

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Mitglied der EOTA, der UEAtc und der WFTAO

Datum:

Geschäftszeichen:

11.07.2018

122.1-1.21.3-45/17

Nummer:

Z-21.3-1748

Antragsteller:

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1

72178 Waldachtal

Gegenstand dieses Bescheides:

fischer Highbond-Anker dynamic FHB dyn

Geltungsdauer

vom: 2. Juni 2018 bis: 2. Juni 2023

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst acht Seiten und 23 Anlagen.

Der Gegenstand ist erstmals am 30. Mai 2003 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 8 | 11. Juli 2018

I ALLGEMEINE BESTIMMUNGEN

- Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungs- bzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen k\u00f6nnen nachtr\u00e4glich erg\u00e4nzt und ge\u00e4ndert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.
- Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.

231219.18

Seite 3 von 8 | 11, Juli 2018

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

1.1 Regelungsgegenstand

Der "fischer Highbond-Anker dynamic FHB dyn" ist ein Dübel, der im Beton in einem zylindrischen Bohrloch kraftkontrolliert verankert wird.

Der Dübeltyp "FHB dyn" besteht aus dem Injektionsmörtel FIS HB, einer Ankerstange mit Sechskantmutter mit kugeliger Auflagerfläche, einer Kegelpfanne als Scheibe, einer Sicherungsmutter und einer Zentrierbuchse in den Größen M12, M16, M20 und M24. Alternativ kann die Sechskantmutter mit kugeliger Auflagerfläche durch eine Kugelscheibe und eine Sechskantmutter ersetzt werden. Die Ankerstange, Muttern, Kugelscheibe und Kegelpfanne bestehen aus galvanisch verzinktem Stahl. In den Größen M12 und M16 bestehen die Einzelteile zusätzlich aus hochkorrosionsbeständigem Stahl.

Der Dübeltyp "FHB dyn V" besteht aus dem Injektionsmörtel FIS HB, einer Ankerstange mit Sechskantmutter mit kugeliger Auflagerfläche, einer Kegelpfanne als Scheibe, einer Sicherungsmutter, einer Zentrierbuchse und einer Querkrafthülse in den Größen M12 und M16. Alternativ kann die Sechskantmutter mit kugeliger Auflagerfläche durch eine Kugelscheibe und eine Sechskantmutter ersetzt werden. Die Ankerstange, Muttern, Kugelscheibe, Kegelpfanne und Querkrafthülse bestehen aus galvanisch verzinktem Stahl.

Die Ankerstange ist am vorderen Ende mit einem Gewindeteil und anschließendem glatten Schaft und am anderen Ende mit mehreren Konen, die beschichtet sind, versehen.

Die Zentrierbuchse besteht aus Kunststoff.

Die zur Verankerung notwendige Spreizkraft entsteht durch Aufbringen eines Drehmomentes.

Auf der Anlage 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungs- bzw. Anwedungsbereich

Der Dübel darf für Verankerungen unter statischer, quasi-statischer und dynamischer Belastung in bewehrtem und unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach DIN EN 206-1:2001-07 "Beton; Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität" verwendet werden; er darf auch in Beton der Festigkeitsklasse von mindestens B 25 und höchstens B 55 nach DIN 1045:1988-07 "Beton und Stahlbeton, Bemessung und Ausführung" verwendet werden. Der Dübel darf nur verwendet werden, sofern keine Anforderungen hinsichtlich der Feuerwiderstandsdauer an die Gesamtkonstruktion einschließlich des Dübels gestellt werden.

Der Dübel darf im gerissenen und ungerissenen Beton verankert werden.

Die Temperatur darf im Bereich der Vermörtelung +50 °C, kurzfristig +80 °C, nicht überschreiten.

Der Dübel aus galvanisch verzinktem Stahl darf nur für Bauteile unter den Bedingungen trockener Innenräume verwendet werden.

Der Dübel aus hochkorrosionsbeständigem Stahl darf entsprechend seiner Korrosionsbeständigkeitsklasse (siehe Abschnitt 2.1) gemäß DIN EN 1993-1-4:2015-10 in Verbindung mit DIN EN 1993-1-4/NA:2017-01 verwendet werden.

Z31219.18. 1.21.3-45/17

Seite 4 von 8 | 11. Juli 2018

2 Bestimmungen f ür das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

Der Dübel muss in seinen Abmessungen und Werkstoffangaben den Angaben der Anlagen entsprechen.

Der Dübel hat die Korrosionsbeständigkeitsklasse (CRC) V.

Die in dieser allgemeinen bauaufsichtlichen Zulassung nicht angegebenen, Werkstoffangaben, Abmessungen und Toleranzen des Dübels sowie die chemische Zusammensetzung des Injektionsmörtels müssen den beim Deutschen Institut für Bautechnik, bei der Zertifizierungsstelle und der fremdüberwachenden Stelle hinterlegten Angaben entsprechen.

Für die erforderlichen Nachweise für das Ausgangsmaterial und zugelieferte Dübelteile ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüfplan maßgebend.

2.2 Verpackung, Lagerung und Kennzeichnung

2.2.1 Verpackung und Lagerung

Die zwei Komponenten des Mörtels FIS HB werden ungemischt in Kartuschen gemäß Anlage 6 geliefert.

Der Mörtel ist vor Sonneneinstrahlung und Hitzeeinwirkung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von +5 °C bis +25 °C zu lagern. Eine kurzfristige Lagerung bis +35 °C ist zulässig.

Mörtelkartuschen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden. Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelkartuschen sind separat verpackt.

2.2.2 Kennzeichnung

Verpackung, Beipackzettel oder Lieferschein des Dübels müssen vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Zusätzlich ist das Werkzeichen, die Zulassungsnummer und die vollständige Bezeichnung der Dübel anzugeben.

Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Die Mörtelkartusche ist entsprechend der Verordnung über gefährliche Arbeitsstoffe zu kennzeichnen und mit der Aufschrift "FIS HB" mit Angabe der Gebindegröße sowie Angaben über die Haltbarkeit, Gefahrenbezeichnung und Verarbeitung zu versehen Die mit dem Mörtel mitgelieferte Montageanleitung muss Angaben über Schutzmaßnahmen zum Umgang mit gefährlichen Arbeitsstoffen enthalten.

Der Dübel wird mit dem Produktnamen, dem Anwendungsbereich, der Verankerungstiefe und der Gewindegröße bezeichnet, z. B. FHB dyn 12×100. Der Dübel mit Querkrafthülse erhält zusätzlich die Bezeichnung "V", z. B. FHB dyn 12×100 V.

Jeder Ankerstange sind der Produktname (Werkzeichen und Dübeltyp), die Verankerungstiefe und der Anwendungsbereich gemäß Anlage 3 einzuprägen, z.B. "fisch 12×100 dyn". Der Dübel mit Querkrafthülse erhält zusätzlich die Prägung "V".

Der Dübel aus dem Werkstoff 1.4529 erhält zusätzlich die Prägung "C".

Z31219.18 1.21.3-45/17

Seite 5 von 8 | 11. Juli 2018

2.3 Übereinstimmungsbestätigung

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des Dübels mit den Bestimmungen der von dem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einer Übereinstimmungserklärung des Herstellers auf der Grundlage einer werkseigenen Produktionskontrolle und eines Übereinstimmungszertifikates einer hierfür anerkannten Zertifizierungsstelle sowie einer regelmäßigen Fremdüberwachung durch eine anerkannte Überwachungsstelle nach Maßgaben der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Dübels eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung des Bauprodukts mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen der von diesem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung entsprechen.

Für Umfang, Art und Häufigkeit der werkseigenen Produktionskontrolle ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüfplan maßgebend.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrolle und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die bestehende Prüfung unverzüglich zu wiederholen.

Z31219.18 1.21.3-45/17

Seite 6 von 8 | 11. Juli 2018

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Dübel durchzuführen und es müssen auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Für Umfang, Art und Häufigkeit der Fremdüberwachung ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüfplan maßgebend.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Planung, Bemessung und Ausführung

3.1 Planung und Bemessung

3.1.1 Allgemeines

Die Verankerungen sind ingenieurmäßig zu planen. Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.

Der Dübel darf nur mit den zugehörigen Einzelteilen verwendet werden.

Die Verankerungen sind entsprechend Anhang C der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton" (im folgenden Anhang C der Leitlinie genannt) zu bemessen. Dabei werden sämtliche Einwirkungen als statisch oder quasi-statisch betrachtet. Die charakteristischen Dübelkennwerte für den Nachweis sind auf den Anlagen 22 und 23 angegeben. Für den Dübel FHB dyn V (mit Querkrafthülse) sind die Klammerwerte in Anlage 21, Tabelle 9 zu verwenden. Bei Verankerungen in Beton nach DIN 1045:1988-07 ist für den Nachweis des Betonausbruchs bei Zugbeanspruchung und des Betonkantenbruchs bei Querbeanspruchung in den Gleichungen (5.2a) des Abschnittes 5.2.2.4 und (5.7a) im Anhang C der Leitlinie Abschnitt 5.2.3.4 der Wert für $f_{\text{Ck,cube}}$ durch 0,97 x β_{WN} zu ersetzen.

Die Bemessung zur Berücksichtigung des Ermüdungseinflusses erfolgt nach Abschnitt 3.1.2 für bekannte Unterlast bzw. bekannte Schwingspielzahl oder nach Abschnitt 3.1.3 bei unbekannter Unterlast und unbekannter Schwingspielzahl.

Der Teilsicherheitsbeiwert der ermüdungsrelevanten Einwirkungen ist mit $\gamma_{F,fat}=1,0$ anzusetzen. Dabei erfolgt die Bemessung mit Spitzenwerten des ermüdungsrelevanten Lastanteils (Maximalwerten des Belastungskollektivs). Besteht die Beanspruchung aus einem tatsächlichen Einstufenkollektiv oder einem schadensäquivalenten Einstufenkollektiv, so erfolgt die Bemessung mit einem Teilsicherheitsbeiwert der ermüdungsrelevanten Einwirkungen von $\gamma_{F,fat}=1,2$.

Für den Dübel ist eine Aufnahme von Querlasten mit Hebelarm (Biegung) nicht zulässig.

Der Nachweis der unmittelbaren örtlichen Krafteinleitung in den Beton ist erbracht. Die Weiterleitung der zu verankernden Lasten im Bauteil ist nachzuweisen.

Zusatzbeanspruchungen, die im Dübel, im anzuschließenden Bauteil oder im Bauteil, in dem der Dübel verankert ist, aus behinderter Formänderung (z. B. bei Temperaturwechseln) entstehen können, sind zu berücksichtigen.

Die Bezeichnung der verwendeten Größen für die Bemessung ist in Anlage 11 angegeben.

231219.18

Die Leitlinie ist auf den Internetseiten des DIBt unter Service/Publikationen veröffentlicht.

Seite 7 von 8 | 11. Juli 2018

3.1.2 Bemessungsverfahren I für bekannte Unterlast und/oder bekannte Schwingspielzahl

Der Nachweis wird nach diesem Verfahren geführt wenn

- ein klare Aufteilung der gesamten Beanspruchung auf einen statischen bzw. quasistatischen Anteil und einen ermüdungsrelevanten Anteil möglich ist
- (2) eine obere Grenze der Anzahl der Belastungszyklen während der Lebensdauer bekannt ist.

Es sind drei Fälle zu unterscheiden:

Fall I.1: nur die Bedingung (1) ist erfüllt

Fall I.2: nur die Bedingung (2) ist erfüllt

Fall I.3: beide Bedingungen (1) und (2) sind erfüllt.

Die Ermüdungstragfähigkeit wird nach Anlage 14 jeweils getrennt für die Axialrichtung (F = N) und die Querrichtung (F = V) ermittelt. Dafür wird der maßgebende Bemessungswert der Ermüdungstragfähigkeit für Stahlversagen, Betonausbruch und Herausziehen in Abhängigkeit von der Anzahl der Beanspruchungszyklen n aus den Anlagen 15 und 16, Tabelle 8.1 und 8.2 entnommen. Bei unbekannter Anzahl von Beanspruchungszyklen ist $n > 10^6$ anzunehmen.

Wenn nur die Bedingung (2) erfüllt ist, wird die gesamte Beanspruchung als ermüdungsrelevant angenommen.

Der Nachweis der Interaktion bei kombinierter Zug- und Querbeanspruchung ist für Betonversagen und Stahlversagen separat zu führen (siehe Anlagen 12 und 13).

Bei Dübelgruppen ist beim Nachweis gegen Stahlversagen und Herausziehen die Kraftumlagerung mit Hilfe eines Erhöhungsfaktors von $\gamma_{FN} = 1,25$ für Axialkräfte und $\gamma_{FV} = 1,3$ für Querkräfte des höchstbeanspruchten Dübels zu berücksichtigen.

3.1.3 Bemessungsverfahren II für unbekannte Unterlast und unbekannte Schwingspielzahl

Der Nachweis wird nach diesem Verfahren geführt wenn

- (3) ein klare Aufteilung der gesamten Beanspruchung auf einen statischen bzw. quasistatischen Anteil und einen ermüdungsrelevanten Anteil nicht möglich ist und
- (4) eine obere Grenze der Anzahl der Belastungszyklen während der Lebensdauer nicht bekannt ist.

Sämtliche Einwirkungen sind als ermüdungsrelevante Belastung ΔN_{Ed} bzw. ΔV_{Ed} anzusetzen.

Die charakteristischen Werte sind in den Anlagen 19, 20 und 21, Tabelle 9, 10 und 11 zusammengestellt.

Die charakteristischen Ermüdungstragfähigkeiten werden mit ΔN_{Rk} und ΔV_{Rk} bezeichnet und gelten für die gesamte Schwingbreite (2 σ_A).

Der Nachweis der Interaktion bei kombinierter Zug- und Querbeanspruchung ist für Betonversagen und Stahlversagen separat zu führen (siehe Anlagen 17 und 18).

Bei Dübelgruppen ist beim Nachweis gegen Stahlversagen und Herausziehen die Kraftumlagerung mit Hilfe eines Erhöhungsfaktors von γ_{FN} = 1,25 für Axialkräfte und γ_{FV} = 1,3 für Querkräfte des höchstbeanspruchten Dübels zu berücksichtigen.

3.1.4 Verschiebungsverhalten

Für den gesamten Nutzungsbereich sind für Einzeldübel und Dübelgruppen unter ermüdungsrelevanter Einwirkung (zentrischer Zug und Querbeanspruchung) Verschiebungen von maximal 1 mm zu erwarten.

Z31219:18 1.21,3-45/17

Seite 8 von 8 | 11. Juli 2018

3.2 Ausführung

3.2.1 Allgemeines

Der Dübel darf nur als seriengemäß gelieferte Befestigungseinheit verwendet werden. Einzelteile dürfen nicht ausgetauscht werden.

Die Montage des zu verankernden Dübels ist nach den gemäß Abschnitt 3.1 gefertigten Konstruktionszeichnungen und der Montageanweisung des Antragstellers vorzunehmen. Vor dem Setzen des Dübels ist die Betonfestigkeitsklasse des Verankerungsgrundes festzustellen. Die Betonfestigkeit darf B 25 bzw. C20/25 nicht unterschreiten und B 55 bzw. C50/60 nicht überschreiten.

3.2.2 Herstellung und Reinigung des Bohrloches

Die Lage des Bohrloches ist mit der Bewehrung so abzustimmen, dass ein Beschädigen der Bewehrung vermieden wird.

Das Bohrloch ist rechtwinklig zur Betonoberfläche durch Hammerbohrern mit Hartmetallbohrern oder der in den Anlagen 9 und 10 angegebenen Hohlbohrern zu bohren. Bohrernenndurchmesser und Bohrlochtiefe müssen für den Dübel ohne Querkrafthülse den Werten der Anlage 7 und für den Dübel mit Querkrafthülse den Werten der Anlage 8 entsprechen.

Bei einer Fehlbohrung ist ein neues Bohrloch im Abstand von mindestens $2 \times \text{Tiefe}$ der Fehlbohrung anzuordnen. Fehlbohrungen sind zu vermörteln.

Das Bohrloch ist entsprechend der in den Anlagen 9 und 10 dargestellten Montageanweisung zu reinigen.

3.2.3 Setzen des Dübels

Die Injektion des Mörtels und das Setzen der Ankerstange ist entsprechend der Montageanweisung gemäß den Anlagen 9 und 10 durchzuführen.

Die zulässige Verarbeitungszeit einer Kartusche, einschließlich Eindrücken der Ankerstange ist in Abhängigkeit von der Temperatur in der Kartusche und im Verankerungsgrund der Montageanweisung des Herstellers zu entnehmen. Bei jeder Arbeitsunterbrechung, die länger als die angegebene Verarbeitungszeit ist, muss der Statikmischer der Kartusche ersetzt werden.

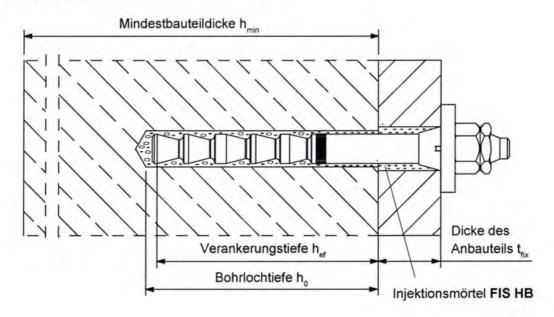
Der Dübel ist ordnungsgemäß gesetzt und darf nur belastet werden, wenn

- die Vermörtelung bis an die Oberfläche des Anbauteils reicht,
- sich das in den Anlagen 7 und 8 angegebene Drehmoment aufbringen lässt.

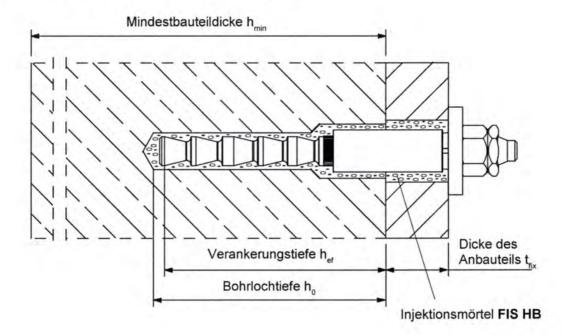
3.2.4 Kontrolle der Ausführung

Bei der Herstellung von Verankerungen muss der mit der Verankerung von Dübeln betraute Unternehmer oder der von ihm beauftragte Bauleiter oder ein fachkundiger Vertreter des Bauleiters auf der Baustelle anwesend sein. Er hat für die ordnungsgemäße Ausführung der Arbeiten zu sorgen.

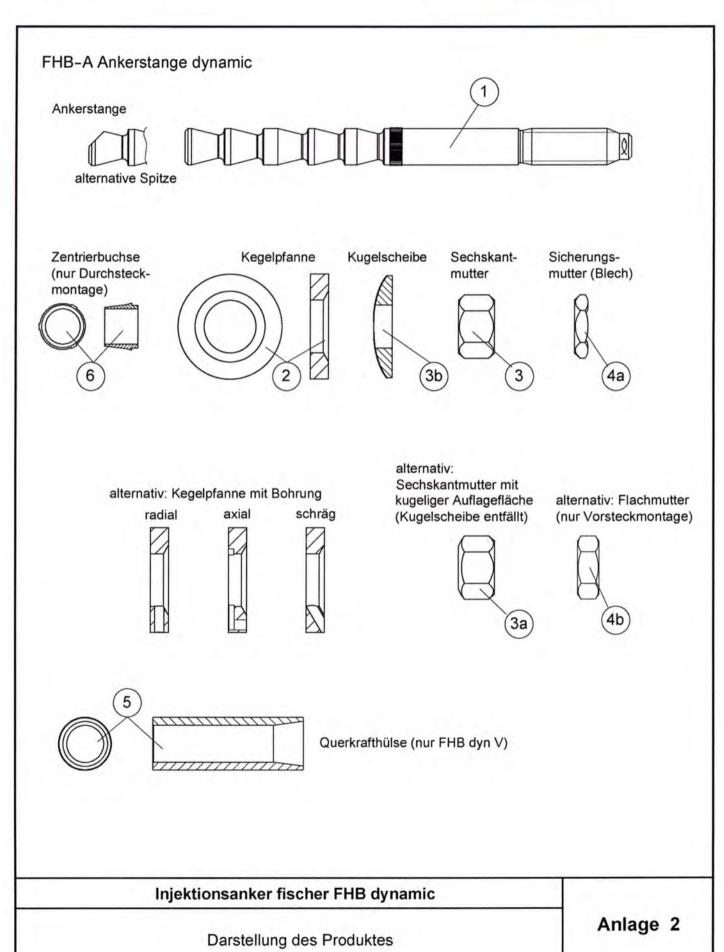
Während der Herstellung der Verankerung sind Aufzeichnungen über den Nachweis der vorhandenen Betonfestigkeitsklasse, der Temperatur im Verankerungsgrund und die ordnungsgemäße Montage der Dübel vom Bauleiter oder seinem Vertreter zu führen.


Die Aufzeichnungen müssen während der Bauzeit auf der Baustelle bereitliegen und sind den mit der Bauüberwachung Beauftragten auf Verlangen vorzulegen. Sie sind ebenso wie die Lieferscheine nach Abschluss der Arbeiten mindestens 5 Jahre vom Unternehmer aufzubewahren.

Beatrix Wittstock Referatsleiterin



FHB dynamic ohne Querkrafthülse (FHB dyn)


FHB dynamic mit Querkrafthülse (FHB dyn V)

Injektionsanker fischer FHB dynamic

Einbauzustand

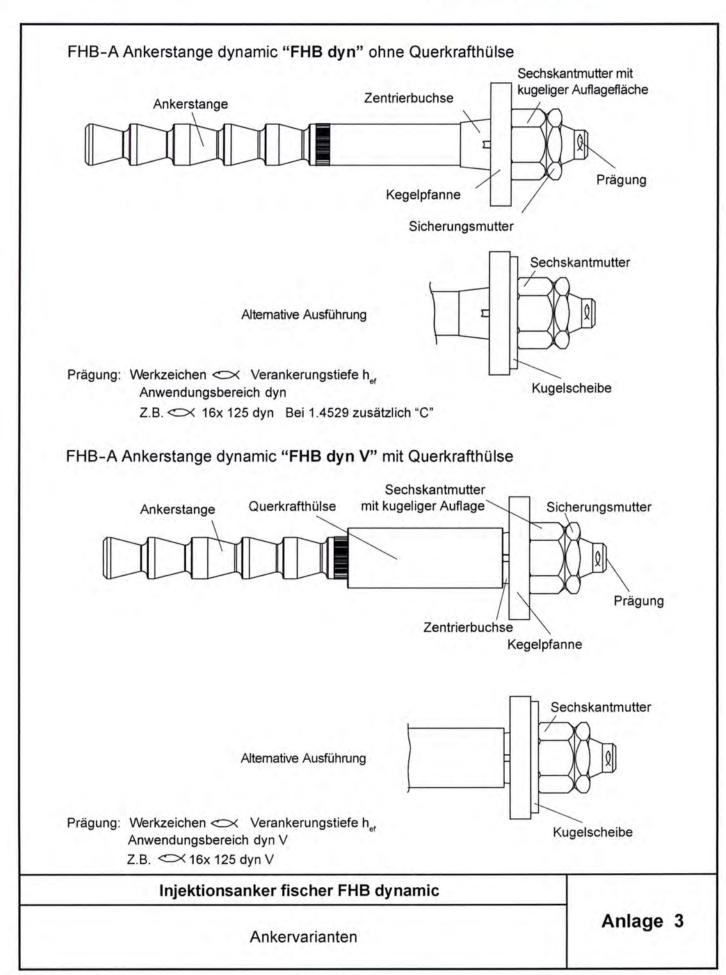
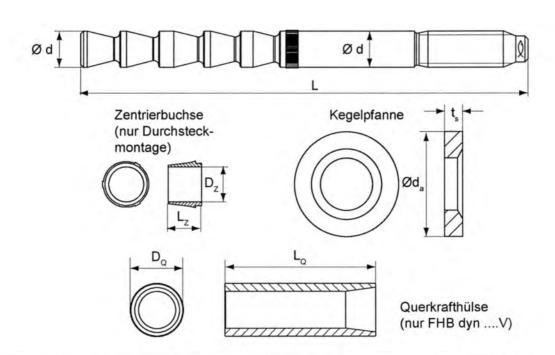



Tabelle 1: Abmessungen der Anker

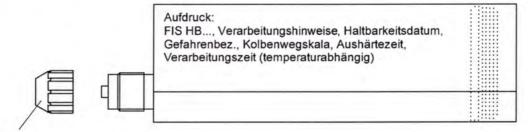
				FHI (ohne Que	FHB dyn V (mit Querkrafthülse)			
Bezeichnung			FHB dyn 12x100	FHB dyn 16x125	FHB dyn 20x170	FHB dyn 24x220	FHB dyn 12x100 V	FHB dyn 16x125 V
Gewindegröße		[-]	M12	M16	M20	M24	M12	M16
Verankerungstiefe	h _{ef}	[mm]	100	125	170	220	105	130
Schaftdurchmesser	Ød	[mm]	12	16,5	22	24,5	12	16,5
	L _{Q,mim}	[mm]	_	_	_	_	40	55
Querkrafthülse	L _{Q,max}	[mm]	_	-	_		230	245
	Do	[mm]	10-	1	-	-	17,5	23,5
I "	L	[mm]	135	168	220	280	140	173
Länge Ankerstange	L _{max}	[mm]	330	362	415	470	335	367
Sechskantmutter/ Sicherungsmutter	sw	[-]	19	24	30	36	19	24
Zentrierbuchse	D_z	[mm]	11,8	16,3	21,8	24,3	11,8	16,3
Zentherbuchse	Lz	[mm]	11	13	15	15	11	13
Kagalafanna/	≥ Ød _a	[mm]	30	38	50	60	30	38
Kegelpfanne/	ts	[mm]	6	7	8	10	6	7

Injektionsanker fischer FHB dynamic

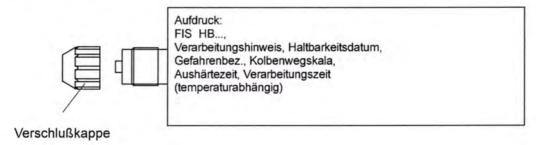
Ankerabmessungen

Tabelle 2: Benennung und Werkstoffe

	Benennung	Stahl	hochkorrosionsbeständiger Stahl
1	Ankerstange	Stahl, galv. verzinkt ¹⁾ , Festigkeitsklasse 8.8 nach DIN EN ISO 898-1:2013, beschichtet	1.4529 nach DIN EN 10088-21:2014 mit $f_{uk} \ge 700 \text{ N/mm}^2$, $f_{yk} \ge 560 \text{ N/mm}^2$, beschichtet
2	Kegelpfanne ähnlich DIN 6319:2001	Stahl, galv. verzinkt ¹⁾	1.4529 nach DIN EN 10088-21:2014
3а	Sechskantmutter, ähnlich DIN 6330:2003	Stahl, Festigkeitsklasse 8 DIN EN ISO 898-2:2012, galv. verzinkt ¹⁾	1.4529 nach DIN EN 10088-21:2014,Festigkeitsklasse 70 nach DIN EN ISO 3506-2
3	Sechskantmutter	Stahl, Festigkeitsklasse 8	1.4529 nach DIN EN
3b	Kugelscheibe DIN 6319:2001 Form C	DIN EN ISO 898-2:2012, galv. verzinkt ¹⁾	10088-21:2014, Festigkeitsklasse 70 nach DIN EN ISO 3506-2:2010
4a	Sicherungsmutter	Stahl, galv. verzinkt ¹⁾	1.4529 nach DIN EN 10088-21:2014
4b	Flachmutter DIN439-1:1987	Stahl, galv. verzinkt ¹⁾	1.4529 nach DIN EN 1008 8-21:2014
5	Querkrafthülse	Stahl, galv. verzinkt ¹⁾ f _{uk} ≥ 350 N/mm ²	-
6	Zentrierbuchse	Kunststoff	


¹⁾ galvanisch verzinkt nach DIN EN ISO 4042:1999 A2K

Injektionsanker fischer FHB dynamic	
Werkstoffe	Anlage 5


Injektionsmörtelkartusche FIS HB

Shuttlekartusche 345 ml, 360 ml, 390 ml, 585 ml, 950 ml, 1500 ml

Verschlußkappe

Koaxialkartusche 150 ml, 200 ml, 300 ml, 380 ml, 400 ml, 410 ml

Injektionsadapter

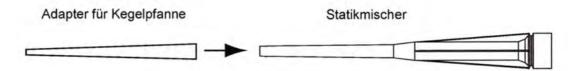


Tabelle 3: Wartezeiten bis zum Aufbringen der Last1)

	Wartezeit in	n Minuten
Temperatur im Verankerungsgrund	trockener Verankerungsgrund	feuchter Verankerungsgrund
-5°C 2) bis -1°C	360	720
0°C bis +4°C	180	360
+5°C bis +9°C	90	180
+10°C bis +19°C	35	70
+20°C bis +29°C	20	40
+30°C bis +40°C	12	25

¹⁾ Die Verarbeitungstemperatur des Mörtels muß mindestens +5°C betragen.

²⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtung -5°C nicht unterschreiten.

Injektionsanker fischer FHB dynamic	
Injektionsmörtel Wartezeiten	Anlage 6

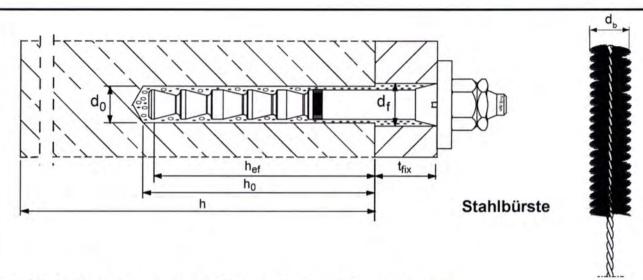


Tabelle 4: Montage und Dübelkennwerte (ohne Querkrafthülse)

Dübelgröße		FHB dyn 12 x 100	FHB dyn 16 x 125	FHB dyn 20 x 170	FHB dyn 24 x 220	
Bohrernenndurchmesser	$d_0 = [mm]$	14	18	24	28	
Bohrlochtiefe	h ₀ ≥ [mm]	105	130	175	225	
effektive Verankerungstiefe	h _{ef} ≥ [mm]	100	125	170	220	
Durchgangsloch im anzuschließenden Anbauteil	d _f = [mm]	15	19	25	29	
Drehmoment beim Verankern	T _{inst} = [Nm]	40	60	100	120	
Stahlbürstendurchmesser	d _b ≥ [mm]	16	20	26	30	
Dicke des Anbauteils	$t_{fix,min} = [mm]$	8	10	12	14	
Dicke des Anbauteils	t _{fix,max} = [mm]	200				

Tabelle 5: Mindestbauteildicke und minimale Achs- und Randabstände (ohne Querkrafthülse)

Dübelgröße		FHB dyn 12 x 100		FHB dyn 16 x 125		FHB dyn 20 x 170	FHB dyn 24 x 220
Mindestbauteildicke	h _{min} = [mm]	130	200	160	250	220	440
Gerissener und ungerisse	ener Beton						
Minimaler Achsabstand	s _{min} = [mm]	100	100	100	100	80	180
Minimaler Randabstand	c _{min} = [mm]	200	100	200	100	80	180
Für h _{min} ≤ h ≤ 2h _{ef} :	$s_1 \ge s_{min} = 100$ mm $c_1 \ge c_{min} = 100$ mm	[(3 • 6	c, + s,)	h]≥88	8000		
Berechnung c _{erf} bei gegebenen s ₁ und h [mm]		$c_{erf} \ge \left[\frac{88000}{h} - s_1 \right] / 3$			/ 3	-	-
Berechnung s _{erf} bei gegebenen c, und h [mm]			$s_{erf} \ge \frac{88000}{h} - 3 \cdot c_1$				

Injektionsanker fischer FHB dynam	С
FHB dynamic ohne Querkrafthülse	Anlage 7
Montage- und Dübelkennwerte	

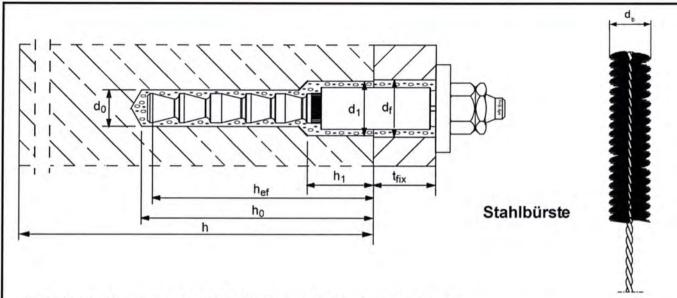


Tabelle 6: Montage und Dübelkennwerte mit Querkrafthülse

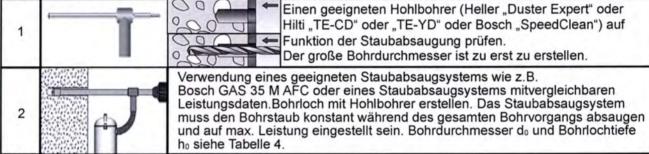
Düb	elgröße		FHB dyn 12 x 100 V	FHB dyn 16 x 125 V	
effektive Verankerungstiefe		h _{ef} ≥ [mm]	105	130	
g.	Bohrernenndurchmesser	$d_1 = [mm]$	20	28	
Bohrung 1	Bohrlochtiefe	h _{1 min} ≥ [mm]	35	50	
	Bonnochtiele	h _{1 max} ≥ [mm]	40	55	
Bohrung 2	Bohrernenndurchmesser	$d_0 = [mm]$	14	18	
Boy.	Bohrlochtiefe	h ₀ ≥ [mm]	110	135	
	hgangsloch im ischließenden Anbauteil	d _f = [mm]	21	29	
Drehmoment beim Verankern		T _{inst} = [Nm]	40	60	
Stahlbürstendurchmesser		d _b ≥ [mm]	16	20	
Dicke des Anbauteils		$t_{fix,min} = [mm]$	8	10	
		$t_{fix,max} = [mm]$	20	00	

Tabelle 7: Mindestbauteildicke und minimale Achs- und Randabstände mit Querkrafthülse

Dübelgröße		FHB dyn 1	12 x 100 V	FHB dyn 16	6 x 125 V
Mindestbauteildicke	h _{min} ≥ [mm]	130	200	160	250
Gerissener und ungerissener	Beton				
Minimaler Achsabstand	s _{min} = [mm]	100	100	100	100
Minimaler Randabstand	c _{min} = [mm]	200	100	200	100
Für $h_{min} \le h \le 2h_{ef}$: $c_1 \ge$	s _{min} = 100mm c _{min} = 100mm		[(3 • c ₁ + s	s₁) • h] ≥ 88000)
Berechnung c _{ef} bei gegebene	n s ₁ und h [mm]		c _{erf} ≥ [88	$\frac{8000}{h} - s_1 / 3$	
Berechnung s _{erf} bei gegebene	n c, und h [mm]		s _{erf} ≥ 8	8000 - 3 • c ₁	

Injektionsanker	fischer	FHB	dynamic

FHB dynamic mit Querkrafthülse Montage- und Dübelkennwerte


В	ohrlocherstellu	ng und Reinigung				
	Hammerbohren m			Hammerbohre	n mit Hohlbohrer	
1	000	Bohrloch erstellen. Bohrdurchmesser und Bohrtiefe siehe Tabelle 4.	1	<u> </u>	Expert ^e , Hilti "TE-CD SpeedClean) auf Fui	ohlbohrer (Heller "Duster " o."TE-YD" oder Bosch oktion der Staubabsaug- vendung eines Hohlbohrer
2	min.2x	Bohrloch mind. 2 x ausbla- sen.Bei Ankergröße M20 und M24 mit ölfreier Druckluft.		EP TOST API	ist keine weitere Rein Verwendung eines g	nigung erforderlich. geeigneten Staubabsaug
3	min. 2k	Bohrloch mind. 2 x aus- bürsten.Zugehörige Bürsten sieheTabelle 4	2		eines Staubabsaugs en Leistungsdaten. erstellen. Das Staub	sch GAS 35 M AFC ode systems mit vergleichbar Bohrloch mit Hohlbohrer babsaugsystem mtss de
4	200	Bohrloch mind. 2 x ausbla- sen.Bei Ankergröße M20 und M24 mit ölfreier Druckluft.		(1000000 I	Bohrvorgangs absau	ihrend des gesamten ugen und auf max. Lei n. Bohrdurchmesser do siehe Tabelle 4
	er mit Schritt 5		We	iter mit Schritt 5		
_	/orbereitung de	er Mörtelkartusche				
5		Verschlusskappe der Mörte	lkar	tusche abschrau	ben und entsorgen.	
6		Kartusche in Auspressgerä (Die Mischspirale im Statik				
7		Mörtel so lange auspresser (ca. 2 Pistolenhübe). Nicht gleichmäßig gefärbte				en.
D	urchsteckmon	tage				
8	2000	Bohrloch vom Grund her bl anleitung des Herstellers).				
9		Anker mit Zentrierhülse, So Anker unter leichten Drehb				nontierten
10		A STATE OF THE STA	s, ist	der Anker sofor	zu ziehen und ernei	ut Mörtel zu injizieren.
11		Aushärtezeit abwarten (siel (T _{inst} siehe Tabelle 4). Siche 1/4 bis 1/2 Umdrehung fest	erung	smutter handfes	antmutter mit Drehme st anziehen und mit S	omentschlüssel anzieher Schraubenschlüssel
V	orsteckmontag	е				
8	000	Bohrloch vom Grund her bla ca. 2/3 mit Mörtel verfüllen			en siehe Montageanl	eitung des Herstellers).
9		Setztiefenmarkierung auf de Drehbewegungen bis zur S				
10		Aushärtezeit abwarten (Tabe bauen, Sechskantmutter mit mutter handfest anziehen und	Dreh	momentschlüsse	el anziehen (T _{inst} siehe	Tabelle 4). Sicherungs-
11		Ringspalt zwischen Anker un vollständig mit Mörtel verfülle Der Ringspalt ist vollständig v	n. Hi	erzu Adapter auf	den Statikmischer ste	
		Injektionsanker fische	r Fl	IB dynamic		
		Montagear FHB dynam Querkraft	nic o	hne		Anlage 9

Boh	rlocherstellung (H	ammerbohren mit Standardbohrer) und Reinigung
1a		Bohrung 1 erstellen. Bohrdurchmesser und Bohrtiefe siehe Tabelle 6.
1b		Bohrung 2 erstellen. Bohrdurchmesser und Bohrtiefe siehe Tabelle 6.
2	Orbin. 2kJ	Bohrloch mind. 2 x ausblasen.
3	Oruh. 2k	Bohrloch mind. 2 x ausbürsten. Zugehörige Bürsten siehe Tabelle 6.
4	onlih. 2kJ	Bohrloch mind. 2 x ausblasen.

Weiter mit Schritt 5

Bohrlocherstellung (Hammerbohren mit Hohlbohrer)

Weiter mit Schritt 5

Vorbereitung der Mörtelkartusche

5	Verschlusskappe der Mörtelkartusche abschrauben und entsorgen.
6	Kartusche in Auspressgerät legen und Statikmischer aufschrauben. (Die Mischspirale im Statikmischer muss deutlich sichtbar sein)
7	Mörtel so lange auspressen, bis dieser gleichmäßig gefärbt ist (ca. 2 Pistolenhübe). Nicht gleichmäßig gefärbter Mörtel bindet nicht ab und ist zu verwerfen.

Durchsteckmontage

8		Bohrloch vom Grund her blasenfrei mit Mörtel verfüllen (exakte Mörtelmenge siehe Montageanleitung des Herstellers). Soviel Mörtel verfüllen, dass der Ringspalt im Anbauteil beim Eindrücken des Ankers ebenfalls vollstängig mit Mörtel ausgefüllt wird.
9		Anker mit Querkrafthülse, Zentrierhülse, Scheibe(n) und Muttern vormontieren. Vormontierten Anker unter leichten Drehbewegungen in das Bohrloch drücken.
10		Die korrekte Setztiefe ist erreicht, wenn die Kegelpfanne vollflächig aufliegt und Mörtel austritt. Tritt kein Mörtel aus, ist der Anker sofort zu ziehen und erneut Mörtel zu injizieren.
11	INST	Aushärtezeit abwarten (siehe Tabelle 3). Sechkantmutter mit Drehmoment- schlüssel anziehen (T _{inst} siehe Tabelle 6). Sicherungsmutter handfest anziehen und mit Schraubenschlüssel 1/4 bis 1/2 Umdrehung festziehen.

Injektionsanker fischer FHB dynamic

Montageanleitung FHB dynamic mit Querkrafthülse

Terminologie und Symbole für die Bemessung

Indizes

E	Auswirkung der Einwirkung
R	Widerstand
М	Material
k	charakteristischer Wert
d	Bemessungswert
s	Stahl
С	Beton
ср	Betonausbruch auf der lastabgewandten Seite
р	Herausziehen
sp	Spalten
n	Anzahl der Belastungszyklen; Schwingspielzahl

Einwirkung und Widerstände

F _{Eud}	Bemessungswert der unteren zyklischen Beanspruchungsgrenze (zyklische Untergrenze: kann positiv, null oder negativ sein)
ΔF_{Ed}	Bemessungswert der ermüdungsrelevanten zyklischen Beanspruchung (Schwingbreite: kann nur positiv sein)
F _{Eod}	= F_{Eud} + ΔF_{Ed} Bemessungswert der oberen zyklischen Beanspruchungsgrenze (zyklische Obergrenze kann positiv, null oder negativ sein)
F _{Rd}	Bemessungswert der statischen Tragfähigkeit (Anlage 15/16, Wert bei n ≤ 10¹)
$\Delta F_{Rd,0;n}$	Bemessungswert der Ermüdungstragfähigkeit bei Ursprungsbeanspruchung (F _{Eud} = 0) und n Belastungszyklen (Anlage 15/16)
$\Delta F_{Rd,E;n}$	Bemessungswert der Ermüdungstragfähigkeit (Anlage 14) im Schwell- oder Wechselbereich (F _{Eud} ≠ 0) nach n Belastungszyklen
ΔF _{Rd,0;∞}	Bemessungswert der Dauerschwingtragfähigkeit bei Ursprungsbeanspruchung (Anlage 15/16, n > 10 ⁶ Belastungszyklen)
ΔF _{Rd,E;} ∞	Bemessungswert der Dauerschwingtragfähigkeit (hier: n > 10 ⁶ Belastungszyklen) im Schwell- oder Wechselbereich (F _{Eud} ≠ 0, Anlage 14)
$\Delta N_{Rd,s;0;n}$ ($\Delta V_{Rd,s;0;n}$)	Bemessungswert der Stahlermüdungstragfähigkeit bei Ursprungsbeanspruchung in axialer Richtung (Querrichtung) und n Belastungszyklen (Anlage 15, Tabelle 8.1)
$\Delta N_{Rd,s;E;n}$ ($\Delta V_{Rd,s;E;n}$)	Bemessungswert der Stahlermüdungstragfähigkeit im Schwell- und Wechselbereich (F _{Eud} ≠ 0, Anlage 14) in axialer Richtung (Querrichtung) und n Belastungszyklen
$\Delta N_{Rd,c;E;n}$ ($\Delta V_{Rd,c(cp);E;n}$)	Bemessungswert der Betonermüdungstragfähigkeit im Schwell- und Wechselbereich (F _{Eud} ≠ 0, Anlage 14) in axialer Richtung (Querrichtung) und n Belastungszyklen
ΔF _{Rk}	Charakteristischer Wert der Ermüdungstragfähigkeit (Bemessungsverfahren II)
ΔF _{Rk;0;∞}	Charakteristischer Wert der Dauerschwingtragfähigkeit bei Ursprungsbeanspruchung

Injektionsanker fischer FHB dynamic	
The state of the s	_

Terminologie und Symbole für die Bemessung

Bemessungsverfahren I

Der Nachweis wird mit diesem Verfahren geführt, wenn

- (1) eine Bestimmung des Bemessungswertes der unteren zyklischen Beanspruchungsgrenze F_{Eud} im Schwell- bzw. Wechselbereich möglich ist und/oder
- (2) eine obere Grenze von Belastungszyklen n während der Lebensdauer bekannt ist.

<u>Fall I.1</u> \rightarrow nur die Bedingung (1) ist erfüllt:

 $\Delta F_{Rd:E:n} = \Delta F_{Rd:E:\infty}$

als Ermüdungswiderstand wird der Bemessungswert der Dauerschwingtragfähigkeit bei Schwell-, bzw. Wechselbeanspruchung mit Berücksichtigung der unteren

Beanspruchungsgrenze F_{Fud} angenommen;

dabei ist $\Delta F_{Ed} = F_{Eod} - F_{Eud}$ Bemessungswert der zyklischen Beanspruchung.

Fall 1.2 → nur die Bedingung (2) ist erfüllt:

 $\Delta F_{Rd:E:n} = \Delta F_{Rd;0;n}$

als Ermüdungswiderstand wird der Bemessungswert der Ermüdungstragfähigkeit bei

Ursprungsbeanspruchung nach *n Belastungszyklen* angenommen (1);

Die entsprechende zyklische Beanspruchung:

 $\Delta F_{Ed} = F_{Eod}$

wenn $F_{Eud} > 0$, aber der positive Betrag für F_{Eud} nicht bekannt ist ②, wenn $F_{Eod} < 0$, aber der negative Betrag für F_{Eod} nicht bekannt ist ③,

 $\Delta F_{Ed} = -F_{Eud}$ ΔF muss bekannt sein,

wenn $F_{Eud} < 0$ und $F_{Eod} > 0$, aber die Beträge für F_{Eud} und F_{Eod} nicht bekannt sind \bigoplus

Bemerkung: Beanspruchungsfälle 1, 2, 3 und 4 vgl. Abbildung Anlage 14;

Fall 1.3 → die Bedingungen (1) und (2) sind erfüllt:

 $\Delta F_{Rd;E;n}$

als Ermüdungswiderstand wird der Bemessungswert der Ermüdungstragfähigkeit bei Schwell-,

bzw. Wechselbeanspruchung mit bekannter unteren

Beanspruchungsgrenze F_{Fud} nach n Belastungszyklen angenommen;

dabei ist $\Delta F_{Ed} = F_{Eod} - F_{Eud}$ Bemessungswert der zyklischen Beanspruchung.

Erforderliche Nachweise

Stahlversagen: $(\gamma_{FN} \cdot \Delta N_{Ed} / \Delta N_{Rd.s:E:n})^{\alpha_{sn}} + (\gamma_{FV} \cdot \Delta V_{Ed} / \Delta V_{Rd.s:E:n})^{\alpha_{sn}}$

 $\gamma_{EN} = \gamma_{EV} = 1.0$

bei Einzelbefestigung

 $\gamma_{\rm FN}$ = 1,25 und $\gamma_{\rm FV}$ = 1,3 bei Dübelgruppen

 $\alpha_{\rm sn}$ siehe Anlage 15, Tabelle 8.1

Herausziehen:

 $\gamma_{\text{FN}} \cdot \Delta N_{\text{Ed}} / \Delta N_{\text{Rd p:F:n}} \leq 1.0$

γ_{EN} = 1,0 bei Einzelbefestigung

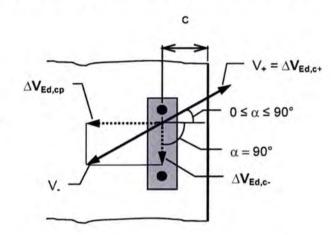
 $\gamma_{EN} = 1,25$ bei Dübelgruppen

Injektionsanker fischer FHB dynamic

Bemessungsverfahren I

erforderliche Nachweise Stahlversagen und Herausziehen

Erforderlicher Nachweis Bemessungsverfahren I


Betonversagen ohne Einfluss des Bauteilrandes:

$$(\Delta N_{Ed} / \Delta N_{Rd,c;E;n})^{1,5} + (\Delta V_{Ed,cp}^{*}) / \Delta V_{Rd,cp;E;n})^{1,5} \le 1,0$$

*) bei Wechsellast wird nur die Kraftrichtung mit dem höheren Betrag berücksichtigt

Betonversagen am Bauteilrand:

Aufteilung der einwirkenden Querlast

Nachweis:	Zugbeanspruchung	Betonkantenbruch zum Rand	Betonkantenbruch parallel zum Rand	Rückwärtiger Betonausbruch
Beanspruchung:	ΔN_{Ed}	$\Delta V_{\sf Ed,c+}$	ΔV _{Ed,c} -	$\Delta V_{Ed,cp}$
dazugehörige Widerstände:	mit N _{Rk,c} nach ETAG 001,	$\begin{array}{l} \Delta V_{Rd,c+;E;n} \\ \text{mit} \\ V_{Rk,c} \\ \text{nach ETAG 001,} \\ \text{Anhang C, Gleichung 5.7} \\ \text{unter Ansatz des} \\ \text{Winkels } 0 \leq \alpha \leq 90^{\circ} \end{array}$	mit V _{Rk,c} nach ETAG 001,	$\begin{array}{l} \Delta V_{Rd,cp;E;n} \\ \text{mit} \\ V_{Rk,cp} \\ \text{nach ETAG 001,} \\ \text{Anhang C, Gleichung 5.6} \end{array}$
Auslastungen:	$\beta_{\text{N,c}} = \frac{\Delta N_{\text{Ed,c}}}{\Delta N_{\text{Rd,c;E;n}}}$	$\beta_{\text{V,c+}} = \frac{\Delta V_{\text{Ed,c+}}}{\Delta V_{\text{Rd,c+;E;n}}}$	$\beta_{\text{V,c-}} = \frac{\Delta V_{\text{Ed,c-}}}{\Delta V_{\text{Rd,c-;E;n}}}$	$\beta_{\text{V,cp}} = \frac{\Delta V_{\text{Ed,cp}}}{\Delta V_{\text{Rd,cp;E;n}}}$

Nachweis:
$$(\beta_{N,c})^{1,5} + (\beta_{V,c+} + \beta_{V,c-} + \beta_{V,cp})^{1,5} \le 1,0$$

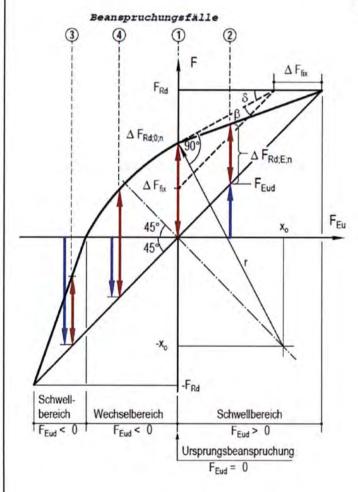
Injektionsanker fischer FHB dynamic	
Bemessungsverfahren I erforderliche Nachweise	Anlage 13
Betonversagen	

Z40744.18 1.21.3-45/17

Bemessungsverfahren I

Berechnung der Schwingbreite der Ermüdungstragfähigkeit: $\Delta F_{Rd:R:n}$

Die Berechnung der Schwingbreite der Ermüdungstragfähigkeit ΔF_{Rd;E;n} muss für Stahlversagen (ΔN_{Rd;s;E;n},


 $\Delta V_{Rd;s;E;n}$), Betonausbruch ($\Delta N_{Rd;c,E;n}$, $\Delta V_{Rd,c(cp);E;n}$) und Herausziehen ($\Delta N_{Rd,p;0;n}$) mit den Werten aus Anlage 15, Tabelle 8.1 und Anlage 16, Tabelle 8.2 jeweils getrennt für die Axialrichtung (F=N) und die Querrichtung (F=V) des Dübels durchgeführt werden.

$$\begin{array}{lll} \textit{Schwellbeanspruchung:} & \Delta F_{Rd;E;n} = \Delta F_{Rd,0,n} \cdot \left(1 - \frac{F_{Eud}}{F_{Rd}}\right), & \textit{wenn} & F_{Eud} \geq 0 \\ & \Delta F_{Rd;E;n} = \Delta F_{Rd;0;n} \cdot \left(1 + \frac{F_{Eud} + \Delta F_{Rd;0;n}}{F_{Rd} - \Delta F_{Rd;0;n}}\right), & \textit{wenn} & F_{Eud} \leq -\Delta F_{Rd;0;n} \end{array}$$

$$\begin{aligned} \textit{Wechselbeanspruchung:} \, \Delta F_{Rd;E;n} &= \sqrt{r^2 - (F_{Eud} - X_O)^2} - X_0 - F_{Eud}, \quad \textit{wenn} - \Delta F_{Rd;0;n} < F_{Eud} < 0 \\ \textit{mit} \quad X_0 &= r \cdot \sin \delta; \qquad \qquad r = \sqrt{0.5} * \frac{\Delta F_{Rd;0;n}}{\sin \beta}; \\ \beta &= \frac{\pi}{4} - \delta \; [RAD]; \qquad \qquad \delta = \arctan \left(\frac{F_{Rd} - \Delta F_{Rd;0;n}}{F_{Rd} - 0.9 \cdot \Delta F_{Rd;0;\infty}} \right) \; [RAD]; \end{aligned}$$

Ermüdungstragfähigkeit in Abhängigkeit von unterer Beanspruchungsgrenze

Bemerkung: $\Delta F_{fix} = 0.9 \Delta F_{Rd;0;\infty}$

Injektionsanker fischer FHB dynamic

Bemessungsverfahren I Berechnung der Ermüdungstragfähigkeit

Tabelle 8.1: Bemessungswerte der Ermüdungstragfähigkeit nach n Beanspruchungszyklen bei Ursprungsbeanspruchung²⁾ Stahlversagen

			FHB dyn ohne Querkrafthülse										FHB dyn mit Querkrafthülse					
Dübel		FHB dyn 12x100			FHB dyn 12x100 C		FHB dyn 16x125		FHB dyn 16x125 C		FHB dyn 20x170		FHB dyn 24x220		FHB dyn 12x100 V		FHB dyn 16x125 V	
Stahl- ver- sagen	n	$\alpha_{\sf sn}^{-1)}$	$\Delta N_{Rd,s,0,n}$	$\Delta V_{Rd,s,0,n}$	$\Delta N_{Rd,s,0,n}$	$\Delta V_{Rd,s,0,n}$	$\Delta N_{Rd,s,0,n}$	ΔV _{Rd,s,0,n}	$\Delta N_{Rd,s;0,n}$	$\Delta V_{Rd,s,0,n}$	$\Delta N_{\rm Rd,s,0,n}$	$\Delta V_{\text{Rd,s,0,n}}$	$\Delta N_{Rd,s,0,n}$	$\Delta V_{Rd,s,0;n}$	$\Delta N_{\text{Rd,s,0,n}}$	ΔV _{Rd,s,0,n}	$\Delta N_{\rm Rd,s,0,n}$	$\Delta V_{Rd,s,0,n}$
les of	≤10¹	2,00	29,3	24,0	26,0	23,2	54,7	44,8	47,3	44,0	126,7	69,6	174,7	98,4	29,3	46,4	54,7	61,6
and	≤3 • 10 ¹	1,93	29,3	23,9	26,0	23,1	54,6	44,7	47,3	43,6	125,1	68,7	169,7	97,9	29,3	45,7	54,6	59,8
gswerte des Widerstandes Ursprungsbeanspruchung	≤10 ²	1,79	29,2	23,6	25,9	22,9	54,1	44,3	47,1	42,6	122,0	66,6	161,7	96,3	29,2	44,2	54,1	56,9
Mide	≤3•10²	1,58		22,8	25,8	22,4	52,9	43,3	46,7	40,7	116,5	62,8	149,9	92,4	28,8	41,4	52,9	52,7
es V	≤10³	1,31	27,8	21,0	25,4	21,1	49,9	40,6	45,7	37,2	107,1	55,9	131,9	83,6	27,8	36,5	49,9	46,3
e des	≤3 • 10 ³		26,1	18,1	24,7	19,0	45,2	36,2	43,8	32,7	95,3	47,4	112,1	70,5	26,1	30,5	45,2	39,4
pu	≤10⁴	1,02	23,0	13,9	23,3	15,7	38,0	28,9	40,5	26,9	79,8	37,0	89,1	52,4	23,0	23,3	38,0	32,0
Jsw		1,00	19,6	10,3	21,4	12,0	31,2	21,5	36,0	21,6	65,2	28,4	69,6	37,0	19,6	17,4	31,2	26,1
sung bei (≤10⁵	1,00	16,3	7,7	18,8	8,3	25,8	15,3	30,0	16,8	50,8	21,8	52,3	26,6	16,3	12,9	25,8	21,5
emes [kN]	≤3•10⁵	-	_	6,9	16,2	6,0	23,6	12,7	24,4	14,0	40,9	18,6	41,4	23,0	14,7	10,7	23,6	19,0
	≤106	1,00		6,7	13,7	4,8	23,1	12,0	19,6	12,5	34,0	17,3	34,2	22,3	14,2	9,9	23,1	17,7
⊇. ```	>106	1,00	14,1	6,7	11,3	4,4	23,0	11,9	15,6	11,9	28,9	17,0	28,9	22,2	14,1	9,6	23,0	17,0

 $^{^{1)}\}alpha_{\rm s}$ ist der Exponent in der Nachweisformel der Stahltragfähigkeit, siehe Anlage 12

Anlage 15

Bemessungsverfahren I
Bemessungswerte der Ermüdungstragfähigkeit

Stahlversagen

Injektionsanker fischer FHB dynamic

²⁾ Ursprungsbeanspruchung: siehe Anlage 14, Bild 1; F_{Eud} = 0 (kein statischer bzw. quasi-statischer Lastanteil)

Bemessungsverfahren I

Tabelle 8.2: Bemessungswerte der Ermüdungstragfähigkeit nach n Beanspruchungszyklen bei Ursprungsbeanspruchung¹⁾ **Betonversagen und Herausziehen**

Dübel		FHB dyn 12x100				FHB dyn 20x170		FHB dyn 12x100 V				
Betonversagen	n		$\eta_{c,fa}$	t.N:n		$\eta_{c,fat,V;n}$						
Abminderungsfaktor	≤10¹		1,0					,00				
$\eta_{c,\text{fat}}$ für die Bemessungs-	≤3•10¹		0,9	9			0,	94				
werte des Betonwider-	≤10 ²		0,9	97			0	,88				
stands unter Zug- und Querlast bei Ursprungs-	≤3•10²		0,9	95			0	,82				
beanspruchung ¹⁾	≤10³		0,9	91			0	,76				
boarropraoriang	≤3•10³		0,8	37			0	,73				
Berechnung der	≤10⁴		0,8	32			0	,70				
Ermüdungstragfähigkeiten:	≤3•10⁴		0,7	78		0,69						
$\Delta N_{\text{Rd,c(sp);0;n}} = \eta_{\text{c,fat,N;n}} \cdot N_{\text{Rd,c(sp)}}^{2)}$	≤10⁵		0,7	75			0	,69				
und	≤3•10⁵		0,7	'3		0,69						
$\Delta V_{Rd,c(cp);0;n} = \eta_{c,fat,V;n} \cdot V_{Rd,c(cp)}$	≤10 ⁶		0,7	2		0,69						
110,0(0),0,11 -0,100,4,11 110,0(0)	>10 ⁶		0,7	'1		0,69						
Herausziehen	n	$\eta_{p,fat,0;n}$										
Abminderungsfaktor	≤10¹	1,00										
$\eta_{p,\text{fat}}$ für die Bemessungs-	≤3•10¹	0,99										
werte des Widerstands	≤10 ²	0,97										
beim Herausziehen unter Zuglast bei Ursprungs-	≤3•10²	0,95										
beanspruchung ¹⁾	≤10 ³				0,9	91						
a came practically	≤3•10³				0,8	.87						
Berechnung der	≤10⁴				0,8	32						
Ermüdungstragfähigkeit:	≤3•10⁴			_	0,	78						
	≤10⁵	05 0,7					75					
$\Delta N_{Rd,p;0;n} = \eta_{p,fat,0;n} \cdot N_{Rd,p}^{2}$	≤3•10⁵				0,7	73						
	≤10 ⁶				0,	72						
	>106				0,	71						

 $^{^{1)}}$ Ursprungsbeanspruchung: siehe Abbildung Anlage 14; F_{Eud} = 0 (kein ruhender Lastanteil)

Betonversagen und Herausziehen

Injektionsanker fischer FHB dynamic	Taller of the second
Bemessungsverfahren I,	Anlage 16
Bemessungswerte der Ermüdungstragfähigkeit	Amage 10

Z40744.18 1.21.3-45/17

²⁾ N_{Rd,p}, N_{Rd,p}, V_{Rd,c} und V_{Rd,cp} - Bemessungswerte des Widerstandes unter statischer bzw. quasi-statischer Beanspruchung siehe Anlage 21 (Klammerwerte) und Anlagen 22 und 23.

Bemessungsverfahren II

Der Nachweis wird nach diesem Verfahren geführt, wenn:

- (1) eine Bestimmung des Bemessungswertes der unteren zyklischen Beanspruchungsgrenze F_{Eud} im Schwell- ② bzw. Wechselbereich ④, oder eine Bestimmung des Bemessungswertes der oberen negativen zyklischen Beanspruchungsgrenze F_{Eod} ③, nicht möglich ist und
- (2) eine obere Grenze von Belastungszyklen n während der Lebensdauer nicht bekannt ist.

Dabei gilt

 $\Delta F_{Rd;E;n} = F_{Rd,0,\infty}$

als Ermüdungswiderstand wird der Bemessungswert der Dauerschwingtragfähigkeit bei

Ursprungsbeanspruchung (F_{Eud} =0) angenommen①;

Die entsprechende zyklische Beanspruchung:

 $\Delta F_{Ed} = F_{Eod}$

wenn ΔF_{Eud} >0, aber der positive Betrag ΔF_{Eud} <u>nicht</u> bekannt ist @

 $\Delta F_{Ed} = -F_{Eud}$

wenn ΔF_{Eod} <0, aber der negative Betrag ΔF_{Eod} nicht bekannt ist ③

 ΔF_{Ed} muss bekannt sein,

wenn F_{Eud} < 0 und F_{Eod} > 0, aber die Beträge für F_{Eud} und F_{Eod} nicht bekannt sind ①,

Bemerkungen:

1. Beanspruchungsfälle ①, ②, ③ und ④ vergleiche Abbildung Anlage 14

2. $\Delta F_{Rd:0:co} = \Delta F_{Rk}/\gamma_M$ (charakteristische Werte – Tabelle 9 und 10)

Wobei ΔF_{Ed} und ΔF_{Rk} für Stahlversagen und Betonausbruch jeweils für die Axialrichtung (F = N) und die Querrichtung (F = V) des Dübels zu ermitteln sind.

Erforderliche Nachweise

Stahlversagen:

$$\left(\gamma_{FN} \cdot \frac{\Delta N_{Ed}}{\Delta N_{Rk,s}/\gamma_{MSN}}\right)^{\alpha_{S}} + \left(\gamma_{FV} \cdot \frac{\Delta V_{Ed}}{\Delta V_{Rk,s}/\gamma_{MSV}}\right)^{\alpha_{S}} \leq \mathbf{1}, \mathbf{0}$$

Nachweis des höchstbeanspruchten Dübels

 $\gamma_{FN} = \gamma_{FV} = 1.0$

bei Einzelbefestigungen

 $\gamma_{FN} = 1,25 \ und \ \gamma_{FV} = 1,30$

bei Dübelgruppen

 $\gamma_{MSN} = \gamma_{NSV} = 1,35$

 $\propto_s = 1,0$

Herausziehen:

$$\left(\gamma_{FN} \cdot \frac{\Delta N_{Ed}}{\Delta N_{Rk,p}/\gamma_{Mp}}\right) \le 1.0$$

Nachweis des höchstbeanspruchten Dübels

 $\gamma_{FN}=1.0$

bei Einzelbefestigung bei Dübelgruppen

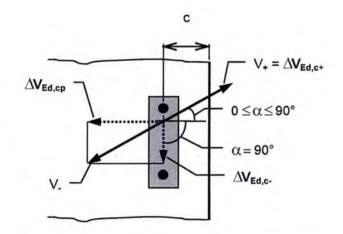
 $\gamma_{FN}=1,25$

Injektionsanker fischer FHB dynamic

Bemessungsverfahren II

erforderliche Nachweise Stahlversagen und Herausziehen

Erforderlicher Nachweis Bemessungsverfahren II


Betonversagen ohne Einfluss des Bauteilrandes:

$$\left[\Delta N_{\text{Ed}} \, / \, (\Delta N_{\text{Rk,c}} \, / \, \gamma_{\text{Mc}})\right]^{1.5} + \left[\, \Delta V_{\text{Ed,cp}}^{\star \, *} \, / \, (\Delta V_{\text{Rk,cp}} \, / \, \gamma_{\text{Mc}})\right]^{1.5} \leq 1.0$$

*) bei Wechsellast wird nur die Kraftrichtung mit dem höheren Betrag berücksichtigt

Betonversagen am Bauteilrand:

Aufteilung der einwirkenden Querlast

Nachweis:	Zugbeanspruchung	Betonkantenbruch zum Rand	Betonkantenbruch parallel zum Rand	Rückwärtiger Betonausbruch
Beanspruchung:	∆N _{Ed,c}	$\Delta V_{\sf Ed,c+}$	∆V _{Ed,c} -	$\Delta V_{Ed,cp}$
dazugehörige Widerstände:	nach ETAG 001,	$\begin{array}{l} \Delta V_{Rk,c+}(\alpha) \\ \text{nach Tabelle 10 bzw. 11,} \\ \text{mit } V_{Rk,c} \\ \text{nach ETAG 001,} \\ \text{Anhang C, Gleichung 5.7} \\ \text{unter Ansatz des} \\ \text{Winkels } 0 \leq \! \alpha \! \leq \! 90^{\circ} \end{array}$	mit V _{Rk,c} nach ETAG 001,	$\Delta V_{Rk,cp}$ nach Tabelle 10 bzw. 11, mit $V_{Rk,cp}$ nach ETAG 001, Anhang C, Gleichung 5.6
Auslastungen:	$\beta_{\text{N,c}} = \frac{\Delta N_{\text{Ed,c}}}{\Delta N_{\text{Rk,c}}/\gamma_{\text{Mc}}}$	$\beta_{\text{V,c+}} = \frac{\Delta V_{\text{Ed,c+}}}{\Delta V_{\text{Rk,(\alpha)}} / \gamma_{\text{Mc}}}$	$\beta_{V,c_{-}} = \frac{\Delta V_{\text{Ed,c}_{-}}}{\Delta V_{\text{Rk,(90°)}} / \gamma_{\text{Mc}}}$	$\beta_{V,cp} = \frac{\Delta V_{Ed,cp}}{\Delta V_{Rk,cp} / \gamma_{Mc}}$

Nachweis:
$$(\beta_{N,c})^{1,5} + (\beta_{V,c+} + \beta_{V,c-} + \beta_{V,cp})^{1,5} \le 1,0$$

Injektionsanker fischer FHB dynamic	
Bemessungsverfahren II erforderliche Nachweise	Anlage 18
Betonversagen	

Z40744.18 1.21.3-45/17

Tabelle 9: Charakteristische Werte für die Dauerermüdungstragfähigkeit bei zentrischer Zugbeanspruchung für das Bemessungsverfahren II

Bezeichnung			FHB 12 x FHB	100 / dyn 100 V/	FHB 16 x 1 FHB	125/ dyn 125 V /	FHB 20)	dyn k 170	FHB dyn 24 x 220	
Stahlversagen										
charaktistische Zugtragfähigkeit	ΔN_R	k,s [kN]	19	(15)4)	31 (21) ⁴⁾	3	9	39	
zugehöriger Teilsicherheitsbeiwert	γMs					1,3	35			
Herausziehen										
charakt. Tragfähigkeit im gerissenen Beton (B25, C20/ 25)	ΔN _R	_{k,p} [kN]	1	9	3	2	3	8	61	
charakt. Tragfähigkeit im ungerissenen Beton (B25, C20/ 25)	ΔN _{RI}	_{k,p} [kN]	2	2	3	2	3	8	61	
	B 35		1,18							
Erhöhungsfaktoren für	C 30/37		1,22							
die charakt Traofähiokeit	B 45		1,34							
im gerissenen und Ψc	C 40/50		1,41							
ungerissenen Beton	B 55		1,48							
	C 50	C 50/60		1,55						
zugehöriger Teilsicherheitsbeiwert	γмр				1,35					
Betonausbruch und Spalten1)										
charakteristische Zugtragfähigkeit	ΔN _R	k,c [kN]				0,64	N _{Rk,c}	2)		
minimale effektive Verankerungstiefe	h _{ef}	[mm]	10 (10	00 5) ³⁾	12 (130	25 0) ³⁾	17	70	220	
Mindestbauteildicke	h _{min} =	[mm]	130	200	160	250	220	340	440	
charakt. Achsabstand	s _{cr,N} =	[mm]	30	00	37	75	51	10	660	
charakt. Randabstand	c _{cr,N} =	[mm]	15	50	19	90	2	55	330	
charakt. Achsabstand	Scr,sp =	[mm]	400	300	500	375	680	510	660	
charakt. Randabstand	Ccr,sp =	[mm]	200	150	250	190	340	255	330	
zugehöriger Teilsicherheitsbeiwert	γмс		1,35							

- 1) Für Verankerungen in Beton nach DIN 1045: 1988-07 siehe Abschnitt 3.1.1
- 2) Ermittlung von N_{Rk,c} nach Gleichung 5.2 des Anhanges C der Leitlinie.
- 3) Klammerwerte gelten für FHB dyn V (mit Querkrafthülse).
- 4) Klammerwert gilt für FHB dyn C (Werkstoff-Nr. 1.4529).

Charakteristische Werte für Beanspruchung aus statischer bzw. quasi-statischer Einwirkung siehe Anlage 22.

Injektionsanker fischer FHB dynamic	
Bemessungsverfahren II	Anlage 19
Charakteristische Werte bei	Amage
Zugbeanspruchung	

Tabelle 10: Charakteristische Werte für die Dauerermüdungstragfähigkeit bei Querbeanspruchung für das Bemessungsverfahren II

FHB dynamic ohne Querkrafthülse (FHB dyn)

Bezeichnung		FHB dyn 12x100 / 12x100 C	FHB dyn 16x125/ 16x125 C	FHB dyn 20x170	FHB dyn 24x220			
Stahlversagen ohne Hebelarm ¹⁾								
charakteristische Quertragfähigkeit	9 (6)5)	16	23	30				
zugehöriger Teilsicherheitsbeiwert	γMs		1,3	35	7			
Betonausbruch auf der lastabgew	andten Seite							
charakteristische Quertragfähigkeit	ΔV _{Rk,cp} [kN]	$\Delta V_{Rk,cp} = 0.64 V_{Rk,cp}^{2}$						
Faktor in Gleichung (5.6) der Leit- linie Anhang C, Abschnitt 5.2.3.3	k [-]	2,0						
zugehöriger Teilsicherheitsbeiwert	γмср [-]	1,35						
Betonkantenbruch ⁴⁾								
charakteristische Quertragfähigkeit	$\Delta V_{Rk,c}$ [kN]		$\Delta V_{Rk,c} = 0$	62 V _{Rk,c} 3)				
wirksame Dübellänge bei Querlast	l _f [mm]	100	125	170	220			
irksamer Außendurchmesser d _{nom} [n		14	18	24	28			
Teilsicherheitsbeiwert	herheitsbeiwert YMc [-] 1,35							

- 1) Die Bedingungen gemäß Abschnitt 4.2.2.2 des Anhanges C der Leitlinie sind einzuhalten.
- 2) Ermittlung von V_{Rk,cp} nach Gleichung 5.6 des Anhanges C der Leitlinie.
- 3) Ermittlung von V_{Rk,c} nach Gleichung 5.7 des Anhanges C der Leitlinie.
- 4) Für Verankerungen in Beton nach DIN 1045: 198 8-07 siehe Abschnitt 3.1.1.
- 5) Klammerwert gilt für FHB dyn C (Werkstoff 1.4529)

Charakteristische Werte für Beanspruchung aus statischer bzw. quasi-statischer Einwirkung siehe Anlage 23.

Injektionsanker fischer FHB dynamic	
Bemessungsverfahren II FHB dynamic ohne Querkrafthülse	Anlage 20
charakteristische Werte bei Querbeanspruchung	

Tabelle 11: Charakteristische Werte für die Dauerermüdungstragfähigkeit bei Querbeanspruchurg für das Bemessungsverfahren II

FHB dynamic mit Querkrafthülse

Bezeichnung		FHB dyn 12x100 V	FHB dyn 16x125 V	
Stahlversagen ohne Hebelarm 1)				
charakteristische Quertragfähigkeit	ΔV _{Rk,s} [kN]	13 (51) ⁵⁾	23 (92) ⁵⁾	
zugehöriger Teilsicherheitsbeiwert	γMs [-]	1,35 (1	,25) ⁵⁾	
Betonausbruch auf der lastabgewandten Seit	е			
charakteristische Quertragfähigkeit	ΔV _{Rk,cp} [kN]	$\Delta V_{Rk,cp} = 0.64 V_{Rk,cp}^{2}$		
Faktor in Gleichung (5.6) der Leitlinie Anhang C, Abschnitt 5.2.3.3	k [-]	2,0		
zugehöriger Teilsicherheitsbeiwert	γм _{ср} [-]	1,35 (1,5) ⁵⁾	
Betonkantenbruch 4)				
charakteristische Quertragfähigkeit	$\Delta V_{Rk,c}$ [kN]	$\Delta V_{Rk,c} = 0$	62 V _{Rk,c} 3)	
wirksame Dübellänge bei Querlast	I _f [mm]	105	130	
wirksamer Außendurchmesser des Dübels	d _{nom} [mm]	20	28	
Teilsicherheitsbeiwert	γмс [-]	1,35 (1,5) ⁵⁾	

- 1) Die Bedingungen gemäß Abschnitt 4.2.2.2 des Anhanges C der Leitlinie sind einzuhalten.
- 2) Ermittlung von V_{Rk,cp} nach Gleichung 5.6 des Anhanges C der Leitlinie.
- 3) Ermittlung von $V_{\text{Rk,c}}$ nach Geichung 5.7 des Anhanges C der Leitlinie.
- 4) Für Verankerungen in Beton nach DIN 1045: 1988-07 siehe Abschnitt 3.1.1.
- 5) Werte in Klammern für Beanspruchung aus statischer bzw. quasi-statischer Belastung.

Injektionsan	ker fische	r FHB d	ynamic
--------------	------------	---------	--------

Bemessungsverfahren II

FHB dynamic mit Querkrafthülse charakteristische Werte bei Querbeanspruchung

Tabelle 12: Bemessungsverfahren A Charakteristische Werte bei statischer bzw. quasi-statischer Zugbeanspruchung

Bezeichnung		FHB 12x			dyn 00 C		dyn 125		dyn 25 C		3 dyn (170	FHB dyn 24x220
Stahlversagen												
charakteristische Zugtragfähigkeit	s [kN]	4	4	:	39	8	32	7	1	1	90	261
Teilsicherheitsbeiwert	γ_{Ms}						1,	5 ¹⁾				
Herausziehen												
charakteristische Tragfähigkeit im gerissenen Beton	20/25	30)	3	0	- 2	2)	2	2)	e	60	95
charakteristische Tragfähigkeit im N _{Rk,p} [kN] C 2 ungerissenen Beton	20/25	35	5	3	5	5	0	5	0	6	60	115
Erhöhungsfaktoren für C 3 die charakteristische	30/37	1,22										
Tragfähigkeit im ψc C 4	10/50	1,41										
gerissenen und ungerissenen Beton C 5	50/60						1,	55				
Teilsicherheitsbeiwert 3)	γ _{Mp}						1,5	501)				
Betonausbruch und Spalten												
Effektive Verankerungstiefe hef	[mm]	10	0	10	00	12	25	12	25	1	70	220
Mindestbauteildicke h _{min} ≥ [[mm]	130	200	130	200	160	250	160	250	220	340	440
charakt. Achsabstand S _{cr,N} = [[mm]	30	00	3	00	37	5	37	75	5	10	660
charakt. Randabstand C _{cr,N} = [[mm]	15	50	1:	50	19	0	19	90	2	55	330
charakt. Achsabstand S _{cr,sp} = [[mm]	400	300	400	300	500	375	500	375	680	510	660
charakt. Randabstand C _{cr,sp} =	[mm]	200	150	200	150	250	190	250	190	340	255	330
Teilsicherheitsbeiwert ³⁾ γ _{Mc} ³	= γ _{Msp}						1	,5 ¹⁾				

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle 13: Verschiebung unter Zugbeanspruchung

Bezeichnung		FHB dyn 12x100	FHB dyn 12x100 C	FHB dyn 16x125	FHB dyn 16x125 C	FHB dyn 20x170	FHB dyn 24x220
Zuglast im gerissenen Beton	N [kN]	14,3	14,3	23,4	23,4	28,6	45,2
zugehörige Verschiebungen	δ_{N0} [mm]	0,5	0,5	0,6	0,6	0,6	0,9
	$\delta_{N\infty}$ [mm]	0,7	0,7	0,7	0,7	0,7	1,1
Zuglast im ungerissenen Beton	N [kN]	16,7	16,7	23,8	23,8	28,6	54,8
zugehörige Verschiebungen	δ_{N0} [mm]	0,2	0,2	0,3	0,3	0,3	0,5
	$\delta_{N\infty}$ [mm]	0,7	0,7	0,7	0,7	0,7	1,1

Injektionsanker fischer FHB dynamic	
Bemessungsverfahren A	Anlage 22
Charakteristische Werte bei statischer bzw. quasi-statischer	Amage 22
Zugbeanspruchung Verschiebungen	

1.21.3-45/17 Z40744.18

²⁾ Herausziehen nicht maßgebend. 3) In diesem Wert ist der Teilsicherheitsbeiwert γ_2 = 1,0 enthalten.

Tabelle14: Bemessungsverfahren A

Charakteristische Werte für statische bzw. quasi-statische Querbeanspruchung

						•			
Bezeichnung		FHB dyn 12x100	FHB dyn 12x100 C	FHB dyn 16x125	FHB dyn 16x125 C	FHB dyn 20x170	FHB dyr 24x220		
Stahlversagen ohne Heb	elarm								
charakteristische Quertragfähigkeit	V _{Rk,s} [kN]	30	29	55	55	88	123		
Teilsicherheitsbeiwert 7 _{Ms} 1,25 1)									
Stahlversagen mit Hebel	arm								
charakteristische Biegemomente	Mº _{Rk,s} [Nm]	105	92	266	233	519	896		
Teilsicherheitsbeiwert	γ_{Ms}			1,2	25 1)				
Betonausbruch auf der la	astabgewandt	en Seite							
Faktor in Gleichung (5.6), E7 Anhang C, Abschnitt 5.2.3.3	TAG 001, k			2	,0				
Teilsicherheitsbeiwert	γ_{Mcp}			1,	5 ¹⁾				
Betonkantenbruch									
wirksame Dübellänge bei Querlast	l, [mm]	100	100	125	125	170	220		
wirksamer Außendurchmesser	d _{nom} [mm]	14	14	18	18	24	28		
Teilsicherheitsbeiwert	γ _{Mc}	1,5 1)							

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle 15: Verschiebung unter Querbeanspruchung

Bezeichnung			FHB dyn 12x100	FHB dyn 12x100 C	FHB dyn 16x125	FHB dyn 16x125 C	FHB dyn 20x170	FHB dyn 24x220
Querlast	٧	[kN]	17,0	16,9	31,6	31,4	33,9	48,8
		[mm]	1,3	1,6	1,3	1,6	1	,3
zugehörigeVerschiebungen	δ,	[mm]	2,0	2,4	2,0	2,4	2	,0

Injektionsanker fischer FHB dynamic	Anlage 23
Bemessungsverfahren A	
Charakteristische Werte bei statischer bzw. quasi-statischer	
Querzugbeanspruchung. Verschiebungen	

Z40744.18 1.21.3-45/17