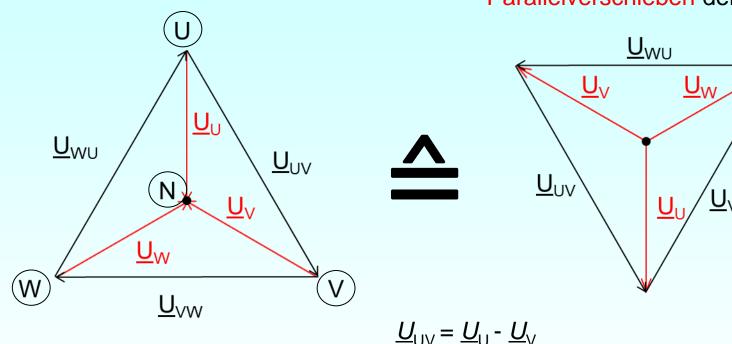


Zählpfeile bei Strangspannungen & verkettete Spannungen (1)

Übliche Darstellung:

Schaltbild: Verkettete Spannungen zeigen von U nach V, von V nach W und von W nach U Unübliche Darstellung:

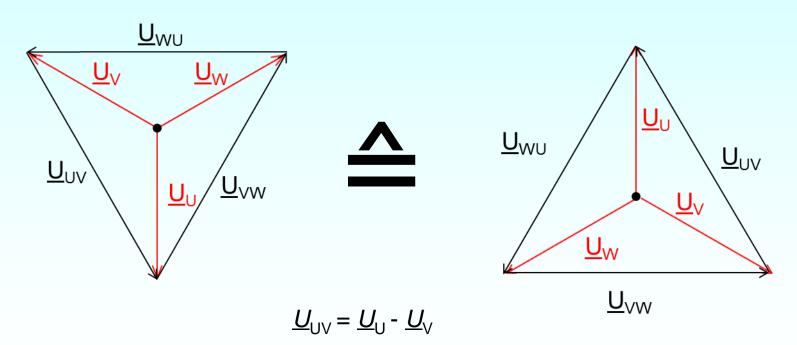
Zeigerdiagramm: Phasenspannungen zeigen zum Neutralpunkt hin


Kirchhoff sches Gesetz für Masche I: $\underline{U}_{UV} = \underline{U}_{U} - \underline{U}_{V}$

Zählpfeile bei Strangspannungen & verkettete Spannungen (2)

Beispiel: Sternschaltung

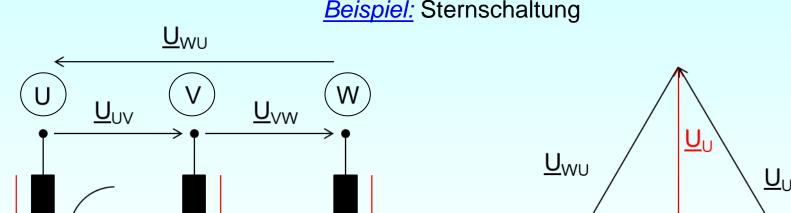
Zeiger neu angeordnet durch Parallelverschieben der Spannungszeiger


Nach der Verschiebung sind die Potentiale (U), (V), (W), (N) nicht einzuzeichnen, weil das nicht mehr zum Zeigerdiagramm passt!

Zählpfeile bei Strangspannungen & verkettete Spannungen (3)

- Durch Drehung des Zeigerdiagramms um 180° zeigt nun <u>Uu</u> nach oben
- Die relative Phasenlage der Zeiger zueinander bleibt erhalten!

Beispiel: Sternschaltung



Zählpfeile bei Strangspannungen & verkettete Spannungen (4)

Übliche Darstellung:

Schaltbild: Verkettete Spannungen zeigen von U nach V, von V nach W und von W nach U

Zeigerdiagramm: Phasenspannungen zeigen nach außen; Potentiale (U), (V), (W), (N) sind nicht einzuzeichnen.

Masche I: $\underline{U}_{UV} = \underline{U}_{U} - \underline{U}_{V}$

<u>U</u>vw

Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
- Grundgesetze der Drehstromtechnik
 - Phasenspannung und verkettete Spannung
 - Symmetrisches Drehstromsystem, Wirk-, Blind-, Scheinleistung
 - Stern-, Dreieckschaltung
 - Unsymmetrisches Drehstromsystem Leistungsmessung
 - Spannungs- und Strom-Zeigerdiagramme

Leistung im symmetrischen Drehstromsystem

Symmetrisches Drehstromsystem:

Momentanleistung: Summe der Leistungen der drei Stränge:

U: ωt , V: ωt - $2\pi/3$, W: ωt - $4\pi/3$.

$$p_{U}(t) = P_{U} + p_{\sim U}(t) = UI\cos\varphi - UI\cos(2\omega t - \varphi)$$

$$p_{V}(t) = P_{V} + p_{\sim V}(t) = UI\cos\varphi - UI\cos(2\omega t - \varphi - 2\pi/3)$$

$$p_{W}(t) = P_{W} + p_{\sim W}(t) = UI\cos\varphi - UI\cos(2\omega t - \varphi - 4\pi/3)$$
Summe
$$U+V+W$$

$$\cos(2\omega t - \varphi) + \cos(2\omega t - \varphi - 2\pi/3) + \cos(2\omega t - \varphi - 4\pi/3) = 0$$

$$P = P_U + P_V + P_W$$

 $p(t) = P = 3Ulcos\varphi = zeitlich KONSTANT im symmetrischen Drehstromsystem!$

Scheinleistung gibt Strom- und Spannungsbelastung an: S = 3UI

Leistungsfaktor: $\cos \varphi = P/S = \lambda$

Blindleistung: $Q = \sqrt{S^2 - P^2} = 3 \cdot U \cdot I \cdot \sin \varphi$

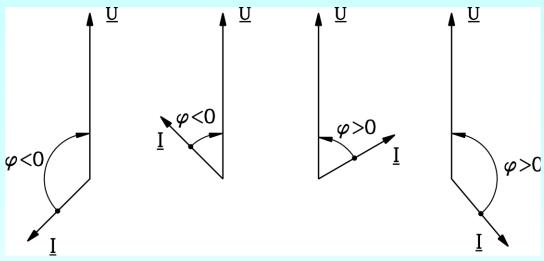
- Pulsieren der Leistungen erfolgt nur innerhalb der Stränge!

Zusammenfassung: Leistung im symmetrischen Drehstromsystem

- Pulsation der gesamten Momentanleistung ist NULL.

$$-p(t) = P = 3Ulcos\varphi = zeitlich KONSTANT!$$

- Scheinleistung gibt Strom- und Spannungsbelastung an:


$$S = 3UI \Rightarrow \cos \varphi = P/S = \lambda$$

- Blindleistung: $Q = \sqrt{S^2 - P^2} = 3 \cdot U \cdot I \cdot \sin \varphi$

- Pulsieren der Leistung erfolgt nur innerhalb der Stränge!

Wirkleistung im Verbraucher-Zählpfeilsystem und Blindleistung

<u>/</u> eilt <u>U</u> vor	<u>I</u> eilt <u>U</u> vor	<u>/</u> eilt <u>U</u> nach	<u>/</u> eilt <u>U</u> nach
kapazitiv	kapazitiv	induktiv	induktiv
Q < 0	Q < 0	Q > 0	Q > 0
Erzeuger	Verbraucher	Verbraucher	Erzeuger
P < 0	P > 0	P > 0	P < 0

elektrisch zugeführte Wirkleistung: $P = UI \cos \varphi$, Blindleistung: $Q = UI \sin \varphi$

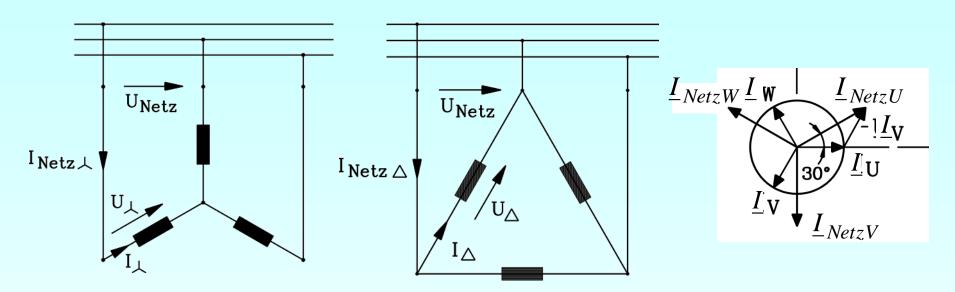
Phasenwinkel φ gezählt vom Strom zur Spannung, positiv im Rechtsdrehsinn

Berechnung der Leistung mit den verketteten **Spannungen**

- Berechnung der Leistung im symmetrischen Drehstromsystem:
- z. B. Scheinleistung:

$$S = U_U I_U + U_V I_V + U_W I_W = 3UI = \sqrt{3}U_{verk}I \qquad \text{("Faktor}\sqrt{3}\text{ ")}$$

- Wirkleistung: $P = 3UI\cos\varphi = \sqrt{3}U_{verk}I\cos\varphi$
- Blindleistung: $Q = 3UI \sin \varphi = \sqrt{3}U_{verk}I \sin \varphi$
 - Herleitung galt bisher für symmetrische Sternschaltung
- Sie gilt aber auch für symmetrische Dreieckschaltung



Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik

- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
- Grundgesetze der Drehstromtechnik
 - Phasenspannung und verkettete Spannung
 - Symmetrisches Drehstromsystem, Wirk-, Blind-, Scheinleistung
 - Stern-, Dreieckschaltung
 - Unsymmetrisches Drehstromsystem Leistungsmessung
 - Spannungs- und Strom-Zeigerdiagramme

Stern- und Dreieckschaltung Y und D

- Stern: Strangspannung $U_Y = U_{Netz}/\sqrt{3}$, Strangstrom $I_Y = Netzstrom I_{NetzY}$.
- Dreieck: Strangspannung U_{Δ} = Netzspannung U_{Netz} , Strangstrom $I_{\Delta} = I_{Netz\Delta}/\sqrt{3}$. $\underline{I}_{NetzU} = \underline{I}_{U} - \underline{I}_{V}$ $I_{NetzU} = \sqrt{3}I_{U}$ $I_{Netz\Delta} = \sqrt{3}I_{\Delta}$

$$P_Y = 3U_Y I_Y \cos \varphi = \sqrt{3}U_{verk} I_Y \cos \varphi = \sqrt{3}U_{Netz} I_{NetzY} \cos \varphi$$

$$P_{\Delta} = 3U_{\Delta}I_{\Delta}\cos\varphi = 3U_{\Delta}(I_{Netz}/\sqrt{3})\cos\varphi = \sqrt{3}U_{Netz}I_{Netz\Delta}\cos\varphi$$

Beispiel: Leistungsdaten für Y- und D-Schaltung

Wirkleistung: 7.5 kW, $\cos \varphi = 0.82$, 50 Hz

a) Dreieckschaltung: 230 V, D, 26.5 A Netzstrom

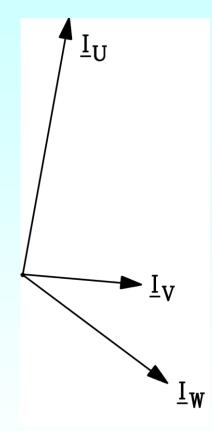
b) Sternschaltung: 400 V, Y, 15.2 A Netzstrom

Schaltung der drei Wicklungsstränge	Dreieck	Stern
Strangspannung effektiv	230 V	230 V
Verkettete Spannung effektiv	230 V	400 V
Strangstrom effektiv	15.2 A	15.2 A
Netzstrom effektiv	26.5 A	15.2 A

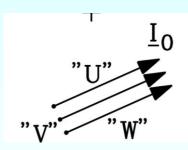
Dreieckschaltung (D):
$$P = \sqrt{3}U_{Netz}I_{Netz}\cos\varphi = \sqrt{3} \cdot 230 \cdot 26.5 \cdot 0.82 = 8656W$$

Sternschaltung (Y):
$$P = \sqrt{3}U_{Netz}I_{Netz}\cos\varphi = \sqrt{3} \cdot 400 \cdot 15.2 \cdot 0.82 = 8656W$$

D und Y: aus den Strangwerten:
$$P = 3U_{strang}I_{strang}\cos\varphi = 3.231.15.2.0.82 = 8656W$$
.



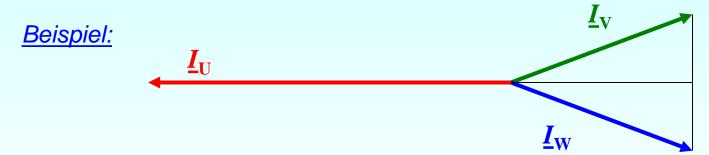
Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik


- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
- Grundgesetze der Drehstromtechnik
 - Phasenspannung und verkettete Spannung
 - Symmetrisches Drehstromsystem, Wirk-, Blind-, Scheinleistung
 - Stern-, Dreieckschaltung
 - Unsymmetrisches Drehstromsystem Leistungsmessung
 - Spannungs- und Strom-Zeigerdiagramme

Unsymmetrisches sinusförmiges Dreiphasensystem

- Gleiche Frequenz und Sinus-FORM je Strang
- Ungleiche Amplitude und Phasenlage
- Bei Sternschaltung fließt Strom 3 \underline{I}_0 über den N-Leiter
- Nullstromsystem: $\underline{I}_0 = (\underline{I}_U + \underline{I}_V + \underline{I}_W)/3$

Leistungs-Mittelwert:

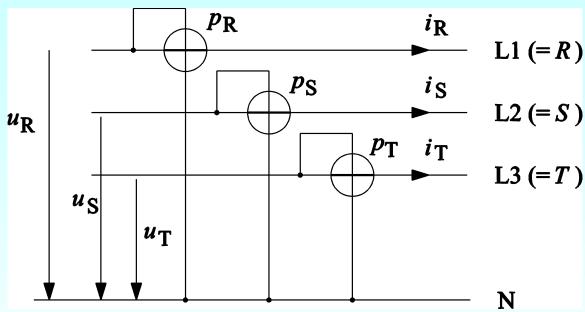

$$\boxed{\frac{\mathbf{I}}{p}} = P_U + P_V + P_W = U_U I_U \cos \varphi_U + U_V I_V \cos \varphi_V + U_W I_W \cos \varphi_W$$

Leistungspulsation hebt sich nicht auf – Momentanleistung pulsiert mit 2f um den Mittelwert!

Unsymmetrisches sinusförmiges Dreiphasensystem ohne Null-Leiter

- Gleiche Frequenz und Sinus-FORM je Strang
- Ungleiche Amplitude und Phasenlage
- Es fließt kein Strom 3 \underline{I}_0 über den N-Leiter $\underline{I}_0 = (\underline{I}_U + \underline{I}_V + \underline{I}_W)/3 = 0$

Leistungs-Mittelwert:


$$\overline{p} = P_U + P_V + P_W = U_U I_U \cos \varphi_U + U_V I_V \cos \varphi_V + U_W I_W \cos \varphi_W$$

Leistungspulsation hebt sich nicht auf – Momentanleistung pulsiert mit 2f um den Mittelwert!

Leistungsmessung im Drehstromsystem (1)

Drei-Wattmetermethode

Gemessene Momentanleistung: beliebige Strom- und Spannungskurvenform

$$p(t) = p_R(t) + p_S(t) + p_T(t) = u_R(t) \cdot i_R(t) + u_S(t) \cdot i_S(t) + u_T(t) \cdot i_T(t)$$

Leistungs-Mittelwert:


$$P = P_R + P_S + P_T$$

Leistungsmessung im Drehstromsystem (2)

Zwei-Wattmetermethode (Aron-Schaltung)

Kein N-Leiter Stromsumme

- Kein N-Leiter vorhanden, Messung der Leistungen zwischen R-T, S-T
- Beliebige Spannungs- und Stromformen
- Die Summe der beiden in den Wattmetern gemessenen Momentanleistungswerte ist gleich der Summe der drei Phasen-Momentanleistungen.
- Die beiden Teilleistungen haben keine besondere physikalische Bedeutung.

Repetitorium /74

Beweis: Zwei-Wattmetermethode "funktioniert"

$$p(t) = p_{RT}(t) + p_{ST}(t) = i_R(t)u_{RT}(t) + i_S(t)u_{ST}(t)$$

$$u_{RT} = u_R - u_T$$

$$u_{ST} = u_S - u_T$$

$$p = i_R(u_R - u_T) + i_S(u_S - u_T) = i_R u_R + i_S u_S + (-i_R - i_S)u_T$$

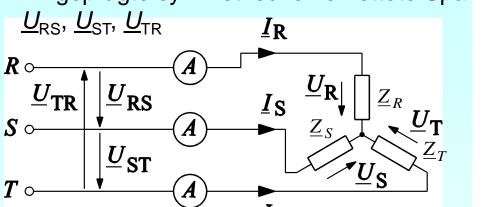
Kein Neutralleiter vorhanden: Stromsumme ist Null (1. Kirchhoff'sche Regel)

$$i_R + i_S + i_T = 0$$
 $i_T = -i_R - i_S$

$$p = p_{RT} + p_{ST} = i_R u_R + i_S u_S + (-i_R - i_S)u_T = i_R u_R + i_S u_S + i_T u_T$$

Die Summe der beiden in den Wattmetern gemessenen Momentanleistungswerte ist gleich der Summe der drei Phasen-Momentanleistungen.

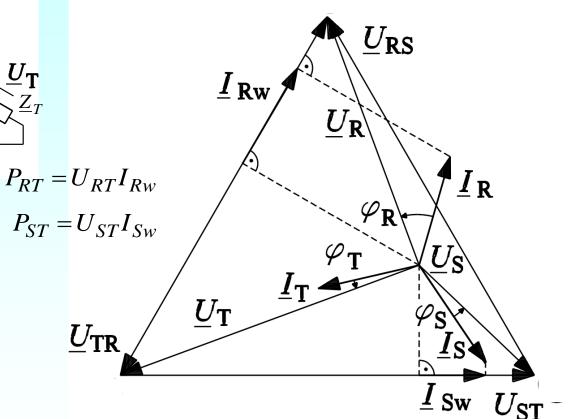
Grundgesetze der Mechanik, Elektromagnetik und Drehstromtechnik


- Grundgesetze der Mechanik
- Grundgesetze der Elektromagnetik
- Grundgesetze der Drehstromtechnik
 - Phasenspannung und verkettete Spannung
 - Symmetrisches Drehstromsystem, Wirk-, Blind-, Scheinleistung
 - Stern-, Dreieckschaltung
 - Unsymmetrisches Drehstromsystem Leistungsmessung
 - Spannungs- und Strom-Zeigerdiagramme

Zeigerdiagramm einer unsymmetrischen Sternschaltung

Drei unsymmetrische Verbraucher: $\underline{Z}_R \neq \underline{Z}_S \neq \underline{Z}_T$

Eingeprägte symmetrische verkettete Spannungen

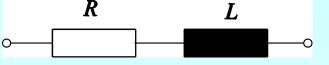

Aufgabe zur Übung:

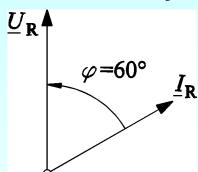
Aus den Messwerten von:

- a) Zwei Leistungen $P_{\rm RT}$, $P_{\rm ST}$ (Zwei-Wattmetermethode),
- b) 3 Strangströme I_R , I_S , I_T ,
- c) 3 Strangspannungen U_R , U_S , U_T

zeichne das Zeigerdiagramm einer unsymmetrischen Sternschaltung

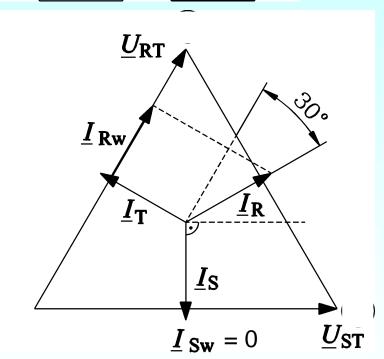
 $\underline{\textit{U}}_{R},\,\underline{\textit{U}}_{S},\,\underline{\textit{U}}_{T,}\,\underline{\textit{I}}_{R},\,\underline{\textit{I}}_{S},\,\underline{\textit{I}}_{T}$




 $-U_{\mathrm{TR}} = U_{\mathrm{RT}}$

Beispiel 1: Wattmeteranzeigen bei der Zwei-Wattmetermethode im Falle symmetrischer Belastung φ = 60°

Induktive symmetrische Last mit $\varphi = 60^{\circ}$: \sim

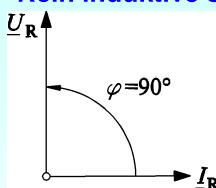


$$P_{\max} = U_{verk} \cdot I$$

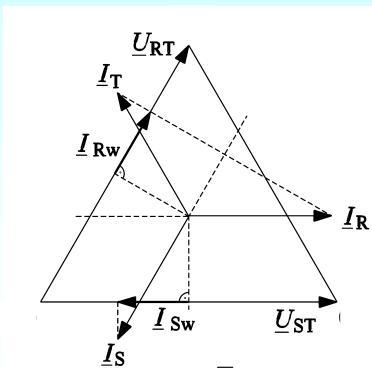
$$P_{1} = P_{\text{max}} \cdot \cos(30^{\circ}) = (\sqrt{3}/2) \cdot P_{\text{max}}
 P_{2} = P_{\text{max}} \cdot \cos(90^{\circ}) = 0$$

$$P = P_1 + P_2 = (\sqrt{3}/2) \cdot U_{verk} \cdot I$$


Kontrolle: $P = 3 \cdot U_{strang} \cdot I \cdot \cos \varphi = \sqrt{3} \cdot U_{verk} \cdot I \cdot \cos(60^\circ) = (\sqrt{3}/2) \cdot U_{verk} \cdot I$



Beispiel 2: Wattmeteranzeigen bei der Zwei-Wattmetermethode im Falle symmetrischer Belastung φ = 90°


Rein induktive symmetrische Last mit $\varphi = 90^{\circ}$:

$$P_1 = P_{\text{max}} \cdot \cos(60^{\circ}) = (1/2) \cdot P_{\text{max}}$$

 $P_2 = P_{\text{max}} \cdot \cos(120^{\circ}) = (-1/2) \cdot P_{\text{max}}$

$$P = P_1 + P_2 = 0$$

Kontrolle:
$$P = 3 \cdot U_{strang} \cdot I \cdot \cos \varphi = \sqrt{3} \cdot U_{verk} \cdot I \cdot \cos(90^\circ) = \sqrt{3} \cdot U_{verk} \cdot I \cdot 0 = 0$$

Zusammenfassung Grundgesetze der Drehstromtechnik

- Symmetrisches Drehspannungssystem
- Strangspannung, verkettete Spannung, Spannungszeigerdiagramme
- Wirk-, Blind- und Scheinleistung
- Stern- und Dreieckschaltung
- Unsymmetrische Dreiphasensysteme, Nullstrom, Aronschaltung

Energietechnik

Repetitorium

Literatur

- Vorlesungsunterlagen: "Grundlagen der Elektrotechnik 1 + 2"
- Buch: "H.Clausert / G.Wiesemann /J.Stenzel / V.Hinrichsen: Grundgebiete der Elektrotechnik 1 u. 2, Oldenbourg-Verlag