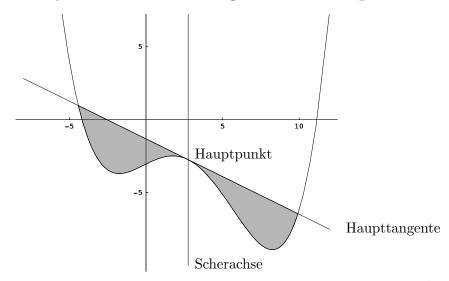
Die versteckte Symmetrie eines allgemeinen Graphen 4. Grades



Dass der Graph einer ganzrationalen Funktion 2. Grades mit der Gleichung $y=ax^2+bx+c$ eine bezüglich der Geraden $x_s=-\frac{b}{2a}$ symmetrische Parabel ist, muss hier nicht bewiesen werden. Ebenfalls weit herum bekannt ist, dass der Wendepunkt Symmetriezentrum des Graphen einer ganzrationalen Funktion 3. Grades mit der Gleichung $y=ax^3+bx^2+cx+d$ ist. Die x-Koordinate x_s des Wendepunktes erhält man durch Nullsetzen der zweiten Ableitung y''=6ax+2b und zwar als $x_s=-\frac{b}{3a}$. Von einer Symmetrie des Graphen einer ganzrationalen Funktion 4. Grades mit der Gleichung $y=ax^4+bx^3+cx^2+dx+e$ $(a\neq 0)$ hört man dagegen wenig. Das holen wir hier nach.

Die zweite Ableitung $y''=12ax^2+6bx+2c=2(6ax^2+3bx+c)$ der Funktion 4. Grades hat eine bezüglich $x_s=-\frac{b}{4a}$ symmetrische Parabel als Graph. Wendepunkte der Funktion 4. Grades existieren, falls die Diskriminante $9b^2-24ac$ des quadratischen Terms positiv ist, das heisst wenn $3b^2>8ac$. In diesem Fall liegen sie symmetrisch bezüglich der Geraden mit der Gleichung $x_s=-\frac{b}{4a}$. Der Punkt mit dieser x-Koordinate könnte also mit Fug und Recht "Hauptpunkt" des Graphen genannt werden. Wie man das auch bei der Kurve 3. Grades macht, verschieben wir nun den Graph der Funktion $y=ax^4+bx^3+cx^2+dx+e$ um $\frac{b}{4a}$ horizontal, das heisst, wir ersetzen x durch $(x-\frac{b}{4a})$. Der Hauptpunkt der verschobenen Kurve liegt damit auf der y-Achse und die Gleichung lautet

$$\overline{y} = a(x - \frac{b}{4a})^4 + b(x - \frac{b}{4a})^3 + c(x - \frac{b}{4a})^2 + d(x - \frac{b}{4a}) + e$$
,

die wir nach Potenzen von x ordnen und dabei festellen, dass x^3 nicht mehr vorkommt:

$$\overline{y} = ax^4 + (c - \frac{3b^2}{8a})x^2 + (d - \frac{bc}{2a} + \frac{b^3}{8a^2})x + e - \frac{bd}{4a} + \frac{b^2c}{16a^2} - \frac{3b^4}{256a^3}$$

Kürzen wir die Koeffizienten der Gleichung dieser verschobenen Kurve ab und schreiben für sie $\overline{y}=ax^4+px^2+mx+q$, so erkennen wir, dass sie die um q vertikal verschobene Überlagerung von $y_1=ax^4+px^2$ und $y_2=mx$ ist. Das bedeutet also, dass der bezüglich der y-Achse symmetrische Graph von $y_1=ax^4+px^2$ einer Scherung mit der y-Achse als Scherachse und m als Scherbewegung im Abstand 1 von der Scherachse unterworfen wird. Mit der Gleichung $y_3=mx+q$ ist somit die Tangente im Hauptpunkt — die "Haupttangente" — des verschobenen Graphen gegeben. Die Haupttangente des ursprünglichen Graphen hat also die Gleichung $y_t=m(x+\frac{b}{4a})+q$. Fassen wir zusammen:

Der Graph einer allgemeinen ganzrationalen Funktion 4. Grades $y = ax^4 + bx^3 + cx^2 + dx + e$ ist das bezüglich der Achse $x_s = -\frac{b}{4a}$ gescherte Bild einer zu $y_1 = ax^4 + (c - \frac{3b^2}{8a})x^2$ kongruenten Kurve. Die Haupttangente im Punkt mit der x-Koordinaten $x_s = -\frac{b}{4a}$ hat die Gleichung $y_t = (d - \frac{bc}{2a} + \frac{b^3}{8a^2})(x + \frac{b}{4a}) + e - \frac{bd}{4a} + \frac{b^2c}{16a^2} - \frac{3b^4}{256a^3} = (d - \frac{bc}{2a} + \frac{b^3}{8a^2})x + e - \frac{b^2c}{16a^2} + \frac{5b^4}{256a^3}$. Scherachse und Haupttangente bilden ein schiefwinkliges System, bezüglich dessen die Kurve symmetrisch ist.