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Abstract

Estimation theory is a key enabler in many of today’s electronic products, devices, and
industrial equipment. Among others, it provides the basis for efficient data estimation in
communication systems, accurate characterization of systems based on measurements,
estimation of parameters, signals and spectra, signal tracking, or noise cancellation, to
name just a few. The estimation task can be described in a classical or in a Bayesian
framework. In classical estimation the parameter vector to be estimated is considered
to be deterministic. Conversely, Bayesian estimators consider the parameter vector to
be random. This allows to include prior knowledge in form of statistics of the parameter
vector into the estimation problem.

Due to the ever-increasing complexity and the more demanding applications of modern
electronic systems, optimal or near-to-optimal performance of the estimation methods
is often required. To achieve such an optimal performance, every available information
about the underlying system model should be incorporated by the estimators. Ulti-
mately, however, additional model knowledge is present in many applications. This
model knowledge is often ignored when developing the estimators. Possible examples of
additional model knowledge are:

� the knowledge that the parameter vector of length n lies in a linear subspace of
Cn,

� the knowledge that the parameter vector fulfills additional linear constraints,

� the knowledge that the parameter vector is real-valued while the measurements
and the measurement noise are complex-valued,

� and the knowledge that the measurement matrix is subject to an unknown random
error with known second order statistics.

For the first three cases, several knowledge-aided classical estimators are proposed in this
thesis that incorporate the available model knowledge in an optimal way. Simulation
examples are presented demonstrating the performance gain of the derived estimators
compared to state-of-the-art estimators. Moreover, the derived estimators also are com-
pared to intuitive estimators that incorporate the additional model knowledge in an
intuitive manner. It turns out that the derived optimal estimators significantly outper-
form these intuitive estimators as well as state-of-the-art estimators in many scenarios.
For the fourth case of additional model knowledge, a novel iterative algorithm is pro-
posed. It is shown that this algorithm outperforms competing algorithms significantly
in many scenarios.

Another difference between the classical and Bayesian approaches is the considered unbi-
ased constraint. We discuss the fact that the unbiased constraint utilized by state-of-the-
art Bayesian estimators is weaker than that utilized by unbiased classical estimators. We
furthermore show that this weaker unbiased constraint is the key enabler for Bayesian
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estimators to incorporate statistics about the unknown parameter vector into the estima-
tion process. Based on that, we investigate the so called component-wise conditionally
unbiasedness constraints. It will be shown, that these unbiased constraints preserve the
intuitive view of unbiasedness also in Bayesian scenarios. Next, this thesis focusses on
the class of so called component-wise conditionally unbiased Bayesian estimators. We
will extend previous work on this type of estimator and extend the concept to widely lin-
ear estimators. The effects of these unbiased constraints, the relation to other Bayesian
estimators and the ability to incorporate statistics about the unknown parameter vector
are discussed.

Based on the performance gain achievable by classical estimators incorporating addi-
tional model knowledge, we derive adaptive filters that also incorporate such model
knowledge in an optimal way. These knowledge-aided adaptive filters are compared
with intuitive as well as state-of-the-art adaptive filters, where again a significant per-
formance boost is achieved in many scenarios. Furthermore, adaptive filters for the task
of system identification are developed that allow incorporating prior knowledge about the
impulse response of the system. Existing and newly proposed adaptive filters utilizing
prior knowledge are discussed and compared.
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Kurzfassung

Die Schätztheorie ist ein Schlüsselfaktor für viele der heutigen elektronischen Produkte,
Geräte und Industrieanlagen. Unter anderem stellt diese Algorithmen zur effizienten
Datenschätzung in Kommunikationssystemen, zur genauen Charakterisierung von Sys-
temen basierend auf Messungen, Schätzung von Parametern, Signalen und Spektren,
Signalverfolgung oder Rauschunterdrückung, zur Verfügung, um nur einige zu nennen.
Die Schätzaufgabe kann in einem klassischen oder in einem Bayes’schen Rahmen for-
muliert werden. In der klassischen Schätzung wird der zu schätzende Parametervektor
als deterministisch angesehen. Im Gegensatz dazu betrachten Bayes‘sche Schätzer den
Parametervektor als zufällig. Dies ermöglicht es, Vorkenntnisse in Form von Statistiken
des Parametervektors in das Schätzproblem einzubeziehen.

Aufgrund der ständig zunehmenden Komplexität und der anspruchsvolleren Anwen-
dungen moderner elektronischer Systeme ist oft eine optimale oder nahezu optimale
Performance der Schätzverfahren erforderlich. Um eine solche optimale Performance
zu erzielen sollten alle verfügbaren Informationen über das zugrundeliegende System-
modell von den Schätzern einbezogen werden. In vielen Anwendungen ist tatsächlich
zusätzliches Modellwissen vorhanden. Dieses Modellwissen wird bei der Entwicklung
der Schätzer jedoch oft ignoriert. Mögliche Beispiele für zusätzliches Modellwissen sind
die Kenntnis,

� dass der Parametervektor der Länge n in einem linearen Unterraum von Cn liegt,

� dass der Parametervektor zusätzliche lineare Bedingungen erfüllt,

� dass der Parametervektor reellwertig ist während die Messungen und das Mess-
rauschen komplexwertig sind,

� dass die Verbindung zwischen den Messungen und den Parametern durch Mess-
rauschen sowie durch eine zufällige Verzerrung mit bekannten Statistiken beein-
flusst wird.

Für die ersten drei der oben genannten Fälle werden in dieser Arbeit mehrere wissensun-
terstützte klassische Schätzer entwickelt, die dieses zusätzliche Modellwissen optimal
verarbeiten. Diese optimalen wissensunterstützten Schätzer werden mit Schätzern ver-
glichen, die das zusätzliche Modellwissen intuitiv verarbeiten. Es stellt sich heraus, dass
die hergeleiteten optimalen Schätzer die intuitiven Schätzer und Standard-Schätzer in
vielen Anwendungen deutlich in ihrer Performance übertreffen. Für den vierten Fall
von zusätzlichem Modellwissen wird ein neuer iterativer Algorithmus hergeleitet. Es
wird gezeigt, dass dieser Algorithmus konkurrierende Algorithmen in vielen Szenarien
deutlich in der Schätzgenauigkeit übertrifft.

Ein weiterer Unterschied zwischen dem klassischen und dem Bayes‘schen Ansatz ist die
zugrundeliegende Definition eines erwartungstreuen Schätzers. Wir diskutieren die Tat-
sache, dass die Bedingung der Erwartungstreue, die von Bayes’schen Schätzern verwen-
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det wird, schwächer ist als die, die von erwartungstreuen klassischen Schätzern verwendet
wird. Wir zeigen außerdem, dass diese schwächere Bedingung der Erwartungstreue der
Schlüssel dafür ist, dass Bayes‘sche Schätzer Statistiken über den unbekannten Parame-
tervektor in den Schätzprozess einbeziehen können. Darauf aufbauend untersuchen wir
Bedingungen für die sogenannte komponentenweise bedingte Erwartungstreue (engl.:
component-wise conditionally unbiased (CWCU) constraints). Es wird gezeigt, dass die
zugrundeliegenden CWCU Bedingungen die intuitive Sicht der Erwartungstreue auch in
Bayes’schen Szenarien bewahren. Als nächstes konzentrieren wir uns die Gruppe der
sogenannten CWCU Bayes‘schen Schätzer. Wir werden bisherige Arbeiten zu dieser
Art von Schätzern erweitern und das Konzept auf sogenannte widely linear Schätzer
ausweiten. Die Auswirkungen dieser CWCU Bedingungen, die Beziehung zu anderen
Bayes‘schen Schätzern und die Fähigkeit, Statistiken über den unbekannten Parameter-
vektor einzubauen, werden diskutiert.

Basierend auf der erhöhten Schätzgenauigkeit die durch klassische Schätzer erreicht
werden kann welche zusätzliches Modellwissen nutzen werden weiters adaptive Filter
hergeleitet, die ebenfalls zusätzliches Modellwissen auf optimale Weise einbeziehen. Diese
wissensunterstützten adaptiven Filter werden sowohl mit intuitiv entwickelten Filtern als
auch mit adaptiven Standard-Filter verglichen, wobei in vielen Szenarien wiederum eine
deutliche Erhöhung der Schätzgenauigkeit erreicht wird. Darüber hinaus werden adap-
tive Filter für System-Identifikations-Anwendungen untersucht die es erlauben ähnliche
statistische Vorkenntnisse über die zu schätzende Systemimpulsantwort einzubringen,
wie dies bei linearen Bayes‘schen Schätzern der Fall ist. Bekannte und neu entwickelte
adaptive Filter werden diskutiert und verglichen.
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1
Introduction

In signal processing, estimation is the task of approximating meaningful values that are
useful for further processing, for describing a system, or some other purpose [1]. These
values are usually called parameters or states, depending on the context. The estimates
of the unknown parameters are typically derived based on known measurements. Most
estimation techniques require knowledge about the connection between the measure-
ments and the parameters, which is usually described by the model. The most common
of all models is the linear model, where the measurements are linearly connected to the
parameters. Estimation tasks with an underlying linear model appear in a very broad
band of technical fields, e.g., radar, communications, control, biomedical engineering, im-
age and speech analysis. Many facts about estimation with an underlying linear model
are already derived and available in standard literature such as [1]. However, there still
exist some novel and exciting aspects that deserve investigation.

The estimation task can be done in different contexts [1]. The classical context (also
known as the frequentist context) treats the parameters as unknown but deterministic.
Here, the performance criterion is in most cases the mean square error (MSE) between
the estimated and true parameters, averaged over the probability density function (PDF)
of the measurements. The Bayesian context on the other hand treats the unknown pa-
rameters as random variables whose particular realizations have to be estimated. This
approach allows assigning statistics or even a full PDF to the parameters since they
represent random variables. These quantities are termed prior knowledge. By incorpo-
rating this prior knowledge into the estimation process, the performance in terms of the
MSE may be improved significantly. It turns out, however, that in general the MSE
performance depends on the actual realization of the parameters [1]. To obtain a per-
formance measure that is independent of the particular realization of the parameters,
the Bayesian mean square error (BMSE) is usually utilized. It corresponds to the MSE
when averaged over the PDF of the parameters.

Let us consider the linear model, which describes the linear connection between the
measurements and the parameters. These measurements as well as the parameters may
be considered real- or complex-valued. In this work, almost all investigations are carried
out for complex-valued quantities. Exceptions are mentioned explicitly. Complex-valued
models and signals appear in many technical areas. Prominent examples for complex-
valued signals are baseband signals in radar or communication applications. Some widely
used transformations that utilize complex-valued numbers are the Hilbert transform and
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1 Introduction

the fast Fourier transform (FFT) [2]. To represent complex-valued vectors and matrices,
we use the so-called augmented notation [3]. This representation has the advantage that
the results often appear in compact form. Moreover, structural similarities with the
expressions that occur for real-valued models and signals become apparent.

The outline of this thesis is as follows. Chapter 2 recapitulates the fundamental mathe-
matical concepts required in this work. There, the augmented notation is described as
well as an introduction to the Wirtinger calculus [4], and the Lagrange multiplier method
for the case of complex-valued variables [5,6] is provided. The novelty of this work is
presented in Chapters 3, 4, and 5. The focus of these three parts are knowledge-aided
concepts in classical estimation (Chapter 3), a rarely investigated Bayesian estimator
(Chapter 4), and knowledge-aided concepts in adaptive filtering (Chapter 5), respec-
tively. In the following, the main investigations of these three chapters are summarized.
Details as well as a discussion of the current state-of-the-art are provided at the beginning
of each chapter.

Knowledge-Aided Concepts in Classical Estimation

Chapter 3 starts by briefly reviewing standard classical estimators like the least squares
(LS) estimator, the best linear unbiased estimator (BLUE) [1] and the best widely linear
unbiased estimator (BWLUE) [2] for the linear model case. For these estimators we
then rigorously regard the commutation analysis over linear transformations. Most of
these properties can be found in standard literature, however, we find that the issue is
sometimes treated superficially in engineering literature.

The linear model in many cases implies that the measurement matrix and sometimes
the covariance matrix of the noise are known. Both quantities are incorporated, e.g.,
by the well-known classical BLUE. The main part of Chapter 3 deals with the investi-
gation and derivation of classical estimators that use additional model knowledge that
might be available in practice. The resulting optimal knowledge-aided estimators are
compared with competing standard and intuitive estimators. Four cases of additional
model knowledge are considered.

The first case of additional model knowledge is the knowledge that the parameter vector
of length n lies in a linear subspace of Cn. It is proven that standard classical estimators
such as the BLUE and the BWLUE can incorporate this additional knowledge in a
straightforward manner. On the other hand, for the LS estimator it is shown in this
thesis that a constrained LS estimator [1] is able to incorporate the additional model
knowledge. The linear constraints required for applying the constrained LS estimator
are derived.

Secondly, the knowledge that the parameter vector fulfills additional linear constraints
is considered. In that case, the constrained LS estimator is available as a standard
estimator. For the BLUE and the BWLUE, no corresponding extension exists in the
literature to the best of our knowledge. This gap is closed by proposing the constrained
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BLUE and the constrained BWLUE. These novel estimators incorporate the fact that the
parameter vector fulfills additional linear constraints allowing to increase the estimation
accuracy compared to the standard BLUE and BWLUE.

Thirdly, we regard problems for which it is known that the parameters are real-valued
while the measurements are complex-valued. If this is the case, applying the ordinary
BLUE in general results in complex-valued estimates, producing a systematic error. In
order to prevent this systematic error, several novel classical estimators are proposed
that incorporate this additional model knowledge in an optimal way. We show that by
incorporating the knowledge that the true parameters are real-valued, the estimator’s
performance can be increased significantly.

The fourth investigated case of additional model knowledge considers estimation tasks,
where the measurement matrix is not completely known but is subject to errors with
known error variances [7–12]. Typical practical applications are problems for which
the measurement matrix is e.g. a convolution matrix that is constructed based on an
imperfectly measured or estimated impulse response. Incorporating the error variances
into the estimation process allows to significantly increasing the estimation accuracy.
In this thesis, an iterative estimation algorithm is proposed that outperforms existing
algorithms.

For the first three mentioned cases of additional model knowledge, we derive optimal
estimators and compare them with standard estimators as well as trivial estimators
that incorporate the additional model knowledge in an intuitive way. For the forth
case optimality cannot be claimed, however, it is shown that the proposed algorithm
outperforms competing algorithms by far. Note that all mentioned cases of additional
model knowledge, if appropriate, usually directly follow from the physical circumstances
of the underlying problem. This makes this knowledge easy available once the model is
known. A summary of practical applications complete these investigations.

Component-Wise Conditionally Unbiased LMMSE and WLMMSE
Estimation

Chapter 4 deals with a particular class of Bayesian estimators, the so-called component-
wise conditionally unbiased (CWCU) estimators. In contrast to classical estimators,
Bayesian estimators consider the parameter vector to be random with known statis-
tics. These statistics are termed prior knowledge. This prior knowledge in many cases
allows to significantly improve the estimation accuracy compared to classical estima-
tors. Another difference between classical unbiased and typical Bayesian estimators is
the arising unbiased constraint. The unbiased constraint utilized by state-of-the-art
Bayesian estimators is weaker than that utilized by unbiased classical estimators. In
fact, the linear minimum mean square error (LMMSE) estimator and the widely linear
minimum mean square error (WLMMSE) estimator are conditionally biased. In light of
this, we investigate the CWCU constraints. It is shown that estimators fulfilling these
constraints in many cases also allow to incorporate prior knowledge into the estima-
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1 Introduction

tion process. Along with this, the intuitive view of classical unbiasedness is preserved
in Bayesian scenarios. Chapter 4 extends the results on component-wise conditionally
unbiased linear minimum mean square error (CWCU LMMSE) estimators as derived in
[13–15], and the component-wise conditionally unbiased widely linear minimum mean
square error (CWCU WLMMSE) estimator is introduced and derived for complex-valued
parameters as well as for real-valued parameters and complex-valued measurements. It
will be shown that the derived CWCU estimators are closely related to their LMMSE
and WLMMSE counterparts, but avoid some of their typical effects. These effects will
be discussed and examples where CWCU estimators can be beneficially employed are
presented.

Knowledge-Aided Concepts in Adaptive Filtering

In Chapter 5, the well-known least mean square (LMS) and recursive least squares (RLS)
adaptive filter algorithms are recapitulated and extended. These extensions can be
separated into two major parts.

In the first part, we incorporate the additional model knowledge, that the true filter
coefficients should be real-valued while the input and desired signal are complex-valued.
A practical example where this situation can arise is given in the simulation section
of this chapter, where the problem of transmit leakage in modern wireless transceivers
is considered. One way to extract and cancel the leakage signal is to use a so called
auxiliary receiver in parallel to the main receiver [16]. In such an application, however,
typically a fractional delay between the two receivers appears. Adaptive filters can
be used to estimate and compensate for this fractional delay. In this application the
input and desired signal are complex-valued while the optimum filter coefficients are
real-valued. In this thesis, novel extensions of the LMS and RLS algorithms that use
this additional model knowledge in an optimal way and that produce real-valued filter
coefficients are developed. These optimal filters are compared with state-of-the-art filters
as well as with trivial filters that incorporate the additional model knowledge in an
intuitive way. In the case of the LMS algorithm it turns out that the intuitive filter
corresponds to the optimal approach. In case of the RLS algorithm, however, the derived
optimal algorithm outperforms the intuitive filter significantly as will be demonstrated
in simulation examples.

In the second part, the system identification application of adaptive filters is considered.
In many applications prior statistical knowledge about the impulse response to be esti-
mated is available. An adaptive filter that is able to incorporate prior knowledge and
that is related to the RLS algorithm is the sequential LMMSE estimator in a filtering
setup. A similar extension based on the LMS algorithm has been derived in the context
of this doctoral thesis work. This algorithm allows to incorporate the first and second
order statistical moments about the impulse response to be estimated. It is shown that
these adaptive filters incorporating prior knowledge are able to reduce the convergence
time in the mean compared to their standard LMS and RLS counterparts.
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2
Prerequisites

This chapter summarizes the prerequisites required in the remainder of this work. We
begin with the notation and fundamental definitions.

2.1 Notation

Lower-case bold face variables (a, b,...) indicate vectors, and upper-case bold face
variables (A, B,...) indicate matrices. We further use R and C to denote the set of
real and complex numbers, respectively, (·)∗ to denote the complex conjugate, (·)T to
denote transposition, (·)H to denote conjugate transposition, In×n to denote the identity
matrix of size n×n, and 0m×n to denote the zero matrix of size m×n. If the dimensions
are clear from context we simply write I and 0. The subscript R of a vector or matrix
denotes its real part and the subscript I denotes its imaginary part, e.g., xR = Re{x}
and xI = Im{x}. E[·] denotes the expectation operator. In most of the cases, we use an
index to denote the averaging PDF, however, if the averaging PDF is clear from context
the index is sometimes omitted.

2.2 Augmented Form and Widely Linear Processing

This section recapitulates the preliminaries required to derive the linear and particularly
the widely linear estimators in this work. It is essentially a shortened version of the
corresponding parts in [2,3], where an excellent introduction to improper data and widely
linear processing can be found. It will turn out, that widely linear processing allows to
incorporate improper statistics into the estimation process, while standard complex-
valued processing only allows to incorporate proper statistics.

2.2.1 Linear and Widely Linear Transformations

We write a complex vector x ∈ CNx as x = xR + jxI, where xR = Re{x} ∈ RNx and
xI = Im{x} ∈ RNx . Based on that, we use two closely related representations. The first
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2 Prerequisites

representation is the real composite 2Nx-dimensional vector

xR =

[
xR

xI

]
∈ R2Nx , (2.1)

obtained by stacking xR on top of xI. The second representation is the complex aug-
mented vector

x =

[
x

x∗

]
, (2.2)

obtained by stacking x on top of its complex conjugate x∗. Augmented vectors are always
underlined. In much of our discussion, our focus will be on complex-valued quantities,
where we will be using x and its augmentation x.

The complex augmented vector x is related to the real composite vector xR as x = TNxxR
and xR = 1

2TH
Nx

x, where the real-to-complex transformation matrix

TNx =

[
I jI

I −jI

]
∈ C2Nx×2Nx (2.3)

is unitary up to a factor of 2, i.e., TNxTH
Nx

= TH
Nx

TNx = 2I. The complex augmented
vector x is obviously an equivalent redundant, but convenient representation of xR.

In the following, we consider widely linear transformations of the form

y = H1x + H2x
∗. (2.4)

The augmented version of y can easily found to be

y =

[
y

y∗

]
=

[
H1 H2

H∗2 H∗1

][
x

x∗

]
= H x. (2.5)

The matrix H is called an augmented matrix. It satisfies a particular block pattern,
where the south-east block is the conjugate of the north-west block, and where the
south-west block is the conjugate of the north-east block.

We now apply the concept of complex augmented vectors and matrices on the linear
model given by

y = H x + n, (2.6)

where H ∈ CNy×Nx is a known measurement matrix, x is the unknown parameter vector,
y ∈ CNy is the measurement vector, and n ∈ CNy is a zero mean noise vector statistically
independent of x. The augmented version of (2.6) is

y = H x + n, (2.7)

where

H =

[
H 0

0 H∗

]
, n =

[
n

n∗

]
. (2.8)
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2.2 Augmented Form and Widely Linear Processing

2.2.2 Statistics of Complex-Valued Random Vectors

In order to characterize the second-order statistical properties of x = xR + jxI, we start

by considering the real composite random vector xR =
[
xTR xTI

]T
. Its covariance matrix

is

CxRxR = ExR [(xR − ExR [xR])(xR − ExR [xR])T ] =

[
CxRxR CxRxI

CT
xRxI

CxIxI

]
(2.9)

with

CxRxR = ExR [(xR − ExR [xR])(xR − ExR [xR])T ] (2.10)

CxRxI = ExR,xI [(xR − ExR [xR])(xI − ExI [xI])
T ] (2.11)

CxIxI = ExI [(xI − ExI [xI])(xI − ExI [xI])
T ]. (2.12)

The augmented covariance matrix of x is defined as

Cxx = Ex[(x− Ex[x])(x− Ex[x])H ]. (2.13)

With the real-to-complex transformation matrix TNx we have

Cxx = TNxCxRxRTH
Nx

(2.14)

=

[
Cxx C̃xx

C̃∗xx C∗xx

]
= CH

xx ∈ C2Nx×2Nx , (2.15)

where

Cxx = Ex[(x− Ex[x])(x− Ex[x])H ] (2.16)

is the (Hermitian and positive semi-definite) covariance matrix, and where

C̃xx = Ex[(x− Ex[x])(x− Ex[x])T ] (2.17)

is the complementary covariance matrix. An equivalent expression to (2.14) is

CxRxR = =
1

4
TH
Nx

CxxTNx . (2.18)

For Cxx and C̃xx we have

Cxx = CxRxR + CxIxI + j(CT
xRxI

−CxRxI) = CH
xx, (2.19)

and
C̃xx = CxRxR −CxIxI + j(CT

xRxI
+ CxRxI) = C̃T

xx, (2.20)

respectively. C̃xx is sometimes also referred to as pseudo-covariance matrix or conjugate
covariance matrix. If C̃xx = 0, then the vector x is called proper, otherwise improper [17–
21]. The conditions for propriety on the covariance and cross-covariance of real and
imaginary parts xR and xI are CxRxR = CxIxI and CxRxI = −CT

xRxI
. When x =

9
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xR + jxI is scalar, then CxRxI = 0 is necessary for propriety. If x is proper, its Hermitian
covariance matrix is

Cxx = 2CxRxR − 2jCxRxI = 2CxIxI + 2jCT
xRxI

, (2.21)

and its augmented covariance matrix Cxx is block-diagonal. If a complex-valued scalar
x is proper, then Cxx = 2CxRxR = 2CxIxI . It is easy to see that propriety is preserved
by strictly linear transformations, which are represented by block-diagonal augmented
matrices.

2.2.3 Linear and Widely Linear Estimators

Let x ∈ CNx be the parameter vector to be estimated and y ∈ CNy be the measurement
vector. Then, a widely linear (or actually widely affine) estimator takes on the form

x̂ = Fy + Gy∗ + b, (2.22)

where F, G ∈ CNx×Ny and b ∈ CNx . Another way to express the estimator is its
augmented version

x̂ =

[
F G

G∗ F∗

][
y

y∗

]
+ b = Ey + b. (2.23)

For linear (or actually affine) estimators we have G = 0 such that x̂ = Fy + b.

It turns out that the augmented representation of widely linear estimators often shows
structural similarities to their linear counterparts. This is the main reason why we favor
the augmented form over the real composite representation. To motivate this further,
a demonstration is presented in form of the LMMSE estimator and the WLMMSE
estimator in the sequel. These estimators are discussed in detail in Chapter 4, thus we
only show the formal expressions for now. The LMMSE estimator is given by

x̂ = Ex[x] + CxyC−1
yy(y − Ey[y]). (2.24)

Its widely linear counterpart, the WLMMSE estimator, is most compactly written in
augmented form as [2,22]

x̂ = Ex[x] + CxyC−1
yy(y − Ey[y]). (2.25)

Note the elegant representation and the close notational similarity to the linear estimator
in (2.24).

2.2.4 Gaussian Random Vectors

To simplify notation we regard zero mean vectors in the following. The Gaussian PDF

of the real composite 2Nx-dimensional vector xR =
[
xTR xTI

]T
is [2,23]

p(xR) =
1

(2π)
2Nx

2
√

det CxRxR

exp

{
−1

2
xTRC−1

xRxRxR

}
. (2.26)

10



2.3 Wirtinger Calculus

Using xR = 1
2TH

Nx
x, C−1

xRxR = TH
Nx

C−1
xxTNx , and det CxRxR = 2−2Nx det Cxx, we obtain

the PDF of the complex-valued vector x as [24,25]

p(x) =
1

πNx
√

det Cxx

exp

{
−1

2
xHC−1

xxx

}
. (2.27)

Algebraically, this PDF depends on x, and thus on x and x∗, but is interpreted as the
joint PDF of xR and xI. It can be used for proper or improper x. In this work, we call
a complex vector x with the distribution in (2.27) generalized complex Gaussian. The
simplification that occurs when C̃xx = 0 is obvious and leads to the PDF of a complex
proper Gaussian random vector x as

p(x) =
1

πNx det Cxx
exp

{
−xHC−1

xxx
}
. (2.28)

If it holds that Ex[x] = 0 and Cxx = I we simply refer to (2.28) as standard proper
Gaussian PDF.

2.3 Wirtinger Calculus

When deriving an estimator it is often necessary to find the minimum of a real-valued
cost function. This can in many cases be done by setting the gradient of the cost function
equal to zero and derive the corresponding estimator. Matters turn more complicated
when the estimator, the quantity we are interested in, becomes complex-valued. Then,
the question is how the real-valued cost function can be differentiated w.r.t. this complex-
valued quantity. The key to tackle this problem was provided by Wirtinger in 1927 [4]. In
the following, we shortly summarize the main aspects of Wirtinger calculus. This section
is basically a shortened version of Appendix 2 in [2], which itself is based on [4,26,27].

A main result of classical1 complex analysis is that a complex-valued function is complex-
differentiable on its entire domain if and only if it is holomorphic. Since non-constant,
real-valued functions defined on the complex domain cannot be holomorphic, their clas-
sical complex derivations do not exist.

However, there exists a way to overcome this problem. Let the real-valued function
f be defined on Cn. By considering the real and imaginary parts of the n complex
variables as separate variables, then f is defined on R2n. If f is differentiable on R2n it
is termed real-differentiable. According to classical complex analysis, a real-differentiable
function is also complex-differentiable if and only if the Cauchy-Riemann equations hold.
For real-differentiable functions, Wilhelm Wirtinger showed a way to define a generalized
complex derivative which can also be conducted in situations where the Cauchy-Riemann
equations do not hold. This generalized complex derivative exists whenever f is real-
differentiable.

1Note that in this section the term ’classical’ is used to indicate complex analysis approaches for dif-
ferentiation without considering Wirtinger calculus and it is unrelated to classical estimation theory.
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In the following, the Wirtinger calculus is derived for the scalar case. An extension to
the vector case is presented afterwards.

Scalar Case

Let f be a real-valued scalar function of the complex-valued scalar x = xR + jxI. We

denote xR =
[
xR xI

]T
and write f(x) = f(xR) = f(xR, xI) for convenience. As

preparation for the generalized complex differential operator, we consider the task of

linearly approximating the function f(xR) around xR,0 =
[
xR,0 xI,0

]T
f(xR) ≈ f(xR,0) +∇xRf(xR,0)(xR − xR,0). (2.29)

∇xR is the real differential operator defined as the row vector

∇xRf(xR,0) =
[
∂f
∂xR

(xR,0) ∂f
∂xI

(xR,0)
]
. (2.30)

We note that in engineering literature, the gradient of a function is in many cases defined
to be a column vector. Whereas in mathematics literature a gradient is usually defined
to be a row vector. In this work, we define the gradient of a scalar valued function to
be a row vector as in (2.30) [2].

From xR, the augmented vector x =
[
x x∗

]T
is obtained via

x =

[
1 j

1 −j

]
xR = T1xR. (2.31)

By utilizing TH
1 T1 = T1T

H
1 = 2I, the right term in (2.29) reads as

∇xRf(xR,0)(xR − xR,0) =

(
1

2
∇xRf(xR,0)TH

1

)
(T1(xR − xR,0)) (2.32)

=

(
1

2
∇xRf(xR,0)TH

1

)
(x− x0). (2.33)

This result motivates the definition of the complex gradient as

∇xf(x0) =
1

2
∇xRf(xR,0)TH

1 (2.34)

=
[

1
2

(
∂f
∂xR
− j ∂f∂xI

)
(xR,0) 1

2

(
∂f
∂xR

+ j ∂f∂xI

)
(xR,0)

]
. (2.35)

Combining (2.33) and (2.35) reveals that the first operator in (2.35) is applied on x and
the second operator is applied on x∗. This motivates the definition of the generalized
complex differential operator as

∂

∂x
=

1

2

(
∂

∂xR
− j ∂

∂xI

)
(2.36)
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2.3 Wirtinger Calculus

and the conjugate generalized complex differential operator as

∂

∂x∗
=

1

2

(
∂

∂xR
+ j

∂

∂xI

)
, (2.37)

such that the gradient in (2.35) reads as

∇xf(x0) =
[
∂f
∂x (x0) ∂f

∂x∗ (x0)
]
. (2.38)

The results in (2.36) and (2.37) are sometimes referred to as Wirtinger derivative and
conjugate Wirtinger derivative, respectively. We use the plural form Wirtinger deriva-
tives to account for both expressions. The following short example reveals an interesting
effect when applying the Wirtinger derivatives.

Let f(x) be given by f(x) = |x|2 = xx∗. With f(x) = f(xR, xI) = x2
R +x2

I the Wirtinger
derivatives follow to

∂f(x)

∂x
=

1

2

(
∂

∂xR
− j ∂

∂xI

)
f(xR, xI) = xR − jxI = x∗ (2.39)

∂f(x)

∂x∗
=

1

2

(
∂

∂xR
+ j

∂

∂xI

)
f(xR, xI) = xR + jxI = x. (2.40)

This result is interesting since the same expressions can be derived by formally treating
x and x∗ as two independent variables. This suggests to treat x∗ as a constant when
applying ∂

∂x , and to treat x as a constant when applying ∂
∂x∗ . Following this guidance

leads to

∂f(x)

∂x
=

∂

∂x
(xx∗) = x∗ (2.41)

∂f(x)

∂x∗
=

∂

∂x∗
(xx∗) = x, (2.42)

which are equal to (2.39) and (2.40), respectively. Hence, the Wirtinger derivatives
(for this example) can be derived by treating x and x∗ as two independent variables.
Ultimately, it can be shown that this statement holds in general.

The frequent task in this work is to find the minimum of a real-valued cost function
f(xR). This can be done by setting the gradient equal to zero, i.e.

∇xRf(xR) =
[
∂f
∂xR

(xR) ∂f
∂xI

(xR)
]

!
=
[
0 0

]
. (2.43)

This implies setting two equations equal to zero and solving for xR. In many cases, sim-
pler minimizations processes and more compact analytical expressions result by utilizing
the Wirtinger derivatives. Considering the definition in (2.36), one can state that setting
the Wirtinger derivative equal to zero

∂f(x)

∂x
= 0 (2.44)

is equivalent to (2.43) but only requires to solve a single complex-valued equation.

13
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Although we focused on real-valued functions f(x) to demonstrate the need of general-
izing the complex differential operator, there is nothing in (2.29)–(2.42) that prevents
applying this concept to complex-valued functions. Hence, the Wirtinger derivatives
can be applied to complex-valued functions, too. It can easily be shown [2], that for a
holomorphic function, the Wirtinger derivative is the standard complex derivative.

Vector Case

Till now only the scalar case was investigated. For the vector case considered in the
following, we only show the main results and definitions here. Let f : CNx → C be a
complex-valued scalar function of the complex-valued vector x = xR + jxI. Further, let

xR =
[
xTR xTI

]T
. If Re{f(xR)} and Im{f(xR)} are both real-differentiable, the complex

gradient is a 1× 2Nx row vector given as

∇xf =
∂f

∂x
=
[
∂f
∂x

∂f
∂x∗

]
, (2.45)

where

∂f

∂x
=
[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xNx

]
, (2.46)

∂f

∂x∗
=
[
∂f
∂x∗1

∂f
∂x∗2

. . . ∂f
∂x∗Nx

]
. (2.47)

For f being a vector valued function f : CNx → Cm, the complex Jacobian is defined as
the m× 2Nx matrix

Jx =


∇xf1

∇xf2

...

∇xfm

. (2.48)

In the following, we list some rules and special cases for Wirtinger derivatives. By doing
so, we assume the arbitrary vectors a and b as well as the arbitrary matrix A are
independent of x and x∗. At first we consider the case f : CNx → C. Then, it holds that
[28]

∂

∂x
aHx = aH

∂

∂x∗
aHx = 0T , (2.49)

∂

∂x
xHa = 0T

∂

∂x∗
xHa = aT , (2.50)

∂

∂x
xTa = aT

∂

∂x∗
xTa = 0T , (2.51)

∂

∂x
xHAx = xHA

∂

∂x∗
xHAx = xTAT , (2.52)

∂

∂x
xTAx = xT

(
A + AT

) ∂

∂x∗
xTAx = 0T , (2.53)
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∂

∂x
exp

(
−1

2
xHA−1x

)
= −1

2
exp

(
−1

2
xHA−1x

)
xHA−1, (2.54)

∂

∂x
ln
(
xHAx

)
=
(
xHAx

)−1
xHA. (2.55)

For vector valued functions f : CNx → Cm it holds that

∂x

∂x
= I

∂x

∂x∗
= 0, (2.56)

∂x∗

∂x
= 0

∂x∗

∂x∗
= I, (2.57)

∂f∗

∂x∗
=

(
∂f

∂x

)∗ ∂f

∂x∗
=

(
∂f∗

∂x

)∗
. (2.58)

The chain rules for two real-differentiable vector valued functions f and g are given by

∂f(g)

∂x
=
∂f

∂g

∂g

∂x
+

∂f

∂g∗
∂g∗

∂x
, (2.59)

∂f(g)

∂x∗
=
∂f

∂g

∂g

∂x∗
+

∂f

∂g∗
∂g∗

∂x∗
. (2.60)

If f is real-valued

∂f

∂x∗
=

(
∂f

∂x

)∗
(2.61)

holds since f(x) = f∗(x). Furthermore, for a real-valued scalar function f the following
three conditions are equivalent

∇xf = 0T ⇐⇒ ∂f

∂x
= 0T ⇐⇒ ∂f

∂x∗
= 0T . (2.62)

As it will turn out later on, this result is important for finding local extrema of real-
valued cost functions defined on the complex domain. It shows that the same local
extrema are obtained when taking the derivative w.r.t. x or w.r.t. x∗.

2.4 Lagrange Multiplier Method for the Complex Case

Many of the estimators in this work are derived by minimizing a cost function subject to
some constraints. For such constrained optimization problems, the Lagrange multiplier
method can be used to find an optimal solution. This method is a well-known optimiza-
tion method, and can be found in many standard textbooks such as [29,30]. We consider
the Lagrange multiplier method to be known and focus on its complex extension [6] in
the following.

The task of optimizing a real-valued cost function J(x) subject to a constraint c(x) = 0
is formally written as

xopt = arg min
x
J(x) s.t. c(x) = 0 (2.63)
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and the Lagrangian cost function for real-valued constraints becomes

L(x) = J(x) + λT c(x), (2.64)

where (the real-valued) λ is called the Lagrange multiplier vector. While the cost function
J(x) is always real-valued in this work, the function c(x) is in general complex-valued.
In fact, this results in twice as many real-valued constraints, specifically

Re{c(x)} = 0 and Im{c(x)} = 0. (2.65)

Consequently, the appropriate Lagrangian cost function for this case reads as

L(x) = J(x) + λTRRe{c(x)}+ λTI Im{c(x)}. (2.66)

The complex-valued Lagrange multiplier vector is defined as λ = λR + jλI . Therewith,
(2.66) can be rewritten as

L(x) = J(x) +
1

2
λTR(c(x) + c∗(x)) +

1

2
λTI (c(x)− c∗(x)) (2.67)

= J(x) +
1

2

(
λTR + λTI

)
c(x) +

1

2

(
λTR − λTI

)
c∗(x) (2.68)

= J(x) +
1

4

(
λT + λH + λT − λH

)
c(x) +

1

4

(
λT + λH − λT + λH

)
c∗(x) (2.69)

= J(x) +
1

2
λT c(x) +

1

2
λHc∗(x) (2.70)

= J(x) +
1

2
λT c(x) +

1

2

(
λT c(x)

)∗
. (2.71)

This result shows that formally c(x) as well as its conjugate have to be inserted into the
Lagrangian cost function. We demonstrate the effects of this result with two upcoming
examples that will appear later in this work in similar forms (e.g. in Section 3.2.1 and
Section 3.4.1).

2.4.1 Linear Constraints

We optimize the real-valued cost function J(x) = xHAx with a Hermitian and invertible
matrix A subject to the complex-valued linear constraint Bx = b, where b ∈ CNb and
where B ∈ CNb×Nx is a complex-valued matrix with Nb < Nx and full row rank. Then,
the resulting optimization problem formally reads

xopt = arg min
x

xHAx s.t. Bx = b. (2.72)

The corresponding Lagrangian cost function is given by

L(x) = xHAx +
1

2
λT (Bx− b) +

1

2
λH(B∗x∗ − b∗). (2.73)

Taking the derivative w.r.t. x using the Wirtinger derivative yields

∂L(x)

∂x
= xHA +

1

2
λTB. (2.74)
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Setting this result equal to zero allows to identify xopt as

xHopt = − 1

2
λTBA−1, (2.75)

xopt = − 1

2
A−1BHλ∗. (2.76)

Inserting this result into the constraint Bx = b results in

−1

2
BA−1BHλ∗ = b. (2.77)

Due to the full row rank assumption of B, the expression BA−1BH in (2.77) is invertible
and allows

−1

2
λ∗ =

(
BA−1BH

)−1
b. (2.78)

Finally, reinserting into (2.76) yields

xopt = A−1BH
(
BA−1BH

)−1
b. (2.79)

Note that during the entire derivation the conjugate complex constraint in the La-
grangian cost function in (2.73) does not play a role. The reason for that is that this
term does not depend on x but only on x∗, making its derivative w.r.t. x vanishing. This
conjugate complex constraint is required when taking the derivative w.r.t. x∗. That is
allowed since the Lagrangian cost function is real-valued, which allows to apply the rule
in (2.62). Of course this would lead to the same result as in (2.79). Note further that
the entire derivation could have been performed without the terms 1

2 without changing
the result. In other words, one may define a new variable λ′ = 1

2λ to simplify the
expressions. This will be done for the remainder of this work.

2.4.2 A Special Case of Widely Linear Constraints

We now replace our linear constraint Bx = b by Bx + B∗x∗ = b, where again B ∈
CNb×Nx fulfills Nb < Nx and has full row rank. This constraint is frequently used in
this work and it results in the optimization problem

xopt = arg min
x

xHAx s.t. Bx + B∗x∗ = b. (2.80)

The left hand side of the constraint is always real-valued, which enforces b to be real-
valued, too. Thus, the Lagrangian cost function becomes

L(x) = xHAx + λT (Bx + B∗x∗ − b) (2.81)

with real λ since the introduction of an additional conjugate complex constraint as in
(2.71) is obsolete. Taking the Wirtinger derivative of (2.81) w.r.t. x yields

∂L(x)

∂x
= xHA + λTB. (2.82)
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Setting this result equal to zero allows to identify

xopt = −A−1BHλ. (2.83)

Inserting this result into the constraint results in

−BA−1BHλ−B∗(A∗)−1BTλ = b. (2.84)

Assuming invertability of BA−1BH + B∗(A∗)−1BT , λ can be identified as

−λ =
(
BA−1BH + B∗(A∗)−1BT

)−1
b. (2.85)

This result reinserted into (2.83) yields

xopt = A−1BH
(
BA−1BH + B∗(A∗)−1BT

)−1
b. (2.86)
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3
Knowledge-Aided Concepts in Classical

Estimation

This chapter focuses on aspects in classical estimation with an underlying linear model,
where the unknown parameter vector is considered to be deterministic. We start by
recapitulating the well-known LS and weighted least squares (WLS) estimators. Both
estimators are purely deterministic and do not incorporate any statistics. This is in
contrast to the BLUE and the BWLUE, which incorporate (augmented) second order
statistics of the noise. Subsequently, we recapitulate commutation properties of the
BLUE over linear transformations. Standard literature [1] states that the BLUE com-
mutes over rectangular transformation matrices B ∈ Cm×n with m ≤ n. For these cases,
a parameter vector with dimension n is estimated and then transformed into another
parameter vector with dimension m ≤ n. The investigations start with a related prob-
lem where it is known that the parameter vector of length n lies in a linear subspace of
Cn with dimension m and m < n. Let this subspace be spanned by the columns of the
full column rank matrix B′ ∈ Cn×m. A straight forward approach to incorporate this
additional model knowledge is to transform the estimated vector with length m into an
estimate of the parameter vector with length n using B′. An open question in standard
literature is whether the resulting estimate of the parameter vector is the BLUE or not.
In this work, it will be proven that this approach in fact produces the BLUE. For the
LS estimator on the other hand it is shown that a constrained LS estimator [1] is able
to incorporate the knowledge that the parameter vector lies in a linear subspace of Cn.
The linear constraints required for applying the constrained LS estimator are derived.

The contributions in this chapter continue with investigations of other possible sources
of additional model knowledge. For example sometimes it is known that the parameter
vector fulfills additional linear constraints. An example is the case where the parameter
vector describes the impulse response of a linear system that is unable to transmit
direct current (DC) signals. Then, the sum of the taps of the impulse response must be
zero, which can be reformulated as a linear constraint. In literature the constrained LS
estimator is available as a standard estimator for this case, however, to the best of our
knowledge constrained versions of the BLUE and the BWLUE have not been published
so far. In this work, this gap is closed by introducing the constrained BLUE and the
constrained BWLUE.

The next investigations consider the task of estimating a real-valued parameter vector,
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while the measurements shall remain complex-valued. A prominent example is estimat-
ing a real-valued impulse response of a system based on complex-valued measurements of
its frequency response [31]. Applying the ordinary BLUE for this task in general results
in complex-valued estimates, producing a systematic error. We propose several classi-
cal estimators that avoid this systematic error by producing real-valued estimates only,
increasing the estimation accuracy compared to standard estimators as well as intuitive
estimators.

Finally, we consider the case where the measurement matrix is not completely known but
rather disturbed by additive noise [7–12]. Typical practical applications are problems,
for which the measurement matrix is for example a convolution matrix that is con-
structed based on an imperfectly measured or estimated impulse response. We propose
an iterative algorithm that incorporates the error variances into the estimation process.
It is demonstrated that this algorithm outperforms competing algorithms significantly.

3.1 State-of-the-Art

Consider the linear model

y = Hx + n, (3.1)

where x ∈ CNx is a complex-valued parameter vector, y ∈ CNy is a complex-valued
measurement vector, H ∈ CNy×Nx is a complex-valued measurement matrix with full
column rank and2 Nx < Ny, and n ∈ CNy is a complex-valued random proper noise
vector with zero mean. Later on, we will dismiss the proper noise assumption.

3.1.1 Classical Estimators

In the following, we recapitulate the well-known classical estimator for the model in
(3.1).

LS Estimator

In LS estimation the sum of the absolute squared differences between the elements of
the actual measurements y and the elements of the assumed signal or noiseless data
s = Hx ∈ CNy is minimized [1]. Let yi and si be the ith elements of y and s, respectively.

2We note that the investigations could also be done with Nx ≤ Ny, but when Nx = Ny the BLUE
reduces to the simple inverse of the measurement matrix.
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Then, the cost function follows as

J(x) =

Ny∑
i=1

|yi − si|2 (3.2)

= (y −Hx)H(y −Hx). (3.3)

The vector x that minimizes this cost function is denoted as the LS estimator determined
as

x̂LS = arg min
x

(y −Hx)H(y −Hx). (3.4)

The solution is given by [1]

x̂LS =
(
HHH

)−1
HHy (3.5)

= ELSy, (3.6)

where HHH is invertible since H is assumed to have full column rank. This estimator
is linear in the measurements y and the linear operator

(
HHH

)−1
HH is termed the

estimator matrix. This estimator matrix is shortly written as ELS such that x̂LS = ELSy.
Note that the LS estimator in (3.5) does not require any statistical knowledge about the
measurements. However, first and second order statistics of the noise are required when
inspecting the usual performance measures.

The performance of an estimator is usually measured in terms of the MSEs between the
elements of the estimated and the true parameter vector. Deriving the MSEs requires
averaging over the PDF of the measurement vector y. According to (3.1), the PDF
of y corresponds to the PDF of n shifted such that its mean is Hx. Hence, statistics
about n are required. Besides the zero mean assumption already introduced, we further
assume the noise covariance matrix Cnn ∈ CNy×Ny to be known. With this knowledge,
the MSEs of the elements of x̂ can be derived analytically. Let x̂i and xi be the ith

elements of x̂ and x, respectively. Then, the MSE of x̂i can be separated into the sum of
its variance var(x̂i) and absolute squared bias |b(x̂i)|2 = |Ey[x̂i]− xi|2 according to [1]

mse(x̂i) = var(x̂i) + |b(x̂i)|2. (3.7)

Hence, for unbiased estimators b(x̂i) = 0, the MSEs mse(x̂i) correspond to the variances
var(x̂i). It turns out that the LS estimator for the assumed model is unbiased, which
corresponds to

Ey[x̂LS] = x. (3.8)

As a consequence, the covariance matrix of the vector estimator x̂LS is given by [1]

Cx̂x̂,LS = Ey

[
(x̂LS − Ey[x̂LS])(x̂LS − Ey[x̂LS])H

]
(3.9)

= ELSCnnEH
LS. (3.10)

The variances of the individual elements of x̂LS, which correspond to the MSEs, can be
found on the main diagonal of the covariance matrix Cx̂x̂,LS.
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Weighted LS Estimator

The cost function in (3.2) treats every measurement equally. If it is known that some
measurements are more reliable than others it makes sense to modify this cost function
by giving those reliable measurements more weight. This can be done by assigning
individual weights wi to the measurements yi. These weights are assumed to be real-
valued, positive, non-zero and finite. The diagonal matrix W with the weights wi
assembled on the main diagonal is denoted as weighting matrix. This notation allows to
modify the cost function in (3.2) as

J(x) =

Ny∑
i=1

wi|yi − si|2 (3.11)

= (y −Hx)HW(y −Hx). (3.12)

The WLS estimator is given by the vector x that minimizes this cost function

x̂WLS = arg min
x

(y −Hx)HW(y −Hx) (3.13)

and follows as [1]

x̂WLS =
(
HHWH

)−1
HHWy (3.14)

= EWLSy. (3.15)

The WLS estimator for the assumed model is also unbiased and its covariance matrix is

Cx̂x̂,WLS = EWLSCnnEH
WLS. (3.16)

The product HHWH is always invertible due to the full column rank assumption of H
and due to the assumptions we have made on the weights wi.

Constrained LS Estimator

In many applications it is known that the parameter vector fulfills some constraints, e.g.,
the linear constraints

Ax = b, (3.17)

where A ∈ CNb×Nx , b ∈ CNb , Nb < Nx. Since the parameter vector is assumed to fulfill
(3.17), we seek for an estimator whose estimates fulfill

Ax̂ = b. (3.18)

A modification of the LS estimator that fulfills (3.18) can be found in [1] and its derivation
will be repeated in the following.
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The ordinary LS estimator is derived by minimizing the LS cost function in (3.3). This
cost function is now minimized subject to the additional constraint. The optimization
task is formally given by

x̂LS = arg min
x

(y −Hx)H(y −Hx) s.t. Ax = b. (3.19)

In addition to the assumptions already mentioned, we constrain the matrix A to have lin-
early independent rows such that the matrix A

(
HHH

)−1
AH is invertible. From (3.19),

the Lagrangian cost function follows as

L(x) = (y −Hx)H(y −Hx) + λT (Ax− b) + λH(A∗x∗ − b∗) (3.20)

= yHy − yHHx− xHHHy + xHHHHx + λT (Ax− b) + λH(A∗x∗ − b∗).
(3.21)

Then, the Wirtinger derivative of (3.21) w.r.t. x is given by

∂L(x)

∂x
= − yHH + xHHHH + λTA. (3.22)

Setting this result equal to zero yields the estimator

x̂LS =
(
HHH

)−1
HHy −

(
HHH

)−1
AHλ∗. (3.23)

Inserting this result into Ax̂LS = b allows to identify λ as

A
(
HHH

)−1
HHy −A

(
HHH

)−1
AH︸ ︷︷ ︸

K

λ∗ = b (3.24)

−Kλ∗ = b−A
(
HHH

)−1
HHy (3.25)

− λ∗ = K−1b−K−1A
(
HHH

)−1
HHy, (3.26)

where

K = A
(
HHH

)−1
AH . (3.27)

A reinsertion of (3.26) into (3.23) yields

x̂LS =
(
HHH

)−1
HHy +

(
HHH

)−1
AHK−1b

−
(
HHH

)−1
AHK−1A

(
HHH

)−1
HHy (3.28)

=
(
I−

(
HHH

)−1
AHK−1A

)(
HHH

)−1
HHy +

(
HHH

)−1
AHK−1b, (3.29)

which represents the final result for the constrained LS estimator.

Deriving the covariance matrix Cx̂x̂,LS requires noise statistics in form of Cnn to be
known. Note that (3.29) fulfills Ey[x̂LS] = x. With that, an intermediate result can be
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derived as

x̂LS − Ey[x̂LS] = x̂LS − x (3.30)

=
(
I−

(
HHH

)−1
AHK−1A

)(
HHH

)−1
HHy

+
(
HHH

)−1
AHK−1b− x (3.31)

=
(
I−

(
HHH

)−1
AHK−1A

)(
HHH

)−1
HHHx

+
(
I−

(
HHH

)−1
AHK−1A

)(
HHH

)−1
HHn

+
(
HHH

)−1
AHK−1b− x (3.32)

=
(
I−

(
HHH

)−1
AHK−1A

)(
HHH

)−1
HHn. (3.33)

Now, Cx̂x̂,LS becomes

Cx̂x̂,LS = Ey

[
(x̂LS − Ey[x̂LS])(x̂LS − Ey[x̂LS])H

]
(3.34)

=
(
I−

(
HHH

)−1
AHK−1A

)(
HHH

)−1
HHCnn

×H
(
HHH

)−1
(
I−AHK−1A

(
HHH

)−1
)
. (3.35)

BLUE

For deriving the performance measures of the LS estimator the noise covariance matrix
Cnn was assumed to be known. The estimator discussed in the following is able to
incorporate this covariance matrix already into the estimation process. The goal is to
find a linear estimator x̂ = Ey that is unbiased and that minimizes the variances of
the estimates x̂i, where x̂i is the ith element of x̂. In fact, this approach will lead to
the famous BLUE. In that sense, the BLUE is best at minimizing the variance of the
estimates among all linear and unbiased estimators. We assume that the linear model in
(3.1) holds and we focus on x̂i first. This scalar x̂i is connected with the measurements
via x̂i = eHi y, where eHi is the ith row of the estimator matrix E. We now analyze the
unbiased condition on x̂i. For the model in (3.1) we obtain

Ey[x̂i] = Ey

[
eHi y

]
(3.36)

= En

[
eHi Hx + eHi n

]
(3.37)

= eHi Hx
!

= xi. (3.38)

To fulfill this for every x the condition eHi H = uTi must hold, where uTi is a row vector
of size 1 ×Nx with a ’1’ at its ith position, and all zeros elsewhere. The cost function,
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which is the variance of x̂i, becomes

J(ei) = Ey

[
(x̂i − Ey[x̂i])(x̂i − Ey[x̂i])

H
]

(3.39)

= Ey

[
(x̂i − xi)(x̂i − xi)H

]
(3.40)

= Ey

[(
eHi y − xi

)(
eHi y − xi

)H]
(3.41)

= En

[(
eHi Hx + eHi n− xi

)(
eHi Hx + eHi n− xi

)H]
(3.42)

= En

[(
eHi n

)(
eHi n

)H]
(3.43)

= eHi Cnnei. (3.44)

The vector ei that minimizes this cost function and that produces unbiased estimates is
the solution of the constrained optimization problem

eB,i = arg min
ei

eHi Cnnei s.t. eHi H = uTi , (3.45)

where the index B indicates the BLUE. Solving this constrained optimization problem
using the Lagrange multiplier method described in Section 2.4 leads to the BLUE for xi
according to

x̂B,i = eHB,iy (3.46)

= uTi
(
HHC−1

nnH
)−1

HHC−1
nny. (3.47)

Since uTi is the only term that depends on the index i, the vector estimator immediately
follows as

x̂B =
(
HHC−1

nnH
)−1

HHC−1
nny, (3.48)

which represents the final expression for the BLUE. The covariance matrix of the esti-
mates is given by

Cx̂x̂,B = EBCnnEH
B (3.49)

=
(
HHC−1

nnH
)−1

, (3.50)

where EB =
(
HHC−1

nnH
)−1

HHC−1
nn. Note the interesting similarities between the BLUE

and the WLS estimator in (3.14). Also note that the estimator matrix of the BLUE
fulfills EBH = I.

The BLUE corresponds to the minimum variance unbiased (MVU) estimator for the
linear model in (3.1) in the case of Gaussian distributed noise [1].

BWLUE

We will now dismiss the proper noise assumption and consider improper noise statis-
tics instead. For this case, the LS and the WLS estimators do not change since both
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estimators do not incorporate the noise statistics at all. It can be shown that also the
expressions for the corresponding covariance matrices in (3.10) and (3.16) do not change.

In Section 2.2, we stated that widely linear estimators can incorporate improper statis-
tics. The BWLUE, which incorporates improper noise statistics, is the widely linear
extension of the BLUE. Its derivation is summarized in the following. Consider the
general widely linear estimator in (2.22) and its augmented notation in (2.23). Let b be
the zero vector, and let fHi , gHi and eHi denote the ith rows of F, G and E, respectively.
Then, x̂i is given by

x̂i =
[
fHi gHi

][ y

y∗

]
= eHi y, (3.51)

with eHi =
[
fHi gHi

]
. For x̂i to be unbiased it must hold that

Ey[x̂i] = En[eHi H x + eHi n] = eHi H x
!

= xi. (3.52)

Hence, unbiasedness is ensured for every x if

eHi H = uTi , (3.53)

where uTi is a row vector of size 1 × 2Nx with a ’1’ at its ith position, and all zeros
elsewhere.

The variance of x̂i serves as the cost function that needs to be minimized and follows
as [2]

J(ei) = Ey

[
(x̂i − Ey[x̂i])(x̂i − Ey[x̂i])

H
]

(3.54)

= Ey

[
(x̂i − xi)(x̂i − xi)H

]
(3.55)

= Ey

[(
eHi y − xi

)(
eHi y − xi

)H]
(3.56)

= En

[(
eHi H x + eHi n− xi

)(
eHi H x + eHi n− xi

)H]
(3.57)

= En

[(
eHi n

)(
eHi n

)H]
(3.58)

= eHi Cnnei. (3.59)

The vector ei that minimizes this cost function and that produces unbiased estimates is
the solution of the constrained optimization problem

eBW,i = arg min
ei

eHi Cnnei s.t. eHi H = uTi , (3.60)

where the index BW indicates the BWLUE. The optimization problem in (3.60) can be
solved utilizing the Lagrange multiplier method described in Section 2.4. The solution
directly leads to the BWLUE for xi according to

x̂B,i = eHBW,iy (3.61)

= uTi
(
HHC−1

nnH
)−1

HHC−1
nny. (3.62)
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Since uTi is the only term that depends on the index i, the vector BWLUE immediately
follows as

x̂B =
(
HHC−1

nnH
)−1

HHC−1
nny. (3.63)

It is important to note that this estimator is widely linear in y and incorporates the
augmented covariance matrix of the noise. The estimators augmented covariance matrix
is given by

Cx̂x̂,B = EBWCnnEH
BW (3.64)

=
(
HHC−1

nnH
)−1

, (3.65)

where EBW =
(
HHC−1

nnH
)−1

HHC−1
nn. Note that the estimator matrix of the BWLUE

fulfills EBWH = I.

3.1.2 Commutation Analysis

In this section, we discuss cases for which the BLUE commutes over linear (actually
affine) transformations. The arising results are then compactly extended to the BWLUE
and to the LS estimator.

Commutation Analysis for the BLUE

In addition to the linear model

y = Hx + n, (3.66)

we assume a new vector α is connected with the parameter vector according to

α = Bx + c (3.67)

with α ∈ CNα and c ∈ CNα . We seek for the BLUE for α. In standard literature such
as [1], it is stated that the BLUE for the linear model commutes over linear (actually
affine) transformations as in (3.67) if either

1. B ∈ CNα×Nx is an invertible matrix (Nα = Nx) (Problem 6.12 in [1]), or

2. B ∈ CNα×Nx with Nα < Nx and full row rank (Problem 4.12 in [1]).

If one of these two cases is fulfilled, and if the true parameter vector x is linearly
transformed via (3.67), then the BLUE for the new vector α is given by

α̂B = Bx̂B + c. (3.68)

In the following, we repeat the proof of both cases.
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For the first case, reformulating (3.67) yields

x = B−1(α− c). (3.69)

This expression inserted into the linear model in (3.1) produces

y = HB−1α−HB−1c + n (3.70)

y + HB−1c︸ ︷︷ ︸
ỹ

= HB−1︸ ︷︷ ︸
H̃

α + n (3.71)

ỹ = H̃α + n. (3.72)

For this modified linear model, the BLUE for α is given by

α̂B =
(
H̃HC−1

nnH̃
)−1

H̃HC−1
nnỹ (3.73)

=
((

B−1
)H

HHC−1
nnHB−1

)−1(
B−1

)H
HHC−1

nn

(
y + HB−1c

)
(3.74)

= B
(
HHC−1

nnH
)−1

HHC−1
nn

(
y + HB−1c

)
(3.75)

= Bx̂B + BB−1c (3.76)

= Bx̂B + c. (3.77)

�

The second case can be proven as follows. Let the ith elements of α and α̂ be denoted
as αi and α̂i, respectively. Furthermore, the ith row of the matrix B is denoted as bHi
and the ith element of c is denoted as ci. We seek for an affine estimator of the form
α̂ = Ey+d. Hence, the scalar α̂i is connected with the measurements via α̂i = eHi y+di,
where eHi is the ith row of the estimator matrix E and where di is the ith element of d.
Combining the linear model in (3.1) with (3.67) leads to

Ey[α̂i] = Ey

[
eHi y + di

]
(3.78)

= En

[
eHi Hx + eHi n + di

]
(3.79)

= eHi Hx + di
!

= αi, (3.80)

or

eHi Hx + di
!

= bHi x + ci. (3.81)

To fulfill this for every x the conditions eHi H = bHi and di = ci must hold. The cost
function, which is the variance of α̂i, follows as

J(ei) = Ey

[
(α̂i − Ey[α̂i])(α̂i − Ey[α̂i])

H
]

(3.82)

= Ey

[(
eHi y + di − Ey

[
eHi y + di

])(
eHi y + di − Ey

[
eHi y + di

])H]
(3.83)

= En

[(
eHi Hx + eHi n + di − eHi Hx− di

)(
eHi Hx + eHi n + di − eHi Hx− di

)H]
(3.84)

= En

[(
eHi n

)(
eHi n

)H]
(3.85)

= eHi Cnnei. (3.86)
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The vector ei that minimizes this cost function and that produces unbiased estimates is
the solution of the constrained optimization problem

eB,i = arg min
ei

eHi Cnnei s.t. eHi H = bHi , (3.87)

where the index B indicates the BLUE. Solving this constrained optimization problem
using the Lagrange multiplier method described in Section 2.4 leads to the BLUE for αi
according to

α̂B,i = eHB,iy + ci (3.88)

= bHi
(
HHC−1

nnH
)−1

HHC−1
nny + ci. (3.89)

Since bHi and ci are the only terms that depend on the index i, the vector estimator
immediately follows as

α̂B = B
(
HHC−1

nnH
)−1

HHC−1
nny + c (3.90)

= Bx̂B + c. (3.91)

�

Commutation Analysis for the BWLUE

The commutation of the BLUE over linear transformations was analyzed for two cases.
In this section, we derive the corresponding results for the BWLUE. In addition, widely
linear transformations are considered, which include linear transformations as a special
case.

We begin with the first case and assume a linear model of the form as in (3.1) with the
difference that the noise is assumed to be improper with known augmented covariance
matrix Cnn. Then, the BWLUE is given by (3.63). Let the new parameter vector
α ∈ CNx be the result of a widely linear transformation of the form

α = B1x + B2x
∗ + c, (3.92)

with B1,B2 ∈ CNx×Nx and c ∈ CNx . The augmented notation of (3.92) is

α = B x + c, (3.93)

where

B =

[
B1 B2

B∗2 B∗1

]
, c =

[
c

c∗

]
, (3.94)

and where B is invertible. The remaining derivation is executed in Appendix A and
leads to the result that the BWLUE for α is given in augmented notation as

α̂BW = B x̂BW + c, (3.95)

where x̂BW is the BWLUE for x according to (3.63). �
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We now turn to the second case and assume B1,B2 ∈ CNα×Nx , Nα < Nx as well as

invertability of B
(
HHC−1

nnH
)−1

BH . The derivation is executed in Appendix B. The
result of this derivation proves that the BWLUE for α is given by (3.95), where x̂BW is
the BWLUE for x.

3.2 Estimation in a Linear Subspace

Previously, it was shown that the BLUE commutes over linear (actually affine) trans-
formations for two cases. A related situation is investigated in this section, where we
assume the parameter vector x lies in a linear subspace of CNx . We consider the linear
model

y = Hx + n (3.96)

with the additional model knowledge that x lies in a linear subspace of CNx spanned by
the columns of a full column rank matrix B ∈ CNx×Nα such that

x = Bα (3.97)

with Nx > Nα. We seek for the BLUE for x. In this section, Ny < Nx shall be allowed
as long as Ny > Nα and full column rank of HB are fulfilled.

3.2.1 Estimation in a Linear Subspace Using the BLUE

With (3.97), the linear model can be rewritten as

y = HBα + n. (3.98)

Since we assumed Ny > Nα and full column rank of HB, the BLUE for α follows as3

α̂B =
(
BHHHC−1

nnHB
)−1

BHHHC−1
nny, (3.99)

with
Cα̂α̂,B =

(
BHHHC−1

nnHB
)−1

. (3.100)

Intuition tells us that x̂ = Bα̂B is a meaningful estimator, but is it really the BLUE?
In the following, we formally show that this estimator is in fact the BLUE.

We seek for the BLUE for x, which uses the additional information in (3.97). Note that
the BLUE in (3.48) does not assume any additional constraints on x. Consequently,
it is not the true BLUE for x any more in this situation. To not confuse the reader
with varying notations, we refer to (3.48) as the ordinary BLUE. For deriving the true

3A discussion about the relation between Nx and Ny is presented after the derivation.
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BLUE, we need a variance to be minimized and an unbiased constraint. The unbiased
constraint can be derived as

Ey[x̂] = x (3.101)

Ey[Ey] = x (3.102)

En[EHx + En] = x (3.103)

En[EHBα + En] = Bα (3.104)

EHBα = Bα, (3.105)

which directly leads to the unbiased constraint

EHB = B. (3.106)

The ordinary BLUE for x in contrast fulfills the constraint EH = I. The additional
information allows us to utilize the modified unbiased condition in (3.106). We now
analyze and compare these two constraints:

� If B were invertible, both constraints would be equivalent.

� EH = I has NyNx degrees of freedom, which is the number of elements in E. It
furthermore has NxNx scalar constraints, which is the number of elements in I.

� EHB = B also has NyNx degrees of freedom, but only NxNα scalar constraints.

Since Nx > Nα, the modified unbiased constraint in (3.106) is less stringent compared
to EH = I.

We use the following notation: The ith row of B is denoted as bHi and the ith row of E
is denoted as eHi such that

B =


bH1
bH2
...

bHNx

, E =


eH1
eH2
...

eHNx

. (3.107)

From (3.106), the unbiased constraint for eHi can be extracted and leads to

eHi HB = bHi . (3.108)

The cost function to be minimized is the variance of x̂i, which follows as

J(ei) = Ey

[
(x̂i − Ey[x̂i])(x̂i − Ey[x̂i])

H
]

(3.109)

= Ey

[(
eHi y − Ey

[
eHi y

])(
eHi y − Ey

[
eHi y

])H]
(3.110)

= En

[(
eHi Hx + eHi n− eHi Hx

)(
eHi Hx + eHi n− eHi Hx

)H]
(3.111)

= En

[(
eHi n

)(
eHi n

)H]
(3.112)

= eHi Cnnei. (3.113)
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In summary, the following constrained optimization problem is obtained:

eB,i = arg min
ei

eHi Cnnei s.t. eHi HB = bHi . (3.114)

The Lagrangian cost function for this problem is given by

L(ei) = eHi Cnnei + λH
(
BHHHei − bi

)
+ λT

(
BTHTe∗i − b∗i

)
. (3.115)

The Wirtinger derivative with respect to ei produces

∂L(ei)

∂ei
= eHi Cnn + λHBHHH . (3.116)

Setting (3.116) equal to zero results in

eHB,i = −λHBHHHC−1
nn. (3.117)

Inserting (3.117) into the constraint in (3.108) produces

−λHBHHHC−1
nnHB = bHi (3.118)

−λH = bHi
(
BHHHC−1

nnHB
)−1

. (3.119)

Reinserting this result into the expression for eHi in (3.117) yields

eHB,i = bHi
(
BHHHC−1

nnHB
)−1

BHHHC−1
nn. (3.120)

Since bHi is the only term in (3.120) that depends on the index i, the expression for the
estimator matrix immediately follows as

EB =


eHB,1
eHB,2

...

eHB,Nx

 = B
(
BHHHC−1

nnHB
)−1

BHHHC−1
nn. (3.121)

Comparing this result with (3.99) proofs that

x̂B = Bα̂B (3.122)

holds. From (3.122) it follows that the covariance matrix of x̂B is given by

Cx̂x̂,B = BCα̂α̂,BBH . (3.123)

Recall that we assumed that HB has full column rank, Ny > Nα and Nx > Nα, but no
additional assumption on the relation between Nx and Ny has been made. Hence, this
result is applicable even for Nx > Ny as long as the mentioned assumptions hold.

The results of these investigations are summarized in
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Result 3.1 (Estimation in a Linear Subspace Using the BLUE)

Consider the linear model in (3.1), where y ∈ CNy is the measurement vector,
H ∈ CNy×Nx is a known measurement matrix, and n ∈ CNy is a zero mean random
noise vector with known covariance matrix Cnn. If it is known that x lies in a linear
subspace of CNx spanned by the columns of a full column rank matrix B ∈ CNx×Nα

with Nx > Nα according to (3.97), and if

� Ny > Nα, and

� HB has full column rank,

then the BLUE for x is given by (3.122) where α̂B is the BLUE for α according to
(3.99). This estimator is unbiased in the classical sense, i.e., it fulfills Ey[x̂B] = x,
and its covariance matrix Cx̂x̂,B is given by (3.123).

In the following, two possible applications and their connection are discussed.

Application 1: System Identification via Frequency Domain Measurements

Let the parameter vector x ∈ CNx be samples of the frequency response (i.e. Fourier
coefficients) of a linear time-invariant (LTI) system. Measurements of this frequency
response are possible for some but not necessarily all frequencies. E.g., DC measurements
are sometimes difficult to conduct as it is the case for ultrasonic measurements. The
vector of possible measurements is denoted as y ∈ CNy with Ny < Nx. Consequently,
H ∈ CNy×Nx is a selection matrix. Let α ∈ CNα denote the impulse response of the
system with Ny > Nα such that B ∈ CNx×Nα is given by the first Nα columns of a
discrete Fourier transform (DFT) matrix of size Nx ×Nx. Finally, we end up with the
model

y = Hx + n (3.124)

= HBα + n. (3.125)

If HB has full column rank Result 3.1 is applicable and the full frequency response can
be estimated.

Application 2: System Identification via Time Domain Measurements

Again, α denotes the impulse response of an unknown LTI system. y ∈ CNy represents
time domain measurements of the output of the system for a given input signal, modelled
as

y = H′α + n. (3.126)
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Here, H′ ∈ CNy×Nx is a convolution matrix generated with the samples of the input
signal. Furthermore, let x ∈ CNx be the frequency response of the LTI system generated
by the DFT of the zero padded impulse response. This can be describes via

x = Bα, (3.127)

where B ∈ CNx×Nα is given by the first Nα columns of a DFT matrix of size Nx ×Nx

with Nx > Nα. This problem looks more like the ones discussed in Section 3.1.2 with
the major difference that B has more rows than columns.

We denote the inverse DFT matrix of size Nx ×Nx as F−1, and introduce

W =
[
INα×Nα 0Nα×Nx−Nα

]
, (3.128)

then

α = WF−1x (3.129)

= WF−1B︸ ︷︷ ︸
I

α. (3.130)

Combining this expression with the model in (3.126) allows for

y = H′WF−1︸ ︷︷ ︸
H

Bα + n (3.131)

= H Bα︸︷︷︸
x

+n (3.132)

= Hx + n. (3.133)

Since HB has full column rank and Ny > Nα, Result 3.1 is applicable and the full
frequency response can be estimated.

3.2.2 Estimation in a Linear Subspace Using the BWLUE

An extension of Section 3.2.1 to the BWLUE is presented in this section. We again
consider the linear model in (3.1) with the difference that n may now be a zero mean
improper noise vector. The BWLUE to be derived in the following incorporates the
additional knowledge that x lies in a linear subspace of CNx according to

x = Bα, (3.134)

where B ∈ CNx×Nα and Nx > Nα. We again assume Ny > Nα and full column rank of
HB such that the BWLUE for α follows as

α̂BW =
(
BHHHC−1

nnH B
)−1

BHHHC−1
nny, (3.135)

where

B =

[
B 0Nx×Nα

0Nx×Nα B∗

]
. (3.136)
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We seek for the BWLUE for x, which uses the additional model knowledge in (3.134).
Clearly, the BWLUE has to fulfill Ey[x̂] = x, which in augmented notation reads as

Ey[x̂] = x (3.137)

Ey[E y] = x (3.138)

En[E H x + E n] = x (3.139)

En[E H Bα + E n] = Bα (3.140)

E H Bα = Bα, (3.141)

from which the unbiased constraint follows as

E H B = B. (3.142)

The ordinary BWLUE for x fulfills the constraint E H = I. Comparing this with the
modified constraint in (3.142) allows similar statements as in Section 3.2.1

� If B would be invertible, both constraints would be equivalent.

� E H = I has 2NyNx degrees of freedom, which is the number of elements in F and
G within E according to (2.23). Furthermore, it has 2NxNx scalar constraints,
which is the number of elements in the upper half of I.

� E H B = B also has 2NyNx degrees of freedom but only 2NxNα scalar constraints,
which corresponds to the number of elements in the upper half of B.

Since Nx > Nα, the modified unbiased constraint in (3.142) is less stringent compared
to E H = I.

For the derivation, we utilize a similar notation as in Section 3.2.1. Let the ith row of B
be denoted as bHi and let the ith row of E be denoted as eHi

B =


bH1
bH2
...

bHNx

, E =


eH1
eH2
...

eHNα

. (3.143)

From (3.142), the unbiased constraint for eHi follows as

eHi H B = bHi . (3.144)

As cost function the variance of x̂i is used, which reads as

J(ei) = Ey

[
(x̂i − Ey[x̂i])(x̂i − Ey[x̂i])

H
]

(3.145)

= Ey

[(
eHi y − Ey

[
eHi y

])(
eHi y − Ey

[
eHi y

])H]
(3.146)

= En

[(
eHi H x + eHi n− eHi H x

)(
eHi H x + eHi n− eHi H x

)H]
(3.147)

= En

[(
eHi n

)(
eHi n

)H]
(3.148)

= eHi Cnnei. (3.149)
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By combining (3.144) and (3.149) the constrained optimization problem is given by

eBW,i = arg min
ei

eHi Cnnei s.t. eHi H B = bHi . (3.150)

Therewith, the Lagrangian cost function for this optimization problem yields

L(ei) = eHi Cnnei + λH
(
BHHHei − bi

)
+ λT

(
BTHTe∗i − b∗i

)
. (3.151)

Setting the Wirtinger derivative of (3.151) w.r.t. ei equal to zero allows identifying
eBW,i as

∂L(ei)

∂ei
= eHi Cnn + λHBHHH !

= 0 (3.152)

eHBW,i = − λHBHHHC−1
nn. (3.153)

Inserting (3.153) into the constraint in (3.144) results in

−λHBHHHC−1
nnH B = bHi , (3.154)

and after rearranging we have

−λH = bHi
(
BHHHC−1

nnH B
)−1

. (3.155)

Reinserting this result into the expression for eHi in (3.153) yields

eHBW,i = bHi
(
BHHHC−1

nnH B
)−1

BHHHC−1
nn. (3.156)

Since bHi is the only term in (3.156) that depends on the index i, the expression for the
estimator matrix EBW immediately follows as

EBW = B
(
BHHHC−1

nnH B
)−1

BHHHC−1
nn. (3.157)

Comparing this result to (3.135) proofs that

x̂BW = B α̂BW (3.158)

holds. Further, from (3.158), it follows that the augmented covariance matrix of x̂BW is
given by

Cx̂x̂,BW = B Cα̂α̂,BWBH . (3.159)

Note that the only assumption necessary for deriving this result was that the matrix
product H B has full column rank and Ny > Nα. This also allows parameter vectors
with Nx > Ny as long as the mentioned assumptions hold.

The derived results are summarized in
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Result 3.2 (Estimation in a Linear Subspace Using the BWLUE)

Consider the linear model in (3.1) where y ∈ CNy is the measurement vector, H ∈
CNy×Nx is a known measurement matrix, and n ∈ CNy is a zero mean random
proper or improper noise vector with known augmented covariance matrix Cnn. If
it is known that x lies in a linear subspace of CNx with Nx > Nα according to
(3.134), and if

� Ny > Nα, and

� H B has full column rank,

then the BWLUE for x is given in augmented notation by (3.158), where α̂BW is
the BWLUE for α according to (3.135). This estimator is unbiased in the classical
sense, i.e., it fulfills Ey[x̂BW] = x, and its augmented covariance matrix Cx̂x̂,BW is
given by (3.159).

We now shortly discuss an extension of Result 3.2. When replacing the linear equation
in (3.134) with the widely linear transformation

x = B1α + B2α
∗, (3.160)

the same result would have been obtained as long as the product H B has full column
rank, where

B =

[
B1 B2

B∗2 B∗1

]
. (3.161)

3.2.3 Estimation in a Linear Subspace Using the LS Estimator

Besides the linear model assumption, we assume to have the additional knowledge that
x ∈ CNx lies in a linear subspace of CNx spanned by the columns of a full column rank
matrix B ∈ CNx×Nα such that

x = Bα (3.162)

with Nx > Nα. We already derived the BLUE and the BWLUE for this task. For the LS
estimator, however, the incorporation of (3.162) into the derivation of the LS estimator
is generally not straightforward.

To overcome this, we transform (3.162) into an equivalent constraint of the form Ax = 0,
which corresponds to the constraint that x lies in the nullspace of A. In fact, it is possible
to find a matrix A whose nullspace equals the space spanned by the columns of B. This
is shown in the following. First, the nullspace of BH is identified. Let this nullspace
have the dimension N0 = Nx − Nα and let N ∈ CNx×N0 be a matrix whose columns
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span the nullspace of BH . Consequently,

BHN = 0Nα×N0 (3.163)

holds. Taking the conjugate complex transpose of (3.163) and defining the matrix A =
NH ∈ CN0×Nx produces

AB = 0N0×Nα , (3.164)

Consequently, the columns of B span the nullspace of A. Furthermore, the set of solu-
tions of

Ax = 0N0×1 (3.165)

corresponds to (3.162) with arbitrary α. Hence, the information about x lying in a
subspace of CNx spanned by the columns of B has been transformed into the constraint
in (3.165). This allows utilizing the constrained LS estimator derived in Section 3.1.
This constrained LS estimator produces estimates that lie in a subspace of CNx spanned
by the columns of B. Hence, we obtain the following result:

Result 3.3 (Estimation in a Linear Subspace Using the LS Estimator)

Consider the linear model in (3.1), where y ∈ CNy is the measurement vector,
H ∈ CNy×Nx is a known measurement matrix, and n ∈ CNy is a zero mean random
noise vector. It shall be known that x lies in a linear subspace of CNx spanned by
the columns of a full column rank matrix B ∈ CNx×Nα with Nx > Nα according
to (3.97). Let the nullspace of BH have the dimension N0 and let N ∈ CNx×N0

be the matrix whose columns span the nullspace of BH . Then, the LS estimator
that incorporates the knowledge that x lies in a linear subspace of CNx spanned by
the columns of matrix B is given by the constrained LS estimator in (3.29) with
A = NH and b = 0N0×1. This estimator is unbiased in the classical sense, i.e., it
fulfills Ey[x̂LS] = x, and its covariance matrix Cx̂x̂,LS is given by (3.35).

3.3 Estimation with Additional Constraints on the Parameter
Vector

In many practical examples, more model knowledge than the measurement matrix H
and the noise statistics Cnn is available. As an example, some physical systems are
known to be unable to transmit any DC signals. Such a physical system, e.g., could
be a communication channel or a sensor with a differential measurement principle. If
the system can be described by an impulse response, then the inability to transmit DC
signals corresponds to the integral of the impulse response being zero. We assume the
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samples of the discrete-time impulse response x[n] sum up to zero such that

Nx−1∑
n=0

x[n] = 0, (3.166)

and we seek for an estimator that produces estimates that fulfill

Nx−1∑
n=0

x̂[n] = 0. (3.167)

The vector notation of the constraint in (3.166) corresponds to 1Tx = 0, where 1 is a
column vector with length Nx with all elements being 1. We introduce the even more
general constraint

Ax = b, (3.168)

with full row rank A ∈ CNb×Nx , b ∈ CNb , Nb < Nx, and where x ∈ CNx can be a
general parameter vector rather than only an impulse response. Eq. (3.168) corresponds
to (3.166) for A = 1T and b = 0 but it also allows incorporating other types of model
knowledge.

We seek for estimators that incorporate knowledge about the constraints in (3.168). In
other words, we seek estimators that fulfill

Ax̂ = b. (3.169)

A possible estimator for this task is the constrained LS estimator discussed in Section 3.1.
However, to the best of our knowledge constrained versions of the BLUE and the BWLUE
have not been published so far. In the following two sections, these novel estimators are
proposed. It will turn out that these estimators allow for Ny < Nx, which is forbidden
for the constrained LS estimator. A detailed discussion about this will be presented.

3.3.1 Constrained BLUE

We assume the linear model in (3.1) holds. In coherence with the constrained LS esti-
mator in (3.29), we assume the estimator to be affine and of the form

x̂ = Ey + f . (3.170)

As the estimator is actually affine the term ’linear’ in the abbreviation ’BLUE’ might be
somewhat misleading. However, since also for other affine estimators the term ’linear’
is usually used, we call the estimator constrained BLUE. The goal is now to find the
estimator matrix E ∈ CNx×Ny and the vector f ∈ CNx . The constrained BLUE has to
fulfill two types of constraints. The first one is the unbiased constraint

Ey[x̂] = Ey[Ey + f ] (3.171)

= En[E(Hx + n) + f ] (3.172)

= EHx + f
!

= x. (3.173)
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By letting eHi be the ith row of E, xi be the ith element of x, and fi be the ith element
of f such that

E =


eH1
...

eHNx

, x =


x1

...

xNx

, f =


f1

...

fNx

, (3.174)

the unbiased constraint for eHi can be extracted from (3.173) and is of the form

eHi Hx + fi
!

= xi. (3.175)

The second type of constraints are given by (3.169). For each i ∈ {1, 2, ..., Nx} the
variance of x̂i serves as a cost function which is a function of ei given as

J(ei) = Ey

[
(x̂i − Ey[x̂i])(x̂i − Ey[x̂i])

H
]

(3.176)

= Ey

[(
eHi y + fi − eHi Ey[y]− fi

)(
eHi y + fi − eHi Ey[y]− fi

)H]
(3.177)

= En

[(
eHi (Hx + n)− eHi Hx

)(
eHi (Hx + n)− eHi Hx

)H]
(3.178)

= En

[(
eHi n

)(
eHi n

)H]
(3.179)

= eHi Cnnei. (3.180)

We note, that (3.169) represents constraints in x̂, however, the ith cost function is a
function of the vector ei, which is conflicting. We therefore transform the constraints in
(3.169) into a different but equivalent form, combine them with (3.173), and finally end
up with constraints on ei.

We start with an analysis of Ax = b in (3.168). This linear system of equations has an
infinite number of solutions that can be described as

x = xp + x1α1 + x2α2 + . . .+ xN0αN0 , (3.181)

where the vectors xi, i = 1, . . . , N0, span the nullspace of A such that Axi = 0Nb×1,
N0 is the dimension of the nullspace of A with N0 = Nx − Nb, the scalar coefficients
αi, i = 1, . . . , N0 are in general complex-valued and arbitrary, and xp is an arbitrary

particular solution of Ax = b, e.g., the minimum norm solution xp = AH
(
AAH

)−1
b.

However, the particular choice of xp is not of importance in the following. Eq. (3.181)
can be brought into the form

x = xp + Nα, (3.182)

where

N =
[
x1 . . . xN0

]
∈ CNx×N0 , α =


α1

...

αN0

 ∈ CN0 . (3.183)
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With this notation we have AN = 0Nb×N0 . Inserting (3.182) into (3.173) results in

Ey[x̂] = EH(xp + Nα) + f
!

= xp + Nα (3.184)

⇔ (EHN−N)α + (EH− I)xp + f
!

= 0. (3.185)

To fulfill this equation for every possible vector α, we deduce the following two con-
straints for E and f :

EHN = N (3.186)

f = (I−EH)xp. (3.187)

Let the ith row of N be denoted as nHi , then the constraint for eHi can be extracted from
(3.186) and leads to

eHi HN = nHi . (3.188)

We are now finally able to formulate the constrained optimization problem for ei:

eCB,i = arg min
ei

eHi Cnnei s.t. eHi HN = nHi . (3.189)

We solve this constrained optimization problem using the Lagrangian multiplier method.
The Lagrangian cost function for this problem is given by

L(ei) = eHi Cnnei + λH
(
NHHHei − ni

)
+ λT

(
NTHTe∗i − n∗i

)
. (3.190)

The Wirtinger derivative with respect to ei produces

∂L(ei)

∂ei
= eHi Cnn + λHNHHH . (3.191)

Setting (3.191) equal to zero results in

eHCB,i = −λHNHHHC−1
nn. (3.192)

Assuming full column rank of HN, which implies Ny ≥ N0, and inserting (3.192) into
the constraint in (3.189) produces

−λH = nHi
(
NHHHC−1

nnHN
)−1

. (3.193)

Reinserting this result into the expression for eHi in (3.192) yields

eHCB,i = nHi
(
NHHHC−1

nnHN
)−1

NHHHC−1
nn. (3.194)

Since nHi is the only term in (3.194) that depends on the index i, the expression for the
estimator matrix is given by

ECB = N
(
NHHHC−1

nnHN
)−1

NHHHC−1
nn. (3.195)

In the following, we denote

P = HHC−1
nnH. (3.196)
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Inserting (3.187) and (3.195) into (3.170) finally leads to the constrained BLUE in the
form of

x̂CB = ECBy + (I−ECBH)xp (3.197)

= N
(
NHPN

)−1
NHHHC−1

nny +
(
I−N

(
NHPN

)−1
NHP

)
xp (3.198)

= N
(
NHPN

)−1
NHHHC−1

nn(y −Hxp) + xp. (3.199)

This estimator is unbiased, which can be shown by incorporating (3.182) and (3.186)
into (3.197)

Ey[x̂CB] = ECBEy[y] + (I−ECBH)xp (3.200)

= ECBHx + (I−ECBH)(x−Nα) (3.201)

= ECBHx + x−ECBHx−Nα + ECBHNα (3.202)

= x−Nα + ECBHN︸ ︷︷ ︸
N

α (3.203)

= x. (3.204)

Following similar arguments, it holds that

x̂CW − Ey[x̂CB] = ECBHx + ECBn + x−ECBHx−Nα + ECBHNα− x (3.205)

= ECBn. (3.206)

With that, the covariance matrix of x̂CB can be derived as

Cx̂x̂,CB = Ey

[
(x̂CB − Ey[x̂CB])(x̂CB − Ey[x̂CB])H

]
(3.207)

= ECBEn

[
nnH

]
EH

CB (3.208)

= ECBCnnEH
CB (3.209)

= N
(
NHPN

)−1
NHHHC−1

nnCnnC−1
nnHN

(
NHPN

)−1
NH (3.210)

= N
(
NHHHPHN

)−1
NH , (3.211)

where x̂CB in (3.199) is actually independent of the particular choice of xp. To prove
this we first show that the identity

T = TAH
(
AAH

)−1
A (3.212)

with

T = I−N
(
NHPN

)−1
NHP (3.213)

holds. For that we utilize the matrix [AH N]. Since AN = 0, the column spaces
of AH and N are orthogonal to each other such that [AH N] is invertible. Multi-
plying (3.212) with [AH N] from the right results in [TAH 0] = [TAH 0]. Since
this equation is true and [AH N] is invertible, (3.212) is also true. Now replacing

T = I − N
(
NHPN

)−1
NHP in the second line of (3.198) by the right hand side of

(3.212) gives

x̂CB = N
(
NHPN

)−1
NHHHC−1

nny + TAH
(
AAH

)−1
Axp (3.214)

= N
(
NHPN

)−1
NHHHC−1

nny + TAH
(
AAH

)−1
b. (3.215)
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That finally means that using any particular xp in (3.198) yields the same result as using

the minimum norm solution xp = AH
(
AAH

)−1
b. �

Another important note is that Ny > Nx is not required for the application of (3.199),
which is in contrast to the constrained LS estimator in (3.29). In fact, the constrained
BLUE in (3.199) only requires full column rank of HN in order for NHPN to be invert-
ible. This implies that Ny ≥ N0, but Ny ≤ Nx is allowed.

For the case that Ny > Nx , H full column rank, and Cnn is invertible (as originally
assumed) which implies that P is invertible, the expression for the constrained BLUE
in (3.199) can be simplified.

Simplification for invertible P

Note that the expression of the constrained BLUE in (3.199) requires the calculation
of a basis of the nullspace of the matrix A. We will now derive an expression of the
constrained BLUE that does not require this nullspace evaluation, but which requires
Ny > Nx. With the assumptions of full column rank H and invertible Cnn (as originally
assumed) P is invertible, and the following identity holds:

N
(
NHPN

)−1
NH = P−1 −P−1AH

(
AP−1AH

)−1
AP−1. (3.216)

This identity can be proven the following way. The ith column of N is denoted as xi
according to (3.183). Furthermore, the ith column of AH is denoted as ai. We first
show that the vectors P−1a1, . . . ,P

−1aNb
,x1, . . . ,xN0 are linearly independent: Fix

c1, . . . , cNb
, di, . . . , dN0 ∈ C such that

Nb∑
i=1

ciP
−1ai +

N0∑
j=1

dixi = 0. (3.217)

For u =
∑Nb

i=1 ciai and v =
∑N0

j=1 dixi we have P−1u + v = 0Nx×1. Left multiplica-

tion by uH yields uHP−1u = 0 since u and v are orthogonal. Since P−1 is invertible,
we have that u = 0. By the linearly independence of all ai, all ci are 0. By (3.217),
all dj are 0. Thus the only solution of (3.217) is ci = dj = 0 for all i, j, or in other
words P−1a1, . . . ,P

−1aNb
,x1, . . . ,xN0 are linearly independent. Hence, the square ma-

trix [P−1AH N] is invertible. Furthermore, the matrix B = [AH PN] is invertible.
Right multiplying (3.216) by B yields [0 N] = [P−1AH N]− [P−1AH 0]. Since this
equation is true and B is invertible, (3.216) is also true. �

Inserting (3.216) into (3.199) finally yields

x̂CB =
(
I−P−1AH

(
AP−1AH

)−1
A
)
P−1HHC−1

nny + P−1AH
(
AP−1AH

)−1
b.

(3.218)

For the constrained BLUE in (3.218) one can easily show that the covariance matrix is

Cx̂x̂,CB = P−1 −P−1AH
(
AP−1AH

)−1
AP−1. (3.219)
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The expression for the constrained BLUE in (3.218) has the advantage that the nullspace
of A is not required. Furthermore, comparing the constrained LS estimator in (3.29)
with the constrained BLUE in (3.218) reveals that they are connected in a very similar
way as it is the case for the LS estimator in (3.5) and the BLUE in (3.48). Finally, we
end up with the following

Result 3.4 (Constrained BLUE)

Consider the linear model y = Hx + n, where y ∈ CNy is the measurement vector,
H ∈ CNy×Nx is a known measurement matrix with Ny > Nx and full column
rank, and n ∈ CNy is a zero mean random noise vector with known invertible
covariance matrix Cnn. If x fulfills the linear constraints Ax = b with full row
rank A ∈ CNb×Nx , b ∈ CNb , Nb < Nx, then the constrained BLUE minimizing the
variances of the elements of x̂CB such that x̂CB fulfills Ax̂CB = b is given by (3.218).
Its covariance matrix Cx̂x̂,CB is given by (3.219).

If Ny > Nx does not hold, then let N ∈ CNx×N0 be the matrix built by linearly inde-
pendent (column) basis vectors that span the nullspace of A. If HN has full column
rank (implying Ny ≥ N0), then the constrained BLUE for x fulfilling Ax̂CB = b is
given by (3.199). Its covariance matrix Cx̂x̂,CB is given by (3.211).

3.3.2 Constrained BWLUE

The extension of Result 3.4 for the case of improper noise is presented in the following.
These derivations will lead to the constrained BWLUE. For that, the linear model in
(3.1) shall hold and the augmented noise covariance matrix Cnn shall be invertible. A
discussion about the relation between Ny and Nx will be presented. Again, Ax = b
shall hold. We assume the estimator to be widely affine and of the form

x̂ = Fy + Gy∗ + f (3.220)

=
[
F G

]
︸ ︷︷ ︸

E

y + f (3.221)

= Ey + f . (3.222)

The goal is to find the estimator matrix E ∈ CNx×2Ny and the vector f ∈ CNx . Here,
we consider the estimator in augmented notation such that

x̂ =

[
F G

G∗ F∗

]
︸ ︷︷ ︸

E

y +

[
f

f∗

]
︸︷︷︸

f

(3.223)

= Ey + f . (3.224)
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For that, the unbiased constraint enforces

Ey[x̂] = Ey[Ey + f ] (3.225)

= En[E(H x + n) + f ] (3.226)

= E H x + f
!

= x. (3.227)

By using the notation in (3.174), and by denoting the ith row of E as eHi , the unbiased
constraint for eHi can be extracted from (3.227) and leads to

eHi H x + fi = xi (3.228)

for i = 1, . . . , Nx. Moreover, x̂i can be written as

x̂i = eHi y + fi. (3.229)

The cost function to be minimized, which is the variance of x̂i, follows as

J(ei) = Ey

[
(x̂i − Ey[x̂i])(x̂i − Ey[x̂i])

H
]

(3.230)

= Ey

[(
eHi y + fi − eHi Ey

[
y
]
− fi

)(
eHi y + fi − eHi Ey

[
y
]
− fi

)H]
(3.231)

= En

[(
eHi (H x + n)− eHi H x

)(
eHi (H x + n)− eHi H x

)H]
(3.232)

= En

[(
eHi n

)(
eHi n

)H]
= eHi Cnnei. (3.233)

In complete analogy to the linear case in Section 3.3.1 the constraints (3.169) need to be
converted into constraints in ei and fi for i = 1, . . . , Nx. This is done in the following.

Since Ax = b holds, the investigations in (3.181)–(3.183) remain valid. With the nota-
tion

A =

[
A 0Nb×Nx

0Nb×Nx A∗

]
, N =

[
N 0Nx×N0

0Nx×N0 N∗

]
, (3.234)

xp =

[
xp

x∗p

]
, α =

[
α

α∗

]
, b =

[
b

b∗

]
, (3.235)

the augmented notation of (3.182) is given by

x = xp + Nα. (3.236)

Furthermore, it holds that A N = 02Nb×2N0 . Inserting (3.236) into (3.227) results in

Ey[x̂] = E H
(
xp + Nα

)
+ f

!
= xp + Nα (3.237)

⇔ (E H N−N)α + (E H− I)xp + f
!

= 0. (3.238)

To fulfill this equation for every possible realization of the unknown vector α, we deduce
the following two constraints for E and f :

E H N = N (3.239)

f = (I−E H)xp. (3.240)
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With nHi denoting the ith row of N, the constraint for eHi , 1 ≤ i ≤ Nx, can be extracted
from (3.239) and leads to

eHi H N =
[
nHi 01×N0

]
. (3.241)

All the constraints are now converted into constraints in ei and fi, such that we are
finally able to formulate the constrained optimization problem for ei:

eCBW,i = arg min
ei

eHi Cnnei s.t. eHi H N =
[
nHi 01×N0

]
. (3.242)

We now solve this constrained optimization problem using the Lagrangian multiplier
method. The Lagrangian cost function for this problem is given by

L(ei) = eHi Cnnei + λH

(
NHHHei −

[
ni

0N0×1

])
+ λT

(
NTHTe∗i −

[
n∗i

0N0×1

])
.

(3.243)

The Wirtinger derivative with respect to ei produces

∂L(ei)

∂ei
= eHi Cnn + λHNHHH . (3.244)

Setting (3.244) equal to zero results in

eHCBW,i = −λHNHHHC−1
nn. (3.245)

Inserting (3.245) into the constraint in (3.242) produces

−λHNHHHC−1
nnH N =

[
nHi 01×N0

]
(3.246)

−λH =
[
nHi 01×N0

](
NHHHC−1

nnH N
)−1

. (3.247)

Reinserting this result into the expression for eHi in (3.245) yields

eHCBW,i =
[
nHi 01×N0

](
NHHHC−1

nnH N
)−1

NHHHC−1
nn. (3.248)

Since nHi is the only term in (3.248) that depends on the index i, the expression for the
estimator matrix is given by

ECBW =
[
N 0Nx×N0

](
NHHHC−1

nnH N
)−1

NHHHC−1
nn. (3.249)

The augmented notation of this result can easily be identified as

ECBW = N
(
NHHHC−1

nnH N
)−1

NHHHC−1
nn. (3.250)

In the following, we denote
P = HHC−1

nnH (3.251)

such that ECBW reads as

ECBW = N
(
NHP N

)−1
NHHHC−1

nn. (3.252)
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Inserting (3.240) and (3.252) into (3.224) finally leads to the constrained BWLUE in the
form of

x̂CBW = ECBWy + (I−ECBWH)xp (3.253)

= N
(
NHP N

)−1
NHHHC−1

nny +
(
I−N

(
NHP N

)−1
NHP

)
xp (3.254)

= N
(
NHP N

)−1
NHHHC−1

nn

(
y −H xp

)
+ xp. (3.255)

This estimator is unbiased, which can be shown by incorporating (3.236) and (3.239)
into (3.253)

Ey[x̂CBW] = ECBWEy[y] + (I−ECBWH)xp (3.256)

= ECBWH x + (I−ECBWH)(x−Nα) (3.257)

= ECBWH x + x−ECBWH x−Nα + ECBWH Nα (3.258)

= x−Nα + ECBWH N︸ ︷︷ ︸
N

α (3.259)

= x. (3.260)

Following similar arguments, it holds that

x̂CBW − Ey[x̂CBW] = ECBWH x + ECBWn + x−ECBWH x−Nα + ECBWH Nα− x
(3.261)

= ECBWn. (3.262)

With that, the augmented covariance matrix of x̂CBW can be derived as

Cx̂x̂,CBW = Ey

[
(x̂CBW − Ey[x̂CBW])(x̂CBW − Ey[x̂CBW])H

]
(3.263)

= ECBWEn

[
n nH

]
EH

CBW (3.264)

= ECBWCnnEH
CBW (3.265)

= N
(
NHP N

)−1
NHHHC−1

nnCnnC−1
nnH N

(
NHP N

)−1
NH (3.266)

= N
(
NHHHP H N

)−1
NH . (3.267)

In complete analogy to the linear case, one can show that x̂CBW in (3.255) actually is
independent of the concrete choice of xp as long as A xp = b. To prove this we first
show that the identity

T = T AH
(
A AH

)−1
A, (3.268)

with

T = I−N
(
NHP N

)−1
NHP, (3.269)

holds. For that we utilize the matrix [AH N]. Since A N = 0, the column spaces of
AH and N are orthogonal to each such that [AH N] is invertible. Multiplying (3.268)
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with [AH N] from the right results in [T AH 0] = [T AH 0]. Since this equation is
true and [AH N] is invertible, (3.268) is also true. �

Now replacing T = I−N
(
NHP N

)−1
NHP in (3.254) by the right hand side of (3.268)

gives

x̂CBW = N
(
NHP N

)−1
NHHHC−1

nny + TAH
(
A AH

)−1
Axp (3.270)

= N
(
NHP N

)−1
NHHHC−1

nny + TAH
(
A AH

)−1
b. (3.271)

That finally means that using any particular xp in (3.254) yields the same result as using

the minimum norm solution xp = AH
(
AAH

)−1
b.

Another important note is that Ny > Nx is not required for the application of (3.255).
In fact, the constrained BWLUE in (3.255) only requires full column rank of HN in
order for NHPN to be invertible. This implies that Ny ≥ N0, but Ny ≤ Nx is allowed.

For the case that Ny > Nx , H full column rank, and Cnn is invertible (as originally
assumed) which implies that P is invertible, the expression for the constrained BWLUE
in (3.255) can be simplified.

Simplification for invertible P

Note that the expression of the constrained BWLUE in (3.255) requires the evaluation
of the nullspace of the matrix A. We will now derive an expression of the constrained
BWLUE that does not require this nullspace evaluation, but which requires Ny > Nx

and P being invertible. For that we utilize the identity

N
(
NHP N

)−1
NH = P−1 −P−1AH

(
A P−1AH

)−1
A P−1. (3.272)

This identity can be proven the following way. Let the ith column of N be denoted as
ñi. Furthermore, the ith column of AH is denoted as ãi. We first show that the vectors
P−1ã1, . . . ,P

−1ã2Nb
, ñ1, . . . , ñ2N0 are linearly independent:

Fix c1, . . . , c2Nx , di, . . . , d2N0 ∈ C such that

2Nb∑
i=1

ciP
−1ãi +

N0∑
j=1

diñi = 0. (3.273)

For u =
∑Nb

i=1 ciãi and v =
∑N0

j=1 diñi we have P−1u + v = 0Nx×1. Left multiplication

by uH yields uHP−1u = −uHv = 0 since u and v are orthogonal. Since P−1 is
invertible, we have that u = 0. By the linearly independence of all ãi, all ci are 0. By
(3.273), all dj are 0. Thus the only solution of (3.273) is ci = dj = 0 for all i, j, or
in other words P−1ã1, . . . ,P

−1ã2Nb
, ñ1, . . . , ñ2N0 are linearly independent. Hence, the

square matrix [P−1AH N] is invertible. Furthermore, the matrix B = [AH P N] is
invertible. Right multiplying (3.272) by B yields [0 N] = [P−1AH N]− [P−1AH 0].
Since this equation is true and B is invertible, (3.272) is also true. �
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Inserting (3.272) into (3.255) finally yields

x̂CBW =
(
I−P−1AH

(
A P−1AH

)−1
A
)
P−1HHC−1

nny + P−1AH
(
A P−1AH

)−1
b.

(3.274)

For the constrained BWLUE in (3.274) one can easily show that the augmented covari-
ance matrix is

Cx̂x̂,CBW = P−1 −P−1AH
(
A P−1AH

)−1
A P−1. (3.275)

The expression for the constrained BWLUE in (3.274) has the huge advantage that the
nullspace of A is not required.

All findings for the constrained BWLUE are summarized in

Result 3.5 (Constrained BWLUE)

Consider the linear model y = Hx + n, where y ∈ CNy is the measurement vector,
H ∈ CNy×Nx is a known measurement matrix with Ny > Nx and full column rank,
and n ∈ CNy is a zero mean random noise vector with known invertible augmented
covariance matrix Cnn. If x fulfills the linear constraints Ax = b with full row rank
A ∈ CNb×Nx , b ∈ CNb , Nb < Nx, then the constrained BWLUE minimizing the
variances of the elements of x̂CBW such that x̂CBW fulfills Ax̂CBW = b is given in
augmented notation by (3.274). Its covariance matrix Cx̂x̂,CBW is given by (3.275).

If Ny > Nx does not hold, then let N ∈ CNx×N0 be the matrix built by linearly
independent (column) basis vectors that span the nullspace of A. If H N has full
column rank (implying Ny ≥ N0), then the constrained BWLUE for x fulfilling
Ax̂CBW = b is given in augmented notation by (3.255). Its augmented covariance
matrix Cx̂x̂,CBW is given by (3.267).

The derived estimators in Result 3.4 and Result 3.5 will now be compared to competing
estimators in two simulation examples.
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Example 3.1 (Estimation of an Impulse Response Whose Samples Sum up
to Zero)

We assume x ∈ C5 to be the discrete-time impulse response of an unknown system.
Additionally, we know that the system is unable to transmit any DC signals. Hence,
the sum of all elements of x must be zero. This can be described by a linear constraint
Ax = b, where A = 11×5 and b = 0. The measurement vector y ∈ C10 shall
contain noisy measurements of an input signal u ∈ C6 convolved with the impulse
response x. Thus, H ∈ C10×5 is a convolution matrix built from the vector u. This
vector was randomly drawn for every simulation run from a standard proper Gaussian
distribution. The noise n in (3.346) is chosen by [32]

n =
√

1− ρ2nr + jρni, (3.276)

where nr and ni are uncorrelated real-valued zero mean Gaussian random vectors
of length Ny and with unit variance, and ρ ∈ [0, 1]. With that choice, the noise
power remains unaffected while the improperness of the noise can be adjusted by
appropriately choosing ρ. The noise is proper for ρ = 1/

√
2. Since all elements of n

have the same variance, the MSE performance of the ordinary BLUE coincides with
that of the ordinary LS estimator. Also, the MSE performance of the constrained
BLUE coincides with that of the constrained LS estimator. Hence, the following
estimators are considered:

1. The ordinary LS estimator in (3.5), denoted as x̂OLS,

2. the intuitive estimator resulting from subtracting the mean value from the esti-
mates of the ordinary LS estimator

x̂ = x̂OLS −mean(x̂OLS)1Nx×1, (3.277)

3. the constrained LS estimator in (3.29),

4. the ordinary BWLUE in (3.63), denoted as x̂OBW,

5. the intuitive estimator resulting from subtracting the mean value from the esti-
mates of the ordinary BWLUE

x̂ = x̂OBW −mean(x̂OBW)1Nx×1, (3.278)

where x̂OBW is the upper half of the augmented vector estimate x̂OBW,

6. the constrained BWLUE from Result 3.5.

The resulting average MSEs (averaged over the elements of x) plotted over ρ are
presented in Fig. 3.1. The estimators that do not incorporate the improperness of
the noise show a performance that is independent of ρ. The ordinary LS estimator
performs worst for all values of ρ. The estimation accuracy can be significantly
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increased by using the intuitive LS estimator in (3.277). An even better estimation
accuracy is achieved by the constrained LS estimator. Similar performance gains
are obtained for the widely linear estimators based on the BWLUE, however, their
performance strongly depends on ρ since they incorporate information about the
improperness of the noise.
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Figure 3.1: Average MSEs of the estimated impulse responses for various estimators. The vertical
black line marks the value of ρ = 1/

√
2 where the noise is proper.

Interestingly, if the measurement matrix would fulfill HHH = αI with an arbitrary
scalar α > 0, the intuitive LS estimator in (3.277) and the constrained LS estimator
in (3.29) would coincide. This equivalence is analytically proven in Appendix C.

In the next example, b differs from the zero vector.
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Example 3.2 (Estimation of a Parameter Vector that fulfills Additional
Constraints)

This toy example is based on the previous one. In fact, the measurement matrix
generation and the noise statistics remain unaltered, but we change the constraints
that the unknown parameter vector has to fulfill. Here, the linear constraints are
Ax = b, where

A =

[
1 0.5 0.1 0.5 1

0 0.5 1 0.5 0

]
, b =

[
1

1

]
. (3.279)

For these settings, the same estimators as in Example 3.1 are compared except for
the intuitive ones since they do not make sense in that form in this example.
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Figure 3.2: Average MSEs of the estimated impulse responses for various estimators. The vertical
black line marks the value of ρ = 1/

√
2 where the noise is proper.

The resulting average MSEs (averaged over the elements of x) plotted over ρ are
presented in Fig. 3.2. Compared to Example 3.1, the performance gain achievable by
incorporating the additional constraints into the estimation process increased. This
is due to the increased number of additional scalar valued constraints (Nb = 2).

Another type of additional model knowledge is considered in the next section. The
derived estimators therein not only significantly outperform well-known estimators but
also meaningful intuitive estimators as it will be shown.

52



3.4 Estimation of Real-Valued Parameter Vectors in Complex-Valued Environments

3.4 Estimation of Real-Valued Parameter Vectors in
Complex-Valued Environments

Consider the linear model in (3.1) with the additional model knowledge that the pa-
rameter vector x is real-valued. The measurement matrix H, the noise n as well as
the measurements y remain complex-valued. A prominent practical example where
such a model appears is the estimation of a real-valued impulse response of a LTI sys-
tem based on complex-valued noisy measurements of its frequency response. Standard
complex-valued estimators such as the LS estimator, the BLUE or the BWLUE result
in complex-valued estimates in that case. This fact corresponds to a systematic error.
However, by incorporating the fact that x is real-valued into the derivations, the goal of
finding classical estimators that results in real-valued estimates can be achieved.

We assume an underlying linear model

y = Hx + n (3.280)

where, in contrast to (3.1), the parameter vector x ∈ RNx is assumed to be real-valued.
The measurement vector y ∈ CNy , the measurement matrix H ∈ CNy×Nx , and the noise
vector n ∈ CNy remain complex-valued.

In a Bayesian interpretation, the real-valued parameter vector is improper and the ap-
plication of widely linear estimators is obvious [2,3,22,33–35]. A common widely linear
Bayesian estimator is the WLMMSE estimator discussed in Section 4. The WLMMSE
estimator incorporates the fact that x is real-valued and produces real-valued estimates.
However, it requires prior knowledge about x in form of augmented first and second
order statistics, which may not always be available. If this is the case, the classical
estimators derived in this section may be an optimal choice.

Note that standard classical estimators such as the LS estimator in (3.5), the BLUE in
(3.48), or the BWLUE in (3.63) do not result in real-valued estimates for real-valued
parameters in general. An exception is the case where H, x, n ∈ R. Hence, these
classical estimators produce a systematic error when applied to (3.280). A common
practical approach to overcome this issue is to take only the real parts of the estimates
for further processing. However, this approach is in general not optimal as will be shown
shortly. A special case where this practical approach turns out to be optimal is discussed
later. Also note that the nomenclature BLUE and BWLUE for the estimators (3.48) and
(3.63) applied on the model in (3.280) is misleading since they will no longer be the true
best (widely) linear unbiased estimators any more for the particular model. However,
for the sake of uniformity, we continue to refer (3.48) and (3.63) as the ordinary BLUE
and ordinary BWLUE, respectively.

In the following, we derive a classical estimator termed BWLUE for real-valued parameter
vectors. This estimator is of widely linear form and incorporates the fact that x is real-
valued in an optimal way. After that, the LS estimator is adapted to the model in
(3.280). We derive a widely linear LS estimator that does not utilize any noise statistics,
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and that incorporates the fact that x is real-valued in an optimal way. The resulting
estimator is termed the widely linear least squares (WLLS) estimator for real-valued
parameter vectors.

We note that a similar results as presented in this section are already published in [36] by
means of a matched filter and for the special case of a scalar parameter. Another similar
result can be found in [35] for the special case of diagonal measurement matrices. We also
note that the approach in (3.308) should not be confused with beamforming approaches
based on the minimum variance distortionless response (MVDR) beamformer [37,38].
There, the utilized correlation matrix contains contributions from all incoming signals
and noise. In our approach, no statistics about the signal (the parameter vector in this
context) is required.

3.4.1 BWLUE for Real-Valued Parameter Vectors

In this section, we derive the BWLUE for real-valued parameter vectors but complex-
valued measurements. Utilizing the notation introduced in (3.51) gives us an expression
for a general widely linear estimator for xi as

x̂i = fHi y + gHi y∗. (3.281)

In contrast to the ordinary BWLUE in (3.63), the BWLUE for real-valued parameter
vectors enforces

Im{x̂i} = 0 (3.282)

and

Ey[Re{x̂i}] = Ey[x̂i] = xi. (3.283)

From (3.282), one can easily show that the choice

fHi = gTi (3.284)

is necessary and sufficient to make x̂i real-valued, independent of the actual realization
of y. The proof of this statement is provided in Appendix D. Incorporating (3.281) and
(3.284) into (3.283) leads to

Ey[x̂i] = Ey

[
fHi y + fTi y∗

]
(3.285)

= fHi Hx + fTi H∗x (3.286)

=
(
fHi H + fTi H∗

)
x. (3.287)

Hence, the unbiased constraint E[x̂i] = x̂i is fulfilled for every x if

fHi H + fTi H∗ = uTi , (3.288)

with uTi being a row vector of size 1 × Nx with a ’1’ at its ith position, and all zeros
elsewhere. Comparing the constraints for the BWLUE for real-valued parameter vectors
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in (3.288) with that for the ordinary BWLUE in (3.53) reveals that the ordinary BWLUE
has to fulfill twice as many constraints than the BWLUE for real-valued parameter
vectors. On the other hand, the BWLUE for real-valued parameter vectors only has half
as many degrees of freedom compared to the ordinary BWLUE due to (3.284).

Combining (3.288) with (3.59) allows to derive the constrained optimization problem

fBW,i = arg min
fi

([
fHi fTi

]
Cnn

[
fi

f∗i

])
(3.289)

= arg min
fi

(
2fHi Cnnfi + fHi C̃nnf∗i + fTi C̃∗nnfi

)
(3.290)

s.t. fHi H + fTi H∗ = uTi . (3.291)

This can again be solved by utilizing the Lagrange multiplier method. Since the con-
straint is real-valued independent of fi (see discussion in Section 2.4.2) the Lagrangian
cost function follows as

L(fi) = 2fHi Cnnfi + fHi C̃nnf∗i + fTi C̃∗nnfi

+ λT
(
HHfi + HT f∗i − ui

)
. (3.292)

Taking the Wirtinger derivative w.r.t. fi results in

∂L(fi)

∂fi
= 2fHi Cnn + 2fTi C̃∗nn + λTHH , (3.293)

where λ is real-valued since the constraint is real-valued (cf. Section 2.4.2). Setting

(3.293) equal to zero and utilizing eHBW,i =
[
fHBW,i fTBW,i

]
yields

fHBW,iCnn + fTBW,iC̃
∗
nn = − 1

2
λTHH (3.294)

eHBW,i

[
Cnn

C̃∗nn

]
= − 1

2
λTHH . (3.295)

The complex conjugate of (3.294) can be rewritten in a similar form, producing

eHBW,i

[
C̃nn

C∗nn

]
= −1

2
λTHT . (3.296)

Combining (3.295) and (3.296) yields

eHBW,i

[
Cnn C̃nn

C̃∗nn C∗nn

]
= − 1

2
λT
[
HH HT

]
︸ ︷︷ ︸

H̃H

(3.297)

eHBW,iCnn = − 1

2
λT H̃H (3.298)

eHBW,i = − 1

2
λT H̃HC−1

nn, (3.299)

55



3 Knowledge-Aided Concepts in Classical Estimation

where

H̃ =

[
H

H∗

]
. (3.300)

Inserting (3.299) into the constraint in (3.288) produces

fHBW,iH + fTBW,iH
∗ = uTi (3.301)

eHBW,iH̃ = uTi (3.302)

−1

2
λT H̃HC−1

nnH̃ = uTi (3.303)

−1

2
λT = uTi

(
H̃HC−1

nnH̃
)−1

. (3.304)

A reinsertion of (3.304) into (3.299) allows identifying eHBW,i as

eHBW,i = uTi

(
H̃HC−1

nnH̃
)−1

H̃HC−1
nn. (3.305)

The ith estimate x̂i follows as

x̂i = fHBW,iy + fTBW,iy
∗ = eHBW,iy. (3.306)

Since uTi is the only term on the right hand side of (3.305) that depends on the index i,
the vector estimate x̂ becomes

x̂BW =
(
H̃HC−1

nnH̃
)−1

H̃HC−1
nny (3.307)

= EBWy, (3.308)

where

EBW =
(
H̃HC−1

nnH̃
)−1

H̃HC−1
nn. (3.309)

We now derive the covariance matrix of x̂BW. First of all, note that for real-valued x it
holds that

H x =

[
H 0

0 H∗

][
x

x

]
= H̃x (3.310)

and thus

Ey[x̂BW] =
(
H̃HC−1

nnH̃
)−1

H̃HC−1
nnH x (3.311)

= x. (3.312)

Furthermore, it holds that

x̂BW − Ey[x̂BW] =
(
H̃HC−1

nnH̃
)−1

H̃HC−1
nnn (3.313)

= EBWn. (3.314)
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Finally, the covariance matrix of x̂BW can be derived as

Cx̂x̂,BW = E
[
(x̂BW − Ey[x̂BW])(x̂BW − E[x̂BW])H

]
(3.315)

= EBW Cnn EH
BW (3.316)

=
(
H̃HC−1

nnH̃
)−1

H̃HC−1
nnCnnC−1

nnH̃
(
H̃HC−1

nnH̃
)−1

(3.317)

=
(
H̃HC−1

nnH̃
)−1

. (3.318)

The investigations in this section so far are summarized in

Result 3.6 (BWLUE for Real-Valued Parameter Vectors)

If x ∈ RNx and y ∈ CNy are connected via the linear model in (3.280), then the
BWLUE for real-valued parameter vectors is given by x̂BW = EBWy, where the esti-

mator matrix EBW is defined in (3.309) and H̃ is defined in (3.300). This estimator
is unbiased in the classical sense, i.e., it fulfills Ey[x̂BW] = x, and its covariance
matrix Cx̂x̂,BW is given in (3.318).

Several aspects and details of this result are discussed in the following.

Equivalent Real-Valued Model

The complex-valued measurements y in (3.280) can also be brought into the form of a
real composite vector

yR =

[
Re{y}
Im{y}

]
. (3.319)

yR is connected with the real-valued parameter vector x via the real composite linear
model

yR =

[
Re{H}
Im{H}

]
︸ ︷︷ ︸

HR

x +

[
Re{n}
Im{n}

]
︸ ︷︷ ︸

nR

(3.320)

= HRx + nR. (3.321)

For this real-valued model, which is equivalent to the complex-valued model in (3.280),
the BLUE, which minimizes the variances of the elements of x subject to the unbiased
constraint is given by

x̂ =
(
HT

RC−1
nRnRHR

)−1
HT

RC−1
nRnRyR. (3.322)
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Therein, CnRnR is connected with Cnn in the same way as in (2.18). By utilizing this
connection, one can easily show that (3.322) corresponds to the estimator in complex
notation in Result 3.6. However, for the reasons discussed in [2,39], the complex-valued
representation is often favored.

Simplification for Proper Noise

We now analyze Result 3.6 for the case of proper noise. With C̃nn = 0Ny×Ny the
estimator in (3.307) simplifies to

x̂BW =
(
HHC−1

nnH + HT
(
C−1

nn

)∗
H∗
)−1

×
(
HHC−1

nny + HT
(
C−1

nn

)∗
y∗
)

(3.323)

=
(
Re
{
HHC−1

nnH
})−1

Re
{
HHC−1

nny
}
. (3.324)

Note that this notation is even simpler than the one for improper noise in Result 3.6
and the evaluation of the estimator becomes significantly less complex.

Assuming the special case, where the term HHC−1
nnH is real-valued we obtain from

(3.324)

x̂BW =
(
HHC−1

nnH
)−1

Re
{
HHC−1

nny
}

(3.325)

= Re
{(

HHC−1
nnH

)−1
HHC−1

nny
}
. (3.326)

In that case, the BWLUE for real-valued parameter vectors coincides with the real part
of the ordinary BLUE in (3.48). Furthermore, it also coincides with the real part of the
ordinary BWLUE in (3.63) since the noise is assumed to be proper.

Relation between Number of Measurements and Number of Parameters

Another interesting statement about the estimator can be made concerning the size of
the measurement matrix H. Inspecting (3.322) reveals that this estimator is applicable
if HR ∈ R2Ny×Nx has full column rank and if 2Ny > Nx. Therefore, only half as many
complex-valued measurements are required as there are unknown real-valued parameters.
This statement clearly also holds for the BWLUE for real-valued parameter vectors in
Result 3.6 since this estimator is equivalent to the one in (3.322).

3.4.2 WLLS Estimator for Real-Valued Parameter Vectors

In the previous section, we showed how the widely linear BWLUE can be modified such
that only real-valued estimates are obtained. These ideas are extended to LS estimation
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in this section. It will turn out that a widely linear version of the LS estimator is obtained
naturally. The resulting estimator will be termed the WLLS for real-valued parameter
vectors.

The first step for deriving this estimator is to recognize that the LS cost function J(x)
in (3.3) is real-valued even for complex y and H. Hence, it can be written in the form

J(x) =
1

2

[
(y −Hx)H(y −Hx) + (y −Hx)T (y −Hx)∗

]
. (3.327)

For real-valued x but complex H and y, the cost function in (3.327) follows as

J(x) =
1

2

[
yHy − yHHx− xTHHy + xTHHHx + yTy∗

− yTH∗x− xTHTy∗ + xTHTH∗x
]

(3.328)

=
1

2

[
2yHy − 2yHHx− 2xTHHy + xT

(
HHH + HTH∗

)
x
]
. (3.329)

Taking the partial derivative of (3.329) w.r.t. x yields

∂J(x)

∂x
= − yHH− yTH∗ + xT

(
HHH + HTH∗

)
(3.330)

= − yHH̃ + xT
(
H̃HH̃

)
. (3.331)

Note that no Wirtinger calculus for taking the partial derivative is necessary since x is
real-valued. Setting (3.331) equal to zero yields

x̂LS =
(
H̃HH̃

)−1
H̃Hy (3.332)

= ELSy, (3.333)

where

ELS =
(
H̃HH̃

)−1
H̃H . (3.334)

Due to similar arguments as in (3.310) and (3.312), x̂LS fulfills Ey[x̂LS] = x, and the
covariance matrix of x̂LS simply follows as

Cx̂x̂,LS = Ey

[
(x̂LS − Ey[x̂LS])(x̂LS − Ey[x̂LS])H

]
(3.335)

= ELS Cnn EH
LS. (3.336)

The derived estimator is summarized in

Result 3.7 (WLLS for Real-Valued Parameter Vectors)

If x ∈ RNx and y ∈ CNy are connected via the linear model in (3.280), then the
WLLS estimator for real-valued parameter vectors x̂LS is given by x̂LS = ELSy,

where the estimator matrix ELS is defined in (3.334) and H̃ is defined in (3.300).
This estimator is unbiased in the classical sense, i.e., it fulfills Ey[x̂LS] = x, and its
covariance matrix is Cx̂x̂,LS is given in (3.336).
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We now investigate a special case of this result. Consider the definition of H̃ in (3.300),
then one can see that (3.333) can be simplified to

x̂LS =
(
Re
{
HHH

})−1(
Re
{
HHy

})
. (3.337)

Hence, the WLLS estimator for real-valued parameter vectors reduces to the real part
of the ordinary LS estimator in (3.5) when the term HHH is real-valued. Furthermore,
the BWLUE from Result 3.6 reduces to the WLLS estimator in Result 3.7 by setting
the augmented noise covariance matrix equal to the identity matrix.

An extension of Result 3.7 is derived in the following. Replacing the LS cost function in
(3.3) by the weighted LS cost function

J(x) = (y −Hx)HW(y −Hx) (3.338)

allows deriving the weighted widely linear least squares (WWLLS) estimator for real-
valued parameter vectors. Assuming that the weighting matrix is a diagonal matrix with
positive, real-valued, non-zero and non-infinite diagonal elements makes the derivation
a straight forward extension of (3.327)–(3.336) and leads to

Result 3.8 (WWLLS for Real-Valued Parameter Vectors)

If x ∈ RNx and y ∈ CNy are connected via the linear model in (3.280), then the
WWLLS estimator for real parameter vectors x̂WLS is given by

x̂WLS = EWLSy, (3.339)

where the estimator matrix EWLS is defined as

EWLS =
(
H̃HWH̃

)−1
H̃HW. (3.340)

Here, W is defined as

W =

[
W 0

0 W

]
(3.341)

with W being a diagonal weighting matrix. This result can further be simplified to

x̂WLS =
(
Re
{
HHWH

})−1(
Re
{
HHWy

})
. (3.342)

The covariance matrix of x̂WLS follows as

Cx̂x̂,WLS = E
[
(x̂WLS − E[x̂WLS])(x̂WLS − E[x̂WLS])H

]
(3.343)

= EWLS Cnn EH
WLS. (3.344)
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Note the similarities between the WWLLS estimator in Result 3.8 and the BWLUE for
real-valued parameter vectors in Result 3.6.

Example 3.3 (Magnitude Estimation of a Sum of Complex Exponentials)

In this example, real-valued magnitudes of two complex exponentials are estimated
from noisy measurements. The measurement at time instance k is written as

y[k] = x1 exp(jΩ1k) + x2 exp(jΩ2k) + n[k], (3.345)

where k = 1, . . . , Ny, and x1 and x2 are the unknown real-valued magnitudes. Further,
Ω1 and Ω2 are known normalized angular frequencies. These measurements can be
brought into vector/matrix notation as

y = Hx + n, (3.346)

where y ∈ CNy is the measurement vector, x =
[
x1 x2

]T
, and

[H]k,l = exp(jΩlk), l = {1, 2}. (3.347)

The noise n in (3.346) is chosen to be [32]

n =
√

1− ρ2nr + jρni, (3.348)

where nr and ni are standard proper Gaussian random vectors of length Ny, and
ρ ∈ [0, 1]. With this choice, the noise power remains unaffected by the choice of ρ
while the improperness of the noise can be adjusted by appropriately choosing ρ. The
noise is proper for ρ = 1/

√
2. In the simulations, we choose Ω1 = 0.1, Ω2 = 0.2 and

Ny = 20. The following estimators are considered:

1. The ordinary LS estimator in (3.5), denoted as x̂OLS,

2. an intuitive estimator, which simply takes the real part of the ordinary LS
estimator, i.e.,

x̂ = Re{x̂OLS}, (3.349)

3. the WLLS estimator for real-valued parameter vectors from Result 3.7,

4. the ordinary BWLUE in (3.63), denoted as x̂OBW,

5. the intuitive estimator, which takes the real part of the ordinary BWLUE, i.e.,

x̂ = Re{x̂OBW}, (3.350)

6. the BWLUE for real-valued parameter vectors from Result 3.6.
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The resulting average MSEs (averaged over the elements of x) plotted over ρ are
presented in Figure 3.3. The ordinary LS estimator performs worst for all values
of ρ (but for ρ = 1/

√
2). Its performance can be increased by considering only the

real parts of the estimates. Compared to that, a further increase in performance is
achieved by the WLLS estimator from Result 3.7.

The estimators incorporating the improperness of the noise show a performance that
strongly depends on ρ. One can see that the BWLUE for real-valued parameter
vectors from Result 3.6 outperforms all competing estimators over the whole range
of ρ. For ρ = 1/

√
2, which corresponds to proper noise, the BWLUE from Result 3.6

coincides with the WLLS estimator from Result 3.7 since Cnn is a scaled identity
matrix and C̃nn = 0 in that case.
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Figure 3.3: Average MSEs of the estimated magnitude values for various estimators. The vertical
black line marks the value of ρ = 1/

√
2 where the noise is proper.

The next simulation example deals with the classic non-linear problem of estimating
the sampled impulse response of an analog LTI system based on noisy magnitude and
phase response measurements. It will turn out that this example impressively shows
the performance of the proposed estimators. Furthermore, as part of the example it
will be shown how to combine the WLLS estimator in Result 3.7 with the BWLUE for
real-valued parameter vectors in Result 3.6. This will reveal a two-step approach that
outperforms all the other estimators.
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Example 3.4 (Impulse Response Estimation from Noisy Magnitude and
Phase Frequency Domain Measurements)

This example deals with the classic non-linear problem of estimating the real-valued
impulse response of an LTI system based on separate measurements of the magnitude
and phase response [31]. This problem appears in practical scenarios, e.g., when
characterizing hydrophones.

Problem Statement

Let the analog real-valued impulse response of an LTI system be denoted as h(t). We
are interested in estimating the sampled impulse response h[n] = h(nTS), where TS
is the sampling time. We assume TS to be chosen such that the sampling theorem is
practically fulfilled, and we furthermore assume the sampled impulse response to be
approximately zero after Nh samples. Its samples are put together in the vector h ∈
RNh . The measurements are given by Ny independent magnitude and phase frequency
response measurements at equidistant frequencies fk = k∆f with k = 0, . . . , Ny − 1.
The true magnitude and phase response values of the analog LTI system at frequency
fk are denoted as Ak and ϕk, respectively, with Ak ∈ R+

0 and ϕk ∈ [0, 2π), such that
the frequency response H(fk) is given by [31]

H(fk) = Ake
jϕk , k = 0, . . . , Ny − 1, (3.351)

which corresponds to a transformation from polar coordinates to Cartesian coordi-
nates. We now define

HDC =
1

TS
H(0), (3.352)

HAC =
1

TS

[
H(f1), H(f2), . . . ,H(fNy−1)

]T
, (3.353)

HAC,flip =
1

TS

[
H(fNy−1), H(fNy−2), . . . ,H(f1)

]T
, (3.354)

and

Hds =
[
HDC HT

AC HH
AC,flip

]T
∈ CND×1, (3.355)

with ND = 2Ny− 1. This double-sided discrete frequency response is connected with
the sampled impulse response according to

Hds = Fdsh, (3.356)

where Fds is the matrix given by the first Nh columns of the DFT matrix of size
ND × ND. In this example, however, we mainly utilize the single-sided frequency
response Hss defined as

Hss =
[
HDC HT

AC

]T
= Fssh, (3.357)
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where Fss is the Ny × Nh north-west submatrix of the DFT matrix of size ND ×
ND. While the connection between the sampled impulse response h and the discrete
frequency response in Cartesian coordinates is linear according to (3.356) or (3.357),
the relationship between h and the magnitude- and phase responses Ak and ϕk is
non-linear.

Measurement Model

We first concentrate on measurements at frequencies fk = k∆f with k = 1, . . . , Ny −
1, and handle the DC measurement later on. The magnitude and phase response

measurements at frequency fk are denoted as y
(A)
k and y

(ϕ)
k , respectively. They are

related to Ak and ϕk according to

y
(A)
k = Ak + nA,k (3.358)

and

y
(ϕ)
k = ϕk + nϕ,k (3.359)

for k = 1, · · · , Ny − 1, where nA,k and nϕ,k denote the corresponding measurement
noise variables. In the underlying practical application this work is based on, the
measurements as well as the according measurement noise variances were provided by
an industry partner. The following assumptions about the noise PDFs are adapted
to their method of measuring the magnitude and phase response. nA,k and nϕ,k are
assumed to be statistically independent for all k. Furthermore, we assume nϕ,k to be

zero mean Gaussian with variance σ2
ϕ,k. Since Ak and y

(A)
k have to be positive valued,

nA,k cannot be zero mean Gaussian. Thus, in our investigations and simulations we

assume y
(A)
k for fixed Ak to be Rice distributed according to

p(y
(A)
k ) =

y
(A)
k

σ2
A,k

exp

−
(

(y
(A)
k )2 +A2

k

)
2σ2

A,k

I0

(
y

(A)
k Ak

σ2
A,k

)
, (3.360)

where I0(·) is the modified Bessel function of first kind with order zero. The resulting

mean of p(y
(A)
k ) is denoted as µk in the following. For large Ak, the PDF of nA,k

is approximately zero mean Gaussian with variance σ2
A,k, however this is not true

for small Ak. Transforming the magnitude and phase response measurements to
Cartesian coordinates gives

yk = y
(A)
k ejy

(ϕ)
k (3.361)

= (Ak + nA,k)e
j(ϕk+nϕ,k) (3.362)

= Ake
jϕkejnϕ,k + nA,ke

jϕkejnϕ,k . (3.363)

The random variable yk can also be written as the sum of its mean and a zero mean
noise term according to

yk = E[yk] + nk. (3.364)
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From (3.363), the mean E[yk] becomes

E[yk] = Ake
jϕkE

[
ejnϕ,k

]
+ µA,ke

jϕkE
[
ejnϕ,k

]
. (3.365)

With αk = E
[
ejnϕ,k

]
= E[cos(nϕ,k)] = e−σ

2
ϕ,k/2 ∈ [0, 1] for nϕ,k ∼ N (0, σ2

ϕ,k) [40],
and the approximation µA,k ≈ 0 (note that µA,k depends on the true but unknown
magnitude response Ak) we have E[yk] ≈ αkH(fk). Therewith, the measurement
model (3.364) for k = 1, . . . , Ny − 1 simplifies to

yk ≈ αkH(fk) + nk. (3.366)

We now analyze the noise term nk in (3.364). By using the approximation that nA,k
has zero mean and variance σ2

A,k, the variance σ2
k and pseudo-variance σ̃2

k of nk for
1 ≤ k ≤ Ny − 1 can be approximated by

σ2
k = E[(yk − E[yk])(yk − E[yk])

∗] (3.367)

≈ A2
k

(
1− α2

k

)
+ σ2

A,k (3.368)

and

σ̃2
k = E[(yk − E[yk])(yk − E[yk])] (3.369)

≈ ej2ϕk
(
βkA

2
k + βkσ

2
A,k −A2

kα
2
k

)
, (3.370)

respectively. Therein, βk = E
[
ej2nϕ,k

]
= E[cos(2nϕ,k)] = e−4σ2

ϕ,k/2 ∈ [0, 1]. The
derivations are provided in Appendix E. It is important to note that the noise statis-
tics in (3.368) and (3.370) depend on the true but unknown magnitude and phase
response values Ak and ϕk [40,41]. Hence, the true statistics cannot be evaluated
without knowledge of the true magnitude and phase response. An obvious option is

to replace Ak and ϕk by y
(A)
k and y

(ϕ)
k in (3.368) and (3.370).

We now turn to the measurement at DC, which can be performed by measuring the
steady state system response for a unit step at the input. Instead of a magnitude
and a phase the measurement at DC is simply given by a real (positive or negative)
scalar value denoted by y0. We assume the measurement noise at DC to be zero mean
Gaussian with variance σ2

0 = σ2
A,0 and pseudo-variance σ̃2

0 = σ2
0.

By defining yDC, yAC, yAC,flip, yds and yss according to the rules in (3.352)–(3.355)
and (3.357), we finally end up with the compact measurement model

yss ≈ TSDFssh + n, (3.371)

where D ∈ RNy×Ny is a diagonal matrix with [D]1,1 = 1 and [D]k+1,k+1 = αk for
k = 1, . . . , Ny−1. Assuming the measurements for different k to be statistically inde-

pendent, the noise covariance matrix Cnn and pseudo-covariance matrix C̃nn follow
to be diagonal matrices that can (according to (3.368) and (3.370)) be approximated
by [Cnn]k+1,k+1 = σ2

k and [C̃nn]k+1,k+1 = σ̃2
k for k = 0, . . . , Ny − 1.

Note that the non-linear connection between the polar measurements and the sampled
impulse response has finally been transformed to the model in (3.371) that formally
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looks like a linear model. Still, it exhibits noise statistics depending on the true
magnitude and phase response values Ak and ϕk. The noise statistics consequently
depend on the unknown vector h to be estimated.

Estimators

In contrast to Example 3.3, we now set the number of measurements Ny to be smaller
than the number of unknown real-valued parameters Nh. While this is not an issue
for the BWLUE for real-valued parameter vectors as discussed in Section 3.4.1 (as
long as 2Ny ≥ Nh), the ordinary BWLUE fails. Hence, we consider the following
estimators [31]:

1. IDFT based estimator : The maybe most intuitive and simple estimator is ob-
tained based on (3.356) by replacing Hds with the measurements yds. An es-
timate of h can be obtained by performing an inverse discrete Fourier trans-
form (IDFT) on yds and use the first Nh elements of the result:

ĥ =
(
F−1ỹds

)
�w. (3.372)

Here, F is the DFT matrix of size ND × ND and w ∈ RND is a windowing
vector with ones at the first Nh positions and zeros elsewhere. The operator
� in (3.372) represents the element-wise multiplication. This estimator is in
fact a widely linear estimator since it incorporates the measurements and their
complex conjugates in a linear way. It always yields a real-valued h, and since
it does not incorporate D it results in biased estimates.

2. WLLS estimator from Result 3.7: Similar to the IDFT method this estimator
does not incorporate the noise statistics. In contrast to the IDFT method,
however, the WLLS estimator can also be easily applied if some measurements
are missing. This may be helpful in practical applications in which, e.g., it is
impossible to measure the frequency response at DC.

3. BWLUE for real-valued parameter vectors from Result 3.6: This estimator is
able to incorporate the noise statistics in the form of Cnn and C̃nn. Since in our
application the noise statistics depend on the unknowns Ak and ϕk, we insert

the measurements y
(A)
k and y

(ϕ)
k in (3.368) and (3.370) to obtain approximations

of the noise statistics.

4. Two-step-approach: Especially when the measurement variances are large, y
(A)
k

and y
(ϕ)
k can deviate heavily from Ak and ϕk, which might lead to bad approx-

imations of the noise statistics in (3.368) and (3.370). We therefore suggest the
following two-step estimation approach.

Step 1: Perform a WLLS estimation, transform the estimated impulse response
into frequency domain using a DFT, and use the resulting magnitude and phase
response values for approximating the noise statistics in (3.368) and (3.370).
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Step 2: Apply the BWLUE for real-valued parameter vectors with the (usually)
more precise noise statistics from step 1 to obtain an improved impulse response
estimate.

We have to add one comment to the application of the BWLUE for real-valued pa-
rameter vectors in this problem: Of course, this estimator requires the augmented
noise covariance matrix Cnn to be invertible. Unfortunately, this is not the case due
to σ2

0 = σ̃2
0. However, there exists an easy way to overcome this issue. Consider the

real composite model in (3.321) with H = TSDFss (as in (3.371)), and in particular
the equation in (3.321) corresponding to the first row of Im{H}. First, due to σ2

0 = σ̃2
0

the corresponding diagonal entry of CnRnR is zero (making CnRnR singular). Second,
the first row of Im{H} is a zero row in our problem, such that the according mea-
surement contains no information about h at all. Consequently, the corresponding
diagonal entry of CnRnR can be set to any arbitrary non-zero value, which makes the
noise covariance matrix CnRnR and consequently also the augmented noise covariance
matrix Cnn invertible.

Simulation Results

Recall that the noise statistics (in Cartesian coordinates) depend on the true mag-
nitude and phase response values. In order to evaluate the MSEs, averaging over
the noise statistics is necessary, which implies averaging over the PDF of the impulse
response h in this example. This corresponds to a Bayesian simulation experiment.
Hence, the performance measure is the average BMSE (averaged over the elements of
the estimated impulse response). For the simulations, the true impulse responses h
with length Nh = 12 are randomly generated by sampling 9 statistically independent
samples from a standard proper Gaussian distribution, which are then filtered with a
finite impulse response (FIR) filter. Its coefficients are given by

c =
[
0.0881 0.4408 0.4408 0.0881

]T
. (3.373)

This FIR filter corresponds to a low-pass and it takes care that h shows low-pass
characteristics. Next, the DC- and additional 9 noisy magnitude and phase response
measurements are generated such that Ny = 10. In the first experiment the noise
variance of the phase response measurements is kept constant at σ2

ϕ,k = 10−1 for

1 ≤ k ≤ Ny − 1, while the variances σ2
A,k are varied between 10−5 and 1 for 0 ≤ k ≤

Ny − 1. Since the true impulse responses are generated randomly, the BMSE is used
as a performance measure. The resulting average BMSE curves (averaged over the
elements of h) plotted over σ2

A,k are shown in Figure 3.4. Therein, one can see that the
BWLUE for real-valued parameter vectors outperforms the WLLS estimator and the
IDFT method significantly. By employing the two-step approach, a further increase
in performance is achieved. This two-step approach almost reaches our introduced
bound, which is simply generated by applying the BWLUE for real-valued parameter
vectors, but with the true Ak and ϕk values inserted in (3.368) and (3.370) to derive
the noise statistics.
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Figure 3.4: Average BMSEs of the estimated impulse response coefficients for various estimators. The
noise variances of the phase response measurements are kept constant at σ2

ϕ,k = 10−1 for
1 ≤ k ≤ Ny − 1 while the variances σ2

A,k for 0 ≤ k ≤ Ny − 1 are varied between 10−5 and
1.

10−6 10−5 10−4 10−3 10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

σ2
ϕ,k

av
er

a
g
e

B
M

S
E

IDFT method

WLLS est. for real-valued parameter vectors

BWLUE for real-valued parameter vectors

Two step approach Performance bound

Figure 3.5: Average BMSEs of the estimated impulse response coefficients for various estimators. The
variances σ2

A,k = 10−4 for 0 ≤ k ≤ Ny − 1 are kept constant while the variances σ2
ϕ,k for

1 ≤ k ≤ Ny − 1 are varied between 10−6 and 10−1.
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In the second experiment σ2
A,k = 10−4 for 0 ≤ k ≤ Ny − 1 is kept constant, while the

variances σ2
ϕ,k are varied between 10−6 and 10−1 for 1 ≤ k ≤ Ny − 1. The resulting

average BMSE curves are shown in Figure 3.5. This figure shows that the BWLUE
for real-valued parameter vectors as well as the two-step approach practically reach
the bound, except for very large values of σ2

ϕ,k.

3.5 Parameter Estimation under Model Uncertainties

Consider the linear model in (3.1). There, the measurement matrix H is assumed to be
perfectly known. In practice, this assumption often does not hold. E.g., consider the case
where H is a convolution matrix that is constructed based on an imperfectly measured or
estimated signal. The errors in H are often neglected since they are unknown. However,
if statistics of these errors are available, one can improve the estimation performance.
The focus of this section lies on accounting for these model uncertainties within the
framework of classical estimation.

A practical example where such model errors are present is described in the following.
Consider measurements with a sensor, e.g., ultrasound measurements performed with
a hydrophone. This hydrophone convolves the ultrasound signals with its impulse re-
sponse. To reverse the effects of this convolution, the impulse response is measured or
estimated. The resulting estimate of the impulse response is affected by an error due
to the measurement noise and/or due to the estimation process. Now, the goal is to
perform a deconvolution of the measured hydrophone signals in order to obtain the un-
altered ultrasound signals. This deconvolution step should account for the fact that the
impulse response is affected by an error. A possible way to achieve this is discussed in
this section.

State-of-the-Art and Performance Reference

We are considering the model errors as random with known second order statistics but
otherwise arbitrary PDF. This is motivated by practical examples such as multiple input
multiple output (MIMO) communication channels or beamforming [42–45]. In contrast
to the LS estimator and the BLUE, total least squares (TLS) estimation techniques
account for these model errors. E.g., for the special case of independent and identically
distributed (i.i.d.) Gaussian errors of the elements in H, the maximum likelihood (ML)
solution of the TLS problem was analyzed in [46]. However, in many practical applica-
tions H has some sort of structure as it is the case for Toeplitz or Hankel matrices. Then,
the model errors are clearly not i.i.d. any more. To deal with these kind of problems,
so-called structured total least squares (STLS) techniques have been developed [7–9].
An overview of different TLS and STLS methods can be found in [10–12].
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3 Knowledge-Aided Concepts in Classical Estimation

In this section, we compare our novel approach with two iterative algorithms, which serve
as performance reference in the simulations later on. The first one, introduced in [46],
is an approach for solving the ML problem based on classical expectation-maximization
(EM) [47]. This algorithm, referred to as maximum likelihood expectation-maximization
(ML-EM) algorithm, treats the model errors as random and allows incorporating the
model error variance. By doing so, a uniform variance for every element in H was
assumed. The second one represents an algorithm from the class of STLS approaches
and is introduced in [48]. This iterative algorithm is called the structured total least
norm (STLN) algorithm. It is capable to deal with structured measurement matrices,
and treats the model errors as deterministic but unknown. Hence, it prevents the usage
of model error variances.

In the following, an iterative algorithm that is based on the BLUE is discussed. This
iterative algorithm allows to combine information about the structure as well as the
model error variances. Ultimately, it will turn out that this algorithm can be employed
on structured as well as unstructured problems.

Note that a similar iterative application of the BLUE was applied in [49–51] for channel
impulse response estimation in wireless communication applications. Compared to these
approaches, however, the proposed algorithm is applicable to more general applications
with structured or unstructured model uncertainties. In [52] investigations of a similar
procedure as the presented algorithm can be found but only for a very simplified model
compared to the approach in this section. Because of that, the algorithms presented
in [49–52] are not considered as performance reference. Instead, we compare the proposed
algorithm with the STLS algorithm in [48], the ML-EM algorithm introduced in [46],
and an ideal but only theoretically applicable estimator introduced later on.

3.5.1 System Model

This section describes the underlying model used in the following. In a first step, the
elements of the measurement matrix H are assumed to be unstructured and the model
uncertainties therein are assumed to be independent. Afterwards, H is considered to be
a structured convolution matrix built from an estimated or measured impulse response.
Hence, H is a special form of a Toeplitz matrix and, as will be shown, thus allowing
correlated model uncertainties.

Unstructured Measurement Matrices

We denote Ĥ as the measured or estimated measurement matrix and assume that it
comes along with error variances for every entry. The error variances are assembled in a
matrix V ∈ RNy×Nx of the same size as Ĥ. Furthermore, the errors are assumed to be
independent zero mean random variables. The measurements are modelled as

y = Hx + n =
(
Ĥ + B

)
x + n, (3.374)
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where H = Ĥ + B, with Ĥ being the estimated measurement matrix and B being a
zero mean random matrix. The zero mean assumption of the elements in B implies
unbiasedness of the estimates in Ĥ. In (3.374), H and B are unknown, while Ĥ is
known. We further rewrite (3.374) according to

y = Ĥx + Bx + n︸ ︷︷ ︸
w

(3.375)

= Ĥx + w, (3.376)

with the new overall noise vector w = Bx + n. This noise vector combines the measure-
ment noise with the noise from the model uncertainties. Let bTi be the ith row of B, let
wi be the ith element of w, and let ni be the ith element of n. Then

wi = bTi x + ni. (3.377)

Since wi is evaluated as the scalar product of a vector with zero mean random elements
with an unknown but deterministic vector plus ni, wi has zero mean and its variance in
dependence of the unknown parameter vector x can be derived as

σ2
wi =[V]i,1 |x1|2 + [V]i,2 |x2|2 + · · ·+ [V]i,Nx |xNx |2 + σ2

ni , (3.378)

where xi is the ith element of x and where σ2
ni = [Cnn]i,i is the variance of ni. All

variances σ2
wi assembled in a covariance matrix yield

Cww = diag(V|x|2) + Cnn, (3.379)

where the term |x|2 represents a column vector of the element-wise absolute squares of
the vector x.

Convolution Matrices

We will now assume that H is a linear convolution matrix constructed from the impulse
response h ∈ CNh of a linear system such that Hx describes the convolution of the
input signal with the impulse response. An extension to other structured measurement
matrices is easily possible. Let H = Ĥ + B have the dimension Ny ×Nx, where Ny =
Nx +Nh − 1. The ith column of the convolution matrices are defined as

[H]:,i =

 0(i−1)×1

h

0(Nx−i)×1

, [Ĥ]:,i =

 0(i−1)×1

ĥ

0(Nx−i)×1

, [B]:,i =

 0(i−1)×1

e

0(Nx−i)×1

 (3.380)

∀i = 1, . . . , Nx, where ĥ is the estimated impulse response and e is the unknown error of ĥ
with known error covariance matrix Cee ∈ CNh×Nh . In this case, the model uncertainties
of Ĥ are clearly not independent any more, leading to a different calculation of Cww.

Let b′i denote the ith column of B. The subsequent column b′i+1 can be derived by

b′i+1 =

[
01×(Ny−1) 0

I(Ny−1)×(Ny−1) 0(Ny−1)×1

]
︸ ︷︷ ︸

D

b′i = Db′i, (3.381)
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i.e., shifting down the elements of b′i by one position. With that, the product Bx in
(3.375) follows as

Bx = b′1x1 + b′2x2 + . . .+ b′Nx
xNx (3.382)

= x1b
′
1 + x2Db′1 + . . .+ xNxDNx−1b′1 (3.383)

=
(
x1I + x2D + . . .+ xNxDNx−1

)︸ ︷︷ ︸
P(x)

b′1 (3.384)

= P(x)b′1. (3.385)

With this result, w follows as
w = P(x)b′1 + n, (3.386)

and its covariance matrix becomes

Cww = E
[(

P(x)b′1
)(

P(x)b′1
)H]

+ Cnn (3.387)

= P(x)Cb′1b
′
1
P(x)H + Cnn. (3.388)

The covariance matrix Cb′1b
′
1

follows from (3.380) and the covariance matrix of the
estimation error e according to

Cb′1b
′
1

=

[
Cee 0Nh×(Nx−1)

0(Nx−1)×Nh 0(Nx−1)×(Nx−1)

]
∈ CNy×Ny . (3.389)

Note that this formulation allows two sources of correlated model errors. The first source
of correlation comes from the structure in H. The second source of correlation are
correlations within Cee, which describes the errors in ĥ. Hence, the iterative algorithm
discussed in the next section is capable of dealing with both kind of correlations.

3.5.2 Iterative Algorithm accounting for Structured and Unstructured
Model Errors

An ideal but theoretical estimator for the assumed model is the BLUE applied on the
linear model in (3.374). It incorporates the true measurement matrix H and is given by

x̂ =
(
HHC−1

nnH
)−1

HHC−1
nny. (3.390)

This theoretical estimator is referred to as BLUE with perfect model knowledge. Sim-
ilarly, the BLUE applied on the linear model in (3.376), incorporating the estimated
measurement matrix Ĥ but the true covariance matrix Cww, follows as

x̂ =
(
ĤHC−1

wwĤ
)−1

ĤHC−1
wwy (3.391)

and it is referred to as BLUE with perfect knowledge of Cww [50]. The determination
of the true Cww according to (3.379) or (3.388), however, requires the knowledge of the
true parameter vector. To overcome this problem, we propose the iterative algorithm
as follows. Its basic idea is to make an initial guess x̂(0) (the superscript denotes the
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3.5 Parameter Estimation under Model Uncertainties

algorithm’s iteration number), which is used to estimate the covariance matrix of w.
This estimated covariance matrix is then utilized by an estimator similar to the one in
(3.391) to achieve a better estimate of x, which is again used to improve the estimate of
the covariance matrix.

The first guess x̂(0) could for instance origin from an LS estimation which does not
incorporate any noise statistics, i.e.,

x̂(0) =
(
ĤHĤ

)−1
ĤHy. (3.392)

Then, x̂(0) is used to estimate Ĉ
(0)
ww based on (3.379) or (3.388). Hence, we obtain

Ĉ
(0)
ww = diag(V|x̂(0)|2) + Cnn, (3.393)

for unstructured problems, and

Ĉ
(0)
ww = P(x̂(0))Cb′1b

′
1
P(x̂(0))H + Cnn (3.394)

for the considered structured problems. This estimated covariance matrix is then incor-
porated by an estimator similar to (3.391) in order to yield a better estimate x̂(1), which

is then again inserted into (3.393) or (3.394) to obtain Ĉ
(1)
ww, and so on. The generalized

update equation is given by

x̂(k+1) =

(
ĤH

(
Ĉ

(k)
ww

)−1
Ĥ

)−1

ĤH
(
Ĉ

(k)
ww

)−1
y. (3.395)

Interestingly, the proposed algorithm has similar complexity as the ML-EM and STLN

algorithms. It performs a weighting of the measurements according to Ĉ
(k)
ww, which

incorporates the model error variances as well as the measurement noise variances. In
the case of H being a convolution matrix, even the covariances of the estimated impulse

response are considered in order to improve the estimation. Note that Ĉ
(k)
ww for both

cases is almost always invertible since Cnn serves as a regularization term in (3.379) and
(3.388).

The estimate is unbiased when averaged over the PDF of n and B, and biased when

only averaged over the PDF of n. Let E(k) =

(
ĤH

(
Ĉ

(k)
ww

)−1
Ĥ

)−1

ĤH
(
Ĉ

(k)
ww

)−1
de-

note the estimator matrix at iteration k. Then, it holds that E(k)Ĥ = I, independent
of the estimated parameter vector at the previous iteration cycles. Consequently, the
conditional expected vector of x̂(k+1) for fixed B follows as

En[x̂(k+1)|B] = En[E(k)y|B] (3.396)

= En[E(k)Ĥx + E(k)Bx + E(k)n|B] (3.397)

= x + E(k)Bx. (3.398)

Since EB[B] = 0, unbiasedness is achieved when averaged over the PDF of n and B.
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3 Knowledge-Aided Concepts in Classical Estimation

Although convergence cannot be ensured, simulations showed that divergence is not an
issue for reasonable values of V and Cee.

A stopping criterion can be implemented in several ways. One possibility is to stop
the iterations when x̂(k) does not significantly change from one iteration to the next.
Simulations showed that the major performance gain is usually achieved after the first
iteration. Hence, a predefined number of iterations may be utilized instead of a stopping
criterion. For this case, the proposed iterative algorithm is summarized in

Result 3.9 (Iterative Algorithm Accounting for Structured and
Unstructured Model Errors)

Let x ∈ CNx and y ∈ CNy be connected via (3.374), where Ĥ ∈ CNy×Nx

is a known measured or estimated measurement matrix, B ∈ CNy×Nx is an
unknown zero mean random matrix, and H ∈ CNy×Nx is the unknown, true
measurement matrix such that H = Ĥ + B. For unstructured problems,
V ∈ RNy×Nx denotes the matrix containing the variances of the elements of
B. For the case of H being a convolution matrix, H, Ĥ and B are defined
in (3.380). Then, the iterative algorithm accounting for model uncertainties
is given by

Initialization:
Initialize x̂(0) according to (3.392);
Choose number of iterations Niter;

for k ← 0 to Niter do

Estimate C
(k)
ww according to (3.393) or (3.394);

Update x̂(k) according to (3.395);

end

The resulting estimates at each step k are unbiased when averaged over the
PDF of n and B.

Of course, there exists at least one case where the iterations yield no performance gain.

If Ĉ
(k)
ww is a scaled identity matrix, the proposed algorithm reduces to the ordinary LS

estimator, preventing any performance gain. This is, e.g., the case when the following
two conditions hold: a) The measurement matrix is unstructured and V has the same
variance at every element. b) the noise covariance matrix Cnn is a scaled identity matrix.

The performance of the algorithm from Result 3.9 compared to the ML-EM algorithm,
the STLN algorithm, the BLUE with perfect model knowledge in (3.390) as well as the
BLUE with perfect knowledge of Cww in (3.391), is demonstrated in the next simulation
example.
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3.5 Parameter Estimation under Model Uncertainties

Example 3.5 (Estimation of a Parameter Vector with Model Uncertainties)

In this example, H ∈ R7×3 is a convolution matrix and describes the discrete con-
volution of the impulse response h[n] with signal x[n]. The vector notations of h[n]
and x[n] are given by h ∈ R5×1 and x ∈ R3×1, respectively. For the simulations,
the impulse response is randomly generated from a Gaussian distribution with mean
E[h] = 05×1 and covariance matrix Chh = I5×5. The input signal to be estimated is

chosen to be x =
[
1 0.5 0.25

]T
. Note that we chose real values for h and x since

the ML-EM algorithm and the STLN algorithm were designed for the real-valued
case. Note, however, that Result 3.9 would also be applicable for complex-valued
quantities.

For the first analysis, the noise covariance matrix is a scaled identity matrix Cnn =
σ2
nI7×7, where the scaling factor σ2

n is varied between 10−8 and 10−3. The impulse
response estimation step is assumed to yield zero mean errors with error covariance
matrix

Cee = diag
([

10−4 10−5 10−6 10−6 10−6
])
. (3.399)

For this model, the proposed algorithm in Result 3.9 is compared with the ideal BLUE
in (3.391), the ML-EM algorithm and the STLN algorithm. For the latter one the l2
norm minimization, a tolerance ε = 10−10 and D = I5×5 is chosen. Furthermore, X
(Eq. (2.1) in [48]) is identified to be the first Nh columns of P(x) in (3.385). For more
details on these parameters the reader may refer to [48]. For the ML-EM algorithm
σ2
h is set to the mean value of V [46]. While the STLN algorithm comes with its own

termination criterium, for which we choose ε = 10−10 [48], the proposed algorithm
and the ML-EM algorithm were executed for Niter = 10 iterations. It will turn out
later, that Niter could be reduced significantly.

The resulting MSE values averaged over the elements of the MSE vector are presented
in Figure 3.6. This figure shows that the proposed algorithm attains the performance
given by the BLUE with perfect knowledge of Cww and outperforms the competing
algorithms especially for low σ2

n. The performance gain is more than one order of
magnitude in MSE for small noise variances. For large noise variances all investigated
algorithms perform approximately equal. The reason for this is that the model uncer-
tainties are negligible compared to the large measurement noise samples in that case.
For the same reason, the gap between all considered algorithms and the BLUE with
perfect model knowledge increases with decreasing noise variance. If one had chosen
Cee to be a scaled identity matrix, the STLN algorithm would have a similar perfor-
mance as the proposed algorithm for very low noise variances. Large scale numerical
simulations showed that the performance gain of the proposed iterative algorithm
approximately stays the same for other values of x.

Figure 3.7 shows the convergence behavior of the algorithms for σ2
n = 10−6. First of

all, one recognizes that the ML-EM algorithm is not able to significantly improve the
estimation accuracy compared to the initial LS estimation in this example. Further-
more, it shows that the STLN algorithm as well as the proposed algorithm achieve
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most of their performance gains in the first iteration. Hence, this extremely fast con-
vergence allows reducing the number of iterations to one without any significant loss
in performance in this example. Further simulations showed that this statement also
holds for most of the investigated scenarios.
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Figure 3.6: Average MSEs of different iterative algorithms, the BLUE with perfect model knowledge
in (3.390) as well as the BLUE with perfect knowledge of Cww in (3.391).
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Figure 3.7: Average MSE values plotted over the number of iterations. The noise variance is kept
constant at σ2

n = 10−6, and the model error variances are kept constant according to
(3.399).
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For the next analysis, the noise variance was kept constant at σ2
n = 10−6 and the

accuracy of the estimated impulse response was varied by randomly choosing the
diagonal elements of Cee from a uniform distribution between [0, ζ]. The parameter
ζ, on the other hand, was varied between ζ = 10−5 and ζ = 10−2. The resulting MSE
curves are plotted as a function of ζ in Figure 3.8. Again, the proposed algorithm
attains the performance given by the BLUE with perfect knowledge of Cww and
outperforms the ML-EM and STLN algorithms for most values of ζ. For ζ smaller
than 10−5 all algorithms perform approximately the same. For ζ ≥ 10−2 occasional
divergence was observed for the proposed algorithm, leading to a decreased MSE
performance. Again, the performance gain approximately stays the same for other
values of x.
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Figure 3.8: Average MSEs of different iterative algorithms and the ideal BLUE in (3.391).
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4
Component-Wise Conditionally Unbiased

LMMSE and WLMMSE Estimation

This chapter focuses on Bayesian estimation, where the unknown parameter vector is
considered to be a random variable whose particular realization has to be estimated [1,
53]. We start by recapitulating well-known Bayesian estimators such as the LMMSE
estimator and the WLMMSE estimator. Basically, the main difference between these
two estimators is that the LMMSE estimator is linear and only incorporates first and
second order statistics, while the WLMMSE estimator is of widely linear form and al-
lows to incorporate augmented first and second order statistics, e.g., the covariance and
pseudo-covariance matrices. Both estimators are then analyzed regarding commutation
properties and unbiased constraints. These Bayesian estimators utilize a different un-
biased constraint than e.g. the classical BLUE. A simulation example will demonstrate
the effects of the different unbiased constraints on the estimates. It will be shown that
the estimates of the considered Bayesian estimators are conditionally biased.

Based on these findings, a different kind of unbiased constraint is regarded that avoids
this conditional bias. These investigations will lead to the CWCU constraints. The
CWCU constraints will turn out to be a trade-off between the classical and the usual
Bayesian unbiased constraints, which is also demonstrated with a simulation example.
In addition, optimal estimators that fulfill the CWCU constraints are derived. These
derivations start with the CWCU LMMSE estimator, which is related to the LMMSE
estimator. This CWCU LMMSE estimator already derived in [13–15] is extended in this
chapter. It is found that the CWCU LMMSE estimator always exists under the usual
linear model assumptions, and in the worst case it coincides with the BLUE. However,
in a number of practically interesting situations, the CWCU LMMSE estimator is able
to outperform the BLUE. We will identify three fundamental scenarios where this is the
case.

After that, widely linear CWCU estimators are investigated. These estimators are either
novel and unpublished to the best of our knowledge, or published by the author of this
work himself. The investigations will lead to the CWCU WLMMSE estimator, which
shows strong similarities to the WLMMSE estimator. As for the linear case, the CWCU
WLMMSE estimator always exists under the usual linear model assumptions, and in
the worst case it coincides with the BWLUE. We will identify several prominent cases
for which the CWCU WLMMSE estimator differs from the BWLUE. By doing so, we
will strictly distinguish between real and complex-valued parameters since this property
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significantly influences the expression of the resulting estimators.

Finally, an interesting modification of the CWCU WLMMSE estimator is investigated.
This modification, termed the part-wise conditionally unbiased widely linear minimum
mean square error (PWCU WLMMSE) estimator, separates real and imaginary parts of
the parameter vector and enforces component-wise conditionally unbiasedness on these
parts separately. It will turn out that this results in softer constraints of the estimator
compared to the CWCU constraints.

Table 4.1 lists the Bayesian estimators that will be discussed and derived in this chapter.

Estimator Section Equation/Result

LMMSE 4.1 (4.14)

WLMMSE 4.1 (4.52)

CWCU LMMSE 4.2 Result 4.1

CWCU WLMMSE for
complex-valued parameter vectors

4.3.1 Result 4.2

CWCU WLMMSE for real-valued
parameter vectors

4.3.3 Result 4.3

PWCU WLMMSE 4.3.5

Table 4.1: Bayesian estimators considered in Chapter 4.

In Chapter 3 which discussed classical estimation we utilized the MSE as a performance
measure. For Bayesian estimators, however, the BMSE defined as the squared absolute
error between the elements of the parameter vector and the estimated parameter vector
when averaged over the joint PDF of the measurements and the PDF of the parameter
vector, is utilized as performance measure.

4.1 State-of-the-Art

We again consider the linear model

y = Hx + n, (4.1)

but now x ∈ CNx is a complex-valued random proper parameter vector, y ∈ CNy is
a complex-valued measurement vector, H ∈ CNy×Nx is a complex-valued measurement
matrix with full column rank and4 Nx < Ny, and n ∈ CNy is a complex-valued random
proper noise vector with zero mean. We will account for improper x and n later.

4This requirement is enforced in order to be able to apply the BLUE and in order for the BLUE to
differ from the simple matrix inverse. The LMMSE estimator and the WLMMSE estimator do not
require this condition.
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LMMSE Estimator

We begin with the recapitulation of the derivation of the LMMSE estimator where we
focus on the estimation of the ith element of the parameter vector xi at the beginning.
We seek for an affine estimator for xi of the form

x̂i = eHi y + bi, (4.2)

where ei ∈ CNy and bi ∈ C. The estimator is derived by minimizing the BMSE cost
function

J(ei, bi) = Ey,x

[
|xi − x̂i|2

]
(4.3)

= Ey,x

[
(xi − x̂i)(xi − x̂i)H

]
(4.4)

= Ey,x

[(
xi − eHi y − bi

)(
xi − eHi y − bi

)H]
(4.5)

= Exi [xix
∗
i ]− Ey,x

[
xiy

H
]
ei − Exi [xi]bHi − eHi Ey,x

[
yxHi

]
+ eHi Ey

[
yyH

]
ei + eHi Ey[y]bHi − biExi

[
xHi
]

+ biEy

[
yH
]
ei + bib

H
i . (4.6)

Note that the averaging in (4.3) is done w.r.t. the joint PDF of y and x. Setting the
derivative of this cost function w.r.t. bi equal to zero allows to determine bi as

∂J(ei, bi)

∂bi
= − Exi

[
xHi
]

+ Ey

[
yH
]
ei + bHi

!
= 0 (4.7)

bi = Exi [xi]− eHi Ey[y]. (4.8)

Reinserting this expression into (4.5) yields

J(ei) = Ey,x

[(
(xi − Exi [xi])− eHi (y − Ey[y])

)(
(xi − Exi [xi])− eHi (y − Ey[y])

)H]
(4.9)

= σ2
xi −Cxiyei − eHi Cyxi + eHi Cyyei. (4.10)

By setting the derivative of (4.10) w.r.t. ei equal to zero, we obtain

∂J(ei)

∂ei
= −Cxiy + eHi Cyy

!
= 0 (4.11)

eHL,i = CxiyC−1
yy , (4.12)

where the index L indicates the LMMSE estimator. We now insert (4.8) and (4.12) into
(4.2), yielding

x̂L,i = Exi [xi] + CxiyC−1
yy(y − Ey[y]). (4.13)

Note that Cxiy corresponds to the ith row of the cross covariance matrix Cxy. Hence,
the LMMSE estimator for the full parameter vector x immediately follows as

x̂L = Ex[x] + CxyC−1
yy(y − Ey[y]). (4.14)
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We denote the LMMSE estimation matrix as

EL = CxyC−1
yy (4.15)

such that

x̂L = Ex[x] + EL(y − Ey[y]). (4.16)

Since we assume an underlying linear model as in (4.1), the required statistics in (4.14)
are given by

Cxy = CxxHH , (4.17)

Cyy = HCxxHH + Cnn, (4.18)

Ey[y] = HEx[x]. (4.19)

Inserting (4.17)–(4.19) into the expression for the LMMSE estimator in (4.14) results in

x̂L = Ex[x] + CxxHH
(
HCxxHH + Cnn

)−1
(y −HEx[x]) (4.20)

= Ex[x] +
(
HHC−1

nnH + C−1
xx

)−1
HHC−1

nn(y −HEx[x]). (4.21)

The equivalence of (4.20) and (4.21) is shown in [1] for the case when Cxx and Cnn are
invertible. Since (4.20) does not require invertability of these covariance matrices it can
be considered to be a more general expression.

The LMMSE estimator in (4.14) fulfills some optimality criteria listed in the following [1]:
The LMMSE estimator is optimal in a BMSE sense

� if the linear model in (4.1) holds and if the prior PDF and the measurement noise
PDF are complex proper Gaussian,

� if all terms in (4.1) are real-valued and if x and n are Gaussian distributed.

If one of these cases holds, the LMMSE estimator corresponds to the minimum mean
square error (MMSE) estimator defined as the mean of the posterior PDF p(x|y)

x̂ = Ex|y[x|y]. (4.22)

Furthermore, the LMMSE estimator also corresponds to the maximum a posteriori
(MAP) estimator

x̂ = arg max
x

p(x|y) (4.23)

in these two cases. This follows from the fact that for Gaussian PDFs, the mode value
and the mean value coincide. If none of these two cases hold, the LMMSE estimator is
still the best linear (or actually affine) estimator in a BMSE sense. However, non-linear
estimators may exist that outperform the LMMSE estimator.

For Bayesian estimators, the covariance matrix of the error e = x̂ − x is often used as
performance measure since it contains the BMSE values of the estimated parameters in
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its main diagonal. Thus, we will now derive the error covariance matrix for the LMMSE
estimator.

The mean of the error Ey,x[x̂L − x] is zero since

Ey,x[x̂L − x] = Ey,x

[
Ex[x] + CxyC−1

yy(y − Ey[y])− x
]

(4.24)

= − Ex[x− Ex[x]] + CxyC−1
yyEy[y − Ey[y]] (4.25)

= 0. (4.26)

With that, the error covariance matrix Cee,L follows as

Cee,L = Ey,x

[
eeH

]
(4.27)

= Ey,x

[(
Ex[x] + CxyC−1

yy(y − Ey[y])− x
)(
Ex[x] + CxyC−1

yy(y − Ey[y])− x
)H]

(4.28)

= Ey,x

[(
−(x− Ex[x]) + CxyC−1

yy(y − Ey[y])
)

×
(
−(x− Ex[x]) + CxyC−1

yy(y − Ey[y])
)H]

(4.29)

= Cxx −CxyC−1
yyCyx −CxyC−1

yyCyx + CxyC−1
yyCyyC−1

yyCyx (4.30)

= Cxx −CxyC−1
yyCyx. (4.31)

The BMSE values of the ith estimate x̂L,i corresponds to the ith diagonal element of the
error covariance matrix Cee,L.

As stated before, the MSE performance in general depends on the actual realization of
the parameter vector. Consider the ith estimate x̂L,i in (4.13). The conditional MSE
under the condition that the parameter vector x is fixed becomes

mse(x̂L,i|x) = CxiyC−1
yyCnnC−1

yyCyxi +
∣∣xi − Exi [xi]−CxiyC−1

yyH(x− Ex[x])
∣∣2,
(4.32)

which is proven in Appendix F. Note that mse(x̂L,i|x) clearly depends on the actual
realization of the parameter vector x. Also note that mse(x̂L,i|x) consists of two terms.
The first term can be shown to be the conditional variance

var(x̂L,i|x) = CxiyC−1
yyCnnC−1

yyCyxi . (4.33)

The second term turns out to be the absolute square of the conditional bias

b(x̂L,i|x) = Ey|x[x̂L,i − xi|x] (4.34)

= − xi + Exi [xi] + CxiyC−1
yyH(x− Ex[x]). (4.35)

Eq. (4.33) and (4.35) are proven in Appendix G. While the conditional variance in (4.33)
does not depend on the actual realization of x, the conditional bias in (4.35) clearly does.

The LMMSE estimator commutes over affine transformations, i.e., if the parameter
vector is transformed according to α = Bx+c, then the LMMSE estimator for α ∈ CNα
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is given by α̂L = Bx̂L + c, where x̂L is the LMMSE estimator for x [1], and where
B ∈ CNα×Nx . The proof can be found in Appendix H. Note that the dimension Nα can
be arbitrary. This is an important difference to the investigations in Section 3.1.2.

WLMMSE Estimator

We will now dismiss the assumptions about proper x and n and derive a widely linear
Bayesian estimator that accounts for improper prior and noise statistics. This will lead
us to the WLMMSE estimator for which we utilize the subscript ’WL’.

We seek for a widely linear (actually widely affine) estimator for xi of the form

x̂i = fHi y + gHi y∗ + bi (4.36)

= eHi y + bi, (4.37)

where ei =
[
fHi gHi

]H
∈ C2Ny and bi ∈ C. The estimator is derived by minimizing the

BMSE cost function

J(ei, bi) = Ey,x

[
|xi − x̂i|2

]
(4.38)

= Ey,x

[
(xi − x̂i)(xi − x̂i)H

]
(4.39)

= Ey,x

[(
xi − eHi y − bi

)(
xi − eHi y − bi

)H]
(4.40)

= Exi
[
xix

H
i

]
− Ey,x

[
xiy

H
]
ei − Exi [xi]bHi − eHi Ey,x

[
yxHi

]
+ eHi Ey

[
yyH

]
ei + eHi Ey

[
y
]
bHi − biExi

[
xHi
]

+ biEy

[
yH
]
ei + bib

H
i . (4.41)

Setting the derivative of this cost function w.r.t. bi equal to zero allows to identify bi as

∂J(ei, bi)

∂b∗i
= − Exi

[
xHi
]

+ Ey

[
yH
]
ei + bHi

!
= 0 (4.42)

bi = Exi [xi]− eHi Ey

[
y
]
. (4.43)

Reinserting this expression into (4.40) yields

J(ei) = Ey,x

[(
(xi − Exi [xi])− eHi

(
y − Ey

[
y
]))(

(xi − Exi [xi])− eHi
(
y − Ey

[
y
]))H]

(4.44)

= σ2
xi −Cxiyei − eHi Cyxi + eHi Cyyei, (4.45)

where Cxiy = Ey,x

[
(xi − Exi [xi])

(
y − Ey

[
y
])H]

. Setting the derivative of (4.45) w.r.t.

ei equal to zero leads to

∂J(ei)

∂ei
= −Cxiy + eHi Cyy = 0 (4.46)

eHWL,i = CxiyC−1
yy . (4.47)
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The index WL stands for WLMMSE. We are now able to insert (4.43) and (4.47) into
(4.37), yielding

x̂WL,i = Exi [xi] + CxiyC−1
yy

(
y − Ey

[
y
])

(4.48)

= Exi [xi] +
[
1 0

]
CxiyC−1

yy

(
y − Ey

[
y
])
. (4.49)

Note that Cxiy corresponds to the ith row of the augmented cross covariance matrix Cxy.
Hence, the estimator for the full parameter vector x, which is termed the WLMMSE
estimator, can be derived from (4.48) and (4.49) as

x̂WL = Ex[x] + CxyC−1
yy

(
y − Ey

[
y
])

(4.50)

= Ex[x] +
[
INx×Nx 0Nx×Nx

]
CxyC−1

yy

(
y − Ey

[
y
])
. (4.51)

We mainly utilize the WLMMSE estimator for the full augmented parameter vector x,
which immediately follows as

x̂WL = Ex[x] + CxyC−1
yy︸ ︷︷ ︸

EWL

(
y − Ey

[
y
])
, (4.52)

where EWL is the estimator matrix. Since we assume an underlying linear model as in
(4.1), the required statistics in (4.52) are given by

Cxy = CxxHH (4.53)

Cyy = H CxxHH + Cnn (4.54)

Ey

[
y
]

= HEx[x]. (4.55)

Inserting (4.53)–(4.55) into the expression for the WLMMSE estimator in (4.52) results
in

x̂WL = Ex[x] + CxxHH
(
H CxxHH + Cnn

)−1(
y −HEx[x]

)
(4.56)

= Ex[x] +
(
HHC−1

nnH + C−1
xx

)−1
HHC−1

nn

(
y −HEx[x]

)
. (4.57)

The equivalence of (4.56) and (4.57) can be shown with the help of Woodbury’s matrix
inversion lemma [54] if Cxx and Cnn are invertible. This is not always the case even if
Cxx and Cnn are invertible. To demonstrate such a case we consider a single real-valued
parameter with variance Cxx = σ2

x. Since it is real-valued, its pseudo-variance σ̃2
x is

equal to σ2
x, resulting in

Cxx =

[
σ2
x σ̃2

x

σ̃2
x σ2

x

]
=

[
σ2
x σ2

x

σ2
x σ2

x

]
, (4.58)

which is clearly not invertible. Hence, the expression of the WLMMSE estimator in
(4.56) has to be used in that case.

Note that the WLMMSE estimator in (4.52) reduces to the LMMSE estimator in (4.14)
if both the prior PDF as well as the measurement noise PDF are both proper.
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There are many similarities between the LMMSE estimator and the WLMMSE esti-
mator. For instance, two of the following three optimality criteria for the WLMMSE
estimator are the extensions of the LMMSE’s optimality criteria to improper prior knowl-
edge and noise statistics. Assuming Cyy is invertible, then the WLMMSE estimator is
optimal in a BMSE sense

� if the linear model in (4.1) holds and if the prior PDF as well as the measurement
noise PDF are generalized complex (proper or improper) Gaussian,

� if either x or n (or both) in the linear model in (4.1) are real-valued and Gaussian
distributed,

� if all terms in (4.1) are real-valued and if x and n are Gaussian distributed (then
the WLMMSE estimator corresponds to the LMMSE estimator).

In all of these cases, the WLMMSE estimator corresponds to the MMSE estimator in
(4.22) and to the MAP estimator in (4.23). Otherwise, the WLMMSE estimator is still
the best widely linear (or actually widely affine) estimator in a BMSE sense. However,
then non-linear estimators may exist that outperform the WLMMSE estimator.

Statistical measures of the WLMMSE estimator can be derived in a similar manner as
it was done for the LMMSE estimator in (4.24)–(4.35). Hence, we will only present the
results. The augmented mean Ey[x̂WL] follows from (4.52) as

Ey[x̂WL] = Ex[x] + CxyC−1
yy

(
Ey

[
y
]
− Ey

[
y
])

(4.59)

= Ex[x]. (4.60)

With that, the augmented error covariance matrix Cee,WL can easily be derived as

Cee,WL = Cxx −CxyC−1
yyCyx. (4.61)

The BMSE values of the ith estimate x̂WL,i corresponds to the ith diagonal element of
the error covariance matrix Cee,WL, which is given by the north-west block of Cee,WL.
The conditional MSE under the condition that the parameter vector x is fixed becomes

mse(x̂WL,i|x) = CxiyC−1
yyCnnC−1

yyCyxi +
∣∣∣xi − Exi [xi]−CxiyC−1

yyH(x− Ex[x])
∣∣∣2.
(4.62)

The first term in (4.62) can be shown to be the conditional variance

var(x̂WL,i|x) = CxiyC−1
yyCnnC−1

yyCyxi . (4.63)

Further, the second term in (4.62) turns out to be the absolute square of the conditional
bias

b(x̂WL,i|x) = Ey|x[x̂WL,i − xi|x] (4.64)

= − xi + Exi [xi] + CxiyC−1
yyH(x− Ex[x]). (4.65)
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Similarly to the LMMSE estimator, the WLMMSE estimator commutes over widely
affine transformations, i.e., if the parameter vector is transformed according to α =
B1x+B2x

∗+c, then the WLMMSE estimator for α ∈ CNα is given by α̂WL = B1x̂WL+
B2x̂

∗
WL + c, where x̂WL is the WLMMSE estimator for x [1], and where B1,B2 ∈

CNα×Nx . The proof can be found in Appendix I. Again, the dimension Nα can be
arbitrary.

Unbiased Constraints

We now discuss a further important difference between the considered Bayesian and
classical estimators concerning their unbiased constraints [1,55–57]. In Section 3.1 we
showed that the LS estimator in (3.5), the BLUE in (3.48) as well as the BWLUE in
(3.63) fulfill

Ey[x̂] = x for all possible x, (4.66)

which is referred to as classical unbiased constraint. This result states that for every
(deterministic) x, the estimates x̂ are centered around the true parameter vector x.
Conversely, the Bayesian LMMSE estimator in (4.14) and the WLMMSE estimators in
(4.52) fulfill

Ey,x[x̂] = Ex[x], (4.67)

where the integration for Ey,x[x̂] is performed over the joint PDF of x and y. Eq. (4.67)
is referred to as Bayesian unbiased constraint. This result states that the considered
Bayesian estimators are only ”unbiased” when averaged over the PDF of x. Eq. (4.66)
can also be formulated in the Bayesian framework. Here, the corresponding problem
arises by demanding global conditional unbiasedness, i.e.

Ey|x[x̂|x] = x for all possible x. (4.68)

The attribute global indicates that the condition is made on the whole parameter vector
x. This is of importance since another type of conditional unbiased constraint will be
discussed later.

Let x̂ = g(y) be an arbitrary, possible non-linear estimator. For such, the classical
unbiased constraint asserts that

Ey[x̂] =

∫
g(y)p(y; x)dy = x for all possible x, (4.69)

where p(y; x) is the PDF of vector y parametrized by the unknown parameter vector x.
The Bayesian unbiased constraint on the other hand is

Ey,x[x̂− x] =

∫∫
(g(y)− x)p(x,y)dxdy = 0. (4.70)
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It will turn out that (4.70) is a much softer requirement than (4.69). However, Bayesian
estimators in general allow incorporating prior knowledge about the statistics of x. The
global conditional unbiased constraint now reads as

Ey|x[x̂|x] =

∫
g(y)p(y|x)dy = x for all possible x. (4.71)

Note that the constricting requirements in (4.68) and (4.71) may prevent the exploitation
of prior knowledge about the parameters, and hence lead to a significant reduction in the
benefits brought along with the Bayesian framework. Such a case can be demonstrated
in the linear model setup by trying to find a linear Bayesian estimator that minimizes
the BMSE cost function subject to the constraint (4.68). As shown in Appendix J, the
resulting estimator corresponds to the BLUE, which does not utilize any prior knowledge.

To show the effects of the classical unbiased constraint in (4.66) and the Bayesian unbi-
ased constraint in (4.67), an example is regarded now.

Example 4.1 (QPSK Data Estimation (Part 1))

This simple example shall demonstrate the effects of the different unbiased constraints
of classical and Bayesian estimators. The task is to estimate zero mean quadrature
phase-shift keying (QPSK) data symbols xi ∈ {±1,±j}. The measurements are
modelled as y = Hx + n, where H ∈ C10×10 is given by the first 10 rows and
the first 10 columns of a convolution matrix built from the impulse response h =[
1.1 1 −0.4 −0.2

]T
. The noise was chosen to be complex proper Gaussian with

covariance matrix Cnn = 0.3 I10×10. As estimators, the classical BLUE fulfilling
(4.66), and the Bayesian LMMSE estimator fulfilling (4.67) are considered. Figure 4.1
shows the relative frequencies of the corresponding estimates in the complex plane,
which were generated by performing the estimation task multiple times.

Figure 4.1: Visualization of the relative frequencies of the BLUE and the LMMSE estimator. The
black crosses mark the ideal QPSK constellation points.

The estimates of the BLUE are centered around the true constellation points since
they are unbiased in the classical sense. In contrast to that, the estimates of the
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LMMSE estimator are not centered around the true constellation points. In fact,
these estimates are conditionally biased towards the prior mean, which is 0. This
bias may have to be considered in follow-up processing steps. Note that in Figure 4.1
the BMSE of the LMMSE estimator is clearly below the BMSE of the BLUE.

In the next section, Bayesian estimators are investigated that prevent the shift of the
estimates as demonstrated in Figure 4.1.

4.2 Linear CWCU Estimation

In CWCU Bayesian parameter estimation [13–15,58–61], instead of constraining the
estimator to be globally unbiased, we aim to achieve conditional unbiasedness on one
parameter component at a time. Let xi be the ith element of x, and x̂i = gi(y) be an
estimator of xi. Then the CWCU constraints are

Ey|xi [x̂i|xi] =

∫
gi(y)p(y|xi)dy = xi, (4.72)

for all possible xi (and all i = 1, 2, ..., n). Note that the CWCU constraints are less
stringent than the global conditional unbiased condition in (4.71). Also, it will turn
out that a CWCU estimator in many cases allows the incorporation of prior knowledge
about the statistical properties of the parameter vector. In the following, we will denote
the linear estimator minimizing the BMSE under the CWCU constraints the CWCU
LMMSE estimator. The theory of the CWCU LMMSE estimator under linear model
assumptions has been discussed in [59–61]. This estimator is of linear (actually affine)
form, and it is mainly designed for proper measurement vectors. Its performance and
properties will be compared with those of the BLUE and the LMMSE estimator.

It should be noted beforehand, that a CWCU LMMSE estimator cannot outperform the
LMMSE estimator in a BMSE sense since it minimizes the BMSE under the additional
constraints in (4.72), while the LMMSE estimator’s only restriction is the linearity con-
straint. However, in a number of practically interesting situations, the CWCU LMMSE
estimator is able to outperform the BLUE. Furthermore, the CWCU estimators feature
their inherent conditional unbiased property that, as it will be shown, preserves the
intuitive view of unbiasedness in Bayesian estimation. In order to find linear CWCU
estimators that are able to outperform the BLUE, we will investigate certain model
assumptions. In particular, we will derive the CWCU LMMSE estimator under the
following prerequisites, namely

1. under the assumption of jointly complex Gaussian x and y,

2. under the linear model assumption with complex Gaussian x and zero mean noise
with known covariance matrix,
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3. under the linear model assumption with mutually independent complex (and oth-
erwise arbitrarily distributed) parameters and zero mean noise with known covari-
ance matrix.

We begin with the first case and derive the CWCU LMMSE estimator for jointly Gaus-
sian x and y for which we assign the subscript ’CL’. Note that no assumption about the
underlying linear model has to be made in this case.

4.2.1 CWCU LMMSE Estimation under the Jointly Gaussian Assumption

We assume that a vector parameter x ∈ CNx is to be estimated based on a measurement
vector y ∈ CNy . As in LMMSE estimation we constrain the estimator to be linear (or
actually affine), such that

x̂ = Ey + b, E ∈ CNx×Ny ,b ∈ CNx . (4.73)

Note that in LMMSE estimation no assumptions on the specific form of the joint PDF
p(x,y) have to be made. However, the situation is different in CWCU LMMSE estima-
tion. To show this, let us consider the ith component of the estimator

x̂i = eHi y + bi, (4.74)

where eHi denotes the ith row of the estimator matrix E. The conditional mean of x̂i
can be written as

Ey|xi [x̂i|xi] = eHi Ey|xi [y|xi] + bi. (4.75)

A closer inspection of (4.75) reveals that Ey|xi [x̂i|xi] = xi can be fulfilled for all possible
xi if the conditional mean Ey|xi [y|xi] is a linear function of xi. For jointly Gaussian x
and y this is the case and we have

Ey|xi [y|xi] = Ey[y] + Cyxi(σ
2
xi)
−1(xi − Exi [xi]), (4.76)

where Cyxi = Ey,x[(y − Ey[y])(xi − Exi [xi])H ], and σ2
xi is the variance of xi. Inserting

(4.76) into (4.75) produces

Ey|xi [x̂i|xi] = eHi Ey[y] + eHi Cyxi(σ
2
xi)
−1(xi − Exi [xi]) + bi. (4.77)

This result reveals that Ey|xi [x̂i|xi] = xi is fulfilled for every xi if

eHi Cyxi(σ
2
xi)
−1 = 1 (4.78)

eHi Cyxi = σ2
xi (4.79)

and
bi = Exi [xi]− eHi Ey[y]. (4.80)
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Now, (4.74), (4.79) and (4.80) allow to simplify the BMSE cost function Ey,x[|x̂i − xi|2]
as

J(ei) = Ey,x[|eHi y + bi − xi|2] (4.81)

= Ey,x[|eHi (y − Ey[y])− (xi − Exi [xi])|2] (4.82)

= eHi Cyyei − eHi Cyxi︸ ︷︷ ︸
σ2
xi

−Cxiyei︸ ︷︷ ︸
σ2
xi

+σ2
xi (4.83)

= eHi Cyyei − σ2
xi . (4.84)

Finally, the optimization problem is summarized as

eCL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi Cyxi = σ2

xi . (4.85)

The optimization problem in (4.85) will now be solved using the Lagrange multiplier
method. The Lagrangian cost function is given by

L(ei) = eHi Cyyei − σ2
xi +

(
eHi Cyxi − σ2

xi

)
λ+

(
eTi C∗yxi − σ

2
xi

)
λ∗. (4.86)

Setting the partial derivative of (4.86) w.r.t. ei equal to zero allows identifying eHi as

∂L(ei)

∂ei
= eHi Cyy + λ∗Cxiy

!
= 0 (4.87)

eHi = −λ∗CxiyC−1
yy . (4.88)

Inserting this result into the constraint in (4.79) allows

−λ∗CxiyC−1
yyCyxi = σ2

xi (4.89)

−λ∗ =
σ2
xi

CxiyC−1
yyCyxi

. (4.90)

Finally, combining (4.88) and (4.90) produces

eHCL,i =
σ2
xi

CxiyC−1
yyCyxi

CxiyC−1
yy . (4.91)

The full expression for x̂CL,i can be found by combining (4.74), (4.80) and (4.91), which
yields

x̂CL,i = Exi [xi] + eHCL,i(y − Ey[y]). (4.92)

Using

ECL =


eHCL,1

eHCL,2
...

eHCL,Nx

 ∈ CNx×Ny (4.93)

immediately leads us to the vector notation of the CWCU LMMSE estimator

x̂CL = Ex[x] + ECL(y − Ey[y]). (4.94)
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Note the similarities between the CWCU LMMSE estimator in (4.94) and the LMMSE
estimator in (4.14). Also note that according to (4.91), the CWCU LMMSE estimation
matrix can be derived as the product of a diagonal matrix times the LMMSE estimation
matrix according to

ECL = DEL (4.95)

= DCxyC−1
yy , (4.96)

where the elements of the real-valued diagonal matrix D are

[D]i,i =
σ2
xi

CxiyC−1
yyCyxi

. (4.97)

It turns out that [D]i,i is always positive and real-valued. The proof of this statement is
straightforward. Consider the definition of [D]i,i in (4.97). The variance σ2

xi is positive
and real-valued per definition. Furthermore, the covariance matrix Cyy as well as its
inverse are Hermitian and positive definite. Multiplying such a matrix with an arbitrary
row vector from the left and with the conjugate transpose of the same vector from the
right results in a positive and real-valued scalar. Another important fact about [D]i,i is
that

[D]i,i > 1. (4.98)

The proof of this statement can be found in Appendix K.

In the following, we derive some performance measures for the CWCU LMMSE estima-
tor. Starting with the mean of the error we have that

Ey,x[x̂CL − x] = Ey,x

[
Ex[x] + DCxyC−1

yy(y − Ey[y])− x
]

(4.99)

= − Ex[x− Ex[x]] + DCxyC−1
yyEy[y − Ey[y]] (4.100)

= 0. (4.101)

Therewith, the error covariance matrix Cee,CL follows as

Cee,CL = Ey,x

[
eeH

]
(4.102)

= Ey,x

[(
Ex[x] + DCxyC−1

yy(y − Ey[y])− x
)

×
(
Ex[x] + DCxyC−1

yy(y − Ey[y])− x
)H]

(4.103)

= Ey,x

[(
−(x− Ex[x]) + DCxyC−1

yy(y − Ey[y])
)

×
(
−(x− Ex[x]) + DCxyC−1

yy(y − Ey[y])
)H]

(4.104)

= Cxx −DCxyC−1
yyCyx −CxyC−1

yyCyxD + DCxyC−1
yyCyyC−1

yyCyxD (4.105)

= Cxx −DCxyC−1
yyCyx −CxyC−1

yyCyxD + DCxyC−1
yyCyxD. (4.106)

By defining a matrix M as

M = CxyC−1
yyCyx, (4.107)
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(4.106) simplifies to

Cee,CL = Cxx −DM−MD + DMD. (4.108)

The BMSE values of the ith estimate x̂CL,i correspond to the ith diagonal element of the
error covariance matrix Cee,CL.

4.2.2 CWCU LMMSE Estimation under Linear Model Assumptions

The CWCU LMMSE estimator in (4.94) requires x and y to be jointly Gaussian with-
out any further model assumption. We now analyze the situation with an underlying
linear model as in (4.1). If x and n are both Gaussian, then they are jointly Gaussian.
Furthermore, since [xT ,yT ]T is a linear transformation of [xT ,nT ]T , x and y are jointly
Gaussian, too. We could therefore simply insert the adapted covariances

Cyy = HCxxHH + Cnn (4.109)

Cxy = CxxHH (4.110)

Cxiy = CxixHH (4.111)

Cyxi = HCxxi (4.112)

into the CWCU LMMSE estimator. However, the jointly Gaussian assumption for x
and n can significantly be relaxed. This can be shown by incorporating the linear model
assumption already earlier in the derivation of the estimator, which will be shown in the
following. We note that the CWCU LMMSE estimator for the linear model under the
assumption of white Gaussian noise has already been derived in [13].

Let hi ∈ CNy be the ith column of H, H̄i ∈ CNy×Nx−1 the matrix resulting from H
by deleting hi, and x̄i ∈ CNx−1 the vector resulting from x after deleting xi. Then the
linear model in (4.1) can be rewritten as

y = hixi + H̄ix̄i + n. (4.113)

With that, the ith component of x̂ has the form

x̂i = eHi y + bi = eHi (hixi + H̄ix̄i + n) + bi. (4.114)

The conditional mean of x̂i becomes

Ey|xi [x̂i|xi] = eHi hixi + eHi H̄iEx̄i|xi [x̄i|xi] + bi. (4.115)

From (4.115) we can derive conditions that guarantee that the CWCU constraints (4.72)
are fulfilled. There are at least the following cases:

1. (4.72) can be fulfilled for all possible xi if the conditional mean Ex̄i|xi [x̄i|xi] is a
linear function of xi. For complex proper Gaussian x this condition holds (for all
i = 1, 2, ..., n).
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2. (4.72) can be fulfilled for all possible xi (and all i = 1, 2, ..., n) if Ex̄i|xi [x̄i|xi] =
Ex̄i [x̄i] for all possible xi (and all i = 1, 2, ..., n), which is true if the elements xi
of x are mutually independent.

3. (4.72) is fulfilled for all possible xi (and all i = 1, 2, ..., n) if eHi hi = 1, eHi H̄i = 0T ,
and bi = 0 for i = 1, 2, · · · , n. These constraints and settings correspond to the
ones of the BLUE. Consequently, the BLUE fulfills the CWCU constraints.

Solution for Correlated Gaussian Parameters

We now investigate case 1 from above and therefore assume complex proper Gaussian x
with mean Ex[x] and covariance matrix Cxx. Then we have

Ex̄i|xi [x̄i|xi] = Ex̄i [x̄i] + Cx̄ixi(σ
2
xi)
−1(xi − Exi [xi]). (4.116)

Note that the only requirement on the noise vector so far was its independence on x.
Inserting (4.116) into (4.115) produces

Ey|xi [x̂i|xi] = eHi hixi + eHi H̄iEx̄i [x̄i] + eHi H̄iCx̄ixi(σ
2
xi)
−1(xi − Exi [xi]) + bi. (4.117)

Again, we obtain two conditions that ensure Ey|xi [x̂i|xi] = xi is fulfilled for every xi.
The first condition is

eHi hi + eHi H̄iCx̄ixi(σ
2
xi)
−1 = 1 (4.118)

eHi
(
hiσ

2
xi + H̄iCx̄ixi

)︸ ︷︷ ︸
Cyxi

= σ2
xi . (4.119)

The expression in the brackets in (4.119) equals Cyxi since

Cyxi = Ey,x[(y − Ey[y])(xi − Exi [xi])
∗] (4.120)

= Ey,x

[(
hi(xi − Exi [xi]) + H̄i(x̄i − Ex̄i [x̄i]) + n

)
(xi − Exi [xi])

∗] (4.121)

= hiσ
2
xi + H̄iCx̄ixi . (4.122)

Hence, the first condition reads as

eHi Cyxi = σ2
xi . (4.123)

The second condition follows from (4.117) as

bi = eHi H̄iCx̄ixi(σ
2
xi)
−1Exi [xi]− eHi H̄iEx̄i [x̄i]. (4.124)

Incorporating (4.118) into (4.124) yields

bi =
(
1− eHi hi

)
Exi [xi]− eHi H̄iEx̄i [x̄i] (4.125)

= Exi [xi]− eHi Ey[y]. (4.126)
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Together with (4.114), (4.123) and (4.126), the BMSE cost function Ey,x[|x̂i − xi|2] can
be simplified as

J(ei) = Ey,x[|eHi y + bi − xi|2] (4.127)

= Ey,x[|eHi (y − Ey[y])− (xi − Exi [xi])|2] (4.128)

= eHi Cyyei − eHi Cyxi︸ ︷︷ ︸
σ2
xi

−Cxiyei︸ ︷︷ ︸
σ2
xi

+σ2
xi (4.129)

= eHi Cyyei − σ2
xi . (4.130)

Finally, the optimization problem is summarized as

eCL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi Cyxi = σ2

xi . (4.131)

Most interestingly, this optimization problem equals the one for jointly Gaussian x and
y in (4.85). Solving it will formally lead to the same expression for the CWCU LMMSE
estimator. However, a significant difference is obtained. By making the assumption
about an underlying linear model, the jointly Gaussian assumption of x and y can be
significantly relaxed. In fact, only the parameter vector x is required to be Gaussian for
resulting in (4.131), while the PDF of the noise n can be arbitrary. The only requirements
on the noise vector are En[n] = 0, and n and x have to be independent.

Solution for Mutually Independent Parameters

We now investigate case 2 from above and therefore assume that the elements xi of x
are mutually independent. For mutually independent parameters, it holds that

Ex̄i|xi [x̄i|xi] = Ex̄i [x̄i]. (4.132)

Inserting (4.132) into (4.115) yields

Ey|xi [x̂i|xi] = eHi hixi + eHi H̄iEx̄i [x̄i] + bi. (4.133)

The CWCU constraints are fulfilled if

eHi hi = 1 (4.134)

and

bi = − eHi H̄iEx̄i [x̄i], (4.135)

and no further assumptions on the PDF of x are required [59]. We will now demonstrate
that formally the same optimization problem as in (4.85) and (4.131) can be obtained.
Adapting (4.122) for mutually independent parameters yields

Cyxi = hiσ
2
xi . (4.136)
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Multiplying (4.134) with σ2
xi and incorporating (4.136) produces

eHi Cyxi = σ2
xi . (4.137)

The second constraint in (4.135) can be rewritten as

bi = − eHi (Ey[y]− hiExi [xi]) (4.138)

= eHi hiExi [xi]− eHi Ey[y] (4.139)

= Exi [xi]− eHi Ey[y]. (4.140)

As in (4.127)–(4.130), one can easily show that the BMSE cost function Ey,x[|x̂i − xi|2]
for mutually independent parameters yields

J(ei) = eHi Cyyei − σ2
xi . (4.141)

Hence, the same cost function in (4.141) and the same constraints in (4.137) as for the
jointly Gaussian case are obtained. Thus, the CWCU LMMSE estimator for mutually
independent parameters formally also equals the CWCU LMMSE estimator for jointly
Gaussian x and y.

In [59] we showed that for mutually independent parameters eCL,i is independent of σ2
xi ,

which can be shown by utilizing (4.91) and (4.136)

eHCL,i =
σ2
xi

σ2
xih

H
i C−1

yyhiσ2
xi

σ2
xih

H
i C−1

yy (4.142)

=
1

hHi C−1
yyhi

hHi C−1
yy . (4.143)

Another fact shown in [59] is that eHCL,i for mutually independent parameters can also
be brought in the form

eHCL,i =
1

hHi C−1
i hi

hHi C−1
i , (4.144)

where
Ci = H̄iCx̄ix̄iH̄

H
i + Cnn. (4.145)

The proof can be found in Appendix L. Furthermore, we showed that

[D]i,i = (eHL,ihi)
−1, (4.146)

where eHL,i is the ith row of the LMMSE estimator matrix. This can be easily shown by
inserting (4.136) into (4.97), producing

[D]i,i =
σ2
xi

CxiyC−1
yyCyxi

(4.147)

=
1

CxiyC−1
yyhi

(4.148)

=
1

eHL,ihi
(4.149)

= (eHL,ihi)
−1. (4.150)

It therefore holds that diag{ECLH} = 1.
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Summary

Overall, the investigations of Section 4.2 so far can be summarized in

Result 4.1 (CWCU LMMSE Estimator)

If x ∈ Cn and y ∈ Cm are

1. jointly complex proper Gaussian, or

2. connected via the linear model in (4.1) and x is complex proper Gaussian with
PDF CN (Ex[x],Cxx) (the PDF of n is otherwise arbitrary), or

3. connected via the linear model in (4.1) and x has mean Ex[x], mutually inde-
pendent elements and covariance matrix Cxx = diag{σ2

x1
, σ2

x2
, · · · , σ2

xn} (the
joint PDF of x and n is otherwise arbitrary),

then the CWCU LMMSE estimator minimizing the BMSEs Ey,x[|x̂i − xi|2] under
the constraints Ey|xi [x̂i|xi] = xi for i = 1, 2, · · · , Nx is given by (4.94), where the
estimator matrix ECL is defined in (4.95)–(4.97). The mean of the error e = x̂CL−x
(in the Bayesian sense) is zero, and the error covariance matrix Cee,CL, which is also
the minimum BMSE matrix Mx̂CL

, is provided in (4.108) with M defined in (4.107).
The minimum BMSEs are Bmse(x̂CL,i) = [Mx̂CL

]i,i.

If none of the three cases is fulfilled, then in the linear model setup a CWCU esti-
mator is available in form of the BLUE, which not necessarily has to correspond to
the CWCU LMMSE estimator.

A similar expression for the CWCU LMMSE estimator can be found in [13–15], where
the assumption of additive white Gaussian noise (AWGN) has been made.

In the following, some properties of the CWCU LMMSE estimator are detailed.

4.2.3 Discussion of the CWCU LMMSE Estimator

Commonalities between the Three Cases in Result 4.1

We were able to find a CWCU LMMSE estimator deviating from the BLUE for three
cases listed in Result 4.1. For the first case it is obvious that

Ey|xi [y|xi] = Ey[y] + Cyxi(σ
2
xi)
−1(xi − Exi [xi]) (4.151)
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utilized in (4.76) holds. However, it can be shown that this relation also holds for
the other two cases (see Appendix M for proof). Consequently, for all three cases the
conditional mean Ey|xi [y|xi] is linear in xi (which was actually a requirement for finding
a linear CWCU estimator).

Similarly, it holds for all three cases that the conditional covariance matrix Cyy|xi is
given by

Cyy|xi = Cyy −Cyxi(σ
2
xi)
−1Cxiy. (4.152)

The proof is presented in Appendix N.

Conditional Properties

In Section 4.1, we demonstrated the dependency of the MSE on x for the LMMSE and
WLMMSE estimators by deriving their conditional MSEs mse(x̂L,i|x) and mse(x̂WL,i|x).
There, we made the condition on the whole parameter vector x. Since the CWCU
constraints contain a condition on xi only, we analyze several estimators in terms of their
conditional mean Ey|xi [x̂i|xi], conditional bias b(x̂i|xi), conditional variance var(x̂i|xi)
and conditional MSE mse(x̂i|xi).

We begin with the BLUE, which will be analyzed from a Bayesian perspective. This is
valid since we showed in Appendix J that the BLUE can also be derived by minimizing
the BMSE cost function subject to the global unbiased constraint. Consider the BLUE
for xi in (3.47), then we obtain the following conditional properties:

Ey|xi [x̂B,i|xi] = xi, (4.153)

b(x̂B,i|xi) = 0, (4.154)

var(x̂B,i|xi) = uHi
(
HHC−1

nnH
)−1

ui, (4.155)

mse(x̂B,i|xi) = var(x̂B,i|xi) = uHi
(
HHC−1

nnH
)−1

ui. (4.156)

The derivation of (4.153)–(4.156) can be found in Appendix O. Note that var(x̂B,i|xi) =
var(x̂B,i) and mse(x̂B,i|xi) = mse(x̂B,i) holds for the BLUE.

For the derivation of the equivalent properties for the LMMSE estimator we assume
that at least one of the three cases mentioned in Result 4.1 holds. Then, the following
conditional properties are obtained

Ey|xi [x̂L,i|xi] = [D]−1
i,i xi + (1− [D]−1

i,i )Exi [xi], (4.157)

b(x̂L,i|xi) =
(

[D]−1
i,i − 1

)
(xi − Exi [xi]), (4.158)

var(x̂L,i|xi) = σ2
xi [D]−1

i,i

(
1− [D]−1

i,i

)
, (4.159)

mse(x̂L,i|xi) = σ2
xi [D]−1

i,i

(
1− [D]−1

i,i

)
+
(

1− [D]−1
i,i

)2
|xi − Exi [xi]|

2. (4.160)
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For the derivations we refer to Appendix P.

These properties of the BLUE and the LMMSE estimator are now compared with those
for the CWCU LMMSE estimator (derived in Appendix Q):

Ey|xi [x̂CL,i|xi] = xi, (4.161)

b(x̂CL,i|xi) = 0, (4.162)

var(x̂CL,i|xi) = σ2
xi([D]i,i − 1), (4.163)

mse(x̂CL,i|xi) = σ2
xi([D]i,i − 1). (4.164)

Note the interesting connections and similarities between these conditional properties.
First of all, the conditional mean and the conditional bias of the CWCU LMMSE esti-
mator of course correspond to those of the BLUE. The LMMSE estimator on the other
hand is conditionally biased as it can be seen in (4.158). This bias origins from (4.157),
which reveals that the LMMSE estimates are shifted towards the prior mean Exi [xi]
since [D]i,i > 1. For the special case of a zero mean parameter Exi [xi] = 0, it holds that

Ey|xi [x̂CL,i|xi] = [D]i,iEy|xi [x̂L,i|xi]. (4.165)

Considering the conditional variance, we observe that var(x̂CL,i|xi) is closely related to
var(x̂L,i|xi) according to

var(x̂CL,i|xi) = [D]2i,ivar(x̂L,i|xi). (4.166)

Consequently, it holds that var(x̂CL,i|xi) > var(x̂L,i|xi) [59]. A similar relation between
the conditional MSEs of the CWCU LMMSE estimator and the LMMSE estimator
cannot be found since, in contrast to mse(x̂CL,i|xi), mse(x̂L,i|xi) clearly depends on the
actual realization of xi. However, for the BMSEs again a simple relation can be found
[59]:

Bmse(x̂L,i) = Exi [mse(x̂L,i|xi)] (4.167)

= σ2
xi [D]−1

i,i

(
1− [D]−1

i,i

)
+
(

1− [D]−1
i,i

)2
σ2
xi (4.168)

= σ2
xi

(
1− [D]−1

i,i

)(
[D]−1

i,i + 1− [D]−1
i,i

)
(4.169)

= σ2
xi

(
1− [D]−1

i,i

)
. (4.170)

For the CWCU LMMSE estimator we trivially obtain

Bmse(x̂CL,i) = mse(x̂CL,i|xi) = σ2
xi([D]i,i − 1). (4.171)

Comparing (4.170) with (4.171) reveals the following relation

Bmse(x̂CL,i) = [D]i,iBmse(x̂L,i), (4.172)

consequently Bmse(x̂CL,i) > Bmse(x̂L,i) holds. Hence, the loss in BMSE performance
compared to the LMMSE estimator directly follows from the diagonal matrix D. We
emphasize again that for the derivation of the previous results, we assumed that at least
one of the three cases mentioned in Result 4.1 holds.

Similar investigations for the BLUE directly lead to mse(x̂B,i|xi) = var(x̂B,i|xi) =
Bmse(x̂B,i).
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Relation to the BLUE and to the LMMSE Estimator

In the previous section it turned out that the CWCU LMMSE estimator is closely
related to the LMMSE estimator. Actually, this relation has already been indicated
in Section 4.2 (particularly in (4.95)), where it was shown that the CWCU LMMSE
estimator matrix can be derived by multiplying the LMMSE estimator matrix with a
real-valued diagonal matrix. For the special case of zero mean parameters Ex[x] = 0,
the CWCU LMMSE estimates are scaled LMMSE estimates as

x̂CL = ECLy = DELy = Dx̂L. (4.173)

For the case where the linear model in (4.1) holds and where the parameters are mutually
independent, the diagonal elements of D directly follow from the LMMSE estimator
matrix according to (4.146).

The relation between the CWCU LMMSE estimator and the BLUE is not that obvious.
However, in some special cases, these two estimators are actually equivalent. For exam-
ple, this is the case when there is only one parameter to be estimated, i.e., Nx = 1. Then,
the CWCU constraints correspond to the global conditional unbiasedness Ey|x[x̂|x] = x
in (4.68), which is also fulfilled by the BLUE. Another case is when Cxx, Cnn and H are
all diagonal matrices, which is proven in Appendix R. And as already said in Result 4.1,
if non of the three mentioned cases is fulfilled, then in the linear model setup a CWCU
estimator is available in form of the BLUE, which not necessarily has to correspond to
the CWCU LMMSE estimator.

Transformation Analysis

The CWCU LMMSE estimator will in general not commute over affine transformations
of the form [59]

α = Bx + c. (4.174)

This is shown in the following way. Let the ith row of the transformation matrix B be
denoted by bHi such that

B =


bH1
bH2
...

bHNα

 ∈ CNα×Nx , (4.175)

and let αi and ci be the ith elements of α and c, respectively. We now assume that one
of the three cases in Result 4.1 holds for α instead of x such that the CWCU LMMSE
estimator for αi follows as

α̂CL,i = Eαi [αi] +
σ2
αi

CαiyC−1
yyCyαi

CαiyC−1
yy(y − Ey[y]). (4.176)
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From (4.174), the following relations can be derived

αi = bHi x + ci, (4.177)

Eαi [αi] = bHi Ex[x] + ci, (4.178)

σ2
αi = bHi Cxxbi, (4.179)

Cyαi = Ey,αi [(y − Ey[y])(αi − Eαi [αi])
∗], (4.180)

= Ey,x

[
(y − Ey[y])

(
bHi (x− Ex[x])

)∗]
, (4.181)

= Cyxbi. (4.182)

Inserting (4.178)–(4.182) into the CWCU LMMSE estimator in (4.176) produces

α̂CL,i = bHi Ex[x] + ci +
bHi Cxxbi

bHi CxyC−1
yyCyxbi

bHi CxyC−1
yy(y − Ey[y]) (4.183)

= bHi

(
Ex[x] +

bHi Cxxbi

bHi CxyC−1
yyCyxbi

CxyC−1
yy(y − Ey[y])

)
+ ci. (4.184)

As it can be easily verified, the expression in the brackets in (4.184) does not correspond
to the CWCU LMMSE estimator for x. Hence, the CWCU LMMSE estimator in general
does not commute over affine transformations.

However, there exists at least one exception. Consider the case of diagonal transforma-
tion matrices

B = diag
{[
b1 b2 . . . bNx

]}
∈ CNx×Nx (4.185)

with non-zero diagonal elements. This requirement ensures invertability of B. By con-
straining the transformation matrix to be diagonal, the expressions in (4.177)–(4.182)
read as

αi = bixi + ci (4.186)

Eαi [αi] = biExi [xi] + ci (4.187)

σ2
αi = |bi|2σ2

xi (4.188)

Cyαi = Ey,αi [(y − Ey[y])(αi − Eαi [αi])
∗] (4.189)

= Ey,xi [(y − Ey[y])(bi(xi − Exi [xi]))
∗] (4.190)

= Cyxib
∗
i . (4.191)

Now, inserting (4.187)–(4.191) into the CWCU LMMSE estimator in (4.176) and utiliz-
ing the fact that the diagonal elements are non-zero results in

α̂CL,i = biExi [xi] + ci +
|bi|2σ2

xi

biCxiyC−1
yyCyxib

∗
i

biCxiyC−1
yy(y − Ey[y]) (4.192)

= bi

(
Exi [xi] +

σ2
xi

CxiyC−1
yyCyxi

CxiyC−1
yy(y − Ey[y])

)
+ ci (4.193)

= bix̂CL,i + ci. (4.194)
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In conclusion, the CWCU LMMSE estimator commutes over affine transformations with
diagonal and invertible transformation matrices.

After these theoretical investigations of the CWCU LMMSE estimator, we demonstrate
some practical examples in the following. We begin with an extension of Example 4.1.

Example 4.2 (QPSK Data Estimation (Part 2))

For the exact same setup as in Example 4.1, the CWCU LMMSE estimator is com-
pared with the BLUE and the LMMSE estimator. Note that the linear model in (4.1)
holds and the elements of the parameter vector are statistically independent. Fig-
ure 4.2 shows the relative frequencies of the corresponding estimates in the complex
plane.

Figure 4.2: Visualization of the relative frequencies of the BLUE, the CWCU LMMSE estimator and
the LMMSE estimator. The black crosses mark the ideal QPSK constellation points.

The BLUE and the CWCU LMMSE estimator have their estimates centered around
the true constellation points since these estimators fulfill the CWCU constraints.
Note that the BMSE of the CWCU LMMSE estimator is clearly below the one of the
BLUE. The LMMSE estimator is conditionally biased towards the prior mean, which
is 0 for each element of the parameter vector. The CWCU constraints prevent this bias
introduced by the LMMSE estimator, while prior knowledge about the data can still
be incorporated. This prior knowledge effectively reduces the BMSE compared to the
BLUE. Hence, Figure 4.2 nicely demonstrates the effects of the CWCU constraints as
a trade-off between classical and Bayesian LMMSE estimation. Although the BMSEs
of the CWCU LMMSE estimator and the LMMSE estimator differ, it will turn out
in the next example that their corresponding log-likelihood ratio (LLR) values and
consequently the bit error ratio (BER) coincide [58].

Example 4.3 (Log-Likelihood Ratio Evaluation of a CWCU LMMSE QAM
Data Estimator)

In wireless communications, channel coding is applied that introduces redundancy in
order to improve the BER behaviour [62]. Consequently, a decoder at the receiver
side is required for decoding the bit stream. In soft decoding, the decoder requires
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the LLR of every bit based on the estimated data symbols [63]. In Example 4.2
we showed that these estimated data symbols strongly depend on whether using an
LMMSE estimator or a CWCU LMMSE estimator. However, it will turn out that
both estimators yield identical LLRs, resulting also in identical BER performance [58].

After estimating the data symbols as it was done exemplarily in Example 4.2, the
LLR values need to be evaluated as a measure of confidence in the decoded bit. For
a general estimator, the LLRs of any symbol constellation with equiprobable symbols
can be written as [64]

Λ(bki|x̂i) = log
Pr(bki = 1|x̂i)
Pr(bki = 0|x̂i)

= log

∑
q∈S(bki=1)

p(x̂i|s(q))∑
q∈S(bki=0)

p(x̂i|s(q))
, (4.195)

where x̂i is the ith estimated symbol, bki is the kth bit of the ith estimated symbol,
S (bki = 1) and S (bki = 0) are the sets of symbol indices corresponding to bki = 1
and bki = 0, respectively, and s(q) is the qth symbol of such a set. Further, these
symbols usually have zero mean. In (4.195), p(x̂i|s(q)) denotes the conditional PDF
of the estimate x̂i given that the actual transmitted symbol was s(q). Due to central
limit theorem arguments, p(x̂i|s(q)) can be well approximated as Gaussian for long
enough data vectors. Its complex proper Gaussian approximation is determined by
the conditional mean and the conditional variance according to

p(x̂i|s(q)) =
1

πvar(x̂i|s(q))
e
− 1

var(x̂i|s(q))
|x̂i−E[x̂i|s(q)]|2

. (4.196)

Together with (4.195), the LLRs of any linear estimator can be evaluated by inserting
the conditional mean and the conditional variance of the specific estimator. This is
now executed for the CWCU LMMSE estimator for which we obtain

p(x̂CL,i|s(q)) =
1

πvar(x̂CL,i|s(q))
e
− 1

var(x̂CL,i|s
(q))
|x̂CL,i−E[x̂CL,i|s(q)]|2

. (4.197)

Utilizing (4.165) and (4.166), we obtain

p(x̂CL,i|s(q)) =
1

π[D]2i,ivar(x̂L,i|s(q))
e
− 1

[D]2
i,i

var(x̂L,i|s
(q))

∣∣[D]i,i

(
x̂L,i−[D]−1

i,i s
(q)
)∣∣2

=
1

π[D]2i,ivar(x̂L,i|s(q))
e
− 1

var(x̂L,i|s
(q))
|x̂L,i−E[x̂L,i|s(q)]|2

= [D]−2
i,i p(x̂L,i|s(q)). (4.198)

This holds for any symbol s(q). The constant scaling factor [D]−2
i,i does not depend

on the symbol s(q) and it appears in the numerator and the denominator of (4.195).
Thus, it cancels out, and the LLRs of the CWCU LMMSE estimates and the LLRs
of the LMMSE estimates are equal for proper constellation diagrams. Therefore, also
the resulting BERs of the LMMSE and the CWCU LMMSE estimators are the same,
even though the BMSE of the LMMSE estimator is in general lower than that of the
CWCU LMMSE estimator.
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Another simulation example, taken again from the field of wireless communications, is
presented in the following.

Example 4.4 (Channel Impulse Response Estimation)

As an application to demonstrate the properties of the CWCU LMMSE estimator
we choose the well-known channel estimation problem for IEEE 802.11a/g/n wireless
local area network (WLAN) standards [65]. The standards are based on the orthog-
onal frequency division multiplexing (OFDM) technology. In practice the channel
frequency response estimation is of essential importance in this application. In ad-
dition, we will also discuss the channel impulse response (CIR) estimation in this
example. This will particularly demonstrate the nice properties of the investigated
CWCU LMMSE estimator.

xp(32,...,63) xp(0,...,63) xp(0,...,63)

yp(0,...,63) yp(0,...,63)

...

... ...

a)

b)
(1) (2)

Figure 4.3: Schematic visualization of parts of the time-domain transmit and receive vectors in OFDM
communications. a) Preamble including two long training symbols and a long guard
interval for channel estimation; b) received long training symbols.

Model

The regarded OFDM scheme uses an inverse fast Fourier transform (IFFT) of size
N = 64. In total, 52 subcarriers are occupied for data or pilot transmission, and the
remaining 12 subcarriers are unused (or loaded with zeros). The IEEE standard also
defines a preamble, cf. Figure 4.3a. We consider the two so-called long training sym-
bols since those are designed for channel estimation. Here xp ∈ C64 is a known pilot
vector, which is designed such that its frequency domain version x̃p = FNxp shows ±1
at the 52 occupied subcarriers (at indices out of the set S1 = {1, ..., 26, 38, ...63}), and
zeros at the unused subcarriers (at indices out of the set S2 = {0, 27, ..., 37}). Here,
FN is the DFT matrix of length N = 64, and (̃·) denotes a vector in the frequency
domain. Together with the 64× 52 carrier selection matrix

B =


01×26 01×26

I26×26 026×26

011×26 011×26

026×26 I26×26

, (4.199)

the vector of used (non-zero) subcarrier pilot symbols can be written as x̃p,u =
BTFNxp. BT basically deletes the elements of the frequency domain vector x̃p that
correspond to the unused subcarriers. We furthermore introduce the diagonal matrix
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4.2 Linear CWCU Estimation

Dp = diag{x̃p,u}, which fulfills DH
p Dp = I because of x̃p,u ∈ {−1, 1}52. This identity

will be required for deriving the estimators below.

The CIR is modeled as h ∼ CN (0,Chh), with

Chh = diag{σ2
0, σ

2
1, ..., σ

2
Nh−1}, (4.200)

and an exponentially decaying power delay profile according to

σ2
i =

(
1− exp(− Ts

τrms
)
)

exp(− iTs
τrms

) i = 0, 1, ..., Nh − 1. (4.201)

Here, Nh is the length of the CIR in time domain. Further, Ts and τrms are the
sampling time and the channel delay spread, respectively. These two parameters are
chosen as Ts = 50 ns and τrms = 100 ns in our setup. Note that the channel length Nh

can be assumed to be considerably smaller than the FFT length N . In the following
we assume Nh = 16.

Let y
(1)
p and y

(2)
p be the two received, channel distorted time domain preamble sym-

bols, cf. Figure 4.3b, ỹ
(i)
p,u = BTFNy

(i)
p for i = 1, 2, and ỹ = 1

2(ỹ
(1)
p,u + ỹ

(2)
p,u). Then ỹ

can be modeled as

ỹ = Dph̃u + ñ (4.202)

= DpB
T h̃ + ñ (4.203)

= DpB
TM1︸ ︷︷ ︸
H

h + ñ (4.204)

= Hh + ñ. (4.205)

Here h̃u ∈ C52 is the frequency response at the used subcarriers, h̃ ∈ C64 is the
full-length frequency response including the unused frequency bins, and ñ is a zero
mean complex proper Gaussian noise vector with covariance matrix Cññ = (Nσ2

n/2)I,
where σ2

n is the time domain noise variance. M1 ∈ C64×16 consists of the first Nh

columns of FN .

With (4.205) , the problem at hand has been expressed in a way such that the BLUE
[45], the LMMSE estimator and the CWCU LMMSE estimator can be applied. The
results are discussed in the following.

Performance Discussion

Figure 4.4 shows the BMSEs of the estimated CIR coefficients for the different es-
timators for the particular choice of σ2

n = 0.01. It is seen that the BLUE performs
miserable, while the CWCU LMMSE estimator and the LMMSE estimator show a
significantly better performance. The poor performance of the BLUE mainly origi-
nates from the fact that measurements are only available at the 52 frequency positions
with indices out of S1. We considered the knowledge of the impulse response duration
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when deriving the BLUE, however, the lack of information at the subcarriers with
indices out of S2 does not allow to reconstruct the impulse response with low MSEs.
The CWCU LMMSE estimator and the LMMSE estimator use the additional prior
knowledge from (4.200). As a consequence the CWCU LMMSE estimator significantly
outperforms the BLUE. Furthermore, it is not far behind the LMMSE estimator, and
in contrast to the LMMSE estimator it additionally shows the beneficial property of
conditional unbiasedness.
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Figure 4.4: Bayesian MSEs of the estimated CIR coefficients.
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Figure 4.5: Bayesian MSE for the elements of
ˆ̃
hB,

ˆ̃
hL, and

ˆ̃
hCL, respectively.

In order to analyze the estimates in more detail, and in particular to explain the
poor performance of the BLUE, the corresponding frequency response estimators are

reviewed in the following. The LMMSE estimator
ˆ̃
hL is simply obtained by com-

puting the DFT of
[
ĥTL 0T

]T
(since it commutes over linear transformations). The

BLUE
ˆ̃
hB can be derived correspondingly since Result 3.1 can be applied. Differently,

the CWCU LMMSE estimator
ˆ̃
hCL cannot be derived in this way since it does not

commute over general linear transformations. Also note that the vector of frequency
response coefficients h̃ ∈ C64 (which corresponds to the DFT of the zero-padded im-

pulse response
[
hT 0T

]T
) consists of complex proper Gaussian elements. Still, the

PDF of h̃ cannot be written in the form of a multivariate complex proper Gaussian
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PDF. However, although h̃ is not a complex proper Gaussian vector, E¯̃
hi|h̃i

[
¯̃
hi|h̃i]

(with h̃i being the ith element of h̃ and with
¯̃
hi being h̃ without h̃i) is linear in h̃i

(for all i = 0, 1, · · · , N − 1),. Therewith, one can easily show that (4.94)–(4.97) can
be applied to determine the CWCU LMMSE estimator.

Figure 4.5 shows the Bayesian MSEs of
ˆ̃
hB,

ˆ̃
hL, and

ˆ̃
hCL, respectively.

ˆ̃
hB is out-

performed by
ˆ̃
hL and

ˆ̃
hCL at all frequencies, but the performance loss is significant

at the large gap from subcarrier 27 to 37, where no training information is avail-

able. In contrast,
ˆ̃
hL and

ˆ̃
hCL show excellent interpolation properties along this gap.

Large estimation errors of
ˆ̃
hB in this spectral region are spread over all time domain

samples, which explains the poor performance of ĥB. Note that in practice this is
only critical if ĥB is incorporated in the receiver processing. Anyhow, pure frequency
domain receivers only require estimates at the occupied 52 subcarrier positions.

4.3 Widely Linear CWCU Estimation

The intent of this section is to extend the theoretical framework of CWCU linear esti-
mation to CWCU widely linear estimators. These investigations will lead to the CWCU
WLMMSE estimator [61]. The CWCU WLMMSE estimator will be compared with
the BWLUE and the WLMMSE estimator. From the previous investigations it is clear
that for the LMMSE and WLMMSE estimators the particular form of the joint PDF
p(y,x) does not play a role. In fact, these estimators are unambiguously defined by
their first and second order statistics. As for linear CWCU estimators, this is not the
case for widely linear CWCU estimators. Thus, we investigate model assumptions that
allow finding a linear or widely linear CWCU estimator that is able to outperform the
BLUE or the BWLUE, respectively. In particular, we will derive the CWCU WLMMSE
estimator under the following prerequisites, namely

1. under the assumption of jointly generalized complex Gaussian x and y,

2. under the linear model assumption with generalized complex Gaussian x and zero
mean noise with known second order statistics,

3. under the linear model assumption with mutually independent complex (and oth-
erwise arbitrarily distributed) parameters and zero mean noise with known second
order statistics,

4. under the assumption of real x, complex y, and jointly Gaussian x, Re{y}, and
Im{y},

5. under the linear model assumption with real Gaussian x and zero mean complex
noise with known second order statistics, and

6. under the linear model assumption with mutually independent real (and other-
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wise arbitrarily distributed) parameters and zero mean complex noise with known
second order statistics.

We distinguish real and complex-valued parameters for reasons that will become clear
soon.

4.3.1 Complex Parameter Vectors

We begin with the assumption that complex y and complex x are generalized jointly
Gaussian. Let the widely linear estimator for xi to be of the form

x̂i = fHi y + gHi y∗ + bi, for i = 1, 2, ..., n, (4.206)

which can also be written as

x̂i = eHi y + bi, for i = 1, 2, ..., n (4.207)

when using

eHi =
[
fHi gHi

]
. (4.208)

The conditional mean of the estimator in (4.207) becomes

Ey|xi [x̂i|xi] = eHi Ey|xi [y|xi] + bi. (4.209)

Because of the generalized jointly Gaussian assumption on y and x, Ey|xi [y|xi] is linear

in xi = [xi x∗i ]
T , specifically

Ey|xi [y|xi] = Ey[y] + CyxiC
−1
xixi(xi − Exi [xi]). (4.210)

This leads to

Ey|xi [x̂i|xi] =eHi
(
Ey[y] + CyxiC

−1
xixi(xi − Exi [xi])

)
+ bi.

(4.211)

By setting (4.211) equal to xi =
[
1 0

]
xi we find that the CWCU constraint

Ey|xi [x̂i|xi] = xi is fulfilled if

eHi CyxiC
−1
xixi =

[
1 0

]
(4.212)

bi = Exi [xi]− eHi Ey[y]. (4.213)

These are the two conditions the widely linear estimator in (4.207) has to fulfill in order
to become a CWCU estimator. For the derivation of the CWCU WLMMSE estimator

108



4.3 Widely Linear CWCU Estimation

we consider the BMSE cost function, which becomes

J(ei) =Ey,x[|x̂i − xi|2] (4.214)

=Ey,x[|eHi y + bi − xi|2] (4.215)

=Ey,x[|eHi (y − Ey[y])− (xi − Exi [xi])|2] (4.216)

=Ey,x[|eHi (y − Ey[y])−
[
1 0

]
(xi − Exi [xi])|2] (4.217)

=eHi Cyyei − eHi Cyxi

[
1

0

]
−

[
1 0

]
Cxiyei +

[
1 0

]
Cxixi

[
1

0

]
︸ ︷︷ ︸

σ2
xi

. (4.218)

This result can be simplified by using (4.212), leading to the final optimization problem

eCWL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi CyxiC

−1
xixi =

[
1 0

]
, (4.219)

where the subscript CWL indicates the CWCU WLMMSE estimator, which will now be
solved using the Lagrange multiplier method. The Lagrangian cost function is given by

L(ei) = eHi Cyyei − σ2
xi +

(
eHi Cyxi −

[
1 0

]
Cxixi

)
λ

+
(
eTi C∗yxi −

[
1 0

]
C∗xixi

)
λ∗. (4.220)

Setting the Wirtinger derivative of (4.220) w.r.t. ei equal to zero allows

∂L(ei)

∂ei
= eHi Cyy + λHCxiy

!
= 0 (4.221)

eHCWL,i = −λHCxiyC−1
yy . (4.222)

Inserting this result into the constraint in (4.219) yields

−λHCxiyC−1
yyCyxi =

[
1 0

]
Cxixi (4.223)

−λH =
[
1 0

]
Cxixi

(
CxiyC−1

yyCyxi

)−1
. (4.224)

Finally, combining (4.222) and (4.224) produces

eHCWL,i =
[
1 0

]
Cxixi

(
CxiyC−1

yyCyxi

)−1
CxiyC−1

yy . (4.225)

We now denote
Di = Cxixi

(
CxiyC−1

yyCyxi

)−1 ∈ C2×2 (4.226)

such that (4.225) reads as

eHCWL,i =
[
1 0

]
DiCxiyC−1

yy . (4.227)
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The full expression for x̂CWL,i can be found by combining (4.207), (4.213) and (4.227),
which yields

x̂CWL,i = Exi [xi] + eHCWL,i

(
y − Ey[y]

)
. (4.228)

Using

ECWL =


eHCWL,1

eHCWL,2
...

eHCWL,Nx

 ∈ CNx×2Ny (4.229)

immediately leads to the vector notation of the CWCU WLMMSE estimator

x̂CWL = Ex[x] + ECWL

(
y − Ey[y]

)
. (4.230)

Note the similarities between the CWCU WLMMSE estimator in (4.230) and the
WLMMSE estimator in (4.52). According to (4.227), the CWCU WLMMSE estimator
matrix ECWL can be derived from the augmented WLMMSE estimator matrix EWL =
CxyC−1

yy according to

ECWL =
[
D1 D2

]
EWL, (4.231)

where the elements of the two diagonal matrices D1 and D2 are given by

[D1]i,i = [Di]1,1, (4.232)

[D2]i,i = [Di]1,2. (4.233)

In the following, we denote D̃ =
[
D1 D2

]
such that (4.231) reads as

ECWL = D̃EWL. (4.234)

Having derived the CWCU WLMMSE estimator, we now discuss its performance mea-
sures. We begin with the mean of the error

Ey,x[x̂CWL − x] = Ey,x

[
Ex[x] + ECWL

(
y − Ey[y]

)
− x

]
(4.235)

= − Ex[x− Ex[x]] + ECWLEy

[
y − Ey[y]

]
(4.236)

= 0. (4.237)
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With that, the error covariance matrix Cee,CWL follows as

Cee,CWL = Ey,x

[
eeH

]
(4.238)

= Ey,x

[(
Ex[x] + ECWL

(
y − Ey[y]

)
− x

)(
Ex[x] + ECWL

(
y − Ey[y]

)
− x

)H]
(4.239)

= Ey,x

[(
−(x− Ex[x]) + ECWL

(
y − Ey[y]

))
×
(
−(x− Ex[x]) + ECWL

(
y − Ey[y]

))H]
(4.240)

= Cxx −ECWLCyx −CxyEH
CWL + ECWLCyyEH

CWL (4.241)

= Cxx −ECWLCyx

[
INx×Nx

0Nx×Nx

]
−
[
INx×Nx 0Nx×Nx

]
CxyEH

CWL

+ ECWLCyyEH
CWL. (4.242)

By defining the augmented matrix M as

M = CxyC−1
yyCyx, (4.243)

(4.242) simplifies to

Cee,CWL = Cxx − D̃M

[
INx×Nx

0Nx×Nx

]
−
[
INx×Nx 0Nx×Nx

]
MD̃H + D̃MD̃H . (4.244)

The BMSE values of the ith estimate x̂CWL,i corresponds to the ith diagonal element of
the error covariance matrix Cee,CWL.
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The findings of this section so far lead to case 1 of

Result 4.2 (CWCU WLMMSE Estimator for Complex-Valued Parameter
Vectors)

If x ∈ Cn is a complex-valued parameter vector and

1. x and y ∈ Cm are generalized jointly Gaussian, or

2. x and y ∈ Cm are connected via the linear model in (4.1) and x is generalized
complex Gaussian with mean vector Ex[x] and augmented covariance matrix
Cxx (the PDF of n is otherwise arbitrary), or

3. x and y ∈ Cm are connected via the linear model in (4.1) and x has mean Ex[x]
and mutually independent elements such that Cxx = diag{σ2

x1
, σ2

x2
, · · · , σ2

xNx
}

and C̃xx = diag{σ̃2
x1
, σ̃2

x2
, · · · , σ̃2

xNx
} (the joint PDF of x and n is otherwise

arbitrary),

then the CWCU WLMMSE estimator minimizing the BMSEs Ey,x[|x̂i−xi|2] under
the constraints Ey|xi [x̂i|xi] = xi for i = 1, 2, · · · , Nx is given by (4.230), where the
estimator matrix ECWL is defined in (4.231)–(4.233) and (4.226). The mean of the
error e = x̂CWL − x (in the Bayesian sense) is zero, and the error covariance matrix
Cee,CWL, which is also the minimum BMSE matrix Mx̂CWL

, is provided in (4.244)
with M defined in (4.243). The minimum BMSEs are Bmse(x̂CWL,i) = [Mx̂CWL

]i,i.

If none of the three cases is fulfilled, then in the linear model setup a widely linear
CWCU estimator is available in form of the BWLUE, which not necessarily has to
correspond to the CWCU WLMMSE estimator.

Case 2 and 3 in Result 4.2 (derived in Appendix S) originate from similar considerations
as for case 2 and 3 in Result 4.1. Again, a significant relaxation of the jointly Gaussian
assumption for x and y can be achieved by incorporating the linear model assumption
already earlier in the derivation of the estimator. Note that in a linear model setup the
required statistics become

Cxiy = CxixHH (4.245)

Cyxi = H Cxxi (4.246)

Cyy = H CxxHH + Cnn (4.247)

Cxy = CxxHH . (4.248)

Having derived the CWCU WLMMSE estimator, some further details are investigated.
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4.3.2 Discussion of the CWCU WLMMSE Estimator for Complex-Valued
Parameters

Commonalities between the Three Cases in Result 4.2

For all three cases in Result 4.2 it holds that

Ey|xi [y|xi] = Ey[y] + CyxiC
−1
xixi(xi − Exi [xi]). (4.249)

This is obvious for the first case where y and x are jointly Gaussian. The proof for the
other two cases is provided in Appendix T.

Similarly, it holds for all three cases that the augmented conditional covariance matrix
Cyy|xi is given by

Cyy|xi = Cyy −CyxiC
−1
xixiCxiy. (4.250)

The proof is presented in Appendix U.

Conditional Properties

In the following, the BWLUE, the WLMMSE estimator and the CWCU WLMMSE
estimator are analyzed in terms of their conditional mean Ey|xi [x̂i|xi], conditional bias
b(x̂i|xi), conditional variance var(x̂i|xi) and conditional MSE mse(x̂i|xi).

We begin with the BWLUE, which will be analyzed from a Bayesian perspective. This is
valid since one can show that the BWLUE can also be derived by minimizing the BMSE
cost function subject to an unbiased constraint in a similar manner as it was done for
the BLUE in Appendix J. Consider the BWLUE for xi in (3.62) for which we obtain
the conditional properties

Ey|xi [x̂BW,i|xi] = xi, (4.251)

b(x̂BW,i|xi) = 0, (4.252)

var(x̂BW,i|xi) = uHi
(
HHC−1

nnH
)−1

ui, (4.253)

mse(x̂BW,i|xi) = var(x̂BW,i|xi) = uHi
(
HHC−1

nnH
)−1

ui. (4.254)

The derivation of (4.251)–(4.254) can be found in Appendix V. Note that
var(x̂BW,i|xi) = var(x̂BW,i) and mse(x̂BW,i|xi) = mse(x̂BW,i) hold for the BWLUE.

For the derivation of the corresponding properties for the WLMMSE estimator we as-
sume that at least one of the three cases mentioned in Result 4.2 holds. Then, the
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following conditional properties are obtained

Ey|xi [x̂WL,i|xi] =
[
1 0

](
D−1
i xi + (I2×2 −D−1

i )Exi [xi]
)
, (4.255)

b(x̂WL,i|xi) =
[
1 0

](
D−1
i − I2×2

)
(xi − Exi [xi]), (4.256)

var(x̂WL,i|xi) =
[
1 0

]
D−1
i

(
I2×2 −D−1

i

)
Cxixi

[
1

0

]
, (4.257)

mse(x̂WL,i|xi) =
[
1 0

]
D−1
i

(
I2×2 −D−1

i

)
Cxixi

[
1

0

]
+
∣∣∣[1 0

](
D−1
i − I2×2

)
(xi − Exi [xi])

∣∣∣2. (4.258)

For the derivations we refer to Appendix W.

The conditional properties in (4.251)–(4.254) for the BWLUE and in (4.255)–(4.258)
for the WLMMSE estimator are now compared with those for the CWCU WLMMSE
estimator, which according to Appendix X are given by

Ey|xi [x̂CWL,i|xi] = xi, (4.259)

b(x̂CWL,i|xi) = 0, (4.260)

var(x̂CWL,i|xi) =
[
1 0

]
DiCxixi

[
1

0

]
− σ2

xi , (4.261)

mse(x̂CWL,i|xi) =
[
1 0

]
DiCxixi

[
1

0

]
− σ2

xi . (4.262)

This comparison leads to following statements, which are very similar to the correspond-
ing statements for the linear estimators in Section 4.2.3: The conditional mean and the
conditional bias of the CWCU WLMMSE estimator correspond to those of the BWLUE.
The WLMMSE estimator is conditionally biased as it can be seen in (4.256). For the
special case of a zero mean parameter Exi [xi] = 0, the augmented conditional means of
the WLMMSE and CWCU WLMMSE estimators read as

Ey|xi [x̂WL,i|xi] = D−1
i xi (4.263)

and

Ey|xi [x̂CWL,i|xi] = xi, (4.264)

respectively. This directly leads to

Ey|xi [x̂CWL,i|xi] = DiEy|xi [x̂WL,i|xi]. (4.265)

Note that for this special case

x̂CWL,i = Dix̂WL,i (4.266)

holds.
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From (4.257) the augmented conditional covariance matrix of x̂WL,i conditioned on xi
directly follows as

Cx̂ix̂i|xi,WL = D−1
i

(
I2×2 −D−1

i

)
Cxixi . (4.267)

The corresponding expression for the CWCU WLMMSE estimator follows from (X.10)
in Appendix X to be

Cx̂ix̂i|xi,CWL = DiCxixi −Cxixi . (4.268)

Combining (4.267) and (4.268) allows to identify the relation

Cx̂ix̂i|xi,CWL = D2
iCx̂ix̂i|xi,WL. (4.269)

Another notation of (4.269) that turns out to be useful later is

Cx̂ix̂i|xi,CWL = DiCx̂ix̂i|xi,WLDH
i , (4.270)

which can be proven the following way

DiCx̂ix̂i|xi,WLDH
i = DiD

−1
i

(
I2×2 −D−1

i

)
CxixiD

H
i (4.271)

= CxixiD
H
i −D−1

i CxixiD
H
i (4.272)

= Cxixi

(
CxiyC−1

yyCyxi

)−1
Cxixi

−CxiyC−1
yyCyxiC

−1
xixiCxixi

(
CxiyC−1

yyCyxi

)−1
Cxixi (4.273)

= DiCxixi −Cxixi (4.274)

= Cx̂ix̂i|xi,CWL. (4.275)

As for the linear case, mse(x̂WL,i|xi) clearly depends on the actual realization of xi, while
mse(x̂CWL,i|xi) does not. However, by averaging the conditional MSE over the PDF of
xi, the BMSE for the WLMMSE estimator follows as

Bmse(x̂WL,i) = Exi [mse(x̂WL,i|xi)] (4.276)

=
[
1 0

]
D−1
i

(
I2×2 −D−1

i

)
Cxixi

[
1

0

]

+
[
1 0

](
D−1
i − I2×2

)
Cxixi

(
D−1
i − I2×2

)H[1

0

]
(4.277)

=
[
1 0

](
D−1
i Cxixi −

(
D−1
i

)2
Cxixi + D−1

i Cxixi

(
D−1
i

)H
−D−1

i Cxixi −Cxixi

(
D−1
i

)H
+ Cxixi

)[1

0

]
(4.278)

=
[
1 0

](
Cxixi −Cxixi

(
D−1
i

)H)[1

0

]
(4.279)

= σ2
xi −

[
1 0

]
CxiyC−1

yyCyxi

[
1

0

]
. (4.280)
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Interestingly, the terms −
(
D−1
i

)2
Cxixi and D−1

i Cxixi

(
D−1
i

)H
in (4.278) cancel each

other since

D−1
i Cxixi

(
D−1
i

)H
= CxiyC−1

yyCyxiC
−1
xixiCxixi

(
CxiyC−1

yyCyxiC
−1
xixi

)H
(4.281)

= CxiyC−1
yyCyxiC

−1
xixiCxiyC−1

yyCyxi (4.282)

= CxiyC−1
yyCyxiC

−1
xixiCxiyC−1

yyCyxiC
−1
xixiCxixi (4.283)

=
(
D−1
i

)2
Cxixi . (4.284)

For the CWCU WLMMSE estimator we trivially obtain

Bmse(x̂CWL,i) = mse(x̂CWL,i|xi) =
[
1 0

]
DiCxixi

[
1

0

]
− σ2

xi . (4.285)

For the BWLUE we directly obtain mse(x̂WB,i|xi) = var(x̂WB,i|xi) = Bmse(x̂WB,i).

Relation to the BWLUE, WLMMSE Estimator and CWCU LMMSE
Estimator

Similar to their linear equivalents, the CWCU WLMMSE estimator turns out to be
closely related to the WLMMSE estimator. According to (4.234), the CWCU WLMMSE
estimator matrix ECWL can be derived by multiplying EWL with a matrix containing two
diagonal blocks. This can be interpreted as the widely linear extension of the connection
between the CWCU LMMSE estimator and the LMMSE estimator. For the special case
of zero mean parameters (Ex[x] = 0), the CWCU WLMMSE estimates are widely linear
transformed WLMMSE estimates as

x̂CWL = ECWLy = D̃EWLy = D̃x̂WL. (4.286)

Note that the WLMMSE estimator corresponds to the LMMSE estimator when x and n
are both proper. If this is the case, Cxixi and CxiyC−1

yyCyxi are both diagonal matrices
of size 2× 2. As a consequence, Di in (4.226) is also a diagonal matrix and the CWCU
WLMMSE estimator corresponds to the CWCU LMMSE estimator.

The relation between the CWCU WLMMSE estimator and the BWLUE is similar to
the relation between the CWCU LMMSE estimator and the BLUE discussed in Sec-
tion 4.2.3. Hence, the CWCU WLMMSE coincides with the BWLUE when there is only
one parameter to be estimated, i.e., Nx = 1. Another case is when Cxx, C̃xx, Cnn, C̃nn

and H are all diagonal matrices. The proof is provided in Appendix Y. And as already
said in Result 4.2, if non of the 3 mentioned cases is fulfilled, then in the linear model
setup a widely linear CWCU estimator is available in form of the BWLUE, which not
necessarily has to correspond to the CWCU WLMMSE estimator.
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Transformation Analysis

The CWCU WLMMSE estimator will in general not commute over affine transformations
of the form

α = Bx + c (4.287)

as shown in the following. Let the ith row of the transformation matrix B be denoted
by bHi such that

B =


bH1
bH2
...

bHNα

 ∈ CNα×Nx , (4.288)

and let αi and ci be the ith elements of α and c, respectively, such that αi = bHi x + ci.
The augmented versions of αi shall be given as

αi = Bix + ci, (4.289)

where

Bi =

[
bHi 01×Nx

01×Nx bTi

]
. (4.290)

We now assume that one of the three cases in Result 4.2 holds for α instead of x, such
that the CWCU WLMMSE estimator for αi follows as

α̂CWL,i = Eαi [αi] +
[
1 0

]
Cαiαi

(
CαiyC−1

yyCyαi

)−1
CαiyC−1

yy

(
y − Ey[y]

)
. (4.291)

From (4.289), we can readily derive that

Eαi [αi] = BiEx[x] + ci, (4.292)

Eαi [αi] =
[
1 0

]
BiEx[x] + ci, (4.293)

Cαiαi = BiCxxBH
i , (4.294)

Cyαi = Ey,αi

[(
y − Ey[y]

)
(αi − Eαi [αi])

H
]
, (4.295)

= Ey,x

[(
y − Ey[y]

)
(Bi(x− Ex[x]))H

]
, (4.296)

= CyxBH
i . (4.297)

Inserting (4.293)–(4.297) into the CWCU WLMMSE estimator in (4.291) directly leads
to the insight that the CWCU WLMMSE estimator in general does not commute over
affine transformations.

An exception can be found for diagonal transformation matrices such as

B = diag
{[
b1 b2 . . . bNx

]}
∈ CNx×Nx , (4.298)
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with non-zero diagonal elements. The latter requirement corresponds to B being in-
vertible. By constraining the transformation matrix to be diagonal and utilizing the
notation

B̃i = diag
{[
bi b∗i

]}
∈ C2×2, (4.299)

the expressions in (4.293)–(4.297) read as

αi = bixi + ci, (4.300)

αi = B̃ixi + ci, (4.301)

Eαi [αi] = biExi [xi] + ci, (4.302)

Cαiαi = B̃iCxixiB̃
H

i , (4.303)

Cyαi = Ey,αi

[(
y − Ey[y]

)
(αi − Eαi [αi])

H
]
, (4.304)

= Ey,xi

[(
y − Ey[y]

)(
B̃i(xi − Exi [xi])

)H]
, (4.305)

= CyxiB̃
H

i . (4.306)

Now, inserting (4.302)–(4.306) into the CWCU WLMMSE estimator in (4.291) and
utilizing the fact that bi is non-zero results in

α̂CWL,i = biExi [xi] + ci

+
[
1 0

]
B̃iCxixiB̃

H

i

(
B̃iCxiyC−1

yyCyxiB̃
H

i

)−1
B̃iCxiyC−1

yy

(
y − Ey[y]

)
(4.307)

=
[
1 0

]
B̃iExi [xi] + ci

+
[
1 0

]
B̃iCxixi

(
CxiyC−1

yyCyxi

)−1
CxiyC−1

yy

(
y − Ey[y]

)
(4.308)

=
[
1 0

]
B̃ix̂CWL,i + ci (4.309)

= bix̂CWL,i + ci. (4.310)

One can conclude that the CWCU WLMMSE estimator commutes over affine transfor-
mations with diagonal and invertible transformation matrices.

Example 4.5 (Log-Likelihood Ratio Evaluation of the CWCU WLMMSE
Estimator)

In Example 4.3, we showed that the LLR evaluated from the estimates of the
CWCU LMMSE and LMMSE estimators coincide. This was done by assuming the
constellation diagram to be proper (as it is the case for QPSK symbols). We now turn
to improper constellation diagrams such as quadrature amplitude modulation (QAM)
with 8 symbols (8-QAM). In such scenarios it is advantageous to use widely linear
estimators, which can incorporate information about the improperness of the data.
Interestingly, it will turn out that also the LLRs evaluated from the estimates of the
CWCU WLMMSE and WLMMSE estimators coincide [58].
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Recall the definition of the LLR in (4.195), where p(x̂i|s(q)) denotes the conditional
PDF of the estimate x̂i given that the actual symbol was s(q). Due to central limit
theorem arguments, p(x̂i|s(q)) can be well approximated as Gaussian for long enough
data vectors. Its general complex Gaussian approximation is determined by the aug-
mented conditional mean and the augmented conditional covariance matrix according
to

p(x̂i|s(q)) =
1√

π2det(Cx̂ix̂i|s(q))
e
− 1

2(x̂i−E[x̂i|s(q)])
H
C−1

x̂ix̂i|s(q)
(x̂i−E[x̂i|s(q)])

. (4.311)

In analogy to the linear case in (4.198) it will now be shown that p(x̂WL,i|s(q)) of
the WLMMSE estimator and p(x̂CWL,i|s(q)) of the CWCU WLMMSE estimator only
differ by a constant factor. By utilizing (4.286) and (4.270) the exponent of (4.311)
for the CWCU WLMMSE estimator can be rearranged to

− 1

2

(
x̂CWL,i − E[x̂CWL,i|s(q)]

)H
C−1
x̂ix̂i|s(q),CWL

(
x̂CWL,i − E[x̂CWL,i|s(q)]

)
(4.312)

= −1

2

(
x̂WL,i − E[x̂WL,i|s(q)]

)H
DH
i

(
DiCx̂ix̂i|s(q),WLDH

i

)−1

×Di

(
x̂WL,i − E[x̂WL,i|s(q)]

)
(4.313)

= −1

2

(
x̂WL,i − E[x̂WL,i|s(q)]

)H
C−1
x̂ix̂i|s(q),WL

(
x̂WL,i − E[x̂WL,i|s(q)]

)
. (4.314)

This result shows that the exponent of (4.311) is identical for the CWCU WLMMSE
estimator and the WLMMSE estimator for a given y. The prefactor of (4.311) for
the CWCU WLMMSE estimator becomes

1√
π2det(Cx̂ix̂i|s(q),CWL)

=
1√

π2det
(
DiCx̂ix̂i|s(q),WLDH

i

) (4.315)

=
1√

π2det(Cx̂ix̂i|s(q),WL)|det(Di)|2
(4.316)

=

∣∣det
(
D−1
i

)∣∣√
π2det(Cx̂ix̂i|s(q),WL)

. (4.317)

Like in the linear case in (4.198), the prefactors of the CWCU WLMMSE estimator
and the WLMMSE estimator only differ by a constant real factor. This factor does
not depend on the symbol s(q) and it appears in the numerator and the denominator
of (4.195), thus cancelling out in the determination of the LLRs. This leads to the
insight that the LLRs evaluated from the CWCU WLMMSE estimates in Result 4.2
and the WLMMSE estimates in (4.52) according to (4.195) and (4.311) are identical.
As a consequence of this, the corresponding BER performance of the WLMMSE and
the CWCU WLMMSE estimator coincide.
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The insights of this example are beneficially applied in the following example.

Example 4.6 (Estimation of 8-QAM Symbols in a Unique Word OFDM
Framework)

An example where employing the CWCU WLMMSE estimator allows reducing the
computational complexity of a follow-up processing step is presented in this section.
In digital communications, data symbols have to be estimated based on the received
signal. In this data estimation / channel equalization example we choose 8-QAM
data symbols from the alphabet S = {−3± j,−1± j, 1± j, 3± j}, which results in
improper symbols since the variance of the real part is larger than that of the imag-
inary part. The following investigations and simulations are carried out within the
framework of unique-word orthogonal frequency division multiplexing (UW-OFDM)
described in [45,66]. Like classical OFDM, UW-OFDM is a block based transmission
scheme where at the receive side a data vector d is estimated based on a received
block ỹ of frequency domain samples, which are disturbed by a dispersive channel
and additive noise. We choose UW-OFDM since the estimator matrices are in gen-
eral full matrices instead of diagonal matrices as in classical OFDM, such that the
problem can be considered a more demanding and general one compared to the data
estimation problem in classical OFDM systems. Hence, this framework is well suited
for studying general effects of CWCU estimators.

The system model for the transmission of one data block is given by

ỹ = H̃Gd + ṽ, (4.318)

where H̃ is the diagonal channel matrix with the frequency response coefficients of
the channel on its main diagonal. G is a so-called generator matrix (for details cf.
[45,66]), d is a vector of improper 8-QAM symbols, and ṽ is a frequency domain noise
vector.

A block diagram of the simulation setup is shown in Figure 4.6. The first block is
implemented as a convolutional encoder with the industry standard rate 1/2, and
constraint length 7 code with generator polynomials (133, 171) as defined in [65].
The interleaver re-sorts the bits appropriately, which are then mapped onto improper
8-QAM symbols. These symbols are arranged in blocks, each block is converted
into an UW-OFDM time domain symbol, and a burst of UW-OFDM symbols is
transmitted over the channel. The channel is assumed to be quasi-static, meaning
that it stays constant during the transmission of one burst. Furthermore, we assumed
perfect channel knowledge at the receiver in these simulations. The widely linear
estimators are then applied on each individual received frequency-domain vector ỹ in
order to equalize the channel and estimate the data symbols. The 8-QAM demapper
determines the LLRs of the corresponding bits and feeds them into the deinterleaver.
Finally, a soft decision Viterbi algorithm is applied for decoding.
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Figure 4.6: Block diagram of the investigated UW-OFDM communication system [58].
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Figure 4.7: Relative frequencies of the CWCU WLMMSE estimates in (a), and the WLMMSE esti-
mates in (b). The black crosses mark the original 8-QAM constellation points [58].

In our simulation setup the dimensions of the vectors and matrices are as follows:
d ∈ C36×1,G ∈ C52×36, H̃ ∈ C52×52, ỹ ∈ C52×1. The particular generator matrix
G′ introduced and described in [45,66] has been used. Due to central limit theorem
arguments (note that the data vector length is 36 in our example), p(x̂i|s(q)) can
be well approximated as Gaussian distribution in both cases. If the estimates are
improper, the generalized complex Gaussian density function [3,23–25]

p(x̂i|s(q)) =
1√

π2det(Cx̂ix̂i|s(q))
e
− 1

2(x̂i−E[x̂i|s(q)])
H
C−1

x̂ix̂i|s(q)
(x̂i−E[x̂i|s(q)])

(4.319)

has to be used. Otherwise the simpler complex proper Gaussian density

p(x̂i|s(q)) =
1

πσ2
x̂i|s(q)

e
− 1

σ2

x̂i|s(q)
|x̂i−E[x̂i|s(q)]|2

(4.320)

can be employed, where σ2
x̂i|s(q)

denotes the conditional variance of the estimate x̂i

given the transmitted symbol s(q). Note that in contrast to (4.319), (4.320) does
not require the augmented form. Consequently, no evaluations of determinants and
also no matrix inversions are required. It has been shown in [58] that for the esti-
mated 8-QAM symbols transmitted over an AWGN channel (i.e. H̃ = I), p(x̂i|s(q))
is proper for the CWCU WLMMSE estimator and improper for the WLMMSE esti-
mator. This result is also suggested by Figure 4.7, which is taken from [58]. For the
CWCU WLMMSE estimator the estimates are centered around the true constellation
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points since it fulfills the CWCU constraints. Furthermore, the estimates conditioned
on a specific transmit symbol s(q) are properly distributed. In contrast to the CWCU
WLMMSE estimates, the WLMMSE estimates conditioned on a specific transmit
symbol are neither centered around the true constellation points nor properly dis-
tributed, cf. Figure 4.7b. As a consequence, the CWCU WLMMSE estimator allows
utilizing (4.320), while the WLMMSE estimator requires (4.319) to derive the LLRs
for further processing. Furthermore, it has been shown in Example 4.5 that the LLRs
and consequently the BERs of the CWCU WLMMSE estimator and the WLMMSE
estimator coincide [58]. Hence, one can conclude that applying the CWCU WLMMSE
estimator in this system setup has the advantage of a reduced complexity of the LLR
determination compared to the WLMMSE estimator without any loss in the BER.
We notice, that (e.g. in WLAN scenarios) the data estimator only has to be derived
once per burst, such that the slightly increased complexity of deriving the CWCU
WLMMSE estimator matrix is negligible. On the other hand, the LLRs have to be
calculated for every single data bit.

As further difficulty we now consider multipath channels instead of the AWGN channel
used so far. The channel impulse responses (CIRs) are modeled as tapped delay
lines, each tap with uniformly distributed phase and Rayleigh distributed magnitude.
Further, we assume the power to decay exponentially as defined in [67]. The model
allows the choice of the channel delay spread, for a more detailed description the
reader may refer to [67]. In total 10 000 CIR realizations featuring a channel delay
spread of τRMS = 100 ns have been generated and stored, and the BER simulation
results are obtained by averaging over these 10 000 realizations.

The data estimation is performed with the WLMMSE estimator, the CWCU
WLMMSE estimator, as well as the BWLUE (note that the BLUE would have the
same BER performance as the BWLUE since these estimators cannot utilize the
improperness of the data). It turns out that the CWCU WLMMSE estimates, con-
ditioned on a given transmit symbol s(q), are practically proper again for all channel
realizations. The off-diagonal elements of Cx̂ix̂i|s(q) are smaller than the main diagonal

elements by at least a factor of 10−3 in all cases. We therefore again apply (4.320)
for the LLR calculation in case the CWCU WLMMSE estimator is used. The effects
on the BER performance in dependence of the mean energy per bit to noise power
spectral density ratio Eb/N0 is visualized in Figure 4.8. This figure shows that the
loss in performance of the CWCU WLMMSE estimator using the simplified PDF in
(4.320) for LLR calculation is definitely insignificant. Note that in practice usually
approximation formulas are used to derive LLRs. In our application this means that
(4.320) instead of (4.319) can be used as a starting point to derive LLR approxima-
tions [68–70].
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Figure 4.8: Bit error ratio of different widely linear estimators for the described digital communication
system setup in a multipath scenario. For the WLMMSE estimator, (4.319) was used for
the LLR determination, while for the CWCU WLMMSE estimator the simpler expression
in (4.320) was applied.

4.3.3 Real Parameter Vectors

In this subsection we assume x to be a real-valued vector, while y shall still be complex-
valued. In that case y and x are no longer generalized jointly Gaussian since the joint
augmented covariance matrix is no longer invertible. Also Cxixi is not invertible since

Cxixi =

[
σ2
xi σ2

xi

σ2
xi σ2

xi

]
. (4.321)

Note that this was required in the derivation for all three cases of Result 4.2. Anyhow,
we now assume the real composite vector

yR =

[
yR

yI

]
∈ R2Ny , (4.322)

and the real vector x to be jointly Gaussian. Hence, the conditional mean vector
EyR|xi [yR|xi] is given by

EyR|xi [yR|xi] = EyR [yR] + CyRxi
1

σ2
xi

(xi − Exi [xi]). (4.323)

By multiplying (4.323) with the real-to-complex transformation matrix TNy in (2.3)
from the left we obtain an expression for Ey|xi [y|xi] as

Ey|xi [y|xi] = Ey[y] + Cyxi

[
1

0

]
1

σ2
xi

(xi − Exi [xi]). (4.324)
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With (4.324) the conditional mean of the estimator in (4.207) becomes

Ey|xi [x̂i|xi] = Ey|xi [e
H
i y + bi|xi] (4.325)

= eHi Ey|xi [y|xi] + bi (4.326)

= eHi

(
Ey[y] + Cyxi

[
1

0

]
1

σ2
xi

(xi − Exi [xi])

)
+ bi. (4.327)

By setting (4.327) equal to xi we learn that the CWCU constraint Ey|xi [x̂i|xi] = xi is
fulfilled if

eHi Cyxi

[
1

0

]
1

σ2
xi

= 1 (4.328)

and

Exi [xi]− eHi Ey[y] = bi. (4.329)

In order to simplify the BMSE cost function, (4.328) and (4.329) can be used such that

J(ei) = Ey,x[|x̂i − xi|2] (4.330)

= Ey,x[|eHi y + bi − xi|2] (4.331)

= Ey,x[|eHi (y − Ey[y])− (xi − Exi [xi])|2] (4.332)

= Ey,x[|eHi (y − Ey[y])−
[
1 0

]
(xi − Exi [xi])|2] (4.333)

= eHi Cyyei − eHi Cyxi

[
1

0

]
︸ ︷︷ ︸

σ2
xi

−
[
1 0

]
Cxiyei︸ ︷︷ ︸

σ2
xi

+
[
1 0

]
Cxixi

[
1

0

]
︸ ︷︷ ︸

σ2
xi

(4.334)

= eHi Cyyei − σ2
xi . (4.335)

Hence, we end up with the optimization problem

eCWL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi Cyxi

[
1

0

]
1

σ2
xi

= 1. (4.336)

The optimization is started with the Lagrangian cost function, which is

L(ei) = eHi Cyyei − σ2
xi + λ

(
1

σ2
xi

[
1 0

]
Cxiyei − 1

)
+ λ∗

(
1

σ2
xi

[
1 0

]
C∗xiye∗i − 1

)
.

(4.337)
The partial derivative of (4.337) w.r.t. ei yields

∂L(ei)

∂ei
= eHi Cyy + λ

1

σ2
xi

[
1 0

]
Cxiy. (4.338)

By setting (4.338) equal to zero, eHCWL,i can be derived as

eHCWL,i = −λ 1

σ2
xi

[
1 0

]
CxiyC−1

yy . (4.339)
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This result reinserted into the constraint in (4.336) leads to an expression for λ according
to

λ = −
(σ2
xi)

2[
1 0

]
CxiyC−1

yyCyxi

[
1

0

] . (4.340)

Finally, reinserting (4.340) into (4.339) leads to the solution of the optimization problem
in the form of

eHCWL,i =
σ2
xi[

1 0
]
CxiyC−1

yyCyxi

[
1

0

][1 0
]
CxiyC−1

yy (4.341)

=
σ2
xi

CxiyC−1
yyCyxi

CxiyC−1
yy . (4.342)

The full expression for x̂CWL,i can be found by combining (4.74), (4.329) and (4.342),
which yields

x̂CWL,i = Exi [xi] + eHCWL,i

(
y − Ey[y]

)
. (4.343)

Using

ECWL =


eHCWL,1

eHCWL,2
...

eHCWL,Nx

 ∈ CNx×2Ny (4.344)

immediately leads us to the vector notation of the CWCU WLMMSE estimator

x̂CWL = Ex[x] + ECWL(y − Ey[y]). (4.345)

According to (4.341), the CWCU WLMMSE estimator matrix ECWL can be derived
from the augmented WLMMSE estimator matrix EWL = CxyC−1

yy by

ECWL =
[
D 0Nx×Nx

]
EWL, (4.346)

where the elements of the diagonal matrix D are given by

[D]i,i =
σ2
xi[

1 0
]
CxiyC−1

yyCyxi

[
1

0

] . (4.347)

Denoting D̃ =
[
D 0Nx×Nx

]
, (4.348) reads as

ECWL = D̃EWL. (4.348)
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We now derive some performance measures for the CWCU WLMMSE estimator. Start-
ing with the mean of the error we have

Ey,x[x̂CWL − x] = Ey,x

[
Ex[x] + ECWL

(
y − Ey[y]

)
− x

]
(4.349)

= − Ex[x− Ex[x]] + ECWLEy

[
y − Ey[y]

]
(4.350)

= 0. (4.351)

With that, the error covariance matrix Cee,CWL follows as

Cee,CWL = Ey,x

[
eeH

]
(4.352)

= Ey,x

[(
Ex[x] + ECWL

(
y − Ey[y]

)
− x

)(
Ex[x] + ECWL

(
y − Ey[y]

)
− x

)H]
(4.353)

= Ey,x

[(
−(x− Ex[x]) + ECWL

(
y − Ey[y]

))
×
(
−(x− Ex[x]) + ECWL

(
y − Ey[y]

))H]
(4.354)

= Cxx −ECWLCyx −CxyEH
CWL + ECWLCyyEH

CWL (4.355)

= Cxx −ECWLCyx

[
In×n

0n×n

]
−
[
INx×Nx 0Nx×Nx

]
CxyEH

CWL

+ ECWLCyyEH
CWL. (4.356)

By utilizing M as defined in (4.243), (4.356) simplifies to

Cee,CWL = Cxx − D̃M

[
INx×Nx

0Nx×Nx

]
−
[
In×n 0n×n

]
MD̃H + D̃MD̃H . (4.357)

The BMSE values of the ith estimate x̂CWL,i corresponds to the ith diagonal element of
the error covariance matrix Cee,CWL.
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The findings of this section so far are summarized in case 1 of

Result 4.3 (CWCU WLMMSE Estimator for Real-Valued Parameter Vec-
tors)

Let y ∈ CNy . If x ∈ RNx is a real-valued parameter vector and

1. x and yR ∈ R2Ny are jointly Gaussian, or

2. x and y are connected via the linear model in (2.6) and x is Gaussian with
PDF N (Ex[x],Cxx) (the PDF of n is otherwise arbitrary), or

3. x and y are connected via the linear model in (2.6) and x has mean
Ex[x], mutually independent elements and covariance matrix Cxx =
diag{σ2

x1
, σ2

x2
, · · · , σ2

xNx
} (the joint PDF of x and n is otherwise arbitrary),

then the CWCU WLMMSE estimator minimizing the BMSEs Ey,x[|x̂i−xi|2] under
the constraints Ey|xi [x̂i|xi] = xi for i = 1, 2, · · · , Nx is given by (4.345), where the
estimator matrix ECWL is defined in (4.346) and (4.347). The mean of the error
e = x̂CWL − x (in the Bayesian sense) is zero, and the error covariance matrix
Cee,CWL, which is also the minimum BMSE matrix Mx̂CWL

, is provided in (4.357)
with M defined in (4.243). The minimum BMSEs are Bmse(x̂CWL,i) = [Mx̂CWL

]i,i.

If none of the three cases is fulfilled, then in the linear model setup a widely linear
CWCU estimator is available in form of the BWLUE for real-valued parameter vec-
tors in Result 3.6, which not necessarily has to correspond to the CWCU WLMMSE
estimator.

Case 2 and 3 in Result 4.3 origin from similar considerations as for case 2 and 3 in
Result 4.1 and Result 4.2. The derivation of these cases can be found in Appendix Z.

4.3.4 Discussion of the CWCU WLMMSE Estimator for Real-Valued
Parameters

Commonalities between the Three Cases in Result 4.3

For all three cases in Result 4.3 it holds that

EyR|xi [yR|xi] = EyR [yR] + CyRxi
1

σ2
xi

(xi − Exi [xi]). (4.358)

The validity of this equation for the first case is clear and has already been utilized in
(4.323). The proof for the other two cases is provided in Appendix AA. Multiplying
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(4.358) with the real-to-complex transformation matrix TNy defined in (2.3) from the
left produces

Ey|xi [y|xi] = Ey[y] + Cyxi

1

σ2
xi

(xi − Exi [xi]), (4.359)

which also holds for all three cases.

Similarly, it holds for all three cases that the conditional covariance matrix CyRyR|xi is
given by

CyRyR|xi = CyRyR −CyRxi
1

σ2
xi

CxiyR . (4.360)

The proof is presented in Appendix AB. Multiplying (4.360) with TNy from the left and
with TH

Ny
from the right results in

Cyy|xi = Cyy −Cyxi

1

σ2
xi

Cxiy. (4.361)

Conditional Properties

The conditional properties of the ordinary BWLUE do not change compared to (4.251)–
(4.254) since this classical estimator does not incorporate any statistics of the parameter
vector. However, since the parameters are real-valued, it is beneficial to consider the
BWLUE for real-valued parameter vectors from Result 3.6 instead. The derivation of
its conditional properties is a straightforward extension of Appendix V when replacing
H with H̃ defined in (3.300). It leads to

Ey|xi [x̂BW,i|xi] = xi, (4.362)

b(x̂BW,i|xi) = 0, (4.363)

var(x̂BW,i|xi) = uHi

(
H̃HC−1

nnH̃
)−1

ui, (4.364)

mse(x̂BW,i|xi) = var(x̂BW,i|xi) = uHi

(
H̃HC−1

nnH̃
)−1

ui. (4.365)

Again, var(x̂BW,i|xi) = var(x̂BW,i) and mse(x̂BW,i|xi) = mse(x̂BW,i) hold for the
BWLUE.

Note that the WLMMSE estimator remains unaltered for real-valued parameter vectors.
Only the utilized second order statistics change. However, the conditional properties
provided in (4.255)–(4.258) do not hold any more since Di is singular for real-valued xi.
The modified conditional properties are

Ey|xi [x̂WL,i|xi] = [D]−1
i,i xi + (1− [D]−1

i,i )Exi [xi], (4.366)

b(x̂WL,i|xi) =
(

[D]−1
i,i − 1

)
(xi − Exi [xi]), (4.367)

var(x̂WL,i|xi) = [D]−1
i,i

(
1− [D]−1

i,i

)
σ2
xi , (4.368)

mse(x̂WL,i|xi) = [D]−1
i,i

(
1− [D]−1

i,i

)
σ2
xi +

(
1− [D]−1

i,i

)2
|(xi − Exi [xi])|

2. (4.369)
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The according derivations can be found in Appendix AC. For deriving (4.366)–(4.369) we
assumed that one of the three cases mentioned in Result 4.3 holds. Note the similarities
between (4.366)–(4.369) and the conditional properties for the LMMSE estimator in
(4.157)–(4.160). Interestingly, also the conditional properties of the CWCU WLMMSE
estimator for real-valued parameters formally correspond to those of the CWCU LMMSE
estimator and are given by

Ey|xi [x̂CWL,i|xi] = xi, (4.370)

b(x̂CWL,i|xi) = 0, (4.371)

var(x̂CWL,i|xi) = σ2
xi([D]i,i − 1), (4.372)

mse(x̂CWL,i|xi) = σ2
xi([D]i,i − 1). (4.373)

The corresponding derivations can be found in Appendix AD. Due to these similarities,
the expressions in (4.165)–(4.172) for the case of a zero mean parameter Exi [xi] = 0
transformed to the case considered in this section directly follow as

Ey|xi [x̂CWL,i|xi] = [D]i,iEy|xi [x̂WL,i|xi], (4.374)

var(x̂CWL,i|xi) = [D]2i,ivar(x̂WL,i|xi), (4.375)

Bmse(x̂WL,i) = σ2
xi

(
1− [D]−1

i,i

)
, (4.376)

Bmse(x̂CWL,i) = mse(x̂CWL,i|xi) = σ2
xi([D]i,i − 1), (4.377)

Bmse(x̂CWL,i) = [D]i,iBmse(x̂WL,i), (4.378)

and Bmse(x̂CWL,i) > Bmse(x̂WL,i). However, note the different definition of [D]i,i uti-
lized in Section 4.2.3.

Transformation Analysis

The CWCU WLMMSE estimator for real-valued parameters will in general not commute
over affine transformations of the form

α = Bx + c. (4.379)

The proof is a straightforward extension of the investigations in (4.288)–(4.297).

Again, an exception can be found. Let c be a zero vector and

B = diag
{[
b1 b2 . . . bNx

]}
∈ RNx×Nx (4.380)

with non-zero diagonal elements. Then, x = B−1α holds. Furthermore, it holds that if
one of the cases in Result 4.3 is fulfilled for x, it is also fulfilled for α. Hence, Result 4.3
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can be applied and leads to

α̂CWL,i = Eαi [αi] +
σ2
αi[

1 0
]
CαiyC−1

yyCyαi

[
1

0

][1 0
]
CαiyC−1

yy

(
y − Ey[y]

)
(4.381)

= Eαi [αi] +
σ2
αi

CαiyC−1
yyCyαi

CαiyC−1
yy

(
y − Ey[y]

)
. (4.382)

The statistics therein are given by

αi = bixi + ci, (4.383)

Eαi [αi] = biExi [xi] + ci, (4.384)

σ2
αi = b2iσ

2
xi , (4.385)

Cyαi = Ey,αi

[(
y − Ey[y]

)
(αi − Eαi [αi])

∗], (4.386)

= Ey,xi

[(
y − Ey[y]

)
(bi(xi − Exi [xi]))

∗], (4.387)

= Cyxibi. (4.388)

Inserting (4.384)–(4.388) into the CWCU WLMMSE estimator in (4.382) and utilizing
the fact that bi is non-zero results in

α̂CWL,i = biExi [xi] + ci +
b2iσ

2
xi

biCxiyC−1
yyCyxibi

biCxiyC−1
yy

(
y − Ey[y]

)
(4.389)

= bi

(
Exi [xi] +

σ2
xi

CxiyC−1
yyCyxi

CxiyC−1
yy

(
y − Ey[y]

))
+ ci (4.390)

= bix̂CWL,i + ci. (4.391)

This proves that the CWCU WLMMSE estimator for real-valued parameters commutes
over affine transformations with real-valued diagonal transformation matrices.

4.3.5 PWCU WLMMSE Estimation

We now reconsider the case of a complex parameter vector x ∈ CNx . Another way to
estimate x is to rewrite the linear model y = Hx + n according to

y =
[
H iH

]
︸ ︷︷ ︸

H′∈CNy×2Nx

[
xR

xI

]
︸ ︷︷ ︸

xR∈R2Nx

+n, (4.392)

and estimate the real and imaginary parts of the parameter vector separately. With
(4.392), the parameter vector is real-valued which enables us to use the CWCU WLMMSE
estimator for real-valued parameter vectors given in Result 4.3. The estimated real and
imaginary parts can then be combined to a complex estimator for the parameter vector
x. It is important to note that this estimator is in general not a CWCU estimator for the
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complex parameters xi = xR,i+ jxI,i, but it is a CWCU estimator for xR,i and xI,i, since
we forced E[x̂R,i|xR,i] = xR,i and E[x̂I,i|xI,i] = xI,i for i = 1, 2, · · · , Nx. That is why
this estimator will be denoted as part-wise conditionally unbiased (PWCU) WLMMSE
estimator. Generally, this estimator features a lower BMSE compared to its CWCU
counterpart, since conditioning separately on the real and on the imaginary parts leads
to weaker constraints as when conditioning on the complex parameters.

The derived estimators are compared with the classical BLUE and BWLUE as well as
with the Bayesian LMMSE and WLMMSE estimators in the following example.

Example 4.7 (DC Level and Complex Exponential in Uncorrelated Gaus-
sian Noise)

In this example we apply the CWCU WLMMSE estimator and the PWCU WLMMSE
estimator to a particular signal parameter estimation problem, and compare their
performance to that of the BLUE, the LMMSE estimator, the CWCU LMMSE es-
timator, the BWLUE, and the WLMMSE estimator. We do this by estimating a
complex constant and the complex amplitude of a complex exponential in the pres-
ence of noise [59]. The signal model is y[k] = x1 + 1.5x2e

j6k +n[k] for k = 0, 1, · · · , 5,
which can easily be brought to the form of a linear model y = Hx + n. We assume
the noise vector n to be zero mean complex proper Gaussian with covariance matrix

Cnn = diag{0.1, 0.06, 0.3, 0.2, 0.15, 0.1}. (4.393)

Furthermore, in our experiment we let the covariance matrices of the real and imagi-
nary parts of x and the cross-covariance matrix be

CxRxR = diag{1, 0.6}, (4.394)

CxIxI = k diag{1, 0.6}, (4.395)

CxRxI = 02×2, (4.396)

where the scalar k in CxIxI can vary between 10−4 and 102. According to this setup
the parameter vector x is improper for k 6= 1 and proper for k = 1. We start with
k = 10−4 (such that the parameter vector is almost purely real-valued), and test
all the estimators listed in Table 4.2. Then we increase k stepwise, such that the
imaginary part of x becomes more and more significant, and repeat the estimation
procedures accordingly. The result is a BMSE curve for each estimator in dependence
of k.
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Estimator Section Equation/Result

BLUE 3.1 (3.48)

LMMSE 4.1 (4.14)

CWCU LMMSE 4.2 Result 4.1

BWLUE 3.1 (3.63)

WLMMSE 4.1 (4.52)

CWCU WLMMSE for
complex-valued parameter vectors

4.3.1 Result 4.2

CWCU WLMMSE for real-valued
parameter vectors

4.3.3 Result 4.3

PWCU WLMMSE 4.3.5 Result 4.3

Table 4.2: Estimators used for the described estimation problem.

10−4 10−3 10−2 10−1 100 101 102
5 · 10−2

0.1

0.15

0.2

0.25

k

B
M

S
E

BLUE BWLUE
LMMSE WLMMSE

CWCU LMMSE CWCU WLMMSE for
complex-valued parameter vectors

CWCU WLMMSE for
real-valued parameter vectors

PWCU WLMMSE

Figure 4.9: BMSE values plotted over the scaling factor k, which defines the variances of the imaginary
parts. The variances of the real parts have been kept constant.

With this setup we can observe how the estimators perform for highly improper and
also proper data within the scope of this example. Still, we also test the CWCU
WLMMSE estimator for real parameter vectors. Clearly this estimator only perfectly
fulfills the CWCU constraints once the parameter vector is in fact real. However, for
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k = 10−4 it makes sense to apply this estimator since in that case the imaginary parts
of the parameters are negligible compared to the real parts. Of course for increasing
k the application of this estimator does not make sense.

Figure 4.9 shows the resulting BMSE curves plotted over the scaling factor k. Clearly,
the WLMMSE estimator features the best BMSE performance for all k since this
estimator minimizes the BMSE cost function without any constraints. The BLUE
and the BWLUE show the worst performance. They perform equal, which is clear
since the BWLUE is only able to outperform the BLUE in case of improper noise.
Both estimators show the same performance for all k, because they do not incorporate
statistical knowledge on the parameters.

Especially for small k, which corresponds to highly improper data, the LMMSE es-
timator’s performance is far below the one of the WLMMSE estimator. Clearly,
for k = 1 (the proper case) they perform equal. This impressively shows that the
LMMSE estimator is not able to exploit information about the improperness of x.
Further, the CWCU WLMMSE estimator derived in this work also significantly out-
performs the LMMSE estimator for small values of k, and it is also better for large
k > 10. For k = 10−4, where we approximately have a real-valued parameter vector,
the CWCU WLMMSE estimator for real parameter vectors comes quite close to the
WLMMSE estimator. However, it is interesting to note that the CWCU WLMMSE
estimator for complex parameter vectors does not converge to the CWCU WLMMSE
estimator for real parameter vectors when k → −∞. Consequently, once we know
from the application that the parameter vector is real one shall definitely apply the
CWCU WLMMSE estimator for real parameter vectors. In this example it can also
be seen that the PWCU WLMMSE estimator particularly outperforms the CWCU
WLMMSE estimator for complex-valued parameters for small k.

We already noted that for k = 1 (the proper case), the LMMSE and the WLMMSE
estimators perform equal. The same holds true for the CWCU LMMSE and the
CWCU WLMMSE estimators.

For k � 1, the variances of the imaginary parts of the parameters are way bigger
than the noise variances. Hence, the prior knowledge about CxIxI become less impor-
tant. What’s left is the prior knowledge about CxRxR . Linear estimators are not able
to incorporate this particular knowledge, and they all converge towards the BLUE’s
performance for large k. The WLMMSE estimator and the CWCU WLMMSE esti-
mator for complex-valued parameters still keep a little performance gain compared
to the linear estimators due to the incorporation of the prior knowledge about the
improperness of x.

To conclude this example we can state that the CWCU WLMMSE estimators sig-
nificantly outperform their globally unbiased counterparts BLUE and BWLUE, and
compared to the WLMMSE estimator the CWCU WLMMSE estimator features the
favorable property of component-wise conditionally unbiasedness.
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Estimator Constraints

BLUE FH = I, G = 0

LMMSE G = 0

CWCU LMMSE diag{FH} = 1, G = 0

BWLUE FH = I, GH∗ = 0

WLMMSE -

CWCU WLMMSE for
complex-valued parameter vector

diag{FH} = 1, diag{GH∗} = 0

CWCU WLMMSE for real-valued
parameter vectors

diag{FH}+ diag{GH∗} = 1

Table 4.3: Linear and widely linear estimators and their constraints

4.4 Estimator Comparison

In Section 3.1, the classical BLUE was derived by minimizing the estimators variance
subject to the unbiased constraint Ey[x̂i] = xi. This unbiased constraint led to estima-
tor matrices fulfilling EH = I. In Appendix J, we showed that the BLUE can also be
derived in a Bayesian framework by minimizing the BMSE cost function Ey,x[|x̂i− xi|2]
subject to the same unbiased constraint. Similar arguments also hold for the BWLUE.
Hence, every estimator regarded in Chapter 4 can be derived by minimizing the BMSE
cost function subject to particular constraints (except the WLMMSE estimator, which
minimizes the BMSE cost function without any constraint but the widely linear restric-
tion). In the following we concentrate on the linear model case with a parameter vector
having mutually independent parameters. Furthermore we assume the parameter vector
and the measurement vector to have zero mean. These assumptions are made since
then also the constraints for the CWCU estimators take on quite simple forms (while
the constraints on BLUE, BWLUE, LMMSE estimator and WLMMSE estimator do not
change by making particular assumptions on the PDF of x). Let the general widely
linear estimator for this setup be of the form

x̂ = Fy + Gy∗ =
[
F G

]
y. (4.397)

Table 4.3 lists the main estimators regarded in Chapter 4 together with the constraints
that have to be fulfilled for this particular setup when minimizing the BMSE cost func-
tion. The estimator with the most stringent constraint, which is the BLUE, will generally
perform worst in a BMSE sense. On the other hand, the BLUE produces unbiased es-
timates in the classical sense. The LMMSE estimator and the WLMMSE estimator
perform better in a BMSE sense than the BLUE and the BWLUE, respectively. Yet,
they are conditionally biased, leading to effects demonstrated in Example 4.1. The
CWCU estimators derived in this paper circumvent this property. Thus, in contrast
to the BLUE and the BWLUE, the proposed estimators are generally able to incorpo-
rate prior knowledge about the statistics of the parameter vector. This can lead to a
significant performance gain over classical estimators.
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5
Knowledge-Aided Concepts in Adaptive

Filtering

Adaptive filters are utilized in many practical applications. Most of these applications
can be divided into the four groups [71,72]

� System identification

� Noise cancellation

� Inverse system identification

� Prediction.

In this chapter well-known complex-valued adaptive filters such as the LMS and RLS
algorithms are shortly recapitulated. Subsequently, we extend these adaptive filters
by incorporating additional sources of knowledge that are available in many practical
scenarios.

Firstly, we consider the case when it is known that the optimum filter coefficients are real-
valued, whereas the input and desired signal are complex-valued. A practical example
where this situation can arise is given by the already mentioned problem of transmit
leakage in modern wireless transceivers. In [16] the leakage signal is extracted and
cancelled by using a so-called auxiliary receiver in parallel to the main receiver. As a
result, typically a fractional delay between the two receivers appears. This fractional
delay is estimated and compensated for with the help of adaptive filters. In this scenario,
the input and desired signal are complex-valued while the optimum filter coefficients are
real-valued. Standard complex-valued adaptive filters cannot incorporate the additional
model knowledge and produce complex-valued filter coefficients. In this thesis, extensions
of the LMS and RLS algorithms are developed that produce real-valued filter coefficients.
These optimal filters are compared with state-of-the-art filters as well as with trivial
filters that incorporate the additional model knowledge in an intuitive way. For the
LMS-based algorithms it turns out that the utilized intuitive filter corresponds to the
optimal approach derived in this thesis. In case of the RLS-based algorithms, however,
the derived optimal algorithm outperforms an intuitive filter significantly as will be
demonstrated in simulation examples.
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Subsequently, the system identification application of adaptive filters is considered.
There, prior statistical knowledge about the impulse response to be estimated is of-
ten available. Hence, adaptive filters are investigated that are able to incorporate this
prior knowledge. An adaptive filter that is able to incorporate prior knowledge is the
sequential LMMSE estimator in a filtering setup. This algorithm is related to the RLS
algorithm. A novel version of the LMS algorithm that also allows to incorporate the
first and second order statistical moments about the impulse response to be estimated
has been derived in the context of this doctoral thesis work. It is shown that the derived
LMS-based algorithm incorporating prior knowledge features a reduced convergence time
in the mean compared to the standard LMS algorithm.

5.1 State-of-the-Art

Figure 5.1 schematically depicts the task of adaptive filter based system identification,
where h ∈ CNh is the unknown impulse response of a LTI system, xk ∈ C is the known
input of the system at time instance k, yk ∈ C is the measured output of the system at
time instance k, and nk ∈ C is an unknown noise sample. The samples yk are usually
referred to as desired signal. The adaptive filter with time-dependent impulse response
wk ∈ CNw is fed with the same input samples xk and produces ŷk ∈ C as output samples.
The error ek = yk − ŷk is used to adapt the filter coefficients wk.

h

w

yk

yk ek

xk

nk

Figure 5.1: System identification example with an adaptive filter.

The following considerations are independent of the particular adaptive filter applications
and are not restricted to the system identification problem.

There exist several notations of deriving the output of a complex-valued filter [72]. The
form

ŷk = wTxk (5.1)

is preferred in this work, where xk ∈ CNw contains the latest Nw samples of the input
signal xk as

xk =


xk

xk−1

...

xk−Nw+1

. (5.2)
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Other frequently used notations are ŷk = wHxk and ŷk = wTx∗k. Note that the obtained
adaptive filter update equations depend on the chosen notation.

Wiener-Hopf Solution

For complex-valued input signals and complex-valued impulse responses, the famous
Wiener-Hopf solution for the particular choice in (5.1) is given by

w =
(
R−1

xxrxy
)∗
, (5.3)

where the auto-correlation matrix Rxx is defined as

Rxx = Exk [xkx
H
k ] ∈ CNw×Nw (5.4)

and where the cross-correlation vector between xk and yk is defined as

rxy = Exk,yk [xky
∗
k] ∈ CNw . (5.5)

Applying the Wiener-Hopf solution requires the knowledge of the statistics in (5.4) and
(5.5). This can be avoided by utilizing adaptive filters. The most commonly used
adaptive filters can be considered to be the LMS [73] and the RLS algorithms [71],
whose derivations are now repeated for the complex-valued case.

LMS Algorithm

We first take a look at the LMS algorithm for real-valued signals and systems. This
algorithm adaptively minimizes a cost function J utilizing the steepest descent method
of the form5

wk = wk−1 − µ
(

∂J

∂wk−1

)T
(5.6)

to derive the next filter coefficient estimate wk based on the old estimate wk−1. The
step-size is denoted by µ ∈ R in (5.6). The transpose operator in (5.6) is necessary since
the partial derivative produces a row vector per definition.

We now turn to complex-valued signals and filters. Let wR,k and wI,k denote the real and
imaginary part of wk, respectively. Then, we seek for two real-valued LMS algorithms
of the form

wR,k = wR,k−1 − µ
(

∂J

∂wR,k−1

)T
, wI,k = wI,k−1 − µ

(
∂J

∂wI,k−1

)T
. (5.7)

5Another usual notation of the gradient term is ∂J(w)
∂w

∣∣
w=wk−1
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Recombining these two adaptive filters to a single complex-valued adaptive filter pro-
duces

wk = wk−1 − µ
(

∂J

∂wR,k−1
+ j

∂J

∂wI,k−1

)T
. (5.8)

Interestingly, by comparing the derivatives in (5.8) with (2.37) and (2.47) reveals that
they correspond to the Wirtinger derivative of J w.r.t. w∗k−1 scaled by a factor of 2.
Hence, for complex-valued adaptive filters (5.6) needs to be adapted according to

wk = wk−1 − µ
(

∂J

∂wk−1∗

)T
, (5.9)

where the scaling factor is moved into the step-size µ. The LMS algorithm utilizes the
absolute squared instantaneous error as cost function, which is

J = |ek|2 (5.10)

= eke
∗
k (5.11)

= (yk − ŷk)(yk − ŷk)∗ (5.12)

=
(
yk −wT

k−1xk
)(
yk −wT

k−1xk
)∗

(5.13)

= yky
∗
k −wT

k−1xky
∗
k − ykwH

k−1x
∗
k + wT

k−1xkw
H
k−1x

∗
k (5.14)

= yky
∗
k −wT

k−1xky
∗
k −wH

k−1x
∗
kyk + wH

k−1x
∗
kx

T
kwk−1. (5.15)

The Wirtinger derivative of (5.15) w.r.t. w∗k−1 is given by

∂J

∂w∗k−1

= − ykxHk + wT
k−1xkx

H
k (5.16)

= − ykxHk + ŷkx
H
k (5.17)

= − ekxHk . (5.18)

Inserting (5.18) into (5.9) yields the final result for the LMS algorithm

wk = wk−1 + µekx
∗
k. (5.19)

As initialization, w0 is in many cases chosen to be the zero vector. One can show that
for convergence the step-size µ must be chosen to be [72]

0 < µ <
2

λmax
, (5.20)

where λmax is the largest eigenvalue of the auto-correlation matrix Rxx = Exk [xkx
H
k ] ∈

CNw×Nw [72]. Furthermore, one can show that the LMS algorithm in the mean converges
to the Wiener-Hopf solution in (5.3).

A more practical criterion for the choice of µ is given by [72]

0 < µ <
2

NwE[|xk|2]
=

2

E[xHk xk]
. (5.21)
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Normalized LMS Algorithm

Approximating E[xHk xk] in(5.21) by the instantaneous value ‖xk‖22 motivates the so
called normalized LMS algorithm with its update equation

wk = wk−1 +
µn

ε+ ‖xk‖22
ekx
∗
k. (5.22)

In practice, µn is typically chosen in the range between 0 and 1. ε ∈ R in (5.22) is a small
positive-valued constant to overcome possible instabilities when ‖xk‖22 is very small. This
algorithm is also sometimes referred to as ε-normalized least mean squares (NLMS) to
emphasize the incorporation of ε [71].

Finally, we emphasize that the LMS as well as the NLMS algorithms are often imple-
mented with a variable step-size µk that depends on the time index k.

RLS Algorithm

We now recapitulate the derivation of the RLS algorithm for the complex-valued case,
for which the following cost function is utilized:

J =

k∑
i=0

λk−i|ei|2. (5.23)

This cost function can be rewritten as

J =

k∑
i=0

λk−ieie
∗
i (5.24)

=
k∑
i=0

λk−i(yi − ŷi)(yi − ŷi)∗. (5.25)

In (5.25) we use ŷi = wT
k xi such that the weighted sum of squared errors is calculated

based on the current filter coefficients wk. Hence, we write

J =

k∑
i=0

λk−i
(
yi −wT

k xi
)(
yi −wT

k xi
)∗

(5.26)

=
k∑
i=0

λk−i
(
yiy
∗
i −wT

k xiy
∗
i − yiwH

k x∗i + wT
k xiw

H
k x∗i

)
(5.27)

=

k∑
i=0

λk−i
(
yiy
∗
i −wT

k xiy
∗
i −wH

k x∗i yi + wH
k x∗ix

T
i wk

)
. (5.28)
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The Wirtinger derivative of (5.28) w.r.t. w∗k follows as

∂J

∂w∗k
=

k∑
i=0

λk−i
(
−yixHi + wT

k xix
H
i

)
(5.29)

=

k∑
i=0

λk−i
(
−yi + wT

k xi
)
xHi (5.30)

= wT
k

k∑
i=0

λk−ixix
H
i −

k∑
i=0

λk−iyix
H
i . (5.31)

We now introduce the following definitions

Rk =
k∑
i=0

λk−ixix
H
i (5.32)

and

rHk =
k∑
i=0

λk−iyix
H
i . (5.33)

Then, setting (5.31) equal to zero results in

wT
k = rHk R−1

k . (5.34)

The next step is to find expressions for rk and Rk in dependence of rk−1 and Rk−1 in
order to allow for recursive evaluations. We begin with the first one and rewrite (5.33)
according to

rHk = ykx
H
k +

k−1∑
i=0

λk−iyix
H
i (5.35)

= ykx
H
k + λ

k−1∑
i=0

λk−1−iyix
H
i (5.36)

= ykx
H
k + λrHk−1. (5.37)

For (5.32) it holds that

Rk = xkx
H
k +

k−1∑
i=0

λk−ixix
H
i (5.38)

= xkx
H
k + λ

k−1∑
i=0

λk−1−ixix
H
i (5.39)

= xkx
H
k + λRk−1. (5.40)

In principle, a recursive algorithm can already be obtained by combining (5.37) and
(5.40) with (5.34). However, the recursion would contain a matrix inversion, which is
avoided by the following reformulations.
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We apply Woodbury’s matrix inversion lemma [54] on (5.40) to yield

(Rk)
−1 = (λRk−1)−1 − (λRk−1)−1xk

(
1 + xHk (λRk−1)−1xk

)−1
xHk (λRk−1)−1. (5.41)

Denoting (Rk)
−1 as Pk produces

Pk = λ−1Pk−1 − λ−1Pk−1xk
(
1 + λ−1xHk Pk−1xk

)−1
xHk λ

−1Pk−1. (5.42)

We now introduce the gain vector as

gk = λ−1Pk−1xk
(
1 + λ−1xHk Pk−1xk

)−1
, (5.43)

such that (5.42) follows as

Pk = λ−1Pk−1 − gkx
H
k λ
−1Pk−1 (5.44)

= λ−1
(
Pk−1 − gkx

H
k Pk−1

)
. (5.45)

Since Pk = (Rk)
−1 is a Hermitian matrix according to (5.32), (5.45) can be expressed

as

Pk = λ−1
(
Pk−1 −Pk−1xkg

H
k

)
. (5.46)

Furthermore, a reformulation of (5.43) yields

gk
(
1 + λ−1xHk Pk−1xk

)
= λ−1Pk−1xk (5.47)

gk + gkλ
−1xHk Pk−1xk = λ−1Pk−1xk (5.48)

gk = λ−1Pk−1xk − gkλ
−1xHk Pk−1xk (5.49)

gk = λ−1
(
Pk−1 − gkx

H
k Pk−1

)
xk. (5.50)

The right hand side of (5.50) can be identified as Pkxk according to (5.45) such that

gk = Pkxk. (5.51)

We are now able to find an expression for wk in (5.34)

wT
k = rHk R−1

k (5.52)

= rHk Pk. (5.53)

Incorporating (5.37) into (5.53) produces

wT
k = ykx

H
k Pk + λrHk−1Pk (5.54)

= λrHk−1Pk + ykg
H
k , (5.55)

where we utilized (5.51) and the fact that Pk = (Rk)
−1 is a Hermitian matrix according

to (5.32). Combining the recursive definition of Pk in (5.46) with (5.55) allows for

wT
k = rHk−1

(
Pk−1 −Pk−1xkg

H
k

)
+ ykg

H
k (5.56)

= wT
k−1 −wT

k−1xkg
H
k + ykg

H
k (5.57)

= wT
k−1 +

(
yk −wT

k−1xk
)
gHk (5.58)

= wT
k−1 + ekg

H
k , (5.59)
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with the a-priori error

ek = yk −wT
k−1xk. (5.60)

This is the final form of the recursion of the RLS algorithm. The filter coefficients w0

are usually initialized as a zero vector. The forgetting factor λ is chosen between 0.98
and 1 in most cases. P0 will be initialized as a scaled identity matrix δI with a large
value of δ.

Finally, the RLS algorithm is summarized as

Initialization:
Choose λ and δ;
P0 = δINw×Nw ;
w0 = 0Nw×1;

for k = 1, 2, . . . do
Update xk according to (5.2);
Derive ek according to (5.60);
Determine gk according to (5.43);
Derive Pk according to (5.45);
Evaluate the new filter coefficients wk according to (5.59);

end

The novel adaptive filters introduced in the next sections will be compared in perfor-
mance with the LMS and RLS algorithms described in this section.

5.2 Adaptive Filters for Real-Valued Filter Coefficients in
Complex-Valued Environments

In Section 3.4, we investigated estimators that are designed for estimating real-valued
parameter vectors while the measurement matrix and the measurement noise are both
complex-valued. These estimators offered a significant performance gain compared to
competing well-known and intuitive estimation methods. In this section, similar exten-
sions are investigated for adaptive filters such as the LMS and the RLS algorithms for
scenarios where it is known that the filter coefficients should be real valued, while the
input signal xk and the desired signal yk are complex-valued. Examples and a potential
application are given at the end of the section. At first, the LMS algorithm for real-
valued filter coefficients is derived. After that, a similar extension is investigated for the
RLS algorithm.

Note that the LMS and the RLS algorithms discussed in Section 5.1 do not incorporate
the additional knowledge that the filter coefficients shall be real-valued, while the LMS
and the RLS algorithms derived in the following do so. To not confuse the reader with
varying notations, we refer to the algorithms described in Section 5.1 as the ordinary
LMS algorithm and the ordinary RLS algorithm.
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Environments

The optimal Wiener filter for the described scenario is not given by (5.3) any more.
Instead, the optimal Wiener filter w is derived in the following. The cost function is
given by

J = E
[
|ek|2

]
(5.61)

= E[eke
∗
k] (5.62)

= E[(yk − ŷk)(yk − ŷk)∗] (5.63)

= E
[(
yk −wTxk

)(
yk −wTxk

)∗]
. (5.64)

Incorporating the fact that w shall be real-valued allows for

J = E
[
yky
∗
k −wTxky

∗
k − ykxHk w + wTxkx

H
k w

]
(5.65)

= E[yky
∗
k]−wT rxy − rHxyw + wTRxxw (5.66)

The partial derivative of (5.66) w.r.t. w is

∂J

∂w
= − rTxy − rHxy + wT

(
Rxx + RT

xx

)
(5.67)

= − rTxy − rHxy + wT (Rxx + R∗xx) (5.68)

= − 2Re
{
rTxy
}

+ 2wTRe{Rxx}. (5.69)

Setting (5.69) equal to zero allows to identify the optimal Wiener filter for the case of
real-valued filter coefficients as

w = (Re{Rxx})−1Re{rxy}, (5.70)

For the system identification task in Figure 5.1, it holds that rxy = Rxxh. Let the true
impulse response h be real-valued. Then, modifying (5.70) shows that

w = (Re{Rxx})−1Re{Rxxh} (5.71)

= (Re{Rxx})−1Re{Rxx}h (5.72)

= h. (5.73)

5.2.1 LMS Algorithm for Real-Valued Filter Coefficients

Consider the update equation in (5.6). This update equation, although it is usually
applied for pure real-valued models, remains valid for the described scenario since wk is
real-valued. We now modify the partial derivative in this update equation in an optimal
way such that only real-valued filter coefficients wk are obtained. The LMS cost function
is defined to be the instantaneous absolute squared error

J = |ek|2 (5.74)

= eke
∗
k (5.75)

= (yk − ŷk)(yk − ŷk)∗ (5.76)

=
(
yk −wT

k−1xk
)(
yk −wT

k−1xk
)∗
. (5.77)
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Assuming that wk−1 is real-valued allows to further modify (5.77) as

J = yky
∗
k −wT

k−1xky
∗
k −wT

k−1x
∗
kyk + wT

k−1xkx
H
k wk−1. (5.78)

For the update equation in (5.6), the partial derivative of (5.78) is required, which can
be derived as

∂J

∂wk−1
= − y∗kxTk − ykxHk + wT

k−1

(
xkx

H
k + x∗kx

T
k

)
. (5.79)

Note that no Wirtinger calculus for determining the partial derivative is necessary since
wk−1 is real-valued. Inserting (5.79) into (5.6) yields

wk = wk−1 − µ
(
−xky

∗
k − x∗kyk +

(
xkx

H
k + x∗kx

T
k

)
wk−1

)
(5.80)

= wk−1 + µ
(
xky

∗
k + x∗kyk − xkx

H
k wk−1 − x∗kx

T
kwk−1

)
(5.81)

= wk−1 + µ(xky
∗
k + x∗kyk − xkŷ

∗
k − x∗kŷk) (5.82)

= wk−1 + µ(xke
∗
k + x∗kek) (5.83)

= wk−1 + 2µRe{ekx∗k}. (5.84)

The additional factor of 2 will be moved into the step-size µ such that the final update
equation is given as

wk = wk−1 + µRe{ekx∗k}. (5.85)

Inspecting this result reveals that it is similar to the ordinary LMS algorithm in (5.19),
except that only the real part of ekx

∗
k is used to update the filter coefficients. An

intuitive approach of incorporating the fact that the filter coefficients should be real-
valued might have led to the same result. However, the derivation here shows that
this intuitive approach turns out to be optimal in terms of the instantaneous error cost
function in (5.10).

Although (5.85) is similar to the ordinary LMS algorithm, the convergence solution and
the stability analysis reveal some significant differences.

Convergence Solution

Let’s assume µ is chosen such that the algorithm converges in the mean. Bounds for µ
such that convergence is reached in the mean are derived in the next subsection. Here,
we ask ourself about which w the algorithm will converge in the mean.

When the algorithm has reached its ”convergence in the mean” state (for large enough
k), it must hold that

E[Re{ekx∗k}] = 0. (5.86)
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Reformulating (5.86) results in

E[Re{ekx∗k}] = E

[
1

2
(ekx

∗
k + e∗kxk)

]
(5.87)

= E

[
1

2
(ykx

∗
k − ŷkx∗k + y∗kxk − ŷ∗kxk)

]
(5.88)

= E

[
1

2

(
ykx

∗
k − (wT

k−1xk)x
∗
k + y∗kxk − (wT

k−1x
∗
k)xk

)]
(5.89)

= E

[
1

2

(
xky

∗
k + x∗kyk − xkx

H
k wk−1 − x∗kx

T
kwk−1

)]
(5.90)

= E

[
1

2
(xky

∗
k + x∗kyk)

]
− E

[
1

2

(
xkx

H
k + x∗kx

T
k

)
wk−1

]
(5.91)

Since this analysis is done for sufficiently large k, we rename wk−1 to w∞ at this point.
We further assume that E[xkx

H
k w∞] = E[xkx

H
k ]E[w∞] = E[xkx

H
k ]w∞. Then, (5.91)

reads as

E[Re{ekx∗k}] =
1

2

(
rxy + r∗xy

)
− 1

2
(Rxx + R∗xx)w∞ (5.92)

= Re{rxy} − Re{Rxx}w∞. (5.93)

By setting this result equal to zero, the convergence solution immediately follows as

w∞ = (Re{Rxx})−1Re{rxy}, (5.94)

which corresponds to the optimal Wiener filter in (5.70).

Convergence in the Mean

In this section, we assume wk−1 is independent of the data vector xk such as it is done
in [72]. Furthermore, we assume {yk, xk} is independent of {yl, xl} for k 6= l.

We now introduce vector vk−1 = wk−1−w as the error vector between the current filter
coefficients and the convergence solution. Consider the update equation given in (5.85).
Subtracting w on both sides yields

vk = vk−1 + µRe{ekx∗k} (5.95)

= vk−1 +
µ

2
(xke

∗
k + x∗kek) (5.96)

= vk−1 +
µ

2

(
xk
(
yk −wT

k−1xk
)∗

+ x∗k
(
yk −wT

k−1xk
))

(5.97)

= vk−1 +
µ

2

(
xky

∗
k − xkx

H
k wk−1 + x∗kyk − x∗kx

T
kwk−1

)
. (5.98)

The expectation of this expression when utilizing the independence assumptions is given
by

E[vk] = E[vk−1] +
µ

2

(
rxy −RxxE[wk−1] + r∗xy −R∗xxE[wk−1]

)
(5.99)

= E[vk−1] + µ(Re{rxy} − Re{Rxx}E[wk−1]) (5.100)
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Utilizing the optimal Wiener filter in (5.70) allows replacing Re{rxy} with Re{Rxx}w,
yielding

E[vk] = E[vk−1] + µ(Re{Rxx}w − Re{Rxx}E[wk−1]) (5.101)

= E[vk−1]− µRe{Rxx}(E[wk−1]−w) (5.102)

= E[vk−1]− µRe{Rxx}︸ ︷︷ ︸
B

E[vk−1] (5.103)

= (I− µB)E[vk−1], (5.104)

where Re{Rxx} = B ∈ RNw×Nw is a symmetric matrix. Assuming B is positive semidef-
inite, it can be diagonalized by an unitary matrix

B = QΛQT , (5.105)

where the diagonal matrix Λ ∈ RNw×Nw contains the real-valued eigenvalues of B and
where QTQ = I. Inserting (5.105) into (5.104) and introducing the vector v′ = QTv
yields

E[vk] =
(
I− µQΛQT

)
E[vk−1] (5.106)

E[v′k] = (I− µΛ)E[v′k−1]. (5.107)

Since (I− µΛ) is a diagonal matrix, the rotated error vectors v′k decrease on average if
|1 − µλn| < 1 holds for 1 ≤ n ≤ Nw, where λn ∈ R denotes the nth eigenvalue of B.
This inequality directly leads to

0 < µ <
2

λmax
, (5.108)

where λmax ∈ R is the largest eigenvalue of B.

Finally, all results from this section are summarized in
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Result 5.1 (LMS Algorithm for Real-Valued Filter Coefficients)

If the adaptive filter is embedded in a complex-valued environment
(complex-valued xk, yk), but it is known that the optimal filter coefficients
shall be real-valued, then the LMS algorithm that produces real-valued
estimates wk ∈ RNw is given by:

Initialization:
Initialize w0 = 0Nw×1;

for k = 1, 2, . . . do
Update xk according to (5.2);
Choose step-size µ in accordance with (5.108);
Derive ek = yk −wT

k−1xk;

Evaluate the filter coefficients according to wk = wk−1 + µRe{ekx∗k};
end

The algorithm converges towards w = (Re{Rxx})−1Re{rxy} in the mean
when µ is chosen accordingly, and it is of linear complexity O(Nw). A
detailed complexity analysis can be found in Appendix AE.

5.2.2 RLS Algorithm for Real-Valued Filter Coefficients

A similar extension as it was derived for the LMS algorithm in the previous section is
now investigated for the RLS algorithm. We derive an RLS algorithm that incorporates
the fact that the coefficients shall be real-valued while the input samples xk and the
desired signal yk shall be complex-valued.

We start by noticing that the RLS cost function in (5.26) is real-valued even for complex-
valued yi and xi. Hence, for real-valued wk it can be rewritten as

J =

k∑
i=0

λk−i
1

2

[(
yi −wT

k xi
)(
yi −wT

k xi
)∗

+
(
yi −wT

k xi
)∗(

yi −wT
k xi
)]

(5.109)

=

k∑
i=0

λk−i
1

2

[
yiy
∗
i −wT

k xiy
∗
i − yiwT

k x∗i + wT
k xix

H
i wk

+ y∗i yi −wT
k x∗i yi − y∗iwT

k xi + wT
k x∗ix

T
i wk

]
(5.110)

=
k∑
i=0

λk−i
1

2

[
2yiy

∗
i − 2wT

k xiy
∗
i − 2wT

k x∗i yi + wT
k

(
xix

H
i + x∗ix

T
i

)
wk

]
. (5.111)
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The partial derivative of (5.111) w.r.t. wk follows as

∂J

∂wk
=

k∑
i=0

λk−i
(
−y∗i xTi − yixHi + wT

k

(
xix

H
i + x∗ix

T
i

))
(5.112)

= wT
k

k∑
i=0

λk−i
(
xix

H
i + x∗ix

T
i

)
−

k∑
i=0

λk−i
(
yix

H
i + y∗i x

T
i

)
. (5.113)

Using the definitions in (5.32) and (5.33) allows for

∂J

∂wk
= wT

k (Rk + R∗k)−
(
rHk + rTk

)
. (5.114)

Setting (5.114) equal to zero results in

wT
k =

(
rHk + rTk

)
(Rk + R∗k)

−1. (5.115)

In order to find a recursive solution, we insert the recursive definitions of rk and Rk in
(5.37) and (5.40), respectively, into (5.115), such that

wT
k =

(
ykx

H
k + λrHk−1 + y∗kx

T
k + λrTk−1

)(
xkx

H
k + λRk−1 + x∗kx

T
k + λR∗k−1

)−1
. (5.116)

By utilizing the notations

y
k

=

[
yk

y∗k

]
(5.117)

Xk =
[
xk x∗k

]
(5.118)

r̃k = rk + r∗k (5.119)

R̃k = Rk + R∗k, (5.120)

(5.116) can be reformulated as

wT
k =

(
yT
k
XH
k + λr̃Hk−1

)(
XkX

H
k + λR̃k−1

)−1
. (5.121)

Note that by comparing (5.115) with (5.121) it immediately follows that

r̃Hk = rHk + rTk = yT
k
XH
k + λr̃Hk−1 (5.122)

and

R̃k = XkX
H
k + λR̃k−1. (5.123)

Applying Woodbury’s matrix inversion lemma [54] to derive the inverse of R̃k produces

R̃−1
k =

(
λR̃k−1

)−1
−
(
λR̃k−1

)−1
Xk

(
I2×2 + XH

k

(
λR̃k−1

)−1
Xk

)−1

XH
k

(
λR̃k−1

)−1
.

(5.124)
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By introducing the notation

P̃k = R̃−1
k (5.125)

Eq. (5.124) follows as

P̃k = λ−1P̃k−1 − λ−1P̃k−1Xk

(
I2×2 + λ−1XH

k P̃k−1Xk

)−1
XH
k λ
−1P̃k−1. (5.126)

We now introduce the gain matrix as

Gk = λ−1P̃k−1Xk

(
I2×2 + λ−1XH

k P̃k−1Xk

)−1
(5.127)

such that (5.126) becomes more compact

P̃k = λ−1P̃k−1 −GkX
H
k λ
−1P̃k−1 (5.128)

= λ−1
(
P̃k−1 −GkX

H
k P̃k−1

)
. (5.129)

Since P̃k = R̃−1
k is a Hermitian matrix according to (5.120), (5.129) can be expressed as

P̃k = λ−1
(
P̃k−1 − P̃k−1XkG

H
k

)
. (5.130)

Furthermore, a reformulation of (5.127) yields

Gk

(
I2×2 + λ−1XH

k P̃k−1Xk

)
= λ−1P̃k−1Xk (5.131)

Gk + Gkλ
−1XH

k P̃k−1Xk = λ−1P̃k−1Xk (5.132)

Gk = λ−1P̃k−1Xk −Gkλ
−1XH

k P̃k−1Xk (5.133)

Gk = λ−1
(
P̃k−1 −GkX

H
k P̃k−1

)
Xk. (5.134)

The right hand side of (5.134) can be identified as P̃kXk according to (5.129) such that

Gk = P̃kXk. (5.135)

We are now able to find an expression for wk in (5.115)

wT
k =

(
rHk + rTk

)
(Rk + R∗k)

−1 (5.136)

= r̃Hk P̃k. (5.137)

Incorporating (5.122) and (5.135) into (5.137) produces

wT
k = yT

k
XH
k P̃k + λr̃Hk−1P̃k (5.138)

= λr̃Hk−1P̃k + yT
k
GH
k . (5.139)

Combining the recursive definition of P̃k in (5.130) with (5.139) allows to express

wT
k = r̃Hk−1

(
P̃k−1 − P̃k−1XkG

H
k

)
+ yT

k
GH
k (5.140)

= wT
k−1 −wT

k−1XkG
H
k + yT

k
GH
k (5.141)

= wT
k−1 +

(
yT
k
−wT

k−1Xk

)
GH
k . (5.142)
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The term wT
k−1Xk can be identified as the augmented output ŷT

k
of the filter such that

yT
k
−wT

k−1Xk = yT
k
− ŷT

k
(5.143)

= eTk , (5.144)

where ek represents the augmented a-priori error. Reinserting (5.144) into (5.142) yields

wT
k = wT

k−1 + eTkGH
k . (5.145)

This result represents the update equation from the old filter coefficients in wk−1 to
the new ones in wk. We propose to use the same initialization as for the ordinary RLS
algorithm, which leads to

Result 5.2 (RLS Algorithm for Real-Valued Filter Coefficients)

If the adaptive filter is embedded in a complex-valued environment
(complex-valued xk, yk), but it is known that the optimal filter coefficients
shall be real-valued, then the RLS algorithm that produces real-valued
estimates wk ∈ RNw is given by:

Initialization:
Choose λ and δ;

P̃0 = δINw×Nw ;
w0 = 0Nw×1;

for k = 1, 2, . . . do
Update xk ∈ CNw according to (5.2);
Construct Xk ∈ CNw×2 according to (5.118);
Construct y

k
∈ C2 according to (5.117);

Derive Gk ∈ CNw×2 according to (5.127);
Derive ek ∈ R2 according to (5.144);

Update P̃k ∈ RNw×Nw according to (5.129);
Evaluate the new filter coefficients wk ∈ RNw according to (5.145);

end

The algorithm is of quadratic complexity O(N2
w). A detailed complexity

analysis can be found in Appendix AF.

Note that the final algorithm contains a matrix inversion in (5.127). However, this
matrix is only of size 2× 2, which is trivial to invert.

For the LMS algorithm for real-valued filter coefficients, it turned out that the optimal
update equation of wk corresponds to the intuitive approach of taking only the real
values of ekx

∗
k to update wk. In contrast to that, the derived RLS algorithm for real-

valued filter coefficients utilizes a different update equation than the intuitive approach
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based on the ordinary RLS algorithm discussed in Exampe 5.1. The performance gain
achievable with these derived algorithms is presented in the next simulation example.

Example 5.1 (Estimation of a Real-Valued Impulse Response With Adap-
tive Filters)

The example considers the task of system identification according to Figure 5.1 with
the additional knowledge that the impulse response of the unknown system is real-
valued. The true real-valued impulse responses h ∈ RNh with length Nh = 5 were
randomly drawn from a zero mean Gaussian distribution with covariance matrix
Chh = I5×5. The complex-valued input and noise samples were drawn from zero
mean complex proper Gaussian distributions with variances 1 and 10−4, respectively.
All considered adaptive filters utilize Nw = Nh and are listed in the following:

1. The ordinary LMS algorithm derived in Section 5.1.

2. The LMS algorithm for real-valued filter coefficients from Result 5.1.

3. The ordinary RLS algorithm derived in Section 5.1.

4. The intuitive algorithm resulting from the ordinary RLS algorithm when replac-
ing the update equation in (5.59) by

wT
k = wT

k−1 + Re
{
ekg

H
k

}
(5.146)

resulting in real-valued vectors wk.

5. The RLS algorithm for real-valued filter coefficients from Result 5.2.

The LMS based algorithms utilize µ = 0.05 and the RLS based algorithms utilize
λ = 0.99 and δ = 100. The convergence curves in terms of Eh,x,n[||wk − h||2] are
presented in Figure 5.2.

151



5 Knowledge-Aided Concepts in Adaptive Filtering

0 50 100 150 200 250 300 350 400 450 500
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

k

E
h
,x
,n

[||
w
k
−

h
||2

]

ordinary LMS

LMS for real-valued filter coefficients

ordinary RLS intuitive RLS

RLS for real-valued filter coefficients

Figure 5.2: Convergence curves of various adaptive filters. The complex-valued input and noise sam-
ples were drawn from zero mean complex proper Gaussian distributions with variances
1 and 10−4, respectively. The true real-valued impulse responses were randomly drawn
from a zero mean Gaussian distribution with covariance matrix Chh = I5×5.

The discussion starts with the LMS based filters. The LMS algorithm for real-valued
filter coefficients yields a slightly faster convergence speed and an increased steady
state performance compared to the ordinary LMS algorithm. Similar to that, the
RLS algorithm for real-valued filter coefficients also outperforms the ordinary RLS
algorithm. Moreover, it significantly beats the intuitive RLS algorithm in terms of
the convergence speed.

A second example from a real-world application in the context of wireless transceivers
is presented in the following.

Example 5.2 (Transmitter Leakage Cancellation)

Modern wireless transceivers employ frequency division duplex operation where both,
the transmit path (TX) as well as the receive path (RX), are active at the same time.
Due to a limited TX-RX isolation of the duplexer, the TX signal leaks into the RX
path. This leakage signal, although being at a different frequency than the RX signal,
can lead to a baseband interference in the receiver due to the downconversion by an
unwanted spur [16,74,75]. Therefore, the extraction and cancellation of the leakage
signal has to be targeted [16,74,75]. One way to do this is to implement an additional
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so called auxiliary receive path, which shall only receive the leakage signal [16]. A
simplified baseband equivalent model is shown in Figure 5.3.

τ

w
yk

ekxL,k
α

yk

xRX,k+nk

Figure 5.3: System model for the adaptive filter application in a modern wireless transceiver. α ∈ R
represents a gain and τ ∈ R denotes a fractional delay.

The upper path reflects the main receiver containing the leakage signal xL,k, the
wanted receive signal xRX,k and noise nk. The lower path, reflecting the auxiliary
receiver, only contains the leakage signal. However, due to non-idealities of the analog
circuits, the two paths typically have different gains and delays. This is incorporated
in the model by introducing a gain α and a fractional delay τ in the main path. The
task of the adaptive filter is to estimate the delayed and amplified version of xL,k.
Finally, ek shall match nk + xRX,k since the leakage signal is cancelled.

In the following simulation, the gain α is chosen to be 1 for simplicity. The fractional
delay shall be 14.3 samples. Note that the fractional delay has been implemented in
simulation with the help of an intermediate oversampling stage. It has been shown in
[16,76], that such a fractional delay results in approximately sinc-shaped vectors wk.
For the sake of simplicity, the term xRX,k +nk is approximated as zero mean complex
proper Gaussian with variance 0.1. Furthermore, xL,k is approximated as a zero
mean complex proper Gaussian with variance 1. Since the real and complex-valued
parts of xL,k are attenuated and delayed equally, the optimal filter coefficients in wk

are real-valued. This allows to apply the derived adaptive filters in Result 5.1 and
Result 5.2. Moreover, also the ordinary LMS algorithm, the ordinary RLS algorithm
as well as the intuitive adaptive filters introduced in Example 5.1 are implemented
for the described cancellation task. The LMS based algorithms utilize µ = 0.005 and
the RLS based algorithms utilize λ = 0.999 and δ = 100.

The overall goal is that the samples ek in Figure 5.3 match xRX,k + nk. Hence,
E[|ek − xRX,k − nk|2] serves as performance measure. These mean square values
(averaged over many simulation runs) are shown in Figure 5.4. The performance
curves are very similar to that in Example 5.1. Again, the LMS algorithm for real-
valued filter coefficients yields a slightly faster convergence speed and an increased
steady state performance compared to the ordinary LMS algorithm. Also the RLS
algorithm for real-valued filter coefficients clearly outperforms the ordinary RLS as
well as the intuitive RLS algorithm.

153



5 Knowledge-Aided Concepts in Adaptive Filtering

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
10−3

10−2

10−1

100

k

E
[|e
k
−
x

R
X
,k
−
n
k
|2

]

ordinary LMS

LMS for real-valued filter coefficients

ordinary RLS intuitive RLS

RLS for real-valued filter coefficients

Figure 5.4: Convergence curves of various adaptive filters.

5.3 Adaptive Filters incorporating Prior Knowledge

In many system identification applications, statistics about the impulse response of the
unknown system that shall be estimated are available. These statistics are usually termed
prior knowledge, especially in the context of Bayesian estimation (cf. Chapter 4). In
this context, the impulse response h is a random variable whose particular realization
has to be estimated.

Now, we assume statistics about the impulse response h are available in form of the
mean vector Eh[h] and the positive definite covariance matrix Chh. The goal is to
estimate the particular realization of h with the help of adaptive filters that incorporate
the knowledge about Eh[h] and Chh.

An algorithm that is related to the RLS algorithm and that uses Eh[h] and Chh is
the sequential LMMSE estimator. Its implementation in the context of the discussed
adaptive filter scenario is given by

154



5.3 Adaptive Filters incorporating Prior Knowledge

Initialization:
P0 = Chh;
w0 = Eh[h];

for k = 1, 2, . . . do
Update xk according to (5.2);
Derive ek according to: ek = yk −wT

k−1xk;

Determine gk according to: gk = Pk−1x
∗
k

(
σ2
n + xTkPk−1x

∗
k

)−1
;

Derive Pk according to: Pk = Pk−1 − gkx
T
kPk−1;

Evaluate the new filter coefficients wk according to (5.59);

end

The main differences to the RLS algorithm are that prior knowledge is utilized in the
filter initialization, that the forgetting factor λ is dismissed, and that the noise variance
σ2
n is incorporated. Note that the noise variance can be time-variant.

This adaptive filter formulation of the sequential LMMSE estimator incorporates prior
knowledge about h. Hence, an RLS-type adaptive filter incorporating prior knowledge
about h already exists. However, to the best of our knowledge, a similar extension for
the LMS algorithm has not been existing in literature. We provided such an extension in
[77], whose derivation is repeated in the following. These investigations can be considered
to be relevant for many applications since the LMS algorithm is more widespread than
the RLS algorithm.

Bayesian LMS Algorithm

In the derivation of the so called Bayesian LMS algorithm we assume that m measure-
ments are conducted (typically during a training phase). Let the measurements be put
together in the vector

y =


y1

y2

...

ym

 ∈ Cm. (5.147)

The derivation is based on the posterior PDF denoted as p(h|y). This PDF describes the
probability density of the unknown impulse response h given all the measurements. For
now m shall be finite, later we consider a potentially infinite number of measurements.
According to Bayes’ rule [78], the posterior PDF can be rewritten as

p(h|y) = p(y|h)p(h)/p(y) (5.148)

∝ p(y|h)p(h), (5.149)

where p(y|h) and p(h) are denoted as the likelihood PDF and the prior PDF, respec-
tively. Note that the MAP estimator for h is the vector maximizing the posterior PDF,
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i.e.

ĥMAP = arg max
h

p(y|h)p(h) (5.150)

= arg max
h

log (p(y|h)p(h)), (5.151)

where ’log’ denotes the natural logarithm. However, we are more interested in an itera-
tive solution for the MAP estimator. For this, we make further modifications of (5.151).
The connection between the vector of measurements y and the impulse response h is
given by

y = Hh + n, (5.152)

where the rows of H ∈ Cm×Nw are provided by the input samples xi in (5.2), such that

H =


xT1
xT2
...

xTm

. (5.153)

Assuming the noise n in (5.152) to be complex proper Gaussian distributed with zero
mean and with known covariance matrix Cnn, the likelihood PDF directly follows as

p(y|h) =
1

πmdet(Cnn)
e−(y−Hh)HC−1

nn(y−Hh). (5.154)

The next assumption is, that the prior PDF is also complex proper Gaussian according
to

p(h) =
1

πNwdet(Chh)
e−(h−Eh[h])HC−1

hh(h−Eh[h]), (5.155)

where Eh[h] and Chh are the known mean vector and covariance matrix of h. Inserting
(5.154) and (5.155) into (5.151) produces

ĥMAP = arg max
h

(
−(y −Hh)HC−1

nn(y −Hh)− (h− Eh[h])HC−1
hh(h− Eh[h])

)
(5.156)

= arg min
h

(y −Hh)HC−1
nn(y −Hh) + (h− Eh[h])HC−1

hh(h− Eh[h])︸ ︷︷ ︸
J(h)

(5.157)

= arg min
h

J(h). (5.158)

To obtain an iterative solution of the MAP estimator in (5.158) a gradient-based ap-
proach is used. The derivative of J(h) w.r.t. h∗ is

∂J(h)

∂h∗
= −yT

(
C−1

nn

)T
H∗ + hTHT

(
C−1

nn

)T
H∗ + hT

(
C−1

hh

)T − Eh[h]T
(
C−1

hh

)T
. (5.159)
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Replacing h with the estimate wk−1 and inserting (5.159) into the update equation in
(5.9) produces

wk = wk−1 − µ
(
HHC−1

nn(Hwk−1 − y) + C−1
hh(wk−1 − Eh[h])

)
. (5.160)

This update equation (with appropriately chosen µ) converges to the MAP estimator
for the case of complex proper Gaussian likelihood and prior PDFs. In the following
reformulations and simplifications, we assume the noise covariance matrix to be a scaled
identity matrix6 Cnn = σ2

nI. Recall that the ith row of H is given by xTi according to
(5.153). With that, the update equation can be reformulated as

wk = wk−1 − µ
m∑
i=1

(
1

σ2
n

x∗i
(
xTi wk−1 − yi

)
+ aiC

−1
hh(wk−1 − Eh[h])

)
. (5.161)

The scalars ai ∈ R in (5.161) for i = 1, . . . ,m are arbitrary except for the constraint

m∑
i=1

ai = 1. (5.162)

Eq. 5.161 allows to use a simplification similar as done for the approximate least squares
(ALS) [79] or the Kaczmarz algorithm [80] by using only one of the m partial gradients
per iteration, which yields

wk = wk−1 − µ
(

1

σ2
n

x∗k
(
xTkwk−1 − yk

)
+ akC

−1
hh(wk−1 − Eh[h])

)
. (5.163)

Identifying the term xTkwk−1− yk in (5.163) as the negative a-priori error ek leads to an
LMS-like algorithm of the form [77]

wk = wk−1 + µ

(
1

σ2
n

x∗kek − akC−1
hh(wk−1 − Eh[h])

)
. (5.164)

The Bayesian LMS algorithm in (5.164) is an LMS-based adaptive filter that incorporates
prior knowledge about the unknown impulse response in form of Eh[h] and Chh. The
term x∗kek can easily be identified as the update term of the ordinary LMS algorithm
in (5.19). The Bayesian LMS algorithm scales this term by 1

σ2
n

and adds a term that

incorporates the prior knowledge. Now, the scalars ak must fulfill

m∑
i=1

ak = 1, (5.165)

where m is the total number of measurements (1 ≤ k ≤ m). A possible choice for ak is

ak =
1

m
(5.166)

which requires the knowledge of the total number of measurements m in advance. For
the theoretical case of an infinite number of measurements

ak =
1

2k
, (5.167)

6A diagonal noise covariance matrix is also possible with a slight modification of the derivation.
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is a possible option. Note that (5.166) can also be employed for the theoretical case of
an infinite number of measurements. Then, m marks a time index where ak = 0 for
k > m. In this case, (5.164) reduces to the ordinary LMS update equation for k > m
except for a scalar term that can be moved into the step-size. In order to decrease the
computational complexity of the algorithm, only (5.166) is considered in the following.
As initialization, x0 = Eh[h] is employed in accordance with the sequential LMMSE.

Prior knowledge helps to speed up the convergence in the mean, but for large k, the
algorithm reaches the same performance as the usual LMS algorithm since then, the
measurements dominate the prior information about h. Hence, the algorithm in (5.164)
converges to the same filter coefficients in the mean as the ordinary LMS algorithm for
k →∞ for two reasons:

� the measurements dominate the prior information about h for large k,

� ak is assumed to be zero for large enough k also in the case of an infinite number
of measurements.

The convergence properties are demonstrated in Example 5.3 later on.

Convergence in the Mean

We recently stated that the algorithm in (5.164) converges to the same filter coefficients
in the mean as the ordinary LMS algorithm for k → ∞. However, in order to derive
a normalized version of the Bayesian LMS algorithm, we perform a convergence anal-
ysis. To make the following investigations mathematically tractable, we assume wk is
independent of the data vector xk such as it is done in [72]. Furthermore, we assume
{yk, xk} is independent of {yl, xl} for k 6= l. The investigations will lead to lower and
upper bounds for the step size µ.

The error between yk and ŷk is given by

ek = yk − ŷk (5.168)

= hTxk + nk −wT
k−1xk (5.169)

=
(
hT −wT

k−1

)︸ ︷︷ ︸
vTk−1

xk + nk (5.170)

= vTk−1xk + nk, (5.171)

where h − wk−1 = vk−1 ∈ RNw . Inserting (5.171) into the update equation in (5.164)
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yields

wk = wk−1 + µ

(
1

σ2
n

x∗kv
T
k−1xk +

1

σ2
n

x∗knk − akC−1
hh(wk−1 − Eh[h])

)
(5.172)

= wk−1 + µ

(
1

σ2
n

x∗kx
T
k vk−1 +

1

σ2
n

x∗knk − akC−1
hh(h− vk−1 − Eh[h])

)
(5.173)

= wk−1 + µ

(
1

σ2
n

x∗kx
T
k vk−1 +

1

σ2
n

x∗knk + akC
−1
hhvk−1 − akC−1

hh(h− Eh[h])

)
(5.174)

= wk−1 + µ

((
1

σ2
n

x∗kx
T
k + akC

−1
hh

)
vk−1 +

1

σ2
n

x∗knk − akC−1
hh(h− Eh[h])

)
. (5.175)

Subtracting h from both sides results in

vk = vk−1 − µ
((

1

σ2
n

x∗kx
T
k + akC

−1
hh

)
vk−1 +

1

σ2
n

x∗knk − akC−1
hh(h− Eh[h])

)
. (5.176)

Applying the expectation operator conditioned on h to both sides of (5.176) and applying
the independence assumptions yields

E[vk|h] = E[vk−1|h]− µ
(

1

σ2
n

R∗xx + akC
−1
hh

)
︸ ︷︷ ︸

Bk

E[vk−1|h] + µakC
−1
hh(h− Eh[h]) (5.177)

= (I− µBk)E[vk−1|h] + µakC
−1
hh(h− Eh[h]), (5.178)

where 1
σ2
n
R∗xx+akC

−1
hh = Bk ∈ CNw×Nw . Note that Bk is hermitian and positive definite

since Rxx and Chh are both hermitian and positive definite. This allows to utilize the
same approach for deriving bounds for the step-size as in (5.104)–(5.108). By doing so,
conditions for the convergence in the mean of the algorithm are given by

0 < µk <
2

λmax(Bk)
=

2

λmax

(
1
σ2
n
R∗xx + akC

−1
hh

) , (5.179)

where λmax(Bk) denotes the largest eigenvalue of the matrix Bk. Note that the resulting
step-size depends on k since Bk depends on k. We now simplify this expression. For two
symmetric p× p matrices E and F it holds that the maximum eigenvalue of the sum of
matrices λmax(E + F) is smaller or equal than the sum of the maximum eigenvalues of
the matrices [81]:

λmax(E + F) ≤ λmax(E) + λmax(F). (5.180)

With that we get

0 < µk <
2

1
σ2
n
λmax(R∗xx) + akλmax

(
C−1

hh

) . (5.181)

Approximating R∗xx with its instantaneous estimate x∗kx
T
k , and incorporating

λmax

(
x∗kx

T
k

)
= ‖xk‖22, allows to approximate the upper bound as 2

1

σ2
n
‖xk‖22+akλmax(C−1

hh)
.
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The update equation in (5.164) in combination with the boundaries for the step-size in
derived upper bound motivates the Bayesian NLMS of the form

wk = wk−1 + µn,k
1

ε+ 1
σ2
n
‖xk‖22 + akλmax

(
C−1

hh

)( 1

σ2
n

x∗kek − akC−1
hh(wk−1 − Eh[h])

)
,

(5.182)

where the normalized step-size µn,k is usually chosen between 0 and 1 for all k. ε ∈ R in
(5.182) is a small positive-valued constant to overcome possible instabilities when ak = 0
and when ‖xk‖22 is very small.

This Bayesian NLMS is summarized in

Result 5.3 (Bayesian NLMS Algorithm)

Consider the adaptive filtering task described in Section 5.1, where the
impulse response h ∈ RNw is a random variable whose particular realization
has to be estimated. If prior knowledge about h is available in form of its
mean vector Eh[h] and covariance matrix Chh, then the Bayesian NLMS
algorithm that incorporates this prior knowledge is given by:

Initialization:
Initialize w0 = Eh[h];

Pre-evaluate C−1
hh;

Pre-evaluate λmax

(
C−1

hh

)
;

Pre-evaluate 1
σ2
n

;

Choose ε ∈ R and ak ∈ R (e.g., (5.166));
for k = 0, 1, . . . do

Update xk according to (5.2);
Choose step-size µn,k between 0 and 1;
Derive ek = yk −wT

k−1xk;

Evaluate the filter coefficients according to (5.182);

end

The algorithm is of quadratic complexity O(N2
w) for general covariance

matrices Chh. However, for the case of diagonal Chh it is of linear
complexity O(Nw). A detailed complexity analysis for the latter case can be
found in Appendix AG.

Note the differences between the Bayesian NLMS in Result 5.3 and the MAP-LMS
algorithm in [82,83]. The latter one assumes the variable z = h − wk−1 follows a
Gaussian distribution with zero mean, while the Bayesian NLMS algorithm assumes
a Gaussian PDF of h with known mean Eh[h] and covariance matrix Chh. Another
connection might be drawn to [84]. There, prior information is used on the model to
incorporate systems with missing data and not as we do, on the parameter vector itself.
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Example 5.3 (Estimation of an Impulse Response with the Bayesian NLMS
Algorithm)

The goal in this example is to estimate an impulse response when prior knowledge
is available. As prior knowledge, we choose Eh[h] = 0Nw and Chh = 0.1INw×Nw ,
where Nh = Nw = 5. The number of measurements m is set to be 50 and ak was set
to 1/m for all k. The algorithms utilize ε = 10−3. In addition, a step-size reduction
method is implemented that linearly decreases the step-size from 1 at k = 1 to 1/m at
k = m. This step-size reduction method is utilized by the ordinary NLMS algorithm
as well as by the Bayesian NLMS algorithm. The input samples x[n] were generated
from a complex proper Gaussian PDF with zero mean and unit variance. The noise
samples were also randomly drawn from a complex proper Gaussian PDF with zero
mean and variance σ2

n. For the first investigation, σ2
n was set to 1. The convergence

curves in terms of Eh,x,n[||wk −h||2] are presented in Figure 5.5. These curves reveal
that the Bayesian NLMS algorithm, since it incorporates prior knowledge about h,
outperforms the ordinary NLMS for all values of k.
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100

k

E
h
,x
,n
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w
k
−

h
||2

]

ordinary NLMS Bayesian NLMS

Figure 5.5: Convergence curves of the ordinary NLMS algorithm and the Bayesian NLMS algorithm.
The complex-valued input and noise samples were both drawn from zero mean complex
proper Gaussian distributions with unit variance. The true impulse responses were ran-
domly drawn from a zero mean complex proper Gaussian distribution with covariance
matrix Chh = 0.1I5×5.

For the next investigation, σ2
n was varied between 10−2 and 102. For that, the per-

formance in terms of Eh,x,n[||wk −h||2] for k = m = 50 is visualized in Figure 5.6. In
addition, the performance of the LS estimator and the LMMSE estimator are shown,
which can be interpreted as the performance bounds for the RLS and sequential
LMMSE algorithms, respectively. Figure 5.6 reveals that the Bayesian NLMS algo-
rithm always performs better or equal to the ordinary NLMS algorithm. Also, the
performance difference between the ordinary NLMS algorithm and the LS estimator
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5 Knowledge-Aided Concepts in Adaptive Filtering

is similar to the performance difference between the Bayesian NLMS algorithm and
the LMMSE estimator.
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LS estimator LMMSE estimator

Figure 5.6: Convergence curves of the ordinary NLMS algorithm and the Bayesian NLMS algorithm.
The complex-valued input and noise samples were both drawn from zero mean complex
proper Gaussian distributions with unit variance. The true impulse responses were ran-
domly drawn from a zero mean complex proper Gaussian distribution with covariance
matrix Chh = 0.1I5×5.
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6
Conclusion

This thesis can be separated into three main parts.

The first main part considered classical estimation. There, methods that incorporate
additional model knowledge into the estimation process in an optimal way were investi-
gated. Four cases of additional model knowledge were considered.

The first case was the knowledge that the parameter vector of length n lies in a linear
subspace of Cn. It was proven that standard classical estimators such as the BLUE and
the BWLUE can incorporate this additional knowledge in a straightforward manner.
For the LS estimator on the other hand, it turned out that a constrained LS estimator
is applicable, where the corresponding linear constraints were derived.

The second case of additional model knowledge considered in this thesis was the knowl-
edge that the parameter vector fulfills additional linear constraints. In that case, the
constrained LS estimator is available as a standard estimator but no corresponding
extension for the BLUE and the BWLUE exists in the literature to the best of our
knowledge. In this thesis, this gap was closed by proposing the constrained BLUE and
the constrained BWLUE. It was shown that these novel estimators allow to increase the
estimation accuracy compared to the BLUE and the BWLUE for the described scenario.

The third case was the knowledge that the parameter vector is real-valued while the
measurements and the measurement noise are complex-valued. For that scenario, sev-
eral widely linear classical estimators were proposed that incorporate this additional
model knowledge in an optimal way. It was demonstrated that the resulting estimators
outperform standard estimators as well as estimators that incorporate this additional
model knowledge in an intuitive way.

The fourth case was the knowledge that the measurement matrix is subject to an un-
known random error with known first and second order statistics. In this thesis, a novel
algorithm was proposed that outperforms state-of-the-art algorithms significantly.

In the second main part, Bayesian estimators were investigated. Bayesian estimators
consider the parameter vector to be random. This allows to include prior knowledge into
the estimation process, in form of statistics of the parameter vector. Another difference
between the classical and Bayesian approaches is the considered unbiased constraint.
The unbiased constraint utilized by state-of-the-art Bayesian estimators is weaker than
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6 Conclusion

that utilized by unbiased classical estimators. Based on that, we investigated the so
called component-wise conditionally unbiased (CWCU) constraints, which represent a
trade-off between the stringent classical unbiased constraint and the usual weak Bayesian
unbiased constraint. It was shown, that these unbiased constraints preserve the intuitive
view of unbiasedness also in Bayesian scenarios, while allowing the incorporation of
prior knowledge in many applications. Next, we focused on the class of so-called CWCU
Bayesian estimators. We extended previous work on this type of estimator and extended
the concept to widely linear estimators. The effects of these unbiased constraints, the
relation to other Bayesian estimators and the ability to incorporate statistics about the
unknown parameter vector were discussed.

Similar investigations as in the first main part of this thesis were performed in the third
part in the context of adaptive filtering. Novel adaptive filters were derived that incorpo-
rate additional model knowledge that might be available in practice. The first sources of
additional model knowledge incorporated by the derived adaptive filters was the knowl-
edge that the optimal filter coefficients are real-valued whereas the input and desired
signal are complex-valued. Again, the derived optimal adaptive filter algorithms signif-
icantly outperform state-of-the-art algorithms as well as intuitive algorithms in many
applications. The second source of additional model knowledge concerns the task of sys-
tem identification. For this case, a novel adaptive filter was proposed that incorporates
prior knowledge about the impulse response of the unknown system. It was shown that
the resulting algorithm features a reduced convergence time in the mean.
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A

A Commutation of the BWLUE Over Square Transformation
Matrices

Reformulating (3.93) yields

x = B−1(α− c). (A.1)

This expression inserted into the augmented linear model in (2.7) produces

y = H B−1α−H B−1c + n (A.2)

y + H B−1c︸ ︷︷ ︸
ỹ

= H B−1︸ ︷︷ ︸
H̃

α + n (A.3)

ỹ = H̃α + n. (A.4)

For this modified linear model, the BWLUE for α is given by

α̂BW =
(
H̃
H

C−1
nnH̃

)−1
H̃
H

C−1
nnỹ (A.5)

=
((

B−1
)H

HHC−1
nnH B−1

)−1(
B−1

)H
HHC−1

nn

(
y + H B−1c

)
(A.6)

= B
(
HHC−1

nnH
)−1

HHC−1
nn

(
y + H B−1c

)
(A.7)

= B x̂BW + B B−1c (A.8)

= B x̂BW + c, (A.9)

which concludes the proof. �

B Commutation of the BWLUE Over Rectangular
Transformation Matrices

Consider the widely linear transformation in (3.93). The ith row of this equation is given
by αi = bHi x + ci, where bHi is the ith row of B and where ci is the ith element of c.
We seek for a widely affine estimator of the form α̂ = Ey + d. Hence, the scalar α̂i
is connected with the measurements via α̂i = eHi y + di, where eHi is the ith row of the

estimator matrix E and where di is the ith element of d. Combining augmented form of
the linear model in (3.1) with (3.93) leads to

Ey[α̂i] = Ey

[
eHi y + di

]
(B.1)

= En

[
eHi H x + eHi n + di

]
(B.2)

= eHi H x + di
!

= αi, (B.3)

or

eHi H x + di
!

= bHi x + ci. (B.4)
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To fulfill this for every x the conditions eHi H = bHi and di = ci must hold. The cost
function, which is the variance of α̂i, follows as

J(ei) = Ey

[
(α̂i − Ey[α̂i])(α̂i − Ey[α̂i])

H
]

(B.5)

= Ey

[(
eHi y + di − Ey

[
eHi y + di

])(
eHi y + di − Ey

[
eHi y + di

])H]
(B.6)

= En

[(
eHi H x + eHi n− eHi H x

)(
eHi H x + eHi n− eHi H x

)H]
(B.7)

= En

[(
eHi n

)(
eHi n

)H]
(B.8)

= eHi Cnnei. (B.9)

The vector ei that minimizes this cost function and that produces unbiased estimates is
the solution of the constrained optimization problem

eBW,i = arg min
ei

eHi Cnnei s.t. eHi H = bHi , (B.10)

where the index BW indicates the BWLUE. Solving this constrained optimization prob-
lem using the Lagrange multiplier method described in Section 2.4 leads to the BWLUE
for αi according to

α̂BW,i = eHBW,iy + ci (B.11)

= bHi
(
HHC−1

nnH
)−1

HHC−1
nny + ci. (B.12)

Since bHi and ci are the only terms that depend on the index i, the vector estimator
immediately follows as

α̂BW = B
(
HHC−1

nnH
)−1

HHC−1
nny + c (B.13)

= B x̂BW + c, (B.14)

which proves the commutation of the BWLUE. �

C Proof that the Intuitive LS Estimator in (3.277) is Optimal if
HHH = αI

Consider the constrained LS estimator in (3.29). For the case of zero mean parameter
vectors we choose A = 1T and b = 0, where 1T is a row vector of length Nx with all
entries being 1. Then, the constrained LS estimator reads as

x̂LS =
(
I−

(
HHH

)−1
1K−11T

)(
HHH

)−1
HHy (C.1)

=
(
I−

(
HHH

)−1
1K−11T

)
x̂OLS, (C.2)

where

K = 1T
(
HHH

)−1
1, (C.3)
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and where x̂OLS denotes the ordinary LS estimator. If the measurement matrix fulfills
HHH = αI, the estimator simplifies to

x̂LS = x̂OLS − α−11
(
1Tα−11

)−1
1T x̂OLS (C.4)

= x̂OLS − 1
(
1T1

)−1︸ ︷︷ ︸
1/Nx

1T x̂OLS (C.5)

= x̂OLS − 1
1

Nx
1T x̂LS︸ ︷︷ ︸

mean(x̂OLS)

(C.6)

= x̂OLS −mean(x̂OLS)1, (C.7)

which corresponds to the intuitive estimator in (3.277). �

D Proof that (3.284) is Necessary and Sufficient to Make x̂i
Real-Valued

We now proof that the choice fHi = gTi is necessary and sufficient to make x̂i real-valued.
With (3.281), it holds that

Im{x̂i} =
1

2
(x̂i − x̂∗i ) (D.1)

=
1

2

(
fHi y + gHi y∗ − fTi y∗ − gTi y

)
(D.2)

=
1

2

((
fHi − gTi

)
y −

(
fTi − gHi

)
y∗
)

(D.3)

= Im
{(

fHi − gTi
)
y
}
. (D.4)

Since y in (D.4) is a complex-valued random variable, the only way to make (D.4) equal
to zero for every possible realization of y is to enforce

fHi − gTi = 0 (D.5)

fHi = gTi . (D.6)

Hence, fHi = gTi is necessary to make x̂i real-valued. The prove that fHi = gTi is also
sufficient to make x̂i real-valued is obtained by inserting (D.6) into (D.4). �

E Variance and Pseudo-Variance of yk

In the following, we make the approximation that nA,k has zero mean and variance
σ2
A,k for k = 1, . . . , Ny − 1. The variance σ2

k of the kth measurement yk in Cartesian
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coordinates can be derived as

σ2
k = E[(yk − E[yk])(yk − E[yk])

∗] (E.1)

= E
[(
Ake

jϕkejnϕ,k + nA,ke
jϕkejnϕ,k − αkAkejϕk

)
×
(
Ake

−jϕke−jnϕ,k + nA,ke
−jϕke−jnϕ,k − αkAke−jϕk

)]
(E.2)

=
[
A2
k +AknA,k − αkA2

ke
jnϕ,k +AknA,k + n2

A,k − αkAknA,kejnϕ,k

− αkA2
ke
−jnϕ,k − αkAknA,ke−jnϕ,k + α2

kA
2
k

]
(E.3)

= A2
k − α2

kA
2
k + σ2

A,k − α2
kA

2
k + α2

kA
2
k (E.4)

= A2
k(1− α2

k) + σ2
A,k. (E.5)

Similarly, the pseudo-variance σ̃2
k of the kth measurement yk in Cartesian coordinates

follows as

σ̃2
k = E[(yk − E[yk])(yk − E[yk])] (E.6)

= E
[(
Ake

jϕkejnϕ,k + nA,ke
jϕkejnϕ,k − αkAkejϕk

)
×
(
Ake

jϕkejnϕ,k + nA,ke
jϕkejnϕ,k − αkAkejϕk

)]
(E.7)

= E
[
A2
ke
j2ϕkej2nϕ,k + 2AknA,ke

j2ϕkej2nϕ,k − 2αkA
2
ke
j2ϕkejnϕ,k

+ n2
A,ke

j2ϕkej2nϕ,k − 2αkAknA,ke
j2ϕkejnϕ,k + α2

kA
2
ke
j2ϕk

]
(E.8)

= A2
ke
j2ϕk E[ej2nϕ,k ]︸ ︷︷ ︸

βk

−2α2
kA

2
ke
j2ϕk + σ2

A,ke
j2ϕkE[ej2nϕ,k ] + α2

kA
2
ke
j2ϕk (E.9)

= A2
kβke

j2ϕk − α2
kA

2
ke
j2ϕk + σ2

A,kβke
j2ϕk (E.10)

= ej2ϕk
(
βkA

2
k − α2

kA
2
k + σ2

A,kβk
)
. (E.11)
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F Derivation of the Conditional MSE of the LMMSE Estimator

Consider the ith estimate x̂L,i in (4.13). For this estimator, the conditional MSE can be
derived as

mse(x̂L,i|x) = Ey,x

[
|x̂L,i − xi|2|x

]
(F.1)

= Ey,x

[
|Exi [xi] + CxiyC−1

yy(y − Ey[y])− xi|2|x
]

(F.2)

= Ex,n

[
| − (xi − Exi [xi]) + CxiyC−1

yy(Hx + n−HEx[x])|2|x
]

(F.3)

= Ex,n

[
| − (xi − Exi [xi]) + CxiyC−1

yyH(x− Ex[x]) + CxiyC−1
yyn|2|x

]
(F.4)

= Ex,n

[(
−(xi − Exi [xi]) + CxiyC−1

yyH(x− Ex[x]) + CxiyC−1
yyn

)
×
(
−(xi − Exi [xi]) + CxiyC−1

yyH(x− Ex[x]) + CxiyC−1
yyn

)H |x] (F.5)

= Ex,n

[
(xi − Exi [xi])(xi − Exi [xi])

∗ + CxiyC−1
yynnHC−1

yyCyxi

+ CxiyC−1
yyH(x− Ex[x])(x− Ex[x])HHHC−1

yyCyxi

− (xi − Exi [xi])(x− Ex[x])HHHC−1
yyCyxi

−CxiyC−1
yyH(x− Ex[x])(xi − Exi [xi])

∗|x
]

(F.6)

= CxiyC−1
yyCnnC−1

yyCyxi

+
(
(xi − Exi [xi])−CxiyC−1

yyH(x− Ex[x])
)
(xi − Exi [xi])

∗

−
(
(xi − Exi [xi])−CxiyC−1

yyH(x− Ex[x])
)
(x− Ex[x])HHHC−1

yyCyxi

(F.7)

= CxiyC−1
yyCnnC−1

yyCyxi

+
(
xi − Exi [xi]−CxiyC−1

yyH(x− Ex[x])
)

×
(

(xi − Exi [xi])
∗ − (x− Ex[x])HHHC−1

yyCyxi

)
(F.8)

= CxiyC−1
yyCnnC−1

yyCyxi

+
(
xi − Exi [xi]−CxiyC−1

yyH(x− Ex[x])
)

×
(
xi − Exi [xi]−CxiyC−1

yyH(x− Ex[x])
)∗

(F.9)

= CxiyC−1
yyCnnC−1

yyCyxi +
∣∣xi − Exi [xi]−CxiyC−1

yyH(x− Ex[x])
∣∣2.

(F.10)

G Derivation of the Conditional Variance and the Conditional
Bias of the LMMSE Estimator

Consider the ith estimate x̂L,i in (4.13). The proof for the conditional variance starts
with the derivation of the conditional mean

Ey|x[x̂L,i|x] = Exi [xi] + CxiyC−1
yy

(
Ey|x[y|x]− Ey[y]

)
(G.1)

= Exi [xi] + CxiyC−1
yy(Hx−HEx[x]). (G.2)
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With that result, the conditional variance of x̂i follows as

var(x̂L,i|x) = Ey|x

[∣∣x̂L,i − Ey|x[x̂L,i|x]
∣∣2|x] (G.3)

= Ey|x

[∣∣Exi [xi] + CxiyC−1
yy(y − Ey[y])

− Exi [xi]−CxiyC−1
yy(Hx−HEx[x])

∣∣2|x] (G.4)

= Ey|x

[∣∣CxiyC−1
yy(y − Ey[y]−Hx + HEx[x])

∣∣2|x] (G.5)

= En

[∣∣CxiyC−1
yyn

∣∣2] (G.6)

= En

[(
CxiyC−1

yyn
)(

CxiyC−1
yyn

)H]
(G.7)

= CxiyC−1
yyEn

[
nnH

]
C−1

yyCyxi (G.8)

= CxiyC−1
yyCnnC−1

yyCyxi . (G.9)

The second proof concerns the conditional bias of x̂L,i, which directly follows from (G.2)
as

b(x̂L,i|x) = Ey|x[x̂L,i − xi|x] (G.10)

= Ey|x[x̂L,i|x]− xi (G.11)

= − xi + Exi [xi] + CxiyC−1
yyH(x− Ex[x]). (G.12)

H Proof that the LMMSE Estimator Commutes Over Affine
Transformations

In this appendix, we proof that the LMMSE estimator commutes over affine transfor-
mations. Let the transformation of the parameter vector be given by

α = Bx + c, (H.1)

where α ∈ CNα , B ∈ CNα×Nx and c ∈ CNα . The LMMSE estimator for α is given by

α̂L = Eα[α] + CαyC−1
yy(y − Ey[y]). (H.2)

Therein, Eα[α] and Cαy can be derived as

Eα[α] = BEx[x] + c (H.3)

and

Cαy = Eα,y

[
(α− Eα[α])(y − Ey[y])H

]
(H.4)

= Ex,y

[
(Bx−BEx[x])(y − Ey[y])H

]
(H.5)

= BEx,y

[
(x− Ex[x])(y − Ey[y])H

]
(H.6)

= BCxy, (H.7)
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respectively. Inserting (H.3) and (H.7) into the expression for α̂L in (H.2) leads to

α̂L = BEx[x] + c + BCxyC−1
yy(y − Ey[y]) (H.8)

= Bx̂L + c, (H.9)

which concludes the proof. �

I Proof that the WLMMSE Estimator Commutes Over Widely
Affine Transformations

In this appendix, we proof that the WLMMSE estimator commutes over widely affine
transformations. Let the transformation of the parameter vector be given by

α = B1x + B2x
∗ + c, (I.1)

where α ∈ CNα , B1,B2 ∈ CNα×Nx and c ∈ CNα . Eq. (I.1) can be brought into
augmented form as

α = B x + c, (I.2)

where

α =

[
α

α∗

]
, B =

[
B1 B2

B∗2 B∗1

]
, c =

[
c

c∗

]
. (I.3)

The WLMMSE estimator for α in augmented notation is given by

α̂WL = Eα[α] + CαyC−1
yy

(
y − Ey

[
y
])
. (I.4)

Therein, Eα[α] and Cαy can be derived as

Eα[α] = BEx[x] + c (I.5)

and

Cαy = Eα,y

[
(α− Eα[α])

(
y − Ey

[
y
])H]

(I.6)

= Ex,y

[
(B x−BEx[x])

(
y − Ey

[
y
])H]

(I.7)

= BEx,y

[
(x− Ex[x])

(
y − Ey

[
y
])H]

(I.8)

= B Cxy, (I.9)

respectively. Inserting (I.5) and (I.9) into the expression for α̂WL in (I.4) leads to

α̂WL = BEx[x] + c + BCxyC−1
yy

(
y − Ey

[
y
])

(I.10)

= Bx̂WL + c. (I.11)

Considering only the upper half of (I.11) immediately leads to α̂WL = B1x̂WL+B2x̂
∗
WL+

c. �
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J Proof that the Linear Estimator Minimizing the BMSE Cost
Function Subject to the Constraint in (4.71) Corresponds to
the BLUE for an Underlying Linear Model

We focus on the ith estimate x̂i of the form

x̂i = eHi y + bi (J.1)

for this scalar estimator, the constraint in (4.71) reduces to

Ey|x[x̂i|x] = xi. (J.2)

This constraint can be reformulated as

Ey|x[x̂i|x] =Ey|x[eHi y + bi|x] (J.3)

=Ey|x[eHi Hx + eHi n + bi|x] (J.4)

=eHi Hx + bi = xi. (J.5)

To fulfill this constraint for every x, it must hold that bi = 0 and eHi H = uHi , where
uHi is a row vector with a 1 at its ith position and zero elsewhere. Incorporating these
results into the BMSE cost function yields

J(ei) =Ey,x

[
|xi − x̂i|2

]
(J.6)

=Ey,x

[(
xi − eHi y − bi

)(
xi − eHi y − bi

)H]
(J.7)

=Ey,x

[(
xi − eHi Hx︸ ︷︷ ︸

xi

−eHi n
)(
xi − eHi Hx︸ ︷︷ ︸

xi

−eHi n
)H]

(J.8)

=En

[(
eHi n

)(
eHi n

)H]
(J.9)

=eHi Cnnei. (J.10)

Inspecting the cost function in (J.10) as well as the constraint eHi H = uHi reveals that
they correspond to the cost function and constraints utilized by the BLUE in Section 3.1.
Hence, the optimization process will formally produce the BLUE, which is a classical
estimator that does not utilize any prior knowledge. �

K Proof that [D]i,i > 1

The proof that [D]i,i > 1 is based on (4.152). Multiplying this equation with CxiyC−1
yy

from the left and with C−1
yyCyxi produces

CxiyC−1
yyCyy|xiC

−1
yyCyxi = CxiyC−1

yyCyxi −CxiyC−1
yyCyxi(σ

2
xi)
−1CxiyC−1

yyCyxi . (K.1)
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Dividing this expression by σ2
xi and utilizing the definition of [D]i,i in (4.97) allows

1

σ2
xi

CxiyC−1
yyCyy|xiC

−1
yyCyxi = [D]−1

i,i −
(

[D]−1
i,i

)2
(K.2)

1

σ2
xi

CxiyC−1
yyCyy|xiC

−1
yyCyxi = [D]−1

i,i

(
1− [D]−1

i,i

)
. (K.3)

The left hand side of (K.3) is positive and real-valued. The reason for this is that Cyy|xi
is Hermitian and positive definite. Multiplying such a matrix with an arbitrary row
vector from the left and with the conjugate transpose of this row vector from the right
produces a real-valued scalar that is larger than zero. [D]−1

i,i is also real-valued and larger
than zero. Consequently, the expression in the brackets in (K.3) must be real-valued
and larger than zero, too. This fact allows

1− [D]−1
i,i > 0 (K.4)

[D]−1
i,i < 1 (K.5)

[D]i,i > 1, (K.6)

concluding the proof. �

L Proof that (4.144) Corresponds to the CWCU LMMSE
Estimator for Mutually Independent Parameters

For mutually independent parameters, Cyy is given by

Cyy = Ey,x

[
(y − Ey[y])(y − Ey[y])H

]
(L.1)

= Ey,x

[(
hi(xi − Exi [xi]) + H̄i(x̄i − Ex̄i [x̄i]) + n

)
×
(
hi(xi − Exi [xi]) + H̄i(x̄i − Ex̄i [x̄i]) + n

)H]
(L.2)

= hiσ
2
xih

H
i + H̄iCx̄ix̄iH̄

H
i + Cnn (L.3)

= hiσ
2
xih

H
i + Ci. (L.4)

The inverse of Cyy can be evaluated using Woodbury’s matrix inversion lemma [54] and
follows as

C−1
yy = C−1

i −C−1
i hi

(
1

σ2
xi

+ hHi C−1
i hi

)−1

hHi C−1
i . (L.5)
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6 Conclusion

With that, the first term of eHCL,i in (4.143) reads as

1

hHi C−1
yyhi

=

(
hHi C−1

i hi − hHi C−1
i hi

(
1

σ2
xi

+ hHi C−1
i hi

)−1

hHi C−1
i hi

)−1

(L.6)

=

(
hHi C−1

i hi

(
1− hHi C−1

i hi

(
1

σ2
xi

+ hHi C−1
i hi

)−1
))−1

(L.7)

=
1

hHi C−1
i hi

(
1− hHi C−1

i hi

(
1

σ2
xi

+ hHi C−1
i hi

)−1
)−1

. (L.8)

The second term of eHCL,i in (4.143) reads as

hHi C−1
yy = hHi C−1

i − hHi C−1
i hi

(
1

σ2
xi

+ hHi C−1
i hi

)−1

hHi C−1
i (L.9)

=

(
1− hHi C−1

i hi

(
1

σ2
xi

+ hHi C−1
i hi

)−1
)

hHi C−1
i . (L.10)

Inserting (L.8) and (L.10) into eHCL,i in (4.143) produces

eHCL,i =
1

hHi C−1
i hi

hHi C−1
i , (L.11)

concluding the proof. �

M Proof that (4.151) Holds for all Three Cases

The validity of (4.151) for jointly Gaussian x and y is simply given by the properties
of the Gaussian distribution [3]. We will now show that (4.151) also holds for the other
two cases.

For the case when the linear model in (4.1) holds and when x is complex proper Gaussian,
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we have that

Ey|xi [y|xi] = Ex̄i,n|xi
[
hixi + H̄iEx̄i [x̄i] + n|xi

]
(M.1)

= hixi + H̄iEx̄i|xi [x̄i|xi] (M.2)

= hixi + H̄i

(
Ex̄i [x̄i] + Cx̄ixi(σ

2
xi)
−1(xi − Exi [xi])

)
(M.3)

=
(
hi + H̄iCx̄ixi(σ

2
xi)
−1
)
xi + H̄iEx̄i [x̄i]− H̄iCx̄ixi(σ

2
xi)
−1Exi [xi] (M.4)

=
(
hiσ

2
xi + H̄iCx̄ixi

)︸ ︷︷ ︸
Cyxi

(σ2
xi)
−1xi + Ey[y]− hiExi [xi]− H̄iCx̄ixi(σ

2
xi)
−1Exi [xi]

(M.5)

= Cyxi(σ
2
xi)
−1xi + Ey[y]−

(
hiσ

2
xi + H̄iCx̄ixi

)︸ ︷︷ ︸
Cyxi

(σ2
xi)
−1Exi [xi] (M.6)

= Cyxi(σ
2
xi)
−1xi + Ey[y]−Cyxi(σ

2
xi)
−1Exi [xi] (M.7)

= Ey[y] + Cyxi(σ
2
xi)
−1(xi − Exi [xi]), (M.8)

where we utilized (4.116) and (4.122).

For the third case of mutually independent but otherwise arbitrary distributed elements
of x, we obtain with (4.136) that

Ey|xi [y|xi] = Ey|xi
[
hixi + H̄iEx̄i [x̄i] + n|xi

]
(M.9)

= hixi + H̄iEx̄i [x̄i] (M.10)

= hixi + Ey[y]− hiExi [xi] (M.11)

= Ey[y] + hiσ
2
xi︸ ︷︷ ︸

Cyxi

(σ2
xi)
−1(xi − Exi [xi]) (M.12)

= Ey[y] + Cyxi(σ
2
xi)
−1(xi − Exi [xi]), (M.13)

concluding the proof. �

N Proof that (4.152) Holds for all Three Cases

This appendix begins with the proof for the case of jointly Gaussian x and y.

For arbitrary jointly Gaussian vectors z and w, the conditional covariance matrix is
given by [3,85]

Czz|w = Czz −CzwC−1
wwCwz. (N.1)

If x and y are jointly Gaussian, xi and y are jointly Gaussian, too. Adapting (N.1) to
this case yields

Cyy|xi = Cyy −Cyxi(σ
2
xi)
−1Cxiy. (N.2)
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6 Conclusion

For the second case where the linear model in (4.1) holds and where x is complex proper
Gaussian, we first rewrite y − Ey|xi [y|xi] utilizing (4.122) and (4.151) as

y − Ey|xi [y|xi] = y − Ey[y]−Cyxi(σ
2
xi)
−1(xi − Exi [xi]) (N.3)

= hixi + H̄ix̄i + n− hiExi [xi]− H̄iEx̄i [x̄i]

−Cyxi(σ
2
xi)
−1(xi − Exi [xi]) (N.4)

= hixi + H̄ix̄i + n− hiExi [xi]− H̄iEx̄i [x̄i]

− hiσ
2
xi(σ

2
xi)
−1(xi − Exi [xi])− H̄iCx̄ixi(σ

2
xi)
−1(xi − Exi [xi]) (N.5)

= H̄ix̄i + n− H̄iEx̄i [x̄i]− H̄iCx̄ixi(σ
2
xi)
−1(xi − Exi [xi]) (N.6)

= H̄ix̄i + n− H̄i

(
Ex̄i [x̄i]−Cx̄ixi(σ

2
xi)
−1(xi − Exi [xi])

)︸ ︷︷ ︸
Ex̄i|xi [x̄i|xi]

(N.7)

= H̄i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ n. (N.8)

With that, the conditional covariance matrix can be derived as

Cyy|xi = Ey|xi

[(
y − Ey|xi [y|xi]

)(
y − Ey|xi [y|xi]

)H |xi] (N.9)

= Ey|xi

[(
H̄i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ n

)(
H̄i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ n

)H |xi] (N.10)

= H̄iCx̄ix̄i|xiH̄
H
i + Cnn. (N.11)

Incorporating (4.122) and the fact that x is complex proper Gaussian yields

Cyy|xi = H̄i

(
Cx̄ix̄i −Cx̄ixi(σ

2
xi)
−1Cxix̄i

)
H̄H
i + Cnn (N.12)

= H̄iCx̄ix̄iH̄
H
i + hiσ

2
xih

H
i + H̄iCx̄ixih

H
i + hiCxix̄iH̄

H
i + Cnn︸ ︷︷ ︸

Cyy

− hiσ
2
xih

H
i − H̄iCx̄ixih

H
i − hiCxix̄iH̄

H
i − H̄iCx̄ixi(σ

2
xi)
−1Cxix̄iH̄

H
i (N.13)

= Cyy −
(
hiσ

2
xi + H̄iCx̄ixi

)︸ ︷︷ ︸
Cyxi

(σ2
xi)
−1
(
σ2
xih

H
i + Cxix̄iH̄

H
i

)︸ ︷︷ ︸
Cxiy

(N.14)

= Cyy −Cyxi(σ
2
xi)
−1Cxiy. (N.15)

For the third case where the linear model in (4.1) holds and where the elements of x are
uncorrelated, we first rewrite y − Ey|xi [y|xi] utilizing (4.136) and (4.151) as

y − Ey|xi [y|xi] = y − Ey[y]−Cyxi(σ
2
xi)
−1(xi − Exi [xi]) (N.16)

= hixi + H̄ix̄i + n− hiExi [xi]− H̄iEx̄i [x̄i]

−Cyxi(σ
2
xi)
−1(xi − Exi [xi]) (N.17)

= hixi + H̄ix̄i + n− hiExi [xi]− H̄iEx̄i [x̄i]

− hiσ
2
xi(σ

2
xi)
−1(xi − Exi [xi]) (N.18)

= H̄ix̄i + n− H̄iEx̄i [x̄i] (N.19)

= H̄i(x̄i − Ex̄i [x̄i]) + n. (N.20)

178



O

With that and (4.136), the conditional covariance matrix can be derived as

Cyy|xi = Ey|xi

[(
y − Ey|xi [y|xi]

)(
y − Ey|xi [y|xi]

)H |xi] (N.21)

= Ey|xi

[(
H̄i(x̄i − Ex̄i [x̄i]) + n

)(
H̄i(x̄i − Ex̄i [x̄i]) + n

)H |xi] (N.22)

= H̄iCx̄ix̄iH̄
H
i + Cnn (N.23)

= H̄iCx̄ix̄iH̄
H
i + hiσ

2
xih

H
i + Cnn︸ ︷︷ ︸

Cyy

−hiσ
2
xih

H
i (N.24)

= Cyy − hiσ
2
xi︸ ︷︷ ︸

Cyxi

(σ2
xi)
−1 σ2

xih
H
i︸ ︷︷ ︸

Cxiy

(N.25)

= Cyy −Cyxi(σ
2
xi)
−1Cxiy. (N.26)

�

O Derivation of the Conditional Properties of the BLUE

Consider the BLUE for xi in (3.47). For this estimator, the conditional mean follows as

Ey|xi [x̂B,i|xi] = uHi
(
HHC−1

nnH
)−1

HHC−1
nnEy|xi [y|xi] (O.1)

= uHi
(
HHC−1

nnH
)−1

HHC−1
nnHEx|xi [x|xi] (O.2)

= uHi Ex|xi [x|xi] (O.3)

= xi. (O.4)

With this result, the conditional bias immediately follows as

b(x̂B,i|xi) = Ey|xi [x̂B,i|xi]− xi = 0. (O.5)

The conditional variance is given by

var(x̂B,i|xi) = Ey|xi

[∣∣x̂B,i − Ey|xi [x̂B,i|xi]
∣∣2|xi] (O.6)

= Ey|xi

[
|x̂B,i − xi|2|xi

]
(O.7)

= Ey|xi

[∣∣∣uHi (HHC−1
nnH

)−1
HHC−1

nny − xi
∣∣∣2|xi] (O.8)

= Ex,n|xi

[∣∣∣uHi x + uHi
(
HHC−1

nnH
)−1

HHC−1
nnn− xi

∣∣∣2|xi] (O.9)

= En|xi

[∣∣∣uHi (HHC−1
nnH

)−1
HHC−1

nnn
∣∣∣2|xi] (O.10)

= En

[∣∣∣uHi (HHC−1
nnH

)−1
HHC−1

nnn
∣∣∣2] (O.11)

= uHi
(
HHC−1

nnH
)−1

HHC−1
nnCnnC−1

nnH
(
HHC−1

nnH
)−1

ui (O.12)

= uHi
(
HHC−1

nnH
)−1

ui. (O.13)
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6 Conclusion

Finally, the conditional MSE follows to

mse(x̂B,i|xi) = Ey|xi

[
|x̂B,i − xi|2|xi

]
(O.14)

= var(x̂B,i|xi) (O.15)

= uHi
(
HHC−1

nnH
)−1

ui. (O.16)

P Derivation of the Conditional Properties of the LMMSE
Estimator

Consider the LMMSE for xi in (4.13). For this estimator, the conditional mean follows
as

Ey|xi [x̂L,i|xi] = Exi [xi] + CxiyC−1
yy

(
Ey|xi [y|xi]− Ey[y]

)
. (P.1)

Inserting (4.151) produces

Ey|xi [x̂L,i|xi] = Exi [xi] + CxiyC−1
yyCyxi(σ

2
xi)
−1︸ ︷︷ ︸

[D]−1
i,i

(xi − Exi [xi]) (P.2)

= Exi [xi] + [D]−1
i,i (xi − Exi [xi]) (P.3)

= [D]−1
i,i xi + (1− [D]−1

i,i )Exi [xi]. (P.4)

Now, the conditional bias can be derived as

b(x̂L,i|xi) = Ey|xi [x̂L,i|xi]− xi (P.5)

=
(

[D]−1
i,i − 1

)
xi −

(
[D]−1

i,i − 1
)
Exi [xi] (P.6)

=
(

[D]−1
i,i − 1

)
(xi − Exi [xi]). (P.7)

The conditional variance follows with (P.1) as

var(x̂L,i|xi) = Ey|xi

[∣∣x̂L,i − Ey|xi [x̂L,i|xi]
∣∣2|xi] (P.8)

= Ey|xi

[∣∣Exi [xi] + CxiyC−1
yy(y − Ey[y])− Exi [xi]

−CxiyC−1
yy

(
Ey|xi [y|xi]− Ey[y]

)∣∣2|xi] (P.9)

= Ey|xi

[∣∣CxiyC−1
yy

(
y − Ey|xi [y|xi]

)∣∣2|xi] (P.10)

= CxiyC−1
yyCyy|xiC

−1
yyCyxi . (P.11)
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Assuming that one of the cases in Result 4.1 holds allows utilizing (4.152), resulting in

var(x̂L,i|xi) = CxiyC−1
yy

(
Cyy −Cyxi(σ

2
xi)
−1Cxiy

)
C−1

yyCyxi (P.12)

= CxiyC−1
yyCyxi −CxiyC−1

yyCyxi(σ
2
xi)
−1CxiyC−1

yyCyxi (P.13)

= σ2
xi

CxiyC−1
yyCyxi

σ2
xi

−

(
CxiyC−1

yyCyxi

σ2
xi

)2
 (P.14)

= σ2
xi [D]−1

i,i

(
1− [D]−1

i,i

)
. (P.15)

With the conditional variance, the conditional bias and (4.98), the conditional MSE can
be derived as

mse(x̂L,i|xi) = Ey|xi

[
|x̂L,i − xi|2|xi

]
(P.16)

= var(x̂L,i|xi) + |b(x̂L,i|xi)|2 (P.17)

= σ2
xi [D]−1

i,i

(
1− [D]−1

i,i

)
+
∣∣∣([D]−1

i,i − 1
)

(xi − Exi [xi])
∣∣∣2 (P.18)

= σ2
xi [D]−1

i,i

(
1− [D]−1

i,i

)
+
(

1− [D]−1
i,i

)2
|xi − Exi [xi]|

2. (P.19)

Q Derivation of the Conditional Properties of the CWCU
LMMSE Estimator

The CWCU LMMSE as given in (4.92) has the conditional mean

Ey|xi [x̂CL,i|xi] = xi (Q.1)

and the conditional bias

b(x̂CL,i|xi) = Ey|xi [x̂CL,i|xi]− xi = 0, (Q.2)

since it fulfills the CWCU constraints. The conditional variance follows with (4.92) as

var(x̂CL,i|xi) = Ey|xi

[∣∣x̂CL,i − Ey|xi [x̂CL,i|xi]
∣∣2|xi] (Q.3)

= Ey|xi

[∣∣∣Exi [xi] + eHCL,i(y − Ey[y])

− Exi [xi]− eHCL,i

(
Ey|xi [y|xi]− Ey[y]

)∣∣∣2|xi] (Q.4)

= Ey|xi

[∣∣eHCL,iy − eHCL,iEy|xi [y|xi]
∣∣2|xi] (Q.5)

= Ey|xi

[∣∣eHCL,i

(
y − Ey|xi [y|xi]

)∣∣2|xi] (Q.6)

= eHCL,iCyy|xieCL,i. (Q.7)
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Utilizing (4.91), (4.152) and (4.97), (Q.7) reads as

var(x̂CL,i|xi) = eHCL,i

(
Cyy −Cyxi(σ

2
xi)
−1Cxiy

)
eCL,i (Q.8)

=

(
σ2
xi

CxiyC−1
yyCyxi

)2

CxiyC−1
yy

(
Cyy −Cyxi(σ

2
xi)
−1Cxiy

)
C−1

yyCyxi (Q.9)

=

(
σ2
xi

)2
CxiyC−1

yyCyxi

− σ2
xi (Q.10)

= σ2
xi([D]i,i − 1). (Q.11)

Finally, the conditional MSE can be derived as

mse(x̂CL,i|xi) = Ey|xi

[
|x̂CL,i − xi|2|xi

]
(Q.12)

= var(x̂CL,i|xi) (Q.13)

= σ2
xi([D]i,i − 1). (Q.14)

R Proof that the CWCU LMMSE Estimator Coincides with
the BLUE for diagonal Cxx, Cnn and H

In this appendix, we prove that the CWCU LMMSE estimator coincides with the BLUE
for the special case when Cxx, Cnn and H are all diagonal matrices, which implies that
Nx = Ny = N . In this case, also Cyy = HCxxHH + Cnn is a diagonal matrix. We use
the notation

H = diag{[h1, h2, . . . , hN ]}, (R.1)

Cxx = diag{[σ2
x1
, σ2

x2
, . . . , σ2

xN
]}, (R.2)

Cnn = diag{[σ2
n1
, σ2

n2
, . . . , σ2

nN
]}. (R.3)

Then, Cxiy becomes

Cxiy = h∗iσ
2
xiu

T
i , (R.4)

where uTi is a length N row vector with a ’1’ at its ith element and all zeros elsewhere.
With that, we simplify the expression for the CWCU LMMSE estimator in (4.92) as

x̂CL,i = Exi [xi] +
σ2
xi

CxiyC−1
yyCyxi

CxiyC−1
yy(y − Ey[y]) (R.5)

= Exi [xi] + σ2
xi

1

hiσ2
xi

(
uTi C−1

yyui
)−1 1

h∗iσ
2
xi

h∗iσ
2
xiu

T
i C−1

yy(y − Ey[y]) (R.6)

= Exi [xi] +
1

hi

(
uTi C−1

yyui
)−1

uTi C−1
yy(y − Ey[y]). (R.7)

Consider the term
(
uTi C−1

yyui
)−1

in (R.7). uTi C−1
yyui sorts out the ith diagonal element

of the diagonal matrix C−1
yy . The inverse of this scalar corresponds to the ith diagonal
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element of Cyy. Hence, we can state that
(
uTi C−1

yyui
)−1

= uTi Cyyui. This allows to
modify (R.7) according to

x̂CL,i = Exi [xi] +
1

hi
uTi Cyyuiu

T
i C−1

yy(y − Ey[y]). (R.8)

The term uiu
T
i in (R.8) corresponds to a diagonal matrix (with only one diagonal element

being non-zero). Diagonal matrices commute, hence, Cyyuiu
T
i C−1

yy = uiu
T
i CyyC−1

yy =

uiu
T
i . Consequently, (R.8) corresponds to

x̂CL,i = Exi [xi] +
1

hi
uTi ui︸ ︷︷ ︸

1

uTi (y − Ey[y]) (R.9)

= Exi [xi] +
1

hi
uTi (y − Ey[y]) (R.10)

= Exi [xi] +
1

hi
uTi y − 1

hi
uTi H︸ ︷︷ ︸
hiuTi

Ex[x] (R.11)

= Exi [xi] +
1

hi
uTi y − 1

hi
hi u

T
i Ex[x]︸ ︷︷ ︸
Exi [xi]

(R.12)

=
1

hi
uTi y. (R.13)

This is the final result for the CWCU LMMSE estimator for the special case of diagonal
Cxx, Cnn and H. We will now show that the BLUE formally yields the same expression
since

x̂B,i = uTi
(
HHC−1

nnH
)−1

HHC−1
nny (R.14)

= uTi H−1Cnn

(
HH

)−1
HHC−1

nny (R.15)

= uTi H−1︸ ︷︷ ︸
h−1
i uTi

y (R.16)

= h−1
i uTi y, (R.17)

which corresponds to the expression of the CWCU LMMSE estimator in (R.13). �

S Derivation of Case 2 and 3 of Result 4.2

We start with case 2, assume a generalized complex Gaussian parameter vector x, and
begin the derivation of the ith component x̂i of the estimator. Recall the formulation of
y in (4.113). We will now formulate a similar expression for y. With the notation

xi =

[
xi

x∗i

]
∈ C2

Hi =

[
hi 0

0 h∗i

]
∈ C2Ny×2,

x̄i =

[
x̄i

x̄∗i

]
∈ C2Nx−2

H̄i =

[
H̄i 0

0 H̄∗i

]
∈ C2Ny×(2Nx−2)

(S.1)
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the augmented form of (4.113) becomes

y = Hixi + H̄ix̄i + n. (S.2)

Incorporating (S.2) into the conditional mean of the estimator in (4.207) yields

Ey|xi [x̂i|xi] = Ey|xi [e
H
i y + bi|xi]

= En,x̄i|xi [e
H
i (Hixi + H̄ix̄i + n) + bi|xi]

= eHi (Hixi + H̄iEx̄i|xi [x̄i|xi]) + bi. (S.3)

Because of the Gaussian assumption we have

Ey|xi [x̂i|xi] = eHi

(
Hixi + H̄i

(
Ex̄i [x̄i] + Cx̄ixiC

−1
xixi(xi − Exi [xi])

))
+ bi. (S.4)

By setting (S.4) equal to xi =
[
1 0

]
xi one can see that the CWCU constraint

Ey|xi [x̂i|xi] = xi is fulfilled if two conditions are fulfilled. The first condition is

eHi Hi + eHi H̄iCx̄ixiC
−1
xixi =

[
1 0

]
(S.5)

eHi
(
HiCxixi + H̄iCx̄ixi

)
=
[
1 0

]
Cxixi . (S.6)

The expression in the brackets in (S.6) corresponds to Cyxi . This can be shown by

Cyxi = Ey,x

[(
y − Ey[y]

)
(xi − Exi [xi])

H
]

(S.7)

= Ey,x

[(
Hi(xi − Exi [xi]) + H̄i(x̄i − Ex̄i [x̄i]) + n

)
(xi − Exi [xi])

H
]

(S.8)

= HiCxixi + H̄iCx̄ixi . (S.9)

Hence, the first condition reads as

eHi Cyxi =
[
1 0

]
Cxixi . (S.10)

The second condition follows from (S.4) as

bi = − eHi H̄i

(
Ex̄i [x̄i]−Cx̄ixiC

−1
xixiExi [xi]

)
(S.11)

= − eHi H̄iEx̄i [x̄i] + eHi H̄iCx̄ixi︸ ︷︷ ︸
Cyxi

−HiCxixi

C−1
xixiExi [xi] (S.12)

= − eHi H̄iEx̄i [x̄i]− eHi HiExi [xi] + eHi Cyxi︸ ︷︷ ︸[
1 0

]
Cxixi

C−1
xixiExi [xi]) (S.13)

= − eHi HEx[x] +
[
1 0

]
Exi [xi] (S.14)

= Exi [xi]− eHi Ey[y], (S.15)
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where (S.9) and (S.10) were utilized. Eq. (S.10) and (S.15) allow to simplify the BMSE
cost function Ey,x[|x̂i − xi|2] according to

J(ei) = Ey,x[|eHi y + bi − xi|2] (S.16)

= Ey,x[|eHi
(
y − Ey[y]

)
−
[
1 0

]
(xi − Exi [xi])|2] (S.17)

= eHi Cyyei − eHi Cyxi

[
1

0

]
−
[
1 0

]
Cxiyei + σ2

xi (S.18)

= eHi Cyyei − σ2
xi − σ

2
xi + σ2

xi (S.19)

= eHi Cyyei − σ2
xi . (S.20)

Combining the cost function in (S.20) and the constraint in (S.10) leads to the optimiza-
tion problem

eCWL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi CyxiC

−1
xixi =

[
1 0

]
. (S.21)

Note that this optimization problem equals the one for jointly Gaussian x and y in
(4.219) and solving it will lead to formally the same expression for the CWCU WLMMSE
estimator. However, a significant difference is obtained. By making the assumption
about an underlying linear model, the jointly Gaussian assumption of x and y can be
significantly relaxed. In fact, only the parameter vector x is required to be Gaussian for
obtaining (4.219). The PDF of the noise n can be arbitrary. The only requirements on
the noise vector are En[n] = 0 while n and x need to be uncorrelated.

For mutually independent parameters (case 3 of Result 4.2) it is possible to further relax
the prerequisites on x. In this case (S.3) becomes

Ey|xi [x̂i|xi] = eHi Hixi + eHi H̄iEx̄i [x̄i] + bi, (S.22)

since Ex̄i|xi [x̄i|xi] is no longer dependent on xi. By setting (S.22) equal to xi =
[
1 0

]
xi

we see that the CWCU constraint Ey|xi [x̂i|xi] = xi is fulfilled if

eHi Hi =
[
1 0

]
(S.23)

and

bi = − eHi H̄iEx̄i [x̄i] (S.24)

= − eHi
(
Ey[y]−HiExi [xi]

)
(S.25)

= Exi [xi]− eHi Ey[y]. (S.26)

Adapting (S.9) for the case of mutually independent parameters shows that in this case

Cyxi = HiCxixi (S.27)

holds. This result incorporated into (S.23) yields

eHi CyxiC
−1
xixi =

[
1 0

]
, (S.28)
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which equals (S.10). Inserting in the BMSE cost function leads to the optimization
problem

eCWL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi CyxiC

−1
xixi =

[
1 0

]
(S.29)

which again equals the one for jointly Gaussian x and y in (4.219). As a consequence,
the expressions for the CWCU WLMMSE estimator are formally the same.

T Proof that (4.249) Holds for all Three Cases

For the case when the linear model in (4.1) holds and when x is Gaussian, it holds that

Ey|xi [y|xi] = Ey|xi
[
Hixi + H̄ix̄i + n|xi

]
(T.1)

= Hixi + H̄iEx̄i|xi [x̄i|xi] (T.2)

= Hixi + H̄i

(
Ex̄i [x̄i] + Cx̄ixiC

−1
xixi(xi − Exi [xi])

)
(T.3)

=
(
Hi + H̄iCx̄ixiC

−1
xixi

)
xi + H̄iEx̄i [x̄i]− H̄iCx̄ixiC

−1
xixiExi [xi] (T.4)

=
(
HiCxixi + H̄iCx̄ixi

)︸ ︷︷ ︸
Cyxi

C−1
xixixi + Ey[y]−HiExi [xi]

− H̄iCx̄ixiC
−1
xixiExi [xi] (T.5)

= CyxiC
−1
xixixi + Ey[y]−

(
HiCxixi + H̄iCx̄ixi

)︸ ︷︷ ︸
Cyxi

C−1
xixiExi [xi] (T.6)

= CyxiC
−1
xixixi + Ey[y]−CyxiC

−1
xixiExi [xi] (T.7)

= Ey[y] + CyxiC
−1
xixi(xi − Exi [xi]), (T.8)

where we utilized (S.2) and (S.9).

For the third case of mutually independent but otherwise arbitrary distributed elements
of x, we obtain with (S.27)

Ey|xi [y|xi] = Ey|xi
[
Hixi + H̄iEx̄i [x̄i] + n|xi

]
(T.9)

= Hixi + H̄iEx̄i [x̄i] (T.10)

= Hixi + Ey[y]−HiExi [xi] (T.11)

= Ey[y] + HiCxixi︸ ︷︷ ︸
Cyxi

C−1
xixi(xi − Exi [xi]) (T.12)

= Ey[y] + CyxiC
−1
xixi(xi − Exi [xi]), (T.13)

concluding the proof. �
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U Proof that (4.250) Holds for all Three Cases

This appendix begins with the proof for the case of jointly Gaussian x and y.

For arbitrary jointly Gaussian vectors z and w, the conditional covariance matrix is
given by [3]

Czz|w = Czz −CzwC−1
wwCwz. (U.1)

If x and y are jointly Gaussian, xi and y are jointly Gaussian too. Adapting (U.1) to
this case yields

Cyy|xi = Cyy −CyxiC
−1
xixiCxiy. (U.2)

For the second case where the linear model in (4.1) holds and where x is generalized
complex Gaussian, we first rewrite y − Ey|xi [y|xi] utilizing (S.9) and (4.249) as

y − Ey|xi [y|xi] = y − Ey[y]−CyxiC
−1
xixi(xi − Exi [xi]) (U.3)

= Hixi + H̄ix̄i + n−HiExi [xi]− H̄iEx̄i [x̄i]

−CyxiC
−1
xixi(xi − Exi [xi]) (U.4)

= Hixi + H̄ix̄i + n−HiExi [xi]− H̄iEx̄i [x̄i]

−HiCxixiC
−1
xixi(xi − Exi [xi])− H̄iCx̄ixiC

−1
xixi(xi − Exi [xi]) (U.5)

= H̄ix̄i + n− H̄iEx̄i [x̄i]− H̄iCx̄ixiC
−1
xixi(xi − Exi [xi]) (U.6)

= H̄ix̄i + n− H̄i

(
Ex̄i [x̄i]−Cx̄ixiC

−1
xixi(xi − Exi [xi])

)︸ ︷︷ ︸
Ex̄i|xi [x̄i|xi]

(U.7)

= H̄i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ n. (U.8)

With that, the conditional covariance matrix can be derived as

Cyy|xi = Ey|xi

[(
y − Ey|xi [y|xi]

)(
y − Ey|xi [y|xi]

)H |xi] (U.9)

= Ey|xi

[(
H̄i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ n

)(
H̄i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ n

)H |xi] (U.10)

= H̄iCx̄ix̄i|xiH̄
H
i + Cnn. (U.11)

Incorporating (S.9) and the fact that x is generalized complex Gaussian yields

Cyy|xi = H̄i

(
Cx̄ix̄i −Cx̄ixiC

−1
xixiCxix̄i

)
H̄
H
i + Cnn (U.12)

= H̄iCx̄ix̄iH̄
H
i + HiCxixiH

H
i + H̄iCx̄ixiH

H
i + HiCxix̄iH̄

H
i + Cnn︸ ︷︷ ︸

Cyy

−HiCxixiH
H
i − H̄iCx̄ixiH

H
i −HiCxix̄iH̄

H
i − H̄iCx̄ixiC

−1
xixiCxix̄iH̄

H
i

(U.13)

= Cyy −
(
HiCxixi + H̄iCx̄ixi

)︸ ︷︷ ︸
Cyxi

C−1
xixi

(
CxixiH

H
i + Cxix̄iH̄

H
i

)
︸ ︷︷ ︸

Cxiy

(U.14)

= Cyy −CyxiC
−1
xixiCxiy. (U.15)
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For the third case where the linear model in (4.1) holds and where the elements of x are
uncorrelated, we first rewrite y − Ey|xi [y|xi] utilizing (S.27) and (4.249) as

y − Ey|xi [y|xi] = y − Ey[y]−CyxiC
−1
xixi(xi − Exi [xi]) (U.16)

= Hixi + H̄ix̄i + n−HiExi [xi]− H̄iEx̄i [x̄i]

−CyxiC
−1
xixi(xi − Exi [xi]) (U.17)

= Hixi + H̄ix̄i + n−HiExi [xi]− H̄iEx̄i [x̄i]

−HiCxixiC
−1
xixi(xi − Exi [xi]) (U.18)

= H̄ix̄i + n− H̄iEx̄i [x̄i] (U.19)

= H̄i(x̄i − Ex̄i [x̄i]) + n. (U.20)

With this result and (S.27), the conditional covariance matrix can be derived as

Cyy|xi = Ey|xi

[(
y − Ey|xi [y|xi]

)(
y − Ey|xi [y|xi]

)H |xi] (U.21)

= Ey|xi

[(
H̄i(x̄i − Ex̄i [x̄i]) + n

)(
H̄i(x̄i − Ex̄i [x̄i]) + n

)H |xi] (U.22)

= H̄iCx̄ix̄iH̄
H
i + Cnn (U.23)

= H̄iCx̄ix̄iH̄
H
i + HiCxixiH

H
i + Cnn︸ ︷︷ ︸

Cyy

−HiCxixiH
H
i (U.24)

= Cyy −HiCxixi︸ ︷︷ ︸
Cyxi

C−1
xixi CxixiH

H
i︸ ︷︷ ︸

Cxiy

(U.25)

= Cyy −CyxiC
−1
xixiCxiy. (U.26)

�

V Derivation of the Conditional Properties of the BWLUE

Consider the BWLUE for xi in (3.62). For this estimator, the conditional mean follows
as

Ey|xi [x̂BW,i|xi] = uHi
(
HHC−1

nnH
)−1

HHC−1
nnEy|xi [y|xi] (V.1)

= uHi
(
HHC−1

nnH
)−1

HHC−1
nnHEx|xi [x|xi] (V.2)

= uHi Ex|xi [x|xi] (V.3)

= xi. (V.4)

With this result, the conditional bias becomes

b(x̂BW,i|xi) = Ey|xi [x̂BW,i|xi]− xi = 0. (V.5)
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The conditional variance is given by

var(x̂BW,i|xi) = Ey|xi

[∣∣x̂BW,i − Ey|xi [x̂BW,i|xi]
∣∣2|xi] (V.6)

= Ey|xi

[
|x̂BW,i − xi|2|xi

]
(V.7)

= Ey|xi

[∣∣∣uHi (HHC−1
nnH

)−1
HHC−1

nny − xi
∣∣∣2|xi] (V.8)

= Ex,n|xi

[∣∣∣uHi x + uHi
(
HHC−1

nnH
)−1

HHC−1
nnn− xi

∣∣∣2|xi] (V.9)

= En|xi

[∣∣∣uHi (HHC−1
nnH

)−1
HHC−1

nnn
∣∣∣2|xi] (V.10)

= uHi
(
HHC−1

nnH
)−1

HHC−1
nnCnnC−1

nnH
(
HHC−1

nnH
)−1

ui (V.11)

= uHi
(
HHC−1

nnH
)−1

ui. (V.12)

Finally, the conditional MSE can be derived as

mse(x̂BW,i|xi) = Ey|xi

[
|x̂BW,i − xi|2|xi

]
(V.13)

= var(x̂BW,i|xi) (V.14)

= uHi
(
HHC−1

nnH
)−1

ui. (V.15)

W Derivation of the Conditional Properties of the WLMMSE
Estimator

Consider the WLMMSE for xi in (4.49). For this estimator, the conditional mean follows
as

Ey|xi [x̂WL,i|xi] = Exi [xi] +
[
1 0

]
CxiyC−1

yy

(
Ey|xi [y|xi]− Ey[y]

)
. (W.1)

Inserting (4.249) produces

Ey|xi [x̂WL,i|xi] = Exi [xi] +
[
1 0

]
CxiyC−1

yyCyxiC
−1
xixi︸ ︷︷ ︸

D−1
i

(xi − Exi [xi]) (W.2)

= Exi [xi] +
[
1 0

]
D−1
i (xi − Exi [xi]) (W.3)

=
[
1 0

]
Exi [xi] +

[
1 0

]
D−1
i (xi − Exi [xi]) (W.4)

=
[
1 0

](
D−1
i xi + (I2×2 −D−1

i )Exi [xi]
)
. (W.5)
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Now, the conditional bias can be derived as

b(x̂WL,i|xi) = Ey|xi [x̂WL,i|xi]− xi (W.6)

=
[
1 0

]
Exi [xi] +

[
1 0

]
D−1
i (xi − Exi [xi])−

[
1 0

]
xi (W.7)

=
[
1 0

](
D−1
i − I2×2

)
xi −

[
1 0

](
D−1
i − I2×2

)
Exi [xi] (W.8)

=
[
1 0

](
D−1
i − I2×2

)
(xi − Exi [xi]). (W.9)

The conditional variance follows with (W.1) as

var(x̂WL,i|xi) = Ey|xi

[∣∣x̂WL,i − Ey|xi [x̂WL,i|xi]
∣∣2|xi] (W.10)

= Ey|xi

[∣∣Exi [xi] +
[
1 0

]
CxiyC−1

yy

(
y − Ey[y]

)
− Exi [xi]

−
[
1 0

]
CxiyC−1

yy

(
Ey|xi [y|xi]− Ey[y]

)∣∣2|xi] (W.11)

= Ey|xi

[∣∣∣[1 0
]
CxiyC−1

yy

(
y − Ey|xi [y|xi]

)∣∣∣2|xi] (W.12)

=
[
1 0

]
CxiyC−1

yyCyy|xiC
−1
yyCyxi

[
1

0

]
. (W.13)

Utilizing (4.250) allows

var(x̂WL,i|xi) =
[
1 0

]
CxiyC−1

yy

(
Cyy −CyxiC

−1
xixiCxiy

)
C−1

yyCyxi

[
1

0

]
(W.14)

=
[
1 0

]
CxiyC−1

yyCyxi

[
1

0

]

−
[
1 0

]
CxiyC−1

yyCyxiC
−1
xixiCxiyC−1

yyCyxi

[
1

0

]
(W.15)

=
[
1 0

]
CxiyC−1

yyCyxiC
−1
xixi︸ ︷︷ ︸

D−1
i

Cxixi

[
1

0

]

−
[
1 0

]
CxiyC−1

yyCyxiC
−1
xixi︸ ︷︷ ︸

D−1
i

CxiyC−1
yyCyxiC

−1
xixi︸ ︷︷ ︸

D−1
i

Cxixi

[
1

0

]
(W.16)

=
[
1 0

]
D−1
i Cxixi

[
1

0

]
−
[
1 0

]
D−1
i D−1

i Cxixi

[
1

0

]
(W.17)

=
[
1 0

]
D−1
i

(
I2×2 −D−1

i

)
Cxixi

[
1

0

]
. (W.18)
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With the conditional variance and the conditional bias, the conditional MSE can be
derived as

mse(x̂WL,i|xi) = Ey|xi

[
|x̂WL,i − xi|2|xi

]
(W.19)

= var(x̂WL,i|xi) + |b(x̂WL,i|xi)|2 (W.20)

=
[
1 0

]
D−1
i

(
I2×2 −D−1

i

)
Cxixi

[
1

0

]
+
∣∣∣[1 0

](
D−1
i − I2×2

)
(xi − Exi [xi])

∣∣∣2. (W.21)

X Derivation of the Conditional Properties of the CWCU
WLMMSE Estimator

The CWCU WLMMSE estimator from (4.228) has the conditional mean

Ey|xi [x̂CWL,i|xi] = xi (X.1)

and the conditional bias

b(x̂CWL,i|xi) = Ey|xi [x̂CWL,i|xi]− xi = 0 (X.2)

since it fulfills the CWCU constraints. The conditional variance follows with (4.228) as

var(x̂CWL,i|xi) = Ey|xi

[∣∣x̂CWL,i − Ey|xi [x̂CWL,i|xi]
∣∣2|xi] (X.3)

= Ey|xi

[∣∣∣Exi [xi] + eHCWL,i

(
y − Ey[y]

)
− Exi [xi]− eHCWL,i

(
Ey|xi [y|xi]− Ey[y]

)∣∣∣2|xi] (X.4)

= Ey|xi

[∣∣eHCWL,iy − eHCWL,iEy|xi [y|xi]
∣∣2|xi] (X.5)

= Ey|xi

[∣∣eHCWL,i

(
y − Ey|xi [y|xi]

)∣∣2|xi] (X.6)

= eHCWL,iCyy|xieCWL,i. (X.7)
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Utilizing (4.226), (4.227) and (4.250), (X.7) reads as

var(x̂CWL,i|xi) = eHCWL,i

(
Cyy −CyxiC

−1
xixiCxiy

)
eCWL,i (X.8)

=
[
1 0

]
DiCxiyC−1

yyCyxiD
H
i

[
1

0

]

−
[
1 0

]
DiCxiyC−1

yyCyxiC
−1
xixiCxiyC−1

yyCyxiD
H
i

[
1

0

]
(X.9)

=
[
1 0

]
DiCxixi

[
1

0

]
−
[
1 0

]
Cxixi

[
1

0

]
(X.10)

=
[
1 0

]
DiCxixi

[
1

0

]
− σ2

xi . (X.11)

Finally, the conditional MSE can be derived as

mse(x̂CWL,i|xi) = Ey|xi

[
|x̂CWL,i − xi|2|xi

]
(X.12)

= var(x̂CWL,i|xi) (X.13)

=
[
1 0

]
DiCxixi

[
1

0

]
− σ2

xi . (X.14)

Y Proof that the CWCU WLMMSE Estimator Coincides with
the BWLUE for Diagonal Cxx, C̃xx, Cnn, C̃nn and H

In this appendix, we prove that the CWCU WLMMSE estimator coincides with the
BWLUE for the special case when Cxx, C̃xx, Cnn, C̃nn and H are all diagonal matrices.
In addition to the notation in (R.1)–(R.3), we utilize

C̃xx = diag{[σ̃2
x1
, σ̃2

x2
, . . . , σ̃2

xN
]} (Y.1)

and

C̃nn = diag{[σ̃2
n1
, σ̃2

n2
, . . . , σ̃2

nN
]}. (Y.2)

With hi denoting the ith column of H and hi denoting the ith diagonal element of H,
we define

Hi =

[
hi 0N

0N h∗i

]
=

[
ui 0N

0N ui

]
︸ ︷︷ ︸

Ui

[
hi 0

0 h∗i

]
︸ ︷︷ ︸

H̃i

(Y.3)

= UiH̃i, (Y.4)

where ui is a column vector with a ’1’ at its ith element and all zeros elsewhere. Now,
Cxiy becomes

Cxiy = CxixiH
H
i = CxixiH̃

H

i UT
i . (Y.5)
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With that, we simplify the expression for the CWCU WLMMSE estimator in (4.228) as

x̂CWL,i = Exi [xi] +
[
1 0

]
Cxixi

(
CxiyC−1

yyCyxi

)−1
CxiyC−1

yy

(
y − Ey[y]

)
(Y.6)

= Exi [xi]

+
[
1 0

]
Cxixi

(
CxixiH̃

H

i UT
i C−1

yyUiH̃iCxixi

)−1
CxixiH̃

H

i UT
i C−1

yy

(
y − Ey[y]

)
(Y.7)

= Exi [xi]

+
[
1 0

]
H̃
−1

i

(
UT
i C−1

yyUi

)−1
(
H̃
H

i

)−1
H̃
H

i UT
i C−1

yy

(
y − Ey[y]

)
(Y.8)

= Exi [xi] +
[
1 0

]
H̃
−1

i

(
UT
i C−1

yyUi

)−1
UT
i C−1

yy

(
y − Ey[y]

)
. (Y.9)

Similar to Appendix R, one can show that for the considered special case it holds that(
UT
i C−1

yyUi

)−1
= UT

i CyyUi and that CyyUiU
T
i C−1

yy = UiU
T
i CyyC−1

yy = UiU
T
i . This

allows to modify (Y.9) according to

x̂CWL,i = Exi [xi] +
[
1 0

]
H̃
−1

i UT
i Ui︸ ︷︷ ︸
I2×2

UT
i

(
y − Ey[y]

)
(Y.10)

= Exi [xi] +
[
1 0

]
H̃
−1

i UT
i

(
y − Ey[y]

)
(Y.11)

= Exi [xi] +
[
1 0

]
H̃
−1

i UT
i y −

[
1 0

]
H̃
−1

i UT
i H︸ ︷︷ ︸
HT
i

Ex[x] (Y.12)

= Exi [xi] +
[
1 0

]
H̃
−1

i UT
i y −

[
1 0

]
H̃
−1

i HT
i Ex[x] (Y.13)

= Exi [xi] +
[
1 0

]
H̃
−1

i UT
i y −

[
1 0

]
H̃
−1

i H̃
T

i︸︷︷︸
H̃i

UT
i Ex[x]︸ ︷︷ ︸
Exi [xi]

(Y.14)

= Exi [xi] +
[
1 0

]
H̃
−1

i UT
i y −

[
1 0

]
Exi [xi]︸ ︷︷ ︸

Exi [xi]

(Y.15)

=
[
1 0

]
H̃
−1

i UT
i y. (Y.16)

This is the final result for the CWCU WLMMSE estimator for the special case of diagonal
Cxx, C̃xx, Cnn, C̃nn and H. We will now show that the BWLUE formally yields the
same expression. This can be shown as

x̂WB,i =
[
1 0

]
UT
i

(
HHC−1

nnH
)−1

HHC−1
nny (Y.17)

=
[
1 0

]
UT
i H−1Cnn

(
HH

)−1
HHC−1

nny (Y.18)

=
[
1 0

]
UT
i H−1︸ ︷︷ ︸

=(HT
i )
−1

=H̃
−1

i UT
i

y (Y.19)

=
[
1 0

]
H̃
−1

i UT
i y, (Y.20)

which corresponds to the expression of the CWCU WLMMSE estimator in (Y.16). �
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Z Derivation of Case 2 and 3 of Result 4.3

We start with case 2, which assumes a real-valued Gaussian parameter vector x, and
begin the derivation of the ith component x̂i of the estimator. Recall the formulation of
y in (4.113). We will now formulate a similar expression for y. With the notation

hi =

[
hi

h∗i

]
∈ C2Ny , H̄i =

[
H̄i

H̄∗i

]
∈ C2Ny×(Nx−1) (Z.1)

the augmented form of (4.113) yields

y = hixi + H̄ix̄i + n. (Z.2)

Note that H̄i is in fact not an augmented matrix. However, for the sake of simplicity
and uniformity, we utilize the notation in (Z.1). Incorporating (Z.2) into (4.325) yields

Ey|xi [x̂i|xi] = Ey|xi [e
H
i y + bi|xi] (Z.3)

= En,x̄i|xi [e
H
i (hixi + H̄ix̄i + n) + bi|xi] (Z.4)

= eHi (hixi + H̄iEx̄i|xi [x̄i|xi]) + bi. (Z.5)

Because of the Gaussian assumption we have

Ey|xi [x̂i|xi] = eHi

(
hixi + H̄i

(
Ex̄i [x̄i] + Cx̄ixi

(
σ2
xi

)−1
(xi − Exi [xi])

))
+ bi. (Z.6)

By setting (Z.6) equal to xi, one can see that the CWCU constraint Ey|xi [x̂i|xi] = xi is
fulfilled if two conditions are fulfilled. The first condition is

eHi hi + eHi H̄iCx̄ixi

(
σ2
xi

)−1
= 1 (Z.7)

eHi
(
hiσ

2
xi + H̄iCx̄ixi

)
= σ2

xi . (Z.8)

The expression in the brackets in (Z.8) corresponds to Cyxi

[
1

0

]
, which can be shown by

Cyxi

[
1

0

]
= Ey,x

[(
y − Ey[y]

)
(xi − Exi [xi])

H
][1

0

]
(Z.9)

= Ey,x

[(
y − Ey[y]

)([
1 0

]
(xi − Exi [xi])

H
)]

(Z.10)

= Ey,x

[(
hi(xi − Exi [xi]) + H̄i(x̄i − Ex̄i [x̄i]) + n

)
(xi − Exi [xi])

H
]

(Z.11)

= hiσ
2
xi + H̄iCx̄ixi . (Z.12)

Hence, the first condition reads as

eHi Cyxi

[
1

0

]
= σ2

xi . (Z.13)
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The second condition follows from (Z.6) as

bi = − eHi H̄i

(
Ex̄i [x̄i]−Cx̄ixi

(
σ2
xi

)−1
Exi [xi]

)
(Z.14)

= − eHi H̄iEx̄i [x̄i] + eHi H̄iCx̄ixi︸ ︷︷ ︸
Cyxi

1

0

−hiσ2
xi

(
σ2
xi

)−1
Exi [xi] (Z.15)

= − eHi H̄iEx̄i [x̄i]− eHi hiExi [xi] + eHi Cyxi

[
1

0

]
︸ ︷︷ ︸

σ2
xi

(
σ2
xi

)−1
Exi [xi]) (Z.16)

= Exi [xi]− eHi Ey[y], (Z.17)

where (Z.12) and (Z.13) were utilized. Eq. (Z.13) and (Z.17) allow to simplify the BMSE
cost function Ey,x[|x̂i − xi|2] according to

J(ei) = Ey,x[|eHi y + bi − xi|2] (Z.18)

= Ey,x[|eHi
(
y − Ey[y]

)
− (xi − Exi [xi])|2] (Z.19)

= Ey,x[|eHi
(
y − Ey[y]

)
−
[
1 0

]
(xi − Exi [xi])|2] (Z.20)

= eHi Cyyei − eHi Cyxi

[
1

0

]
−
[
1 0

]
Cxiyei +

[
1 0

]
Cxixi

[
1

0

]
(Z.21)

= eHi Cyyei − σ2
xi − σ

2
xi + σ2

xi (Z.22)

= eHi Cyyei − σ2
xi . (Z.23)

Combining the cost function in (Z.23) and the constraint in (Z.13) leads to the opti-
mization problem

eCWL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi Cyxi

[
1

0

](
σ2
xi

)−1
= 1. (Z.24)

Note that this optimization problem equals the one for jointly Gaussian x and yR in
(4.336). Solving it will formally lead to the same expression for the CWCU WLMMSE
estimator. However, a significant difference has been obtained. By making the assump-
tion about an underlying linear model, the jointly Gaussian assumption of x and yR can
be significantly relaxed. In fact, only the parameter vector x is required to be Gaussian
for obtaining (4.336). The PDF of the noise n can be arbitrary. The only requirements
on the noise vector are En[n] = 0, while n and x need to be uncorrelated.

For mutually independent parameters (case 3 of Result 4.3) it is possible to further relax
the prerequisites on x. In this case (Z.5) becomes

Ey|xi [x̂i|xi] = eHi hixi + eHi H̄iEx̄i [x̄i] + bi, (Z.25)

since Ex̄i|xi [x̄i|xi] is no longer dependent on xi. By setting (Z.25) equal to xi we see that
the CWCU constraint Ey|xi [x̂i|xi] = xi is fulfilled if

eHi hi = 1 (Z.26)
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and

bi = − eHi H̄iEx̄i [x̄i] (Z.27)

= − eHi
(
Ey[y]− hiExi [xi]

)
(Z.28)

= Exi [xi]− eHi Ey[y]. (Z.29)

Adapting (Z.12) for the case of mutually independent parameters shows that in this case

Cyxi

[
1

0

]
= hiσ

2
xi (Z.30)

holds. This result incorporated into (Z.26) yields

eHi Cyxi

[
1

0

](
σ2
xi

)−1
= 1, (Z.31)

which equals (Z.13). Inserting in the BMSE cost function leads to the optimization
problem

eCWL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi Cyxi

[
1

0

](
σ2
xi

)−1
= 1. (Z.32)

This again equals the same optimization problem as for jointly Gaussian x and yR in
(4.336). As a consequence, the expressions for the CWCU WLMMSE estimator are
formally the same.

AA Proof that (4.358) Holds for all Three Cases

We consider the real composite model for real-valued parameters

yR =

[
yR

yI

]
=

[
HR

HI

]
x +

[
nR

nI

]
= HRx + nR. (AA.1)

Let hR,i denote the ith column of HR, H̄R,i denote the matrix resulting from HR after
deleting hR,i, xi denote the ith element of x, and x̄i the vector resulting from x after
deleting xi. Then, the model in (AA.1) can be rewritten as

yR = hR,ixi + H̄R,ix̄i + nR. (AA.2)

Furthermore, it holds that

CyRxi = EyR,x[(yR − EyR [yR])(xi − Exi [xi])
∗] (AA.3)

= EyR,x

[(
hR,i(xi − Exi [xi]) + H̄R,i(x̄i − Ex̄i [x̄i]) + nR

)
(xi − Exi [xi])

∗] (AA.4)

= hR,iσ
2
xi + H̄R,iCx̄ixi . (AA.5)
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For the case of Gaussian and real-valued x, it holds that

EyR|xi [yR|xi] = Ey|xi
[
hR,ixi + H̄R,iEx̄i [x̄i] + nR|xi

]
(AA.6)

= hR,ixi + H̄R,iEx̄i [x̄i|xi] (AA.7)

= hR,ixi + H̄R,i
(
Ex̄i [x̄i] + Cx̄ixi(σ

2
xi)
−1(xi − Exi [xi])

)
(AA.8)

=
(
hR,i + H̄R,iCx̄ixi(σ

2
xi)
−1
)
xi + H̄R,iEx̄i [x̄i]− H̄R,iCx̄ixi(σ

2
xi)
−1Exi [xi]

(AA.9)

=
(
hR,iσ

2
xi + H̄R,iCx̄ixi

)︸ ︷︷ ︸
CyRxi

(σ2
xi)
−1xi + EyR [yR]− hR,iExi [xi]

− H̄R,iCx̄ixi(σ
2
xi)
−1Exi [xi] (AA.10)

= CyRxi(σ
2
xi)
−1xi + EyR [yR]−

(
hR,iσ

2
xi + H̄R,iCx̄ixi

)︸ ︷︷ ︸
CyRxi

(σ2
xi)
−1Exi [xi]

(AA.11)

= CyRxi(σ
2
xi)
−1xi + EyR [yR]−CyRxi(σ

2
xi)
−1Exi [xi] (AA.12)

= EyR [yR] + CyRxi(σ
2
xi)
−1(xi − Exi [xi]). (AA.13)

For the third case we assumed mutually independent but otherwise arbitrary distributed
real-valued elements of x. Then it holds that

EyR|xi [yR|xi] = EyR|xi
[
hR,ixi + H̄R,iEx̄i [x̄i] + nR|xi

]
(AA.14)

= hR,ixi + H̄R,iEx̄i [x̄i] (AA.15)

= hR,ixi + EyR [yR]− hR,iExi [xi] (AA.16)

= EyR [yR] + hR,iσ
2
xi︸ ︷︷ ︸

CyRxi

(σ2
xi)
−1(xi − Exi [xi]) (AA.17)

= EyR [yR] + CyRxi(σ
2
xi)
−1(xi − Exi [xi]), (AA.18)

concluding the proof. �

AB Proof that (4.360) Holds for all Three Cases

The proof of (4.360) for jointly Gaussian x and yR is a straightforward extension of the
consideration in Appendix N.

For the second case with real-valued and Gaussian x, we first rewrite yR−EyR|xi [yR|xi]
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utilizing (AA.2) and (4.358) as

yR − EyR|xi [yR|xi] = yR − EyR [yR]−CyRxi(σ
2
xi)
−1(xi − Exi [xi]) (AB.1)

= hR,ixi + H̄R,ix̄i + nR − hR,iExi [xi]− H̄R,iEx̄i [x̄i]

−CyRxi(σ
2
xi)
−1(xi − Exi [xi]) (AB.2)

= hR,ixi + H̄R,ix̄i + nR − hR,iExi [xi]− H̄R,iEx̄i [x̄i]

− hR,iσ
2
xi(σ

2
xi)
−1(xi − Exi [xi])− H̄R,iCx̄ixi(σ

2
xi)
−1(xi − Exi [xi])

(AB.3)

= H̄R,ix̄i + nR − H̄R,iEx̄i [x̄i]− H̄R,iCx̄ixi(σ
2
xi)
−1(xi − Exi [xi])

(AB.4)

= H̄R,ix̄i + nR − H̄R,i
(
Ex̄i [x̄i]−Cx̄ixi(σ

2
xi)
−1(xi − Exi [xi])

)︸ ︷︷ ︸
Ex̄i|xi [x̄i|xi]

(AB.5)

= H̄R,i
(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ nR. (AB.6)

With that, the conditional covariance matrix can be derived as

CyRyR|xi = EyR|xi

[(
yR − EyR|xi [yR|xi]

)(
yR − EyR|xi [yR|xi]

)H |xi] (AB.7)

= EyR|xi

[(
H̄R,i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ nR

)(
H̄R,i

(
x̄i − Ex̄i|xi [x̄i|xi]

)
+ nR

)H |xi]
(AB.8)

= H̄R,iCx̄ix̄i|xiH̄
H
R,i + CnRnR . (AB.9)

Incorporating (AA.5) and the fact that x is real-valued and Gaussian yields

CyRyR|xi = H̄R,i
(
Cx̄ix̄i −Cx̄ixi(σ

2
xi)
−1Cxix̄i

)
H̄H

R,i + CnRnR (AB.10)

= H̄R,iCx̄ix̄iH̄
H
R,i + hR,iσ

2
xih

H
R,i + H̄R,iCx̄ixih

H
R,i + hR,iCxix̄iH̄

H
R,i + CnRnR︸ ︷︷ ︸

CyRyR

− hR,iσ
2
xih

H
R,i − H̄R,iCx̄ixih

H
R,i

− hR,iCxix̄iH̄
H
R,i − H̄R,iCx̄ixi(σ

2
xi)
−1Cxix̄iH̄

H
R,i (AB.11)

= CyRyR −
(
hR,iσ

2
xi + H̄R,iCx̄ixi

)︸ ︷︷ ︸
CyRxi

(σ2
xi)
−1
(
σ2
xih

H
R,i + Cxix̄iH̄

H
R,i
)︸ ︷︷ ︸

CxiyR

(AB.12)

= CyRyR −CyRxi(σ
2
xi)
−1CxiyR . (AB.13)

For the third case where the elements of x are uncorrelated, yR − EyR|xi [yR|xi] follows
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as

yR − EyR|xi [yR|xi] = yR − EyR [yR]−CyRxi(σ
2
xi)
−1(xi − Exi [xi]) (AB.14)

= hR,ixi + H̄R,ix̄i + nR − hR,iExi [xi]− H̄R,iEx̄i [x̄i]

−CyRxi(σ
2
xi)
−1(xi − Exi [xi]) (AB.15)

= hR,ixi + H̄R,ix̄i + nR − hR,iExi [xi]− H̄R,iEx̄i [x̄i]

− hR,iσ
2
xi(σ

2
xi)
−1(xi − Exi [xi]) (AB.16)

= H̄R,ix̄i + nR − H̄R,iEx̄i [x̄i] (AB.17)

= H̄R,i(x̄i − Ex̄i [x̄i]) + nR. (AB.18)

Incorporating (AA.5) allows deriving the conditional covariance matrix as

CyRyR|xi = EyR|xi

[(
yR − EyR|xi [yR|xi]

)(
yR − EyR|xi [yR|xi]

)H |xi] (AB.19)

= EyR|xi

[(
H̄R,i(x̄i − Ex̄i [x̄i]) + nR

)(
H̄R,i(x̄i − Ex̄i [x̄i]) + nR

)H |xi] (AB.20)

= H̄R,iCx̄ix̄iH̄
H
R,i + CnRnR (AB.21)

= H̄R,iCx̄ix̄iH̄
H
R,i + hR,iσ

2
xih

H
R,i + CnRnR︸ ︷︷ ︸

CyRyR

−hR,iσ
2
xih

H
R,i (AB.22)

= CyRyR − hR,iσ
2
xi︸ ︷︷ ︸

CyRxi

(σ2
xi)
−1 σ2

xih
H
R,i︸ ︷︷ ︸

CxiyR

(AB.23)

= CyRyR −CyRxi(σ
2
xi)
−1CxiyR . (AB.24)

�

AC Derivation of the Conditional Properties of the WLMMSE
Estimator for Real-Valued Parameters

Consider the WLMMSE for xi in (4.49). For this estimator, the conditional mean follows
as

Ey|xi [x̂WL,i|xi] = Exi [xi] +
[
1 0

]
CxiyC−1

yy

(
Ey|xi [y|xi]− Ey[y]

)
. (AC.1)

Inserting (4.359) produces

Ey|xi [x̂WL,i|xi] = Exi [xi] + CxiyC−1
yyCyxi

1

σ2
xi︸ ︷︷ ︸

[D]−1
i,i

(xi − Exi [xi]) (AC.2)

= Exi [xi] + [D]−1
i,i (xi − Exi [xi]) (AC.3)

= [D]−1
i,i xi + (1− [D]−1

i,i )Exi [xi]. (AC.4)
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Now, the conditional bias can be derived as

b(x̂WL,i|xi) = Ey|xi [x̂WL,i|xi]− xi (AC.5)

=
(

[D]−1
i,i − 1

)
xi −

(
[D]−1

i,i − 1
)
Exi [xi] (AC.6)

=
(

[D]−1
i,i − 1

)
(xi − Exi [xi]). (AC.7)

The conditional variance follows with (AC.1) as

var(x̂WL,i|xi) = Ey|xi

[∣∣x̂WL,i − Ey|xi [x̂WL,i|xi]
∣∣2|xi] (AC.8)

= Ey|xi

[∣∣Exi [xi] + CxiyC−1
yy

(
y − Ey[y]

)
− Exi [xi]

−CxiyC−1
yy

(
Ey|xi [y|xi]− Ey[y]

)∣∣2|xi] (AC.9)

= Ey|xi

[∣∣∣CxiyC−1
yy

(
y − Ey|xi [y|xi]

)∣∣∣2|xi] (AC.10)

= CxiyC−1
yyCyy|xiC

−1
yyCyxi . (AC.11)

Utilizing (4.361) allows

var(x̂WL,i|xi) = CxiyC−1
yy

(
Cyy −Cyxi

1

σ2
xi

Cxiy

)
C−1

yyCyxi (AC.12)

= CxiyC−1
yyCyxi −CxiyC−1

yyCyxi

1

σ2
xi

CxiyC−1
yyCyxi (AC.13)

= CxiyC−1
yyCyxi

1

σ2
xi︸ ︷︷ ︸

[D]−1
i,i

σ2
xi −CxiyC−1

yyCyxi

1

σ2
xi︸ ︷︷ ︸

[D]−1
i,i

CxiyC−1
yyCyxi

1

σ2
xi︸ ︷︷ ︸

[D]−1
i,i

σ2
xi

(AC.14)

= [D]−1
i,i σ

2
xi − [D]−1

i,i [D]−1
i,i σ

2
xi (AC.15)

= [D]−1
i,i

(
1− [D]−1

i,i

)
σ2
xi . (AC.16)

With the conditional variance, the conditional bias, and the fact that [D]i,i ≥ 1 is real-
valued, the conditional MSE can be derived as

mse(x̂WL,i|xi) = Ey|xi

[
|x̂WL,i − xi|2|xi

]
(AC.17)

= var(x̂WL,i|xi) + |b(x̂WL,i|xi)|2 (AC.18)

= [D]−1
i,i

(
1− [D]−1

i,i

)
σ2
xi +

∣∣∣([D]−1
i,i − 1

)
(xi − Exi [xi])

∣∣∣2 (AC.19)

= [D]−1
i,i

(
1− [D]−1

i,i

)
σ2
xi +

(
1− [D]−1

i,i

)2
|(xi − Exi [xi])|

2. (AC.20)
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AD Derivation of the Conditional Properties of the CWCU
WLMMSE Estimator for Real-Valued Parameters

The conditional mean and the conditional bias of the CWCU WLMMSE given in (4.92)
has the conditional mean

Ey|xi [x̂CWL,i|xi] = xi (AD.1)

and the conditional bias

b(x̂CWL,i|xi) = Ey|xi [x̂CWL,i|xi]− xi = 0 (AD.2)

since it fulfills the CWCU constraints. The conditional variance follows with (4.343) as

var(x̂CWL,i|xi) = Ey|xi

[∣∣x̂CWL,i − Ey|xi [x̂CWL,i|xi]
∣∣2|xi] (AD.3)

= Ey|xi

[∣∣∣Exi [xi] + eHCWL,i

(
y − Ey[y]

)
− Exi [xi]− eHCWL,i

(
Ey|xi [y|xi]− Ey[y]

)∣∣∣2|xi] (AD.4)

= Ey|xi

[∣∣eHCWL,iy − eHCWL,iEy|xi [y|xi]
∣∣2|xi] (AD.5)

= Ey|xi

[∣∣eHCWL,i

(
y − Ey|xi [y|xi]

)∣∣2|xi] (AD.6)

= eHCWL,iCyy|xieCWL,i. (AD.7)

Utilizing (4.361), (4.341) and (4.347), (AD.7) reads as

var(x̂CWL,i|xi) = eHCWL,i

(
Cyy −Cyxi(σ

2
xi)
−1Cxiy

)
eCWL,i (AD.8)

=

 σ2
xi[

1 0
]
CxiyC−1

yyCyxi

[
1

0

]


2

×
[
1 0

]
CxiyC−1

yy

(
Cyy −Cyxi(σ

2
xi)
−1Cxiy

)
C−1

yyCyxi

[
1

0

]
(AD.9)

=

(
σ2
xi

)2[
1 0

]
CxiyC−1

yyCyxi

[
1

0

] − σ2
xi (AD.10)

= σ2
xi([D]i,i − 1). (AD.11)

Finally, the conditional MSE can be derived as

mse(x̂CWL,i|xi) = Ey|xi

[
|x̂CWL,i − xi|2|xi

]
(AD.12)

= var(x̂CWL,i|xi) (AD.13)

= σ2
xi([D]i,i − 1). (AD.14)

201



6 Conclusion

AE Complexity Analysis of the LMS Algorithm for Real-Valued
Filter Coefficients

We analyze the computational complexity in terms of the required multiplications and
additions for the update step in Result 5.1.

• Derive ek ∈ C
ek = yk −wT

k−1xk

Expression
Real-Valued

Multiplications
Real-Valued
Additions

wT
k−1xk ∈ C 2Nw 2Nw − 2

yk −wT
k−1xk ∈ C 0 2

ek summary 2Nw 2Nw

• Derive wk ∈ RNw

wk = wk−1 + µRe{x∗kek}

Expression
Real-Valued

Multiplications
Real-Valued
Additions

Re{x∗kek} ∈ RNw 2Nw Nw

µRe{x∗kek} ∈ RNw Nw 0

wk−1 + µRe{x∗kek} ∈ RNw 0 Nw

wk summary 3Nw 2Nw

• Total

Operation Amount

Real-Valued Multiplications 5Nw

Real-Valued Additions 4Nw
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AF Complexity Analysis of the RLS Algorithm for Real-Valued
Filter Coefficients

Here, we analyze the computational complexity in terms of the required multiplications
and additions for the update step in Result 5.2.

• Derive Gk ∈ CNw×2

Gk = λ−1P̃k−1Xk

(
I2×2 + λ−1XH
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6 Conclusion

• Derive ek ∈ C2

Is the augmented version of ek = yk −wT
k−1xk ∈ C

Expression
Real-Valued

Multiplications
Real-Valued
Additions

wT
k−1xk ∈ C 2Nw 2(Nw − 1)

yk −wT
k−1xk ∈ C 0 2

ek summary 2Nw 2Nw

• Derive P̃k ∈ RNw×Nw

P̃k = λ−1
(
P̃k−1 −GkX

H
k P̃k−1

)

Expression
Real-Valued

Multiplications
Real-Valued
Additions

XH
k P̃k−1 ∈ C2×Nw results from the

update step for Gk
0 0

GkX
H
k P̃k−1 ∈ RNw×Nw (symmetric

matrix)
4N2

w 4N2
w

P̃k−1 −GkX
H
k P̃k−1 ∈ RNw×Nw 0 N2

w

λ−1
(
P̃k−1 −GkX

H
k P̃k−1

)
∈ RNw×Nw Nw 0

P̃k summary 5N2
w 5N2

w

• Derive wk ∈ CNw

wT
k = wT

k−1 + eTkGH
k

Expression
Real-Valued

Multiplications
Real-Valued
Additions

eTkGH
k ∈ RNw 2Nw 2Nw

wT
k−1 + eTkGH

k ∈ RNw 0 Nw

wk summary 2Nw 3Nw

• Total
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Operation Amount

Real-Valued
Multiplications

9N2
w + 40Nw + 9

Real-Valued Additions 9N2
w + 29Nw − 4

Real-Valued Divisions 1

AG Complexity Analysis of the Bayesian NLMS Algorithm

An analysis of the computational complexity in terms of the required multiplications,
divisions and additions for the update step in Result 5.3 is presented in this appendix.

• Derive ek ∈ C
ek = yk −wT

k−1xk

Expression
Real-Valued

Multiplications
Real-Valued
Additions

wT
k−1xk ∈ C 4Nw 2Nw − 2

yk −wT
k−1xk ∈ C 0 2

ek summary 4Nw 2Nw

• Derive normalizing term 1
ε+ 1

σ2
n
‖xk‖22+akλ1(C−1

hh)
∈ R

Expression
Real-Valued

Multiplications
Real-Valued
Additions

Real-
Valued

Divisions

‖xk‖22 ∈ R 2Nw 2Nw − 1 0

1
ε+ 1

σ2
n
‖xk‖22+akλ1(C−1

hh)
∈ R 2 2 1

wk summary 2Nw + 2 2Nw + 1 1

• Derive wk ∈ CNw

wk = wk−1 + µn,k
1

ε+ 1

σ2
n
‖xk‖22+akλ1(C−1

hh)

(
1
σ2
n
x∗kek − akC

−1
hh(wk−1 − Eh[h])

)

205



6 Conclusion

Expression
Real-Valued

Multiplications
Real-Valued
Additions

1
σ2
n
x∗kek ∈ CNw 6Nw 2Nw

wk−1 − Eh[h] ∈ CNw 0 2Nw

akC
−1
hh(wk−1 − Eh[h]) ∈ CNw 6Nw 2Nw

1
σ2
n
x∗kek − akC

−1
hh(wk−1 − Eh[h]) ∈ CNw 0 2Nw

wk−1 + µn,k
1

ε+ 1

σ2
n
‖xk‖22+akλ1(C−1

hh)

×
(

1
σ2
n
x∗kek − akC

−1
hh(wk−1 − Eh[h])

)
∈

CNw

4Nw 2Nw

wk summary 16Nw 10Nw

• Total

Operation Amount

Real-Valued Multiplications 22Nw + 2

Real-Valued Additions 14Nw + 1

Real-Valued Divisions 1
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