

Thermischer Durchflusssensor TA Di mit integriertem Messumformer zur Messung von Massenstrom, Normvolumenstrom und Luft- bzw. Gasverbrauch

Sensor TA Di 16...41,8 ... ZG1b und TA Di 16...41,8 ... ZG1b/M-Bus mit integriertem Umformer U10a/U10M Sensor TA Di 8 ... ZG3b und TA Di 8 ... ZG3b/M-Bus mit integriertem Umformer U10a/U10M

Einsatzfeld, Anwendungsbeispiele

- Messungen
- von Druckluft und Gasverbrauch von Sauerstoff, Stickstoff, Argon z. B. in schweißtechnischen Anwendungen
- Leckageströmungen
- in Abluft, Brenner-Zuluft
- Überwachung der Inertisierung von kerntechnischen Prozessen
- in Luft im Grobvakuumbereich bei Drücken größer 200 hPa abs

Messgröße

Normvolumenstrom [m³/h, l/min], Massenstrom [kg/h], Normgeschwindigkeit [m/s], Normbasis einstellbar Voreinstellung:
 Temperatur t_n = +21 °C, Druck p_n = 1014 hPa

Bauform / Sensor

- Messrohr mit im Anschlussgehäuse integriertem Messumformer
- Dünnschicht-Sensorelement

Vorteile

- hohe Messdynamik Nv (0,2 ... 150 m/s)
- Messbereich ab 0,04 Nm³/h (0,6 l/min)
- geringe Messunsicherheit, auch bei kleinsten Strömungsgeschwindigkeiten
- direkte Luft-/Gas-Massenstrom proportionale Messung.
 Zusätzliche Messung von Druck und Temperatur ist nicht erforderlich
- Sensor ohne bewegliche Teile
- Sensorgehäuse aus Edelstahl
- großer Temperatur- und Druckbeständigkeitsbereich
- geringer Installationsaufwand
- vernachläßigbarer Druckverlust durch praktisch freien Durchgang
- dauerstandfest & langzeitstahil
- sterilisierbar (Sensor-Materialbeständigkeit vorausgesetzt)
- mittels PC-Software parametrierbar und optimal anpassbar

Messgase

- Reingase, Gasgemische: Luft, Stickstoff, Sauerstoff, Methan, Erdgas, Argon, Wasserstoff, Butan, Propan, Kohlendioxid, Helium, Schwefelhexafluorid, Deponiegas ...
- Zur Realisierung kleinster Messunsicherheiten kann eine Kalibrierung mit einer Vielzahl von Gasen bzw. Gasgemischen durchgeführt werden

Funktionsprinzip

- Strömungsmessung nach dem Wärmeübertragungsverfahren
- Die Messung ist über den gesamten Temperatur-Einsatzbereich Temperatur kompensiert

Partikel, Feuchte im Messgas

- Beladung des Messgases durch Partikel, Staub und Fasern bewirken keine Beeinflussung der Messung, solange keine Abrasion und keine Anlagerung am Sensor stattfindet
- Messwertabweichungen als Folge variabler Feuchtigkeit der Luft sind bei normalen atmosphärischen Bedingungen durch die Angaben zur Messunsicherheit abgedeckt

Typologie (B	eispiel)						
TA Di	8	G E	60 m/s	140	p16	ZG3b	/M-Bus
(1)	(2)	(3) (4	4) (5)	(6)	(7)	(8)	(9)

Basis-Typen		
	Artikel-Nr. (U10a)	Artikel-Nr. (U10M)
	(Olou)	(01011)
TA Di 8 GE 60 m/s / 140 / p16 ZG3b	B016/505	
TA Di 8 GE 60 m/s / 140 / p16 ZG3b/M-Bus		B016/565
TA Di 8 GE 120 m/s / 140 / p16 ZG3b	B016/505-120M/S	
TA Di 8 GE 120 m/s / 140 / p16 ZG3b/M-Bus		B016/565-120M/S
TA Di 8 GE 150 m/s / 140 / p16 ZG3b	B016/505-150M/S	
TA Di 8 GE 150 m/s / 140 / p16 ZG3b/M-Bus		B016/565-150M/S
TA Di 16 GE 60 m/s / 140 / p16 ZG1b	B016/504	
TA Di 16 GE 60 m/s / 140 / p16 ZG1b/M-Bus		B016/564
TA Di 16 GE 120 m/s / 140 / p16 ZG1b	B016/504-120M/S	
TA Di 16 GE 120 m/s / 140 / p16 ZG1b/M-Bus		B016/564-120M/S
TA Di 16 GE 150 m/s / 140 / p16 ZG1b	B016/504-150M/S	
TA Di 16 GE 150 m/s / 140 / p16 ZG1b/M-Bus		B016/564-150M/S
TA Di 21,6 GE 60 m/s / 140 / p16 ZG1b	B016/500	
TA Di 21,6 GE 60 m/s / 140 / p16 ZG1b/M-Bus		B016/560
TA Di 21,6 GE 120 m/s / 140 / p16 ZG1b	B016/500-120M/S	
TA Di 21,6 GE 120 m/s / 140 / p16 ZG1b/M-Bus		B016/560-120M/S
TA Di 21,6 GE 150 m/s / 140 / p16 ZG1b	B016/500-150M/S	
TA Di 21,6 GE 150 m/s / 140 / p16 ZG1b/M-Bus		B016/560-150M/S
TA D: 27 2 05	D046/E04	
TA Di 27,2 GE 60 m/s / 140 / p16 ZG1b	B016/501	D016/F61
TA Di 27,2 GE 60 m/s / 140 / p16 ZG1b/M-Bus	D016/E01 120M/C	B016/561
TA Di 27,2 GE 120 m/s / 140 / p16 ZG1b	B016/501-120M/S	D016/E61 120M/C
TA Di 27,2 GE 120 m/s / 140 / p16 ZG1b/M-Bus TA Di 27,2 GE 150 m/s / 140 / p16 ZG1b	B016/501-150M/S	B016/561-120M/S
TA Di 27,2 GE 150 m/s / 140 / p16 ZG1b/M-Bus	D010/301-130M/3	B016/561-150M/S
TA DI 27,2 GL 130 III/S / 140 / p10 2G1b/M-bus		D010/301-130M/3
TA Di 35,9 GE 60 m/s / 140 / p16 ZG1b	B016/502	
TA Di 35,9 GE 60 m/s / 140 / p16 ZG1b/M-Bus	5010/302	B016/562
TA Di 35,9 GE 120 m/s / 140 / p16 ZG1b	B016/502-120M/S	5010/302
TA Di 35,9 GE 120 m/s / 140 / p16 ZG1b/M-Bus	3010,302 12011,3	B016/562-120M/S
TA Di 35,9 GE 150 m/s / 140 / p16 ZG1b	B016/502-150M/S	3010,001 12011,0
TA Di 35,9 GE 150 m/s / 140 / p16 ZG1b/M-Bus		B016/562-150M/S
, , , , , , , , , , , , , , , , , , , ,		.,
TA Di 41,8 GE 60 m/s / 140 / p16 ZG1b	B016/503	
TA Di 41,8 GE 60 m/s / 140 / p16 ZG1b/M-Bus		B016/563
TA Di 41,8 GE 120 m/s / 140 / p16 ZG1b	B016/503-120M/S	
TA Di 41,8 GE 120 m/s / 140 / p16 ZG1b/M-Bus		B016/563-120M/S
TA Di 41,8 GE 150 m/s / 140 / p16 ZG1b	B016/503-150M/S	
TA Di 41,8 GE 150 m/s / 140 / p16 ZG1b/M-Bus		B016/563-150M/S

(1) Sensortyp / Bauform

Thermischer Strömungssensor TA Di in der Bauform als Messrohr

(2) Abmessungen			
Messrohr- Innen-Ø Di [mm]	Baulänge L [mm]	Bauhöhe h [mm]	Rohrverbindung beidseitig
8,0	80 mm + SRV *	95	durch bauseitige Rohre 12 x 2 mm
16,0	480	95	Ag R 1/2" ** Gg RP 1/2"
21,6	650	100	Ag R 3/4" ** Gg RP 3/4"
27,2	820	100	Ag R 1" ** Gg RP 1"
35,9	1080	100	Ag R 1 1/4" ** Gg RP 1 1/4"
41,8	1250	105	Ag R 1 1/2" ** Gg RP 1 1/2"

SRV : beidseitig Schneidringverschraubungen
Ag : kegeliges Whitworth-Außengewinde gemäß DIN 2999

: Gegengewinde

Ein-/Auslaufstrecke

für TA Di 8 bauseits vorzusehen, Rohre 12 x 2 mm, 160 mm (Einlauf) / 80 mm (Auslauf) gerade verlegt; bei allen anderen Messrohren ist bauseits keine zusätzliche Ein-/Auslaufstrecke erforderlich; Länge der Einlaufstrecke 2/3 der Baulänge L, Länge der Auslaufstrecke 1/3 der Baulänge L

(3) Messgase

Luft, Reingase, Gasgemische mit gleichbleibendem Mischungsverhältnis

(4) Mediumberührte Werkstoffe

Edelstahl, Glas, Epoxidharz, Viton®

(5) Messbereiche* Luft/Stickstoff					
Basistyp / Messbereich	in m³/h	in kg/h	in I/min	in m/s	1 m³/h ent- spricht [m/s]
TA Di 8					
60 m/s	0,04 11	0,05 13	0,6 181	0,2 60	5,53
120 m/s	0,04 22	0,05 26	0,6 362	0,2120	5,53
150 m/s	0,04 27	0,05 33	0,6 452	0,2150	5,53
TA Di 16					
60 m/s	0,15 43	0,18 52	2,4 729	0,2 60	1,38
120 m/s	0,15 86	0,18 104	2,4 1448	0,2120	1,38
150 m/s	0,15 109	0,18130	2,4 1810	0,2150	1,38

(5) Messbereiche*	Luft/Stickstoff	(Fortsetzung)			
Basistyp / Messbereich	in m³/h	in kg/h	in I/min	in m/s	1 m³/h ent- spricht [m/s]
TA Di 21,6					
60 m/s	0,27 79	0,32 95	4,4 1319	0,2 60	0,758
120 m/s	0,27 158	0,32190	4,4 2638	0,2120	0,758
150 m/s	0,27 198	0,32 238	4,4 3298	0,2150	0,758
TA Di 27,2					
60 m/s	0,42 125	0,50151	7,0 2092	0,2 60	0,478
120 m/s	0,42 250	0,50 300	7,0 4184	0,2120	0,478
150 m/s	0,42 314	0,50 377	7,0 5230	0,2 150	0,478
TA Di 35,9					
60 m/s	0,73 219	0,88 263	12,1 3644	0,2 60	0,274
120 m/s	0,73438	0,88 526	12,1 7288	0,2120	0,274
150 m/s	0,73 547	0,88657	12,1 9110	0,2150	0,274
TA Di 41,8					
60 m/s	1,0 296	1,2 356	16,5 4949	0,2 60	0,202
120 m/s	1,0 592	1,2712	16,5 9880	0,2120	0,202
150 m/s	1,0741	1,2890	16,5 12350	0,2 150	0,202

alle Norm-Volumenstrom- und Norm-Strömungsgeschwindigkeitsangaben in Bezug auf einen Normdruck $p_N = 1014$ hPa u. eine Normtemperatur $t_P = +21$ °C (294,15 K)

Messunsicherheit / Zeitkonstante / Dämpfung

Messunsicherheit für Durchflüsse NV/t bei 1014 hPa und +21 °C

kleiner/gleich 40 m/s : 2 % v. M. + 0,02 m/s

größer 40 m/s : 2,5 % v. M.

Zeitkonstante (bei U10a) : einstellbar auf 1 s und Mehrfaches Dämpfung (bei U10M) : einstellbar auf 0,5 s und Mehrfaches

Hinterlegung einer Kennlinie für den Einsatz in anderen Messgasen			
basierend auf	Artikel-Nr.		
Kalibrierung in Luft und Umrechnung der Luft-Kennline für ein anderes Mess- gas, bis 60 m/s	TA_TRANSFO (auf Anfrage)		
Realgas-Kalibrierung zur Realisierung kleinster Messunsicherheiten	(auf Anfrage)		

(6) Zulässige Temperatur		
Medium	-10 +140 °C	
Umgebung	-25 +50 °C -5 +50 °C	bei Option 'LCD-Anzeige'

(7) Druckbeständigkeit

max. 16 bar / 1,6 MPa Überdruck

Druckbeständigkeit größer 16 bar / 1,6 MPa auf Anfrage

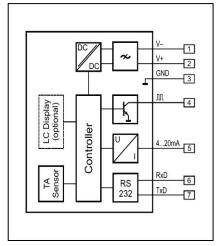
(8) Bauform	
TA Di 8	Messrohre mit Anschlussgehäuse und integriertem Messumformer U10a/U10M, gemäß Zeichnung 3b
TA Di 16 41,8	Messrohre mit Anschlussgehäuse und integriertem Messumformer U10a/U10M, gemäß Zeichnung 1b

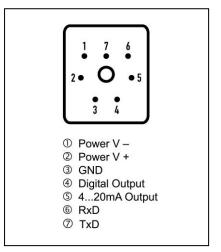
(9) Bussystem

Schutzart Sensor / Einbaulage

Schutzart Sensor IP68, IEC 529 und EN 60 529 Einbaulage frei bei atmosphärischem Druck, bei Überdruck Zuströmung nicht von oben

Anschlussgehäuse AS80	
Abmessungen	80 / 80 / 60 mm (L / B / H)
Anschluss	Steckverbinder GO 070 mit Schraubklemmen
Klemmenbelegung	s. Seite 6 (U10a) und Seite 7 (U10M)
Schutzart	IP65, IEC 529 und EN 60 529
Material	Aluminium, lackiert

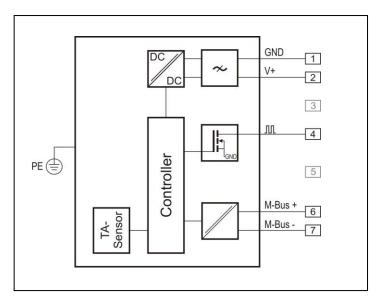

Ausführung Messumformer	U10a (4 20 mA), integriert im Sensor-Anschlussgehäuse
Analogausgang Strömung	4 20 mA (linear), Ausgabe im Sekundentakt Bürde max. 400 Ohm
Impuls-Ausgang	zur Mengenmessung, Open Collector / max. 30 V, 20 mA / Pulsdauer 0,5 s, max. Pulsfrequenz 1 Hz pro Volumeneinheit NV
PC-Schnittstelle	RS232
	Die Ausgangssignale sind galvanisch von der Versorgung getrennt
Anschluss	Gerätestecker mit Flansch GO 070 FAM am Anschlussgehäuse montiert, Leitungsdose GO 070 WF für Anschluss durch Schraubklemmen, für Leitungen mit Außendurchmesser 4 10 mm und Aderquerschnitten 0,14 0,5 mm²
Versorgung	24 V DC +/- 5 %
Leistungsaufnahme	kleiner 5 W, die Versorgungsleitungen sind galvanisch von den Anschlussleitungen entkoppelt
Gehäuse	Sensor-Anschlussgehäuse AS80
EMV	EN 61 000-6-2 und EN 61 000-6-4
Einstellparameter	Analogausgang, Zeitkonstante, Profilfaktor/Beiwert, Rohr- innendurchmesser, Mengen-Impuls, Betriebsdruck, Normbasis, Normdichte
Einstellparameter mit PC-So	ftware UCOM und Programmieradapter (s. u.) änderbar

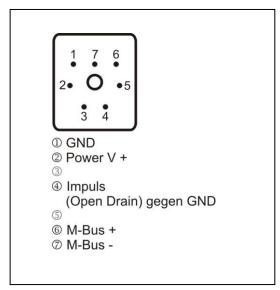


optionale LCD-Anzeige im Gehäusedeckel

Anschlussschema Umformer U10a

Anschlussbelegung Stecker GO 070


Ausführung Messumformer	U10M (M-Bus), integriert im Sensor-Anschlussgehäuse
Impuls-Ausgang	zur Mengenmessung, Open Drain gegen GND (Pin4) / max. 32 V, 20 mA / Pulsdauer 0,5 s, max. Pulsfrequenz 1 Hz pro Volumeneinheit NV Interne Strombegrenzung / Thermischer Überlastungsschutz
Anschluss	Gerätestecker mit Flansch GO 070 FAM am Anschluss- gehäuse montiert, Leitungsdose GO 070 WF für Anschluss durch Schraubklemmen, für Leitungen mit Außendurchmesser 4 10 mm und Aderquerschnitten 0,14 0,5 mm ²
Bussystem	M-Bus gemäß EN13757-2 und EN13757-3, Messgröße in NI/s, NI/min, NI/h, Nm³/s, Nm³/min, Nm³/h und kg/h, sowie Mengenzähler in Nm³ auslesbar, Busadresse (0) und Baudrate (2400) voreingestellt und per M-Bus änderbar, galvanisch entkoppelt
Versorgung	24 V DC +/- 10 %
Leistungsaufnahme	kleiner 2 W, die Versorgungsleitungen sind galvanisch von den Anschlussleitungen entkoppelt
Gehäuse	Sensor-Anschlussgehäuse AS80
EMV	EN 61 000-6-2 und EN 61 000-6-4
Einstellparameter	Physikalische Messgröße, Baudrate, Busadresse, Dämpfung, Profilfaktor/Beiwert, Rohrinnendurchmesser, Normbasis, Normdichte, Betriebsdruck, Mengen-Impuls, Grenzwert


Einstellparameter mit PC-Software UCOM (s. u.) änderbar

- Nach jedem Gerätestart legt die erste Kommunikation über den M-Bus das zu verwendende Protokoll fest. Die Umschaltung zwischen M-Bus-Protokoll und Zugriff per UCOM erfolgt durch Neustart des Gerätes.
- Parametrierung von Einzelgeräten im Bus via Software UCOM möglich
- Kommunikationsparameter für die Verwendung der UCOM-Software: 2400 Baud / Gerade Parität / 8 Datenbits / 1 Stopp-Bit / keine Flusskontrolle

Anschlussschema Umformer U10M

Anschlussbelegung Stecker GO 070

Optionen (nur bei U10a)			
	Beschreibung	Artikel-Nr.	
Örtliche LCD-Anzeige mit Mengenzähler	beleuchtet, eingebaut im Gehäusedeckel, 2 x 16 stellig, Ziffernhöhe 3 mm, Temperaturbeständigkeit -5 +50 °C, 1. Zeile Momentanwert (Volumenstrom) 2. Zeile Mengenzähler (Volumen)	A010/007	
Explosionsschutz Ex nA IIC T4 Gc X Ex tc IIIC T135°C Dc X	Kategorie 3G (Zone 2) (nur bei U10a) Kategorie 3D (Zone 22) (nur bei U10a)	TAEX2	

Zubehör		
	Beschreibung	Artikel-Nr.
PC Software UCOM	zur Konfiguration des Umformers über RS232 (U10a) oder M-Bus (U10M)	A010/052
Programmieradapter G0 070 / RS232	für Software UCOM, Anschluss PC Sub-D 9- polig, Steckernetzteil 230VAC/24VDC	A010/004
Schnittstellenkonverter USB / RS232	zur Verbindung von PC mit USB-Schnitt- stelle und Höntzsch Programmier-Adapter mit RS232-Schnittstelle, Anschluss PC: USB Stecker Typ A Anschluss ProgAdapter: Sub-D 9-polig	A010/100
Kalibrierzertifikat Nv	mind. 6 Standard-Kalibrierwerte	KLB

Höntzsch GmbH

Gottlieb-Daimler-Straße 37 D-71334 Waiblingen (Hegnach) Telefon +49 7151 / 17 16-0 Telefax +49 7151 / 5 84 02

E-Mail info@hoentzsch.com www.hoentzsch.com ®: Viton ist ein eingetragenes Warenzeichen von DuPont

Änderungen vorbehalten

