CSU290 Lecture Notes Lecture 22 10 Nov 2008

Peter Dillinger

Implications by Induction

Proving by induction conjectures that are implications is espedially tricky. We will generate a
kind of roadmap for such proofs. Given definitional axioms

(integer-listp Xx)
(if (endp x)
(equal x nil)
(and (integerp (car x))
(integer-listp (cdr x))))

(app X Y)

(if (endp x)
y
(cons (car X)
(app (cdr x) y)))

Let us prove

(implies (and (integer-listp x)
(integer-listp y))
(integer-listp (app X V)))

This certainly requires induction because integer-1istp would have to walk over all the
elements of x to arrive at the assumption (integer-listp y). Also, we want to induct on
the variable x. The scheme we want is based on (integer-listp x). In fact, thisis the
same as the indudion scheme based on (true-listp x), because the test for the base
case and the parameters to the recursive call are the same. Here's the scheme:

(implies (endp Xx)
?)
(implies (and (not (endp x))
(let ((x (cdr x)))

?))
?)

And since @ is that big implication, the second proof obligation, the inductive step, is
particularly big and nasty. (By the way, (let ((x (cdr x))) ¢) is called the induction
hypothesis.) It's probably not even clear how to complete such a proof. So let's consider
such proofs in the abstract and figure out how to prove them.



Suppose we are trying to prove something of the form
(implies H C)

by induction. H is for “hypothesis” and c is for “conclusion.” And below we will use B for the
base test, H' for H with variables replaced for the induction hypothesis, and ¢ for ¢ with
variables replaced for the induction hypothesis. To prove (implies H C) by induction, we
need to prove

(implies B Base Case (old)
(implies H C))

(implies (and (not B) Induction Step (old)
(implies H' C'))
(implies H C))
Let's start with the base case. Because ((B AH) » C) =» (B = (H = C)) is a boolean tautology,
we can instead prove

(implies (and B H) Modified Base Case
C)

for the base case. Thus, we can use B and H as assumptions in proving C.
To simplify the induction step, we first make a similar change:

(implies (and (not B) Induction Step (not final)
H
(implies H' C'))
C)
Typically, we want to use c* in proving Cc. (For example, in our example, C is (integer-
listp (app X y)) andC' is (integer-listp (app (cdr x) y)).) Butinorderto

use C', we need to know that H'is true. We can assume (not B) and H in proving H', and this
is another proof obligation:

(implies (and (not B) Induction Hypothesis Chaining
H)
H')
Assuming we have proven this, that simplifies the induction step by two applications of
modus ponens, and we have the final form of the induction step:

(implies (and (not B) Modified Induction Step
H
HI
C"))
C)

So instead of some big formulas, we have a roadmap of what to prove with the Modified Base
Case, Induction Hypothesis Chaining, and Modified Induction Step. Let's see how this works
for our example.



(implies (and (integer-listp x)
(integer-listp y))
(integer-listp (app X Vv)))

In this case, using induction based on (integer-listp x), we have

B = (endp x)

H = (and (integer-listp X)
(integer-listp y))

H'=

(and (integer-listp (cdr x))
(integer-listp y))

C = (integer-listp (app X V))
C'= (integer-listp (app (cdr x) y))
The modified base case is then (collapsing ANDs)

(implies (and (endp x)
(integer-listp x)
(integer-listp y))

(integer-listp (app X v)))

The induction hypothesis chaining is (collapsing ANDs again)

(implies (and (not (endp X))
(integer-listp x)
(integer-listp y))

(and (integer-listp (cdr x))
(integer-listp y)))

and the modified induction step is (collapsing ANDs and redundant hypothesis)

(implies (and (not (endp x))
(integer-listp x)
(integer-listp y)
(integer-listp (cdr x))
(integer-listp (app (cdr x) y)))
(integer-listp (app X v)))



	Implications by Induction

