
DF-47-NARROW

Cat. DF-47-NARROW

Schlitzauslass mit hoher Induktion und mittlerer bis großer Wurfweite

Produktbeschreibung

Schlitzauslass mit hoher Induktion und mittlerer bis großer Wurfweite, Marke Koolair, Typ **DF-47-NARROW**, mit Länge __ mm und Luftdurchlassschlitz __. Erlaubt eine Schlitzverstellung von ±30° des Kerns (Schlitzauslass). Ermöglicht Dank der schmalen Schlitzausführung eine mittlere bis große Wurfweite. Dadurch erhält man einen hohen Klimakomfort, sowohl bei der Kühlung als auch bei der Heizung, und der Schlitzauslass bietet zudem eine überaus ansprechende Ästhetik. Diese Schlitzauslässe eignen sich für den Wand- und Deckeneinbau. for the possibility of installing at a greater height check with our Technical Department. Vollständig aus Aluminium-Spritzguss hergestellt. Empfohlene Einbauhöhe zwischen 2,5 und 6 m. Möglichkeit eines höheren Einbaus in Absprache mit der Technischen Abteilung.

Andere Typen

DF-47-NARRÓW-S. Schlitzauslass mit mittlerer bis großer Wurfweite und schmalem Rahmen mit 14 mm Breite.

DF-47-NARROW-IC. Im sichtbarer Rundkanal integrierter Schlitzauslass mit mittlerer bis großer Wurfweite

DF-47-NARROW-CC. Schlitzauslass mit mittlerer bis großer Wurfweite und mit Anpassung an einem sichtbarer Rundkanal.

DF-47-NARROW-TR. Schlitzauslass mit mittlerer bis großer Wurfweite, über Thermoelement selbstregelnd. Verfügbar in den Versionen **-CC** und **-IC**.

DF-47-NARROW-MT. Schlitzauslass mit mittlerer bis großer Wurfweite und mit motorisierter Betätigung. Verfügbar in den Versionen **-CC** und **-IC**.

DF-47-NARROW-I/R. Schlitzauslass mit mittlerer bis großer Wurfweite für Zu- und Abluft. Maßgeschneidertes Design, das genau auf die Anforderungen hinsichtlich Volumenstrom und Ästhetik abgestimmt ist.

Zubehör

MM. Mit Einbaurahmen. **T.** Mit Bohrungen zur Befestigung mithilfe von Schrauben.

PM. Mit Montagebrücke.

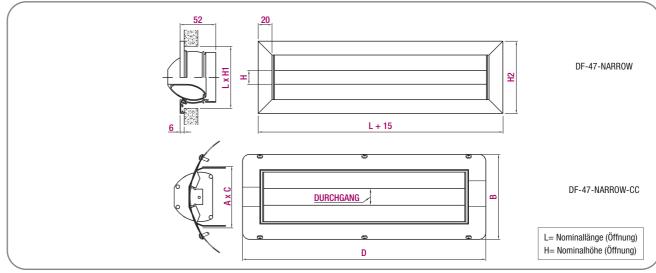
PFL-RL. Festmontierter Anschlusskasten aus verzinktem Stahlblech, ohne Isolierung.

PFL-A-RL. Festmontierter Anschlusskasten aus verzinktem Stahlblech, mit Isolierung.

PDL-RL. Abnehmbarer Anschlusskasten aus verzinktem Stahlblech, ohne Isolierung.

PDL-A-RL. Abnehmbarer Anschlusskasten aus verzinktem Stahlblech, mit Isolierung.

RFS06. Schiebe-Regelklappe


O. Mit Lamellenregelklappe mit gegenlaufenden Gliedern. G. 2. Ablenkung, individuell verstellbare Vertikal-Lamellen.

PR. Dekoratives Lochblech in schwarzer Farbausführung, um den Einblick in Luftauslass-Abschnitte ohne Anschlusskasten zu verhindern (dekorativ oder Abluft ohne Luftführung).

Hinweis: Auf Anfrage isolierter/nicht isolierter Anschlusskasten mit oberseitigem Anschluss verfügbar (PFS-A-RE/PFS-RE / PDS-A-RE/PDS-RE).

Kerelmar

Allgemeine Abmessungen

Möglichkeit der Maßanfertigung eines Anschlusskastens gemäß der verfügbaren Höhe in der Zwischendecke.

DF-47-NARROW-CC

DURCHGANG										
NENNGRÖSSE	15		20		30		40		50	
(Ø DUCT)	Α	В	Α	В	Α	В	Α	В	Α	В
200	85	113	88	115	97	123	97	120	-	-
250	84	113	89	118	97	123	106	133	115	138
300	84	113	89	118	97	126	106	133	115	141
315	83	113	89	118	97	126	106	133	116	143
355	83	113	88	118	97	126	107	136	116	146
400	83	113	88	118	97	126	107	136	117	146
450	83	114	88	119	96	126	106	136	117	146
500	83	114	88	119	96	126	106	136	117	146
560	83	114	88	119	96	126	106	136	117	146
630	83	114	88	119	96	127	104	135	116	146
710	83	114	88	119	96	127	104	135	116	146
800	83	114	88	119	96	127	104	135	116	146
900	83	114	88	119	96	127	104	135	116	146

ı	LIN	neit	ın	mm	

LÄNGE	С	D
500	500	525
600 700	600 700	625 725
800 900	800	825 925
1000	900 1000	1025
1100	1100 1200	1125 1225
1200	1200	1225

Einheit in mm
DF-47-NARROW

Н	H1	H2
15	85	100
20	90	105
30	100	115
40	110	125
50	120	135

Einheit in mm

Auswahltabelle

(Volumenstrom pro laufender Meter Schlitzauslass)

Größe	Abmessung	Q (m³/h)	L _{wA} [dB(A)]	ΔP_{t} (Pa)	X _{0,3}	X _{0,5}	X _{1,0}	V _k (m/s)
15		280	24	20	8,3	5,0	2,5	7,2
	1000	450	32	51	13,4	8,0	4,0	11,6
		700	40	124	20,8	12,5	6,2	18,0
20 1000		400	24	21	10,3	6,2	3,1	7,7
	1000	570	32	43	14,7	8,8	4,4	11,0
		800	40	85	20,7	12,4	6,2	15,5
30		485	24	14	9,0	5,4	2,7	4,8
	1000	675	32	27	12,5	7,5	3,8	6,7
		925	40	51	17,1	10,3	5,1	9,2
40		600	24	12	9,6	5,8	2,9	4,5
	1000	825	32	22	13,2	7,9	4,0	6,1
		1150	40	43	18,4	11,0	5,5	8,5
50		625	24	8	8,9	5,4	2,7	3,7
	1000	925	32	19	13,2	7,9	4,0	5,5
		1350	40	40	19,3	11,6	5,8	8,0

DF-47-Narrow - I/R

SYMBOLE

Q (m³/h): Volumenstrom. L_{wA} [dB(A)]: Schallleistungspegel. ΔP_t (Pa): Druckverlust. $X_{0.3}$ - $X_{0.5}$ - $X_{1.0}$ (m): Eindringtiefe für eine Endgeschwindigkeit des Luftstrahls von 0,3, 0,5 bzw. 1,0 m/s unter isothermischen Bedingungen ($\Delta T = 0$ °C).

V_k (m/s): Effektive Austrittsgeschwindigkeit

112