

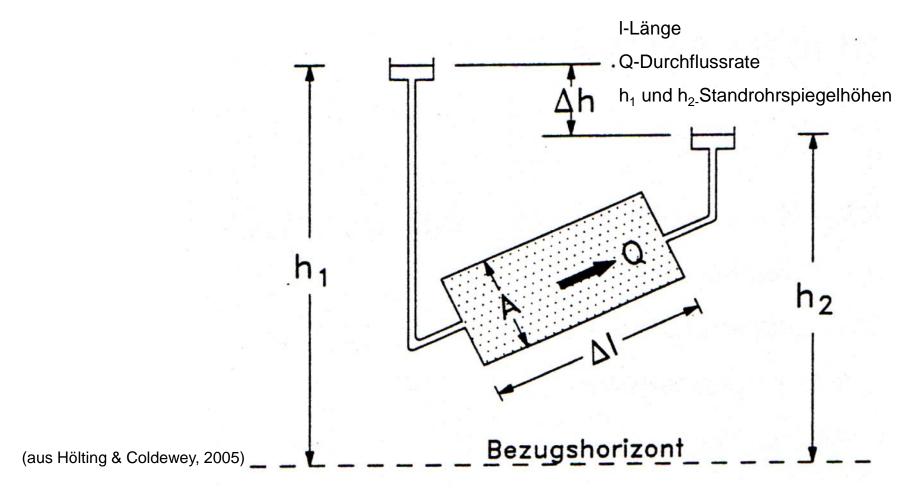
Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Siebkornanalyse, Anwendung von Sichardt, Kusakin, Theis & Co

PD. Dr. Traugott Scheytt Ernst-Reuter-Platz 1 10587 Berlin traugott.scheytt@tu-berlin.de

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Um was geht es?


- The Good, the Bad, and the Ugly
- Das dreckige Dutzend
- 4 Methoden für ein Halleluja

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Zusammenhang zwischen Grundwasser-durchflussrate (Q) und Grundwasserspiegel (h): Das Darcy-Experiment

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Zusammenhang zwischen Grundwasser-durchflussrate (Q) und Grundwasserspiegel (h): Darcy-Gleichung

- Q hängt direkt proportional von der durchströmten Fläche (A) ab
- Q hängt umgekehrt proportional von der Fließlänge (I) ab
- Q hängt direkt proportional von dem Druckgefälle (h) ab

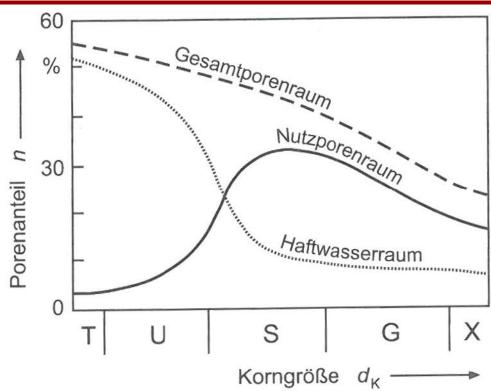
Gesteinseigenschaft k_f, Durchlässigkeitsbeiwert

Mit:

k_f- Durchlässigkeitsbeiwert

A- durchströmte Fläche

h-Druckhöhenunterschied


I-Fließstrecke

$$Q = (k_f) \cdot A \cdot \frac{\Delta h}{l}$$

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

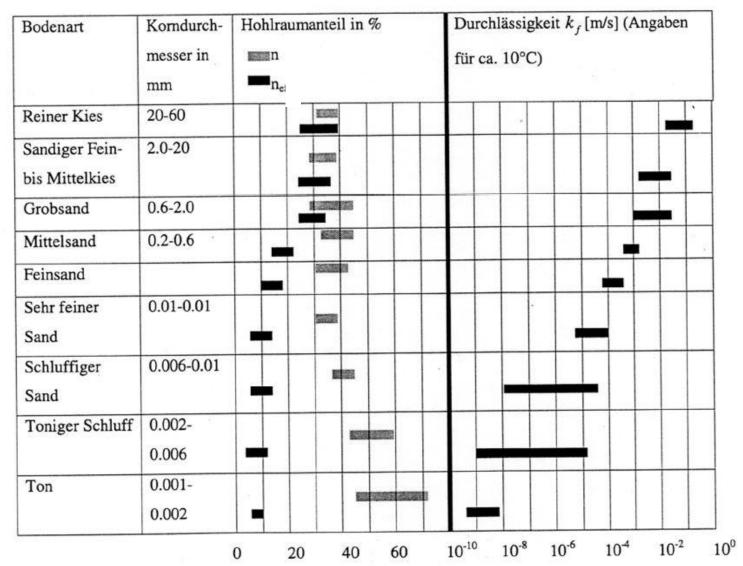
Exkurs: Korngröße vs. Porenanteil

Abb. 36 Beziehungen zwischen Gesamtporen-, Nutzporen- und Haftwasserraum in Abhängigkeit von der Korngröße klastischer Sedimente. (nach Davis & de Wiest, 1966).

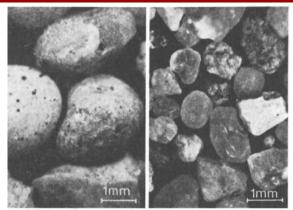
T = Ton; U = Schluff; S = Sand; G = Kies; X = Steine.

Wichtig für Fließverhalten im Poren-GWL:

- Nutzporosität: n_e
- Gesamtporosität: n
- n > n_e
- Reduktion von n durch Haftwasser, etc.


Hölting (2005)

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt


Durchlässigkeitsbeiwert und Porosität

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Udden-Wentworth Korngrößen-Skala

Abb. 1.2 a,b a) Feinkies (2–6 mm), b) Grobsand (0,6–2 mm) in 11,25facher Vergrößerung (Aufn. CORNELIUS)

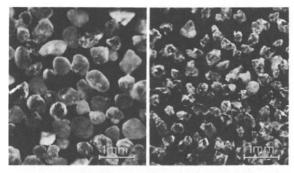


Abb. 1.2 c,d c) rundkörniger Mittelsand (0,2–0,6 mm), d) eckiger Mittelsand in 11,25facher Vergrößerung (Aufn. CORNELIUS)

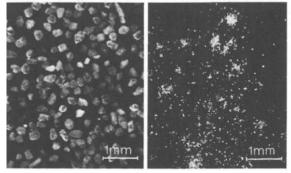
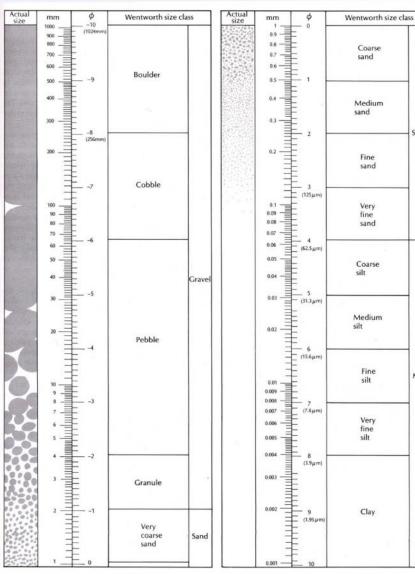



Abb. 1.2 e,f
e) Feinsand (0,06 mm), f) Schluff (0,06-0,002 mm) in 11,25facher Vergrößerung (Aufn.

Modifiziert nach Lewis (1984)

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

4.2 Korngröße

Die Korngröße stellt die Grundlage für die Benennung mineralischer Böden dar, bei der Kornfraktionen verwendet werden, um das bodenmechanische Verhalten zu unterscheiden. In Tabelle 1 sind die Begriffe aufgelistet, die für die einzelnen Kornfraktionen und ihre Untergruppen, entsprechend dem jeweiligen Korngrößenbereich, verwendet werden.

Tabelle 1 — Korngrößenfraktionen

Bereich	Benennung	Kurzzeichen	Korngröße mm
sehr grobkörniger Boden	großer Block	LBo	> 630
	Block	Во	> 200 bis 630
	Stein	Co	> 63 bis 200
grobkörniger Boden	Kies	Gr	> 2,0 bis 63
	Grobkies	CGr	> 20 bis 63
	Mittelkies	MGr	> 6,3 bis 20
	Feinkies	FGr	> 2,0 bis 6,3
	Sand	Sa	> 0,063 bis 2,0
	Grobsand	CSa	> 0,63 bis 2,0
	Mittelsand	MSa	> 0,2 bis 0,63
	Feinsand	FSa	> 0,063 bis 0,2
feinkörniger Boden	Schluff	Si	> 0,002 bis 0,063
	Grobschluff	CSi	> 0,02 bis 0,063
	Mittelschluff	MSi	> 0,006 3 bis 0,02
	Feinschluff	FSi	> 0,002 bis 0,006 3
	Ton	CI	≤ 0,002

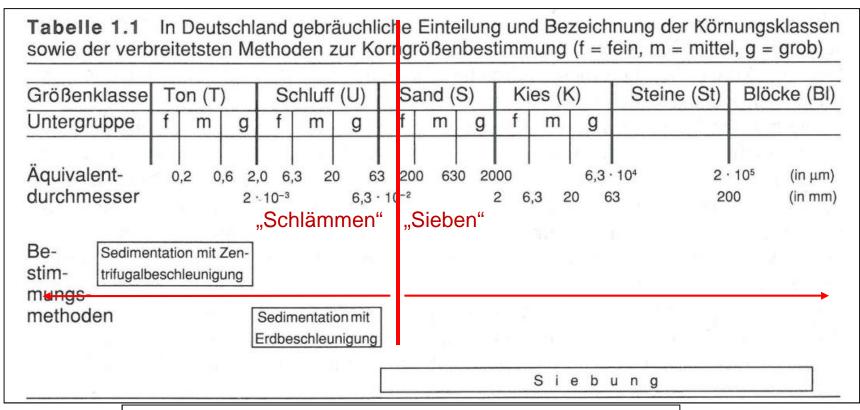
Reine Bodenarten bestehen nur aus einem Korngrößenbereich nach Tabelle 1 und werden nach diesem benannt, z.B. Kies *Gr*, Feinsand *FSa*, Grobschluff *CSi*. Der erste Buchstabe der Kurzzeichen der Kornfraktionen wird jeweils als Großbuchstabe geschrieben.

aus DIN EN ISO 14688-1 (2011): Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Boden

Korngrößen

Bereio	ch/Benennung	Kurz- zeichen	Korngrößenbereich mm
	Blöcke	Y	über 200
Grobkorn- bereich (Siebkorn)	Steine	×	über 63 bis 200
	Kieskorn	G	über 2 bis 63
	Grobkies	gG	über 20 bis 63
	Mittelkies	mG	über 6,3 bis 20
	Feinkies	fG	über 2,0 bis 6,3
	Sandkorn	s	über 0,06 bis 2,0
	Grobsand	gS	über 0,6 bis 2,0
	Mittelsand	mS	über 0,2 bis 0,6
	Feinsand	fS	über 0,06 bis 0,2
Feinkorn- bereich (Schlämm- korn)	Schluffkorn	U	über 0,002 bis 0,06
	Grobschluff	gU	über 0,02 bis 0,06
	Mittelschluff	mU	über 0,006 bis 0,02
	Feinschluff	fU	über 0,002 bis 0,006
	Tonkorn (Feinstes)	т	unter 0,002

aus DIN 4022-1 (1987): Benennen und Beschreiben von Boden und Fels.


DIN NICHT MEHR GÜLTIG! Korngrößenbereich aus DIN EN ISO 14688 verwenden. Kurzzeichen sind in der Hydrogeologie jedoch weiterhin gebräuchlich.

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Bestimmung der Korngrößenverteilung

Korngröße(2r)	Sinkgeschwindig-	Sedimentations-
(mm) (μm)	keit (v) (cm s ⁻¹)	zeit für 10 cm
6 · 10 ⁻² 60	0,3456	28 s
2 · 10-2 20	0,036	4 min 38 s
2 · 10-3 2	0,00036	7 h 43 min

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Rückstand auf dem Prüfsieb Siebmaschenweite Deckel Grobsand (2000 μm - 630 μm) $630 \ \mu m$ 200 μm Mittelsand (630 μ m - 200 μ m) $63~\mu m$ Feinsand (200 μm - 63 μm) Trichter bzw. Auffangschale

Sieben

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

10 Anwendungsbeispiele

BEISPIEL 1 Bestimmung der Korngrößenverteilung durch Siebung (Trockensiebung)

Bodenart: Kies, sandig

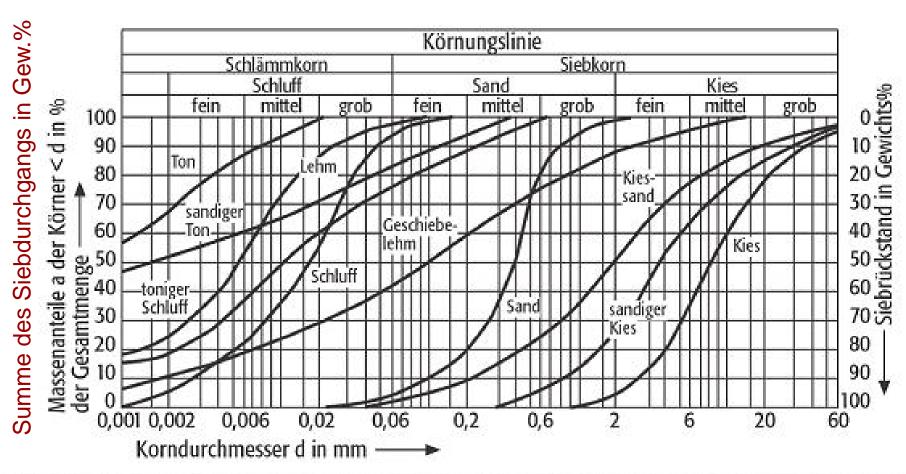
Komform: rundkantig bis gerundet Größtkorn: 35 mm Durchmesser

Trockenmasse: $m_d = 5.440,0 \text{ g}$

Tabelle 5

Korngröße	Masse der Rückstände	Siebrückstände als Massenanteile	Summe der Siebdurchgänge als Massenanteile
mm	g	%	96
63	0,0	0,0	-
31,5	0,0	0,0	100,0
16	842,4	15,5	84,5
8	1 059,8	19,5	65,0
4	1 222,9	22,5	42,5
2	788,0	14,5	28,0
1	708,8	13,0	15,0
0,5	407,6	7,5	7,5
0,25	201,4	3,7	3,8
0,125	195,7	3,6	0,2
0,063	10,8	0,2	0,0
< 0,063	0,0	0,0	0,0
Summe	5 435,2	100,0	0,0
Siebverlust	4,8	<u>1884</u>	<u></u> -

 Siebverlust darf max.
 1% der Einwaage sein, sonst Siebung ungültig


aus DIN 18123 (2011): Baugrund, Untersuchung von Bodenproben - Bestimmung der Korngrößenverteilung.

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Kornsummenkurven: Beispiele

Körnungslinie: Körnungslinien verschiedener Bodenarten. Die Steigung der Kurven gibt Aufschluß über die Ungleichförmigkeit bzw. Gleichförmigkeit der Böden (z.B. Geschiebelehm ist stark ungleichförmig). Dies ist für verschiedene Bodeneigenschaften (z.B. Verdichtbarkeit) von Bedeutung.

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Bestimmung des k_f-Werts aus Kornanalysen

→ nach HAZEN (1893):

$$k_f = C \cdot d_{10}^2$$

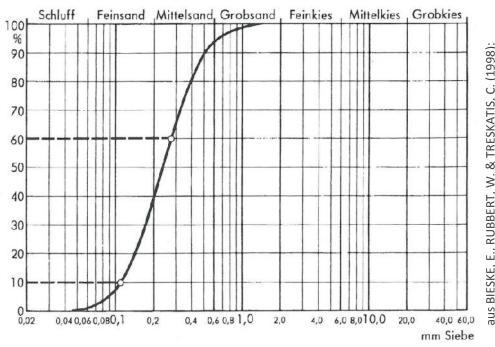
d₁₀: Korndurchmesser bei 10 Gew.% Siebdurchgang [mm]

$$C = \frac{0.7 + 0.03 \cdot t}{86.4}$$

• t = Wassertemperatur [°C] → mittlere GW-Temp. in D = 10°C

•
$$\rightarrow k_f = 0.0116 \cdot d_{10}^2$$

Einschränkung: Berechnung nach HAZEN nur bis U < 5!


Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Ungleichförmigkeitsgrad

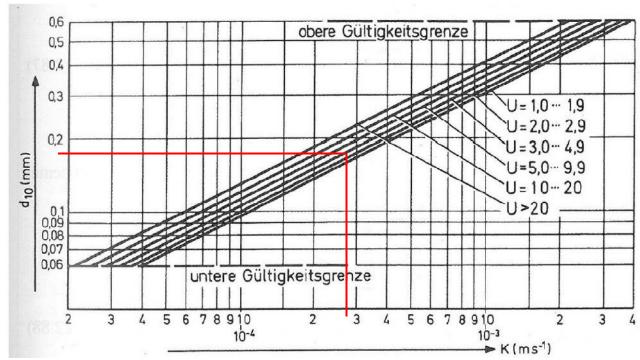
- kurz U, auch C_u abgekürzt
- Maß für die Gleichförmigkeit / Ungleichförmigkeit eines Bodens
- d₆₀: Korndurchmesser bei 60 Gew.% Siebdurchgang
- d₁₀: Korndurchmesser bei 10 Gew.% Siebdurchgang

$$U = \frac{d_{60}}{d_{10}}$$

aus BIESKE, E., RUBBERT, W. & TRESKATIS, C. (1998): Bohrbrunnen. R. Oldenburg Verlag, München.

Abb.: : Sieblinie, Körnung bei 60%: 0,28 mm; bei 10%: 0,11 mm

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt



Wenn U > 5, dann

- k_f-Wert- Bestimmung nach BEYER (1964)
 - Bis U < 20 möglich
 - Wird über d₁₀ abgelesen aus Tabelle oder Diagramm
 - Einschränkung: d₁₀ muss zwischen 0,06 und 0,6 mm liegen!

Beispiel:

- $d_{10} = 0,175 \text{ mm}$
- $d_{60} = 0.55 \text{ mm}$
- \rightarrow U = 3,14
- Ablesen: 2.8 * 10⁻⁴ m/s

Langguth & Voigt (2004): Hydrogeologische Methoden.

Angewandte Geowissenschaften

Sie haben die Wahl: Kleine Liste aus mehr als 50 Berechnungsverfahren

Vienken & Dietrich (2011)

Name	Type	Formula
Hazen	Empirical	$K = C_H \times d_{10}^2 \times (0.7 + 0.03T)$
		T = temperature C_H = 1000 (coefficient)
Beyer	Empirical	$K = C_B \times d_{10}^2$
		d_e = effective grain size diameter
Kozeny-Köhler	Semi- empirical	$K = \frac{r}{R} \times 405 \times \frac{e^3}{1+\epsilon} \times d_e^2$
		$\mathcal{E} = \frac{\phi}{1-\phi}$
		$\tau = \frac{\nu_{10}}{\nu_{T}}$ $R = 3.5 \text{ after K\"{o}hler (1965) as cited in H\"{u}tte (1956)}$
USBR	Empirical	$K = 0.0036 \times d_{20}^{2.3}$
Seelheim	Empirical	$K = 0.00357 \times d_{50}^2$
Kaubisch	Empirical	$K = 10^{0.0005p^2 - 0.12p - 3.59}$
Terzaghi	Semi-	$K = C_T \times \frac{\eta_{10}}{N} \times \left(\frac{\phi - 0.13}{N}\right)^2 \times d_{10}^2$

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Zu Risiken und Nebenwirkungen ...

Matthes et al. (2012) und Vienken et al. (2012): Nicht geeignet für hochaufgelöste Ermittlung des k_f -Wertes, da die statistische Abweichung zu groß.

Vienken und Dietrich (2011): Stattdessen andere Verfahren verwenden (z.B. Direct Push Slug Tests).

Fuchs et al. (2012): Wichtig ist die korrekte Ermittlung von d_{10} , d_{20} , d_{50} , d_{60} mit einem im unteren Korngrößenbereich verdichteten Siebsatz. Nur dann sind die Werte verlässlich.

Fuchs et al. (2012): Anwendung von Formeln nur im Bereich des explizit dafür ausgewiesenen Anwendungsbereiche. Falls dies nicht geschieht, sind die Werte nicht gültig.

Paul (2011): Berechnung gilt nur für Proben ohne Feinkornanteil, aber keiner hält sich daran! Je mehr Feinkorn umso höher ist der berechnete vs. tatsächliche k_f -Wert, es muss eine Korrektur ausgeführt werden.

Riegger: Aufgrund von Lagerung und Geologie gibt es in der Natur Anisotropie

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Versöhnliches ...

Devlin JF (2015) HydrogeoSieveXL. Excel-based Visual Basic tool freely available at: http://www.people.ku.edu/~jfdevlin/Publications.html

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Strömungsgleichung stationär

•Kombination aus dem Gesetz:
$$-(\frac{uq_x}{ux} + \frac{uq_y}{uy} + \frac{uq_z}{uz}) = 0$$

DARCY
$$\rightarrow$$

$$q_x = -K_x \frac{\mathsf{u}h}{\mathsf{u}x}$$

$$\frac{\mathsf{u}}{\mathsf{u}x} \left(k_{f_x} \mathsf{u} \frac{\mathsf{u}h}{\mathsf{u}x} \right) + \frac{\mathsf{u}}{\mathsf{u}y} \left(k_{f_y} \frac{\mathsf{u}h}{\mathsf{u}y} \right) + \frac{\mathsf{u}}{\mathsf{u}z} \left(k_{f_z} \frac{\mathsf{u}h}{\mathsf{u}z} \right) = 0$$
(Laplace Gleichung, stationär)

mit:

h: Druckhöhe [m]

h: hydraulischer Gradient

q: Filtergeschwindigkeit [m/s]

 K_{x} , K_{y} , K_{z} : Komponeneten des Durchlässigkeitstensors (k_f [m/s])

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Nomenklatur

- Q [m³/s] = Förderrate
- r [m] = Abstand vom Brunnenmittelpunkt zum Mittelpunkt der GWM
- s [m] = beobachtete Absenkung der Standrohrspiegelhöhe
- h [m] = Standrohrspiegelhöhe in der GWM bzw. im Brunnen
- t [s] = Zeit
- Nummerierung s₁, s₂, r₁, r₂, etc. von innen nach außen zunehmend

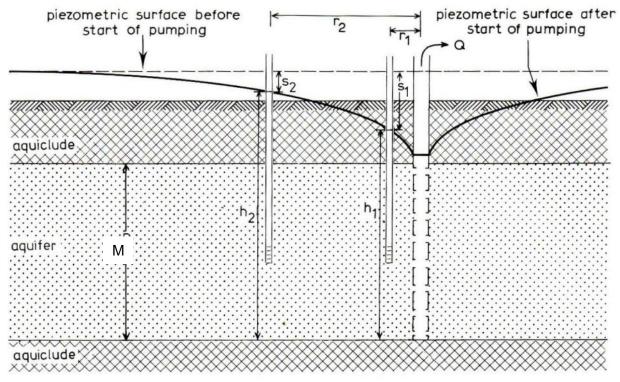


Figure 3.1 Cross-section of a pumped confined aquifer

KRUSEMAN & DE RIDDER (1994)

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Es sollte bevorzugt in GWM gemessen werden, da der Betriebswasserspiegel im Förderbrunnen i. d. R. nicht dem Wasserspiegel außerhalb der Brunnenwandung entspricht (Brunneneintrittsverluste, Sickerstrecke)

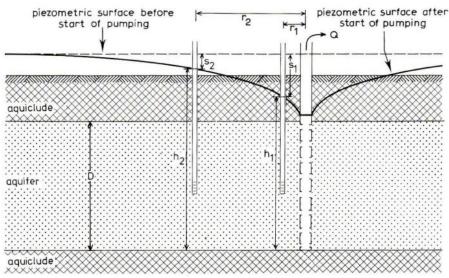
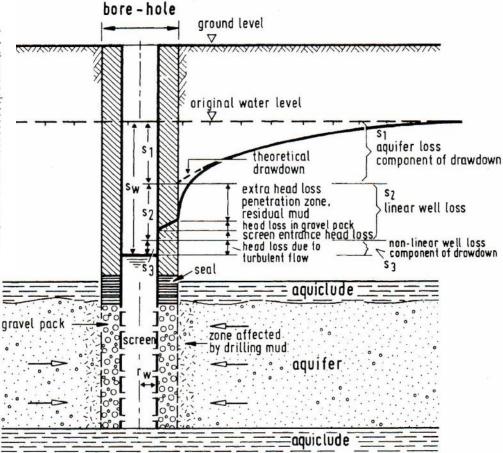



Figure 3.1 Cross-section of a pumped confined aquifer

Wo wird gemessen?

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Das "Kleingedruckte" für stationäre Strömung

Auswertung erfolgt auf Basis von Brunnenformeln, für die folgende Annahmen gültig sein müssen (Kruseman & De Ridder 1994) (gelten im gespannten und modifiziert im ungespannten GWL):

- GWL ist homogen und isotrop (gleichbleibende M\u00e4chtigkeit)
- GWL ist unendlich ausgedehnt (seitlich unbegrenzt)
- Im unbeeinflussten Zustand ist der Grundwasser-Druckfläche bzw. die freie Grundwasser-Oberfläche horizontal
- Der Förderbrunnen ist vollkommen (Filterstrecke erfasst gesamte wassererfüllte Mächtigkeit → horizontale Strömung)
- Die F\u00f6rderrate bleibt konstant

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Brunnengleichungen (im gespannten)

• Brunnenformel nach DUPUIT (1863):

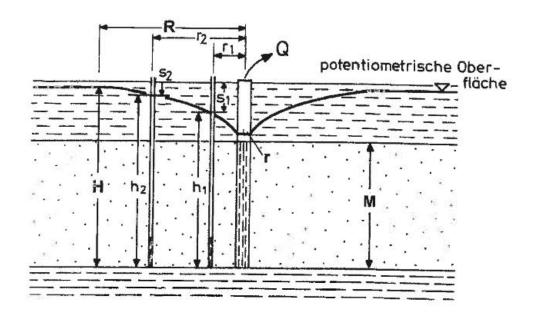
$$Q = k_f \cdot \pi \cdot 2M \cdot \frac{H - h}{\ln \frac{R}{r}}$$

• Erweiterung durch THIEM (1906):

$$Q = k_f \cdot \pi \cdot 2M \cdot \underbrace{\frac{\Delta s}{\ln \frac{r_2}{r_1}}} = 2\pi \cdot T \cdot \frac{\Delta s}{\ln \frac{r_2}{r_1}}$$

→ Herleitung!

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt



Auswertung

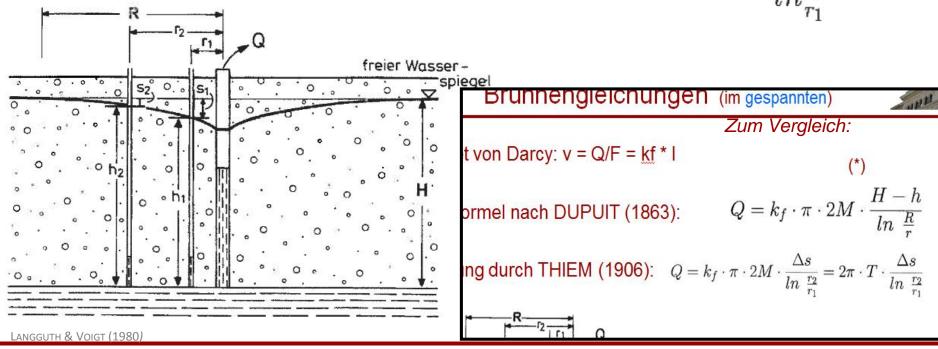
- Fall: Gespannter GWL Stationäre Strömung
- Direkte Bestimmung von T anhand der im Feld gemessenen Daten
 - Voraussetzung: Beobachtungsmessungen aus 2 GWM liegen vor
- Berechnung mit Hilfe von THIEM

$$Q = k_f \cdot \pi \cdot 2M \cdot \frac{\Delta s}{\ln \frac{r_2}{r_1}} = 2\pi \cdot T \cdot \frac{\Delta s}{\ln \frac{r_2}{r_1}}$$

$$T = \frac{Q \cdot \ln \frac{r_2}{r_1}}{2 \cdot \pi \cdot (s_1 - s_2)}$$

LANGGUTH & VOIGT (2004)

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt


Brunnengleichungen (im ungespannten)

Abgeleitet von Darcy: $Q = k_f^* A * I$

- Brunnenformel nach DUPUIT (1863):
- $Q = k_f \cdot \pi \cdot \frac{H^2 h^2}{\ln \frac{R}{r}}$

• Erweiterung durch THIEM (1906):

$$Q = k_f \cdot \pi \cdot \frac{{h_2}^2 - {h_1}^2}{ln_{\tau_1}^{\tau_2}}$$

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Herleitung Thiem (frei)

$$-Q = v_f \cdot A = k_f \cdot I \cdot A = k_f \cdot \frac{dh}{dr} \cdot 2\pi r \underbrace{h}$$

Hier jetzt: M = h

Trennung der Variablen

$$h \ dh = \frac{Q}{2\pi \cdot k_f} \cdot \frac{1}{r} \ dr \xrightarrow{\text{Integration}} \frac{1}{2} \ h^2 = \frac{Q}{2\pi \cdot k_f} \cdot \ln \ r + C$$

$$\text{Spezieller Fall } h = H \text{ und } r = R$$

$$C = \frac{1}{2} \ h^2 - \frac{Q}{2\pi \cdot k_f} \cdot \ln \ r$$

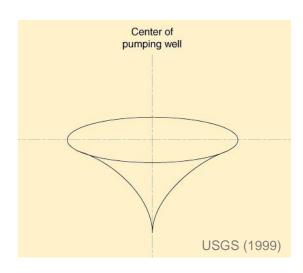
$$\frac{1}{2}~H^2 = \frac{Q}{2\pi \cdot k_f} \cdot \ln~R + \frac{1}{2}~h^2 - \frac{Q}{2\pi \cdot k_f} \cdot \ln~r$$

Dupuit (1863):
$$Q = k_f \cdot \pi \cdot \frac{H^2 - h^2}{ln\frac{R}{r}}$$
 Thiem (1906) $Q = k_f \cdot \pi \cdot \frac{{h_2}^2 - {h_1}^2}{ln\frac{r_2}{r_1}}$

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Absenktrichter

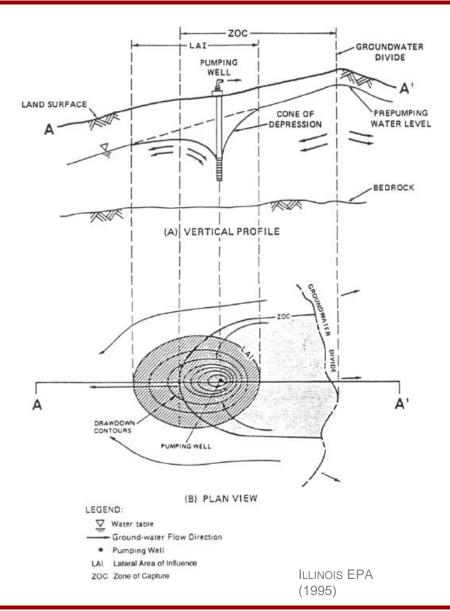
Durch Grundwasser-Entnahme:

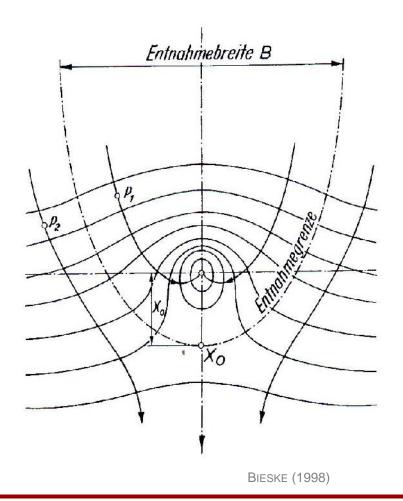

- Ausbildung eines Absenktrichters
- Bei homogenen isotropen Untergrundbedingungen:

Radialsymmetrische Ausbildung

ABER:

- In der Regel heterogene Untergrundbedingungen
- Grundwasserströmung (Gradient)

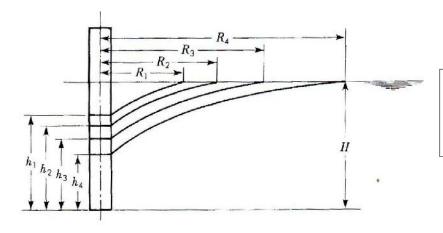




Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Absenktrichter

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt



Reichweite

Abschätzung der Reichweite R des Absenktrichters

• Nach Sichardt (1928):
$$R = 3000 \times s \times \sqrt{k_f}$$

• Nach Kusakin (1977):
$$R = 575 \times s \times \sqrt{H \times k_f}$$

R	Reichweite [m]
s	Absenkung [m]
k _f	Durchlässigkeitsbeiwert [m/s]
H	Höhe des Wasserspiegels in Ruhelage [m]

Bild 133: Reichweite und Spiegelabsenkung nach Weber [74]

BIESKE (1998)

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Reichweite

Abschätzung der Reichweite R des Absenktrichters bei Entnahme aus dem Grundwasservorrat = instationäre Strömungsbedingungen

• Nach Weber:

$$R = 3 \times \sqrt{\frac{k_f \times H \times t}{n_e}}$$

R	Reichweite [m]
k_f	Durchlässigkeitsbeiwert [m/s]
H	Höhe des Wasserspiegels in Ruhelage [m]
t	Seit Pumpbeginn vergangene Zeit [s]
n_e	Effektive Porosität des GWL [-]

Angewandte Geowissenschaften Fachgebiet Hydrogeologie – Traugott Scheytt

Zusammenfassung

Die **Abschätzung** des Durchlässigkeitsbeiwertes aus der Siebkornanalyse ist allgemein gebräuchlich. Und trotzdem müssen die Grundlagen verstanden und Anwendungsbereiche eingehalten werden. Gibt es den "wahren" k_f-Wert? Welche Formel ist geeignet? Welche Aussage will ich treffen?

Der Einsatz der **Brunnenformeln** beruht auf der stationären (zeitlich unveränderlichen) Strömung. Die Berechnung des k_f-Wertes aus der Brunnenformel bereits recht nah an Geländewerten. Wird der Entnahmebrunnen und die Reichweite zur Berechnung genutzt, ist Vorsicht geboten!