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Semigroups of L-space knots and

nonalgebraic iterated torus knots

Shida Wang

Algebraic knots are known to be iterated torus knots and to admit
L-space surgeries. However, Hedden proved that there are iterated
torus knots that admit L-space surgeries but are not algebraic. We
present an infinite family of such examples, with the additional
property that no nontrivial linear combination of knots in this
family is concordant to a linear combination of algebraic knots. The
proof uses the Ozsváth-Stipsicz-Szabó Upsilon function, and also
introduces a new invariant of L-space knots, the formal semigroup.

1. Introduction

An algebraic knot K can be defined to be the connected link of an iso-
lated singularity of a complex curve in C2 [Wal04, EN85]. All such knots
are iterated torus knots but not vice versa [EN85, p.52] (we only consider
positively iterated torus knots in this paper). To be precise, an iterated torus
knot (((Tp1,q1)p2,q2) · · · )pm,qm is an algebraic knot if and only if the indices
satisfy qi+1 > piqipi+1 [EN85, Section 17a)].

To each algebraic knot, one can associate a numerical semigroup of
the nonnegative integers, denoted by SK . Initially this was done using the
analytic properties of the curve, but SK is determined by the Alexander
polynomial of K. For example, for the torus knot Tp,q, STp,q

= 〈p, q〉 ⊂ Z>0.
For algebraic knots, SK completely determines the Heegaard Floer
complex CFK∞(K).

By [Hed10, Theorem 1.10], algebraic knots are all L-space knots, a class
of knots defined using Heegaard Floer theory [OSz05]. In this paper we will
associate to each L-space knot what we call a formal semigroup SK , a subset
of Z>0, but now SK is not necessarily a semigroup. Again, SK is determined
by the Alexander polynomial of K and it determines CFK∞(K).

We will use formal semigroups and the Upsilon invariant recently defined
by Ozsváth, Stipsicz and Szabó in [OSS17] to show that many
such L-space knots are not algebraic. Going beyond this, we provide an
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infinite family of L-space iterated torus knots with the property that no
nontrivial linear combination of these knots is even concordant to a con-
nected sum of algebraic knots. In particular, letting C denote the smooth
concordance group and CA the subgroup generated by algebraic knots, we
prove the following:

Theorem 1.1. C/CA is infinitely generated.

Note that CA is also infinitely generated, even restricted to algebraically
slice knots [HKL12].

We will compute the Υ functions of this infinite family of L-space
iterated torus knots and prove they cannot be generated by Υ functions
of (n, n+ 1)-torus knots. Hence the following result of Feller and
Krcatovitch [FK17, Proposition 2.2 and the paragraph before it], which is a
consequence of [BN16, Proposition 5.2.4], implies Theorem 1.1.

Theorem 1.2. The Υ function of any algebraic knot is a sum
of Υ functions of (n, n+ 1)-torus knots.

In the computation, we will observe the behavior of SK for L-space knots
under cabling operation (see Proposition 2.7).

Hedden proved that if K is an L-space knot and q > p(2g(K)− 1), then
the cable Kp,q is an L-space knot [Hed10, Theorem 1.10]. In [Hom11], Hom
proved that the converse is true.

Theorem 1.3. Assume that K ⊂ S3 is a nontrivial knot and p > 2.
The (p, q)-cable of a knot K is an L-space knot if and only if K is an
L-space knot and q > p(2g(K)− 1).

The above theorem indicates that the property of being an L-space knot
is preserved by most cabling operations. We will prove an analogue of this
theorem, which states that the property of being an L-space knot whose
formal semigroup is a semigroup is preserved by most cabling operations.

Theorem 1.4. Assume that K ⊂ S3 is a nontrivial knot and p > 2.
The (p, q)-cable of a knot K is an L-space knot with SKp,q

being a semi-
group if and only if K is an L-space knot with SK being a semigroup and
q > p(2g(K)− 1).
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2. Formal semigroups under cabling

2.1. Formal semigroups of L-space knots

Write Z>k := {m ∈ Z | m > k} and Z>k := {m ∈ Z | m > k}.
For any L-space knot K, we know that the Alexander polynomial

∆K(t) =
∑2n

i=0(−1)itαi , where 0=α0 < α1 < · · ·< α2n [OSz05, Theorem 1.2]
and α2n

2 = g(K) is the genus of K [OSz04, Theorem 1.2]. We will not use
the symmetrized Alexander polynomial.

Consider ∆K(t) as an element in the ring Z[[t]] of formal power series
with integer coefficients. Define the formal semigroup SK of the L-space
knot K to be the subset of Z>0 satisfying

∑
s∈SK

ts = ∆K(t)
1−t , where the

right-hand side is sometimes called the Alexander function. Since
∆K(t) =

∑2n
i=0(−1)itαi , it follows that

SK = {α0, . . . , α1 − 1, α2, . . . , α3 − 1, . . . , α2n−2, . . . , α2n−1 − 1, α2n}
∪ Z>α2n

.

Remark. (i) SK is denoted by ΓK in [BCG17].
(ii) α1 = 1. More generally, the (i+ 1)th element in SK is bounded below

by 2i for 0 6 i 6 g(K) [Krc14, Theorem 1.6].

Example 2.1. Let K be the torus knot T3,7.

∆K(t) =
(t21 − 1)(t− 1)

(t3 − 1)(t7 − 1)
= 1− t+ t3 − t4 + t6 − t8 + t9 − t11 + t12

= (1− t)

(
1 + t3 + t6 + t7 + t9 + t10 + t12 +

∑
s>12

ts

)
.

So SK = {0, 3, 6, 7, 9, 10, 12} ∪ Z>12 = 〈3, 7〉.

Lemma 2.2. ([Wal04]) For algebraic knots, SK is a semigroup, and it
equals the analytically defined semigroup of the link of singularity.

Remark. No matter whether SK is a semigroup, it is dual with respect to
2g(K)− 1. That is, s ∈ SK ⇔ 2g(K)− 1− s 6∈ SK . This follows from the
palindromicity of the symmetrized Alexander polynomial.

Example 2.3. ([BCG17, Example 2.3]) The pretzel knot P (−2, 3, 7) has
SK = {0, 3, 5, 7, 8, 10} ∪ Z>10, which is not a semigroup.
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Generally, for any odd integer n > 7 the pretzel knot P (−2, 3, n) is an
L-space knot [OSz05]. By a recursive formula for the Alexander polyno-
mial of (−2, 3, n)–pretzel knots (cf. [GK12, Equation (1−3)]), one can verify
SP (−2,3,n) ∩ [0, 7] = {0, 3, 5, 7} for any n. So SP (−2,3,n) is not a semigroup.

2.2. The cabling formula

Let K be a nontrivial L-space knot. We will give a formula in Proposition 2.7
and use it to prove the following statement. This statement, together with
Theorem 1.3, proves Theorem 1.4.

Theorem 2.4. Let K be a nontrivial L-space knot and q > p(2g(K)− 1).
Then SK is a semigroup if and only if SKp,q

is a semigroup.

Then it is easy to show the following consequence.

Corollary 2.5. If an L-space knot K is an iterated torus knot, then SK is
a semigroup.

Example 2.6. Let K = (T2,3)2,k where k is an odd integer. Then K is an
L-space knot if k > 3. Additionally, K is an algebraic knot if and only if
k > 13 [EN85, Section 17a)]. So if 3 6 k < 13, then K is not an algebraic
knot but SK is still a semigroup.

Theorem 2.4 is based on the following fact.

Proposition 2.7 (Cabling formula). Let K be a nontrivial L-space
knot. Suppose p > 2 and q > p(2g(K)− 1). Then

SKp,q
= pSK + qZ>0 := {pa+ qb | a ∈ SK , b ∈ Z>0}.

Proof. Recall that ∆Kp,q
(t) = ∆K(tp)∆Tp,q

(t).

So
∆Kp,q

(t)
1− t =

∆K(tp)
1− t ·

(tpq − 1)(t− 1)
(tp − 1)(tq − 1)

=
∆K(tp)
1− tp ·

tpq − 1
tq − 1 .

By definition
∑

s∈SK
ts =

∆K(t)
1− t . Hence

∑
s∈pSK

ts =
∆K(tp)
1− tp . Observe

that t
pq − 1
tq − 1 = 1 + tq + · · ·+ t(p−1)q. Therefore

∆Kp,q
(t)

1− t
=

 ∑
s∈pSK

ts

 · (1 + tq + · · ·+ t(p−1)q).

By definition
∑

s∈SKp,q
ts = (

∑
s∈pSK

ts) · (1 + tq + · · ·+ t(p−1)q).
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Now  ∑
s∈pSK

ts

 · (1 + tq + · · ·+ t(p−1)q)

=
∑
s∈pSK

ts +
∑
s∈pSK

ts+q + · · ·+
∑
s∈pSK

ts+(p−1)q.

To show SKp,q
= pSK + qZ>0, it suffices to prove that pSK + qZ>0 is the

disjoint union of pSK , pSK + q, . . . , pSK + (p− 1)q.
The sets pSK , pSK + q, . . . , pSK + (p− 1)q must be pairwise disjoint.

Otherwise some term of
∑

s∈SKp,q
ts would have coefficient greater than 1.

Next, (pSK) ∪ (pSK + q) ∪ · · · ∪ (pSK + (p− 1)q) ⊂ pSK + qZ>0 clearly.
To prove (pSK) ∪ (pSK + q) ∪ · · · ∪ (pSK + (p− 1)q) ⊃ pSK + qZ>0,

let pa+ qb ∈ SK + qZ>0, where a ∈ SK , b ∈ Z>0. Suppose b = kp+ c
with k ∈ Z>0 and c ∈ {0, 1, . . . , p− 1}. Then pa+ qb = pa+ q(kp+ c)
= p(a+ kq) + cq. It suffices to show p(a+ kq) ∈ pSK . If k = 0, this is trivial.
If k > 0, then a+ kq > q > p(2g(K)− 1) > 2g(K), since we assumed p > 2.
Hence a+ kq ∈ SK by the fact that Z>2g(K) ⊂ SK . �

Proof of Theorem 2.4. The proof in the case of p = 1 is trivial. Assume p > 2.
If SK is a semigroup, then SKp,q

= pSK + qZ>0 is a semigroup.
If SK is not a semigroup, then since Z>2g(K) ⊂ SK , there are x, y ∈ SK

such that x+ y 6∈ SK and x+ y < 2g(K). So px, py ∈ SKp,q
. It suffices to

show px+ py 6∈ SKp,q
. Observe that px+ py = p(x+ y) 6 p(2g(K)− 1)

< q, where p(2g(K)− 1) 6= q because p and q are relatively prime. Thus,
if px+ py = pa+ qb for some a ∈ SK , b ∈ Z>0, then b must be 0. Therefore
px+ py = pa⇒ x+ y = a ∈ SK , which is impossible. �

Proof of Corollary 2.5. Suppose (((Tp1,q1)p2,q2) · · · )pm,qm is an L-space knot.
Then (((Tp1,q1)p2,q2) · · · )pk,qk is an L-space knot for k = 2, . . . ,m and
qk > pk(2g((((Tp1,q1)p2,q2) · · · )pk−1,qk−1

)− 1) by Theorem 1.3. Hence the con-
clusion follows from Theorem 2.4. �

Remark. In fact, Proposition 2.7 gives an algorithm to compute genera-
tors of SK for K = (((Tp1,q1)p2,q2) · · · )pm,qm . A set of generators is

{p1p2 · · · pm, q1p2 · · · pm, q2p3 · · · pm, . . . , qm−1pm, qm}.

It is natural to ask the following question.
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Question 2.8. Is there an L-space knot K with SK being a semigroup, but
K is not an iterated torus knot?

Similarly to the motivation of [LN15, Conjecture 1.3], if the answer is
“no”, then the surgery coefficient of any finite surgery on any hyperbolic
knot must be an integer by [LN15, Theorem 1.2].

The author did not find any examples for a “yes” answer by com-
puting Alexander polynomials for some L-space knots provided in [Vaf15]
and [Hom16].

3. A family of nonalgebraic L-space iterated torus Knots

The result in [Wan16] is for algebraic knots, but it can be generalized to
any L-space knot K with SK being a semigroup, as we will conclude in the
following subsection.

3.1. Review of the Upsilon invariant

We refer to [OSS17] for the definition of the Upsilon invariant. For our
purpose, we only need to know the following properties.

Theorem 3.1. ([OSS17, Section 1]) For each t ∈ [0, 2] there is a well-
defined knot invariant ΥK(t). Moreover, ΥK(t) satisfies the following prop-
erties:

(i) ΥK(t) is a piecewise linear function in t on [0, 2].

(ii) ΥK(t) = ΥK(2− t).

(iii) Υ−K(t) = −ΥK(t) and ΥK1#K2
(t) = ΥK1

(t) + ΥK2
(t).

(iv) ΥK(t) = 0 if K is smoothly slice.

(v) t0
2 ∆Υ′K(t0) is an integer for any t0 ∈ (0, 2), where

Υ′K(t0) := lim
t→t0+

Υ′K(t)− lim
t→t0−

Υ′K(t).

In [OSS17, Theorem 6.2], the Upsilon invariant of L-space knots is com-
puted in terms of the Alexander polynomial.

Alternatively, the Upsilon invariant can be expressed in terms of formal
semigroups for L-space knots as follows, which was first stated in [BL16,
Proposition 4.4] for algebraic knots.
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Proposition 3.2. Let K be an L-space knot with genus g and S be the
corresponding formal semigroup. Then for any t ∈ [0, 2] we have

ΥK(t) = max
m∈{0,...,2g}

{−2#(S ∩ [0,m))− t(g −m)}.

The location of the first singularity (the discontinuity of the derivative)
of the Upsilon invariant for algebraic knots is given in [Wan16, Theorem 8].
This can be easily generalized to L-space knots with semigroups.

Theorem 3.3. Let K be an L-space knot with genus g. If SK is a semigroup
and the least nonzero element of SK is a, then ΥK(t) = −gt for t ∈ [0, 2

a ]
and ΥK(t) > −gt for t > 2

a .

To see this, note that [Wan16, Lemma 10] is true since S there is a
semigroup. Hence the same conclusion carries over to the more general case
here.

3.2. Upsilon invariant of algebraic knots

Proposition 3.4. Let f(t) be a linear combination
∑
ciΥTni,ni+1

(t) where

ci ∈ Z. Then ∆f ′(2
p) = ∆f ′(4

p) for any odd integer p > 3.

Proof. Let n be any positive integer. According to [OSS17, Proposition 6.3],

∆Υ′Tn,n+1
(t) =

{
n for t = 2i

n , 0 < i < n

0 otherwise.

If p does not divide n, then neither 2
p nor 4

p belongs to the

set {2i
n

∣∣ 0 < i < n}. Hence ∆Υ′Tn,n+1
(2
p) = ∆Υ′Tn,n+1

(4
p) = 0. If n = kp for

some k ∈ Z>0, then both 2
p and 4

p belong to the set {2i
n

∣∣ 0 < i < n}. Hence

∆Υ′Tn,n+1
(2
p) = ∆Υ′Tn,n+1

(4
p) = n.

The conclusion follows from the fact that f(t) is a linear combination∑
ciΥTni,ni+1

(t). �

Using Theorem 1.2, we immediately obtain the following corollary.

Corollary 3.5. If K is an algebraic knot, then ∆Υ′K(2
p) = ∆Υ′K(4

p) for
any odd integer p > 3.
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3.3. A family of nonalgebraic knots

Now we will consider the family of knots {Jk}∞k=3 where Jk = (T2,3)k,2k−1. By
Proposition 2.7, the formal semigroup SJk

= 〈2k − 1, 2k, 3k〉. The following
corollary is an easy consequence of Theorem 3.3.

Corollary 3.6. ΥJk
(t) = −g(Jk) t for t ∈ [0, 2

2k−1 ] and ΥJk
(t) > −g(Jk) t

for t > 2
2k−1 .

The first singularity of ΥJk
(t) is at t = 2

2k−1 . We will show that the

second singularity is at t = 4
k+1 .

Lemma 3.7. ΥJk
(t) = −2− (g(Jk)− (2k − 1)) t for t ∈ [ 2

2k−1 ,
4

k+1 ] and

ΥJk
(t) > −6− (g(Jk)− 3k) t for t > 4

k+1 .

Proof. Fix the integer k > 3. Abbreviate g(Jk) = g, SJk
= S, ΥJk

= Υ.
Taking m = 2k − 1, we have the linear function

−2#(S ∩ [0,m))− t(g −m) = −2− (g − (2k − 1)) t.

So Υ(t) > −2− (g − (2k − 1)) t.
To show ΥJk

(t) 6 −2− (g − (2k − 1)) t on [ 2
2k−1 ,

4
k+1 ], we will consider

the cases of m = 0, 0 < m 6 2k − 1, m = 2k and m > 2k separately.
If m = 0, then

− 2#(S ∩ [0,m))− t(g −m)

= −g t 6 −g t+ (2k − 1)t− 2 = −2− (g − (2k − 1)) t

since t 6 2
2k−1 .

If 0 < m 6 2k − 1, then

−2#(S ∩ [0,m))− t(g −m) = −2− (g − (2k − 1)) t

since t 6 2
2k−1 .

If m = 2k, then

−2#(S ∩ [0,m))− t(g −m) = −4− (g − 2k) t

= −2− (g − (2k − 1)) t− 2 + 2t

6 −2− (g − (2k − 1)) t

since t 6 2.
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If m > 2k, this final case is the most delicate one. Here are the details.
We claim that (k + 1) (#(S ∩ [0,m))− 1) > 2(m− (2k − 1)).
This inequality can be simply verified as (k+1)(3−1)>2(m−(2k−1))

when m 6 3k = 2k−1 + (k+1). Without loss of generality, assume there is a
positive integer n such that 2k−1 + n(k+1) < m 6 2k−1 + (n+ 1)(k+1).
Since S is generated by 2k − 1, 2k and 3k, we have 0, 2k − 1, 2k, 3k ∈ S and
therefore 4k − 1, 4k, 5k − 1, 5k, 6k − 1, 6k, · · · ∈ S. Clearly 0, 2k − 1, 2k, 3k,
4k − 2, 4k − 1, 4k, 5k − 1, 5k, . . . , (2 + n)k − 1, (2 + n)k ∈ S ∩ [0,m). Thus
#(S ∩ [0,m)) > 2(n+ 1) + 1 and therefore

(k + 1) (#(S ∩ [0,m))− 1) > (k + 1)(2(n+ 1) + 1− 1)

= 2(2k − 1 + (n+ 1)(k + 1)− (2k − 1)) > 2(m− (2k − 1)).

The claim implies

− 2#(S ∩ [0,m))− t(g −m)

6 −2(
2(m− (2k − 1))

k + 1
+ 1)− tg + tm

6
−4(m− (2k − 1))

k + 1
− 2− gt+

4

k + 1
m

=
4(2k − 1)

k + 1
− 2− (g − (2k − 1)) t− (2k − 1)t

6
4(2k − 1)

k + 1
− 2− (g − (2k − 1)) t− (2k − 1)

4

k + 1
= −2− (g − (2k − 1)) t

since t 6 4
k+1 .

To prove the second part of the lemma, take m = 3k. Then

−2#(S ∩ [0,m))− t(g −m) = −6− (g − 3k) t.

So Υ(t) > −6− (g − 3k) t. �

Theorem 3.8. Let CA be the subgroup of C generated by algebraic knots and
G be any subgroup of C such that CA ⊂ G and Jk ∈ G,∀k > 3. Then {Jk}∞k=3

generates a Z∞ direct summand of G/CA.

Proof. By Theorem 3.1(v) and Corollary 3.5, we know that

λk : K 7→ 1

2k − 1
∆Υ′K

(
2

2k − 1

)
− 1

2k − 1
∆Υ′K

(
4

2k − 1

)
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is a well-defined homomorphism from G/CA to Z for any integer k > 2. By
Corollary 3.6 and Lemma 3.7, we know that λk(Jk) = 1 for any integer
k > 3. Additionally, λi(Jk) = 0, ∀i > k. Hence {Jk}∞k=3 generates a Z∞ direct
summand of G/CA by [OSS17, Lemma 6.4]. �

Summarizing, we have:

{algebraic knots}
⊂ {L-space iterated torus knots}
⊂ {L-space knots whose formal semigroup is a semigroup}

(by Corollary 2.5)

⊂ {L-space knots}.

The knots {Jk} lie in the first gap. Question 2.8 asks whether the second
gap is empty. Knots in Example 2.3 lie in the third gap.
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[OSS17] Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó, Concor-
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