

Implementation of environmental legislation: E-flows under the EU Water Framework Directive

Rafaela Schinegger, Daniel Hayes, Stefan Schmutz

Institute of Hydrobiology and Aquatic Ecosystem Management University of Natural Resources and Life Sciences, Vienna (BOKU)

Veronika Koller-Kreimel

Federal Ministry for Sustainability and Tourism, Austria (BMNT)

Delhi, 21.10.2019

How is the condition of European freshwaters?

Europe's waters are affected by several pressures
 → rivers especially by water pollution, water abstraction, droughts + floods.

Major physical modifications (e.g. channelisation and barriers) also affect morphology and water flow.

© all images IHG

60

EEA, 2018 https://www.eea.europa.eu/themes/water/european-waters/water-guality-and-water-assessment/water-assessments

Water abstraction: Status in Austria

More than 3,000 water abstraction/diversion points (70% due to hydropower) More than 4,400 river km impacted by residual flow 80 Kilometers

Map: D.S. Hayes, Data source: Federal Ministry of Sustainability and Tourism: National River Basin Management Plan (2015).

EU Water Framework Directive (WFD)

• Is a European Union directive from the year 2000

→ "commits all European Union member states to **achieve good qualitative and quantitative status** of all water bodies" by 2015, while

- preventing deterioration of water status and
- to protect human health, water supply, natural ecosystems and biodiversity.

→ Steady trend of improvement is visible, but more is required.

WFD is also a framework that prescribes steps

 → e.g. with River Basin Management Plans (RBMs) etc.
 to reach this common goal.

WFD principle

Europe's waters need to achieve the good ecological status
 → this is measured via biological quality elements

WFD implementation timeframe (RBM)

https://ec.europa.eu/environment/water/blueprint

Figure: Ramos et al. (2018). Water resources management, 32(15), 5115-5149.

https://ec.europa.eu/environment/water/participation/map_mc/map.htm

Conflicting European Directives

WFD RES-e **European Water Framework Directive European Renewable Energy** Directive 2000/60/EC Directive 2009/28/EC **Objectives: Objectives: Good ecological status** Increase share of energy from of all water bodies renewable sources and with target no deterioration of status figures for 2020 for each MS

 Plus other related EU legislation: Common Agricultural Policy (CAP), Habitats Directive (92/43/EEC) and Birds Directive (2009/147/EC) (i.e. Natura 2000), Floods Directive (2007/60/EC) etc.

WFD: 2000/60/EC; https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32000L0060 RES: 2009/28/EC; https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028

Main pressures related to hydropower/ water storage in Europe

- Water abstraction, transfer to/storage in a reservoir
 - \rightarrow resulting in depleted river stretches downstream
 - \rightarrow reduced flow quantity and dynamics

Hydro peaking

→ causing artificial rapid flow/water level fluctuations downstream

- \rightarrow extreme low flow and sudden high flow situations
- \rightarrow differing significantly from natural flow change

© speyfisheryboard.com

© chicagotribune.com

Halleraker et al., 2016; ECOSTAT report https://ec.europa.eu/jrc/en/publication/working-group-ecostat-report-common-understanding-using-mitigation-measures-reaching-good-ecological

© verbund.com

Main flow alterations to be mitigated in European water bodies

- Artificially extreme low flows or extended low flows in rivers downstream of water intake/large dam/reservoir
- Inadequate fish flows for long distance migratory species to trigger fish migration
- Loss, reduction or absence of variable flows (flow dynamics) for flushing
- **Rapidly changing flows** (including effects of hydro peaking)

Halleraker et al., 2016; ECOSTAT report

https://ec.europa.eu/irc/en/publication/working-group-ecostat-report-common-understanding-using-mitigation-measures-reaching-good-ecological

Mitigation for low flow

Mitigation for fish flow

Mitigation for

rapidly changing flows

European Guidance Document on ecological flows (2015)

Main goal:

• Stimulate a common uptake of ecological flows:

" A hydrological regime **consistent with the achievement of environmental objectives** of the Water Framework Directive"

Main conclusion:

 Careful assessment of hydrological needs together with mitigation measures to improve flow/ecological conditions is required

CIS Guidance Document No. 31: https://circabc.europa.eu/sd/a/4063d635-957b-4b6f-bfd4-b51b0acb2570/Guidance%20No%2031%20-%20Ecological%20flows%20(final%20version).pdf

European Guidance Document on ecological flows (2015)

Quantity and dynamics of flow are crucial elements for the achievement of the WFD environmental objectives, which refer to:

- Non-deterioration of existing status
- Achievement of good ecological status in a natural surface water body
- Assessment/mitigation of pressures that cause a deviation from good status

[©] Wikipedia Commons

© shutterstock.com · 1480367876

© bmnt.gv.at

Recommendations for EU member states

National methodologies or guidelines should include:

- <u>Conceptual definition</u> of e-flows with clear reference to <u>flow quantity and dynamics</u>
- E-flows as a binding requirement
- Methodological approach and <u>methods for e-flow determination</u>
- Data required for e-flows determination
- Requirements for <u>monitoring and reporting</u> to the competent authorities
- Requirements to ensure the <u>transparency of methodologies and results</u> to all interested parties, including water users

Measures for EU member states

- Hydrological measures for impacting uses and activities
 → Targeting drivers and pressures causing the flow alteration.
- Improving knowledge and prioritisation
 → Better understanding of ecosystems' flow requirements to set consistent and effective ecological flows.
- Combining with non-hydrological measures

→ Supplementary measures in addition to basic measures regarding environmental objectives, e.g. negotiated environmental agreements, recreation and restoration of wetlands areas, demand management etc.

EXAMPLE: E-flows in Austria The Quality Objective Ordinance Ecology (2010)

BUNDESGESETZBLATT			
FÜR DIE REPUBLIK ÖSTERREICH Jahrgang 2010 Ausgrgeben am 29. März 2010 Teil II 99. Verorhung: Qualificationerwinnen Okolegie Oberflächungewäiser - Q2V Qualificationerwinnen mennen me		Natural mean annual flow	
9. Verorbage de Bandeninistere far Land- und Festreirtichaft, Unswirt and Wiscowinschaft der die Festergang des Akaderschen Zestanden für Oblager 603 Mart (Zuhlichtentertertertertung Gelager Oberlächungenisten – QEV Oblager 603 Mart Grauf and 50 Ab 2.2 Jul 34 de Nursenstegneten 1989, 2018. 2013. niet		< 1 m³/s	> 1 m³/s
<text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><list-item><list-item><list-item><section-header></section-header></list-item></list-item></list-item></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text>		> Lowest daily flow (natural)	
	Minimum flow	> 50%	> 33%
		mean annual low flow	mean annual low flow
	Dynamic flow	20% of actual flow	

Dynamic flow to ensure:

- Seasonality of natural relocation and type-specific composition of sediments
- Sufficient flow during spawning migration
- Diversity of type-specific, seasonal habitats (for different age stages)
- Type-specific conditions of oxygen and temperature

https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20006736

© Wikipedia Commons

Example for future perspective - EU level

Attempt by H2020 project AMBER (Parasiewicz et al., 2019)

\rightarrow Model that responds at biologically relevant scales

- Quantitative assessment of flows and biology
- Biological responses at reach and watershed scales
- Based on watersheds, not political boundaries
- Considers regional hydrogeography and seasonal changes

Pan-European River Types (Macrohabitats)

$\boldsymbol{Q}_{\boldsymbol{e}} = \boldsymbol{p} \cdot \boldsymbol{q} \cdot \boldsymbol{A}$

- Q_e = ecological instream flow rate (m³/s).
- **p** = bioperiod and fish ecological river type index.
- q = specific discharge at location (l/s·km²).
- **A** = catchment area at location.

https://amber.international

Linking Hydromorphology & Biology

Bussettini et al., 2019

https://library.wmo.int/doc_num.php?explnum_id=9808

Guidance on Environmental Flows

2019 edition

WORLD

WMO-No. 1235

METEOROLOGICAL ORGANIZATION

VEATHER CLIMATE WATER

Integrating E-flow Science with Fluvial Geomorphology to Maintain Ecosystem Services

Outlook & conclusions

More efforts required at EU/national level for

- implementation of environmental flows and related monitoring
- development of better link between environmental flows and biological indicators (Ramos et al., 2018)

Blending expertise to India is possible, especially regarding

- Basic principles of WFD/EU e-flow guidance
- Related adaptive management & processes
- Failures/mistakes made in Europe

www.icpdr.com

Unsustainable industries are lobbying for devastating changes to the EU water law

Posted on May 19, 2019 by Seppo

We are not perfect at all!

© Seppo Leinonen, seppo.net

Thank you for your kind attention!

DANUBE River upstream of Vienna, © R. Schinegger

