Peter Dillinger

Implications by Induction

Proving by induction conjectures that are implications is especially tricky. We will generate a kind of roadmap for such proofs. Given definitional axioms

This certainly requires induction because integer-listp would have to walk over all the elements of x to arrive at the assumption (integer-listp y). Also, we want to induct on the variable x. The scheme we want is based on (integer-listp x). In fact, this is the same as the induction scheme based on (true-listp x), because the test for the base case and the parameters to the recursive call are the same. Here's the scheme:

```
(implies (endp x) \phi)

(implies (and (not (endp x)) (let ((x (cdr x))) \phi)
```

And since φ is that big implication, the second proof obligation, the inductive step, is particularly big and nasty. (By the way, (let ((x (cdr x))) φ) is called the **induction hypothesis**.) It's probably not even clear how to complete such a proof. So let's consider such proofs in the abstract and figure out how to prove them.

Suppose we are trying to prove something of the form

```
(implies H C)
```

by induction. H is for "hypothesis" and C is for "conclusion." And below we will use B for the base test, H' for H with variables replaced for the induction hypothesis, and C' for C with variables replaced for the induction hypothesis. To prove (implies H C) by induction, we need to prove

Let's start with the base case. Because ((B \land H) \rightarrow C) \rightarrow (B \rightarrow (H \rightarrow C)) is a boolean tautology, we can instead prove

```
(implies (and B H) Modified Base Case C)
```

for the base case. Thus, we can use B and H as assumptions in proving C.

To simplify the induction step, we first make a similar change:

Typically, we want to use C' in proving C. (For example, in our example, C is (integer-listp (app x y)) and C' is (integer-listp (app (cdr x) y)).) But in order to use C', we need to know that H' is true. We can assume (not B) and H in proving H', and this is another proof obligation:

```
(implies (and (not B) Induction Hypothesis Chaining H)
H')
```

Assuming we have proven this, that simplifies the induction step by two applications of modus ponens, and we have the final form of the induction step:

```
(implies (and (not B) Modified Induction Step

H

H'

C'))
```

So instead of some big formulas, we have a roadmap of what to prove with the Modified Base Case, Induction Hypothesis Chaining, and Modified Induction Step. Let's see how this works for our example.

```
(implies (and (integer-listp x)
                        (integer-listp y))
                  (integer-listp (app x y)))
In this case, using induction based on (integer-listp x), we have
        B = (endp x)
        H = (and (integer-listp x))
                  (integer-listp y))
        H'= (and (integer-listp (cdr x))
                  (integer-listp y))
        C = (integer-listp (app x y))
        C'= (integer-listp (app (cdr x) y))
The modified base case is then (collapsing ANDs)
        (implies (and (endp x)
                        (integer-listp x)
                        (integer-listp y))
                  (integer-listp (app x y)))
The induction hypothesis chaining is (collapsing ANDs again)
        (implies (and (not (endp x))
                        (integer-listp x)
                        (integer-listp y))
                  (and (integer-listp (cdr x))
                        (integer-listp y)))
and the modified induction step is (collapsing ANDs and redundant hypothesis)
        (implies (and (not (endp x))
                        (integer-listp x)
                        (integer-listp y)
                        (integer-listp (cdr x))
                        (integer-listp (app (cdr x) y)))
                  (integer-listp (app x y)))
```