Constructing the Deuring Correspondence with Applications to Supersingular Isogeny-Based Cryptography

Dimitrij Ray

August 3, 2018

Contents

Introduction

2 Supersingular Elliptic Curves & SIDH

- Elliptic curves
- Isogenies
- SIDH

3 Constructing the Deuring Correspondence

- Quaternion algebra
- The Deuring correspondence

▲ 同 ▶ ▲ 三 ▶

The first public-key cryptosystem

Diffie-Hellman key exchange (1976)

Image source: Wikimedia Commons

▶ ∢ ≣

Introduction

Supersingular Elliptic Curves & SIDH Constructing the Deuring Correspondence Appendix

Enter quantum computers

Image source: D-Wave Systems

 "Algorithms for quantum computation: Discrete logarithms and factoring" (Peter Shor, 1994)

< D > < A > < B >

Introduction

Supersingular Elliptic Curves & SIDH Constructing the Deuring Correspondence Appendix

SIDH to the rescue

- Supersingular Isogeny Diffie-Hellman (SIDH) by Jao and De Feo (2011)
- Uses isogenies between supersingular elliptic curves

→ < ∃→

Introduction

Supersingular Elliptic Curves & SIDH Constructing the Deuring Correspondence Appendix

Curves!

- SIDH uses "initial" curve E_0 over \mathbb{F}_{p^2} as its parameter, where E_0 has a certain number of points.
- Proposal by Costello, Longa, Naehrig (2016): use $E_0: y^2 = x^3 + x$ over \mathbb{F}_{p^2} where $p = 2^{372}3^{239} - 1$.
- Constructing random curves might be difficult

< □ > < 同 > < 三 >

 The Kohel-Lauter-Petit-Tignol algorithm, used in an attack and a signature scheme.

Elliptic curves Isogenies SIDH

Elliptic curves

Definition

An elliptic curve over a field K is a nonsingular projective curve of genus one with a specified base point O.

When the field K is not of characteristic 2 or 3, an elliptic curve can be written as

$$y^2 = x^3 + Ax + B$$

where $A, B \in K$.

< D > < A > < B > < B >

Supersingular Elliptic Curves & SIDH Constructing the Deuring Correspondence Elliptic curves Isogenies SIDH

Elliptic curves

 $y^2 = x^3 + 3x + 1$ over $\mathbb R$

Dimitrij Ray Constructing the Deuring Correspondence

e Technische Universiteit Eindhoven University of Technology

TU

< ロ > < 回 > < 回 > < 回 > < 回 >

Elliptic curves Isogenies SIDH

Elliptic curves

$$y^{2} = x^{3} + Ax + B, \quad A, B \in K$$

 $j = 1728 \frac{4A^{3}}{4A^{3} + 27B^{2}}.$

- Elliptic curves E_1 and E_2 isomorphic over \overline{K} if and only if $j(E_1) = j(E_2)$ (important for SIDH!).
- Set of points form an abelian group.

(日)

Technische Ur Eindhoven

Elliptic curves Isogenies SIDH

Isogenies

Definition

Let E_1 and E_2 be elliptic curves. An *isogeny* from E_1 to E_2 is a morphism

 $\phi: E_1 \to E_2$

such that $\phi(O_{E_1}) = O_{E_2}$. Two elliptic curves E_1 and E_2 are *isogenous* if there exists an isogeny from E_1 to E_2 where $\phi(E_1) \neq \{O_{E_2}\}$.

- Isogenies are birational maps.
- We can compute isogenies from its kernel (and vice versa).

• □ > • □ > • □ > ·

Elliptic curves Isogenies SIDH

One ring to rule some of them

- An isogeny from a curve *E* to itself is called an *endomorphism*. The set of all endomorphisms of *E* forms a ring, called the *endomorphism ring*.
- Some endomorphisms:
 - The multiply-by-m map [m]
 - If E/\mathbb{F}_q The Frobenius map $\pi:(x,y)\mapsto (x^q,y^q)$
 - If a curve is supersingular, there are less obvious ones \rightarrow "unusual".

< ロ > < 同 > < 三 > < 三

Elliptic curves Isogenies SIDH

Endomorphism ring

Theorem

Let E be an elliptic curve defined over a field K. The endomorphism ring of E is either:

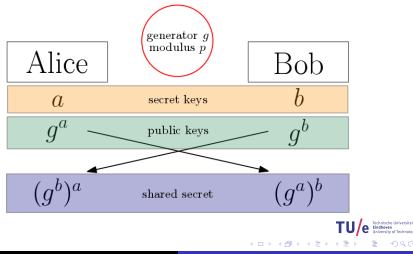
- the ring \mathbb{Z} ,
- an order in an imaginary quadratic field, or
- I a maximal order in a quaternion algebra.

If char(K) = 0, only the first two are possible.

< D > < A > < B > < B >

Elliptic curves Isogenies SIDH

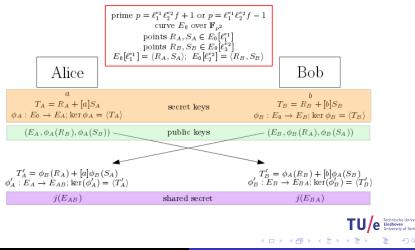
The Diffie-Hellman key exchange



Dimitrij Ray Constructing the Deuring Correspondence

Elliptic curves Isogenies SIDH

The Jao-De Feo algorithm (SIDH)



Quaternion algebra The Deuring correspondence

Quaternion algebra

Definition

A quaternion algebra B over a field K not of characteristic 2 is an algebra with basis 1, i, j, k for B as a K-vector space, such that

$$\mathbf{i}^2 = a, \ \mathbf{j}^2 = b, \ \text{ and } \mathbf{k} = \mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i}$$

for some fixed $a, b \in K^*$. This quaternion algebra is denoted $\left(\frac{a,b}{K}\right)$.

Quaternion algebras are **NOT** commutative.

< ロ > < 同 > < 三 > < 三

Quaternion algebra The Deuring correspondence

Reduced norm

Definition

Let $\alpha = t + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ where $t, x, y, z \in K$ be an element of a quaternion algebra. The reduced norm of α are

 $\operatorname{nrd}(\alpha) = \alpha \bar{\alpha},$

where

$$\bar{\alpha} = t - x\mathbf{i} - y\mathbf{j} - z\mathbf{k}.$$

Dimitrij Ray Constructing the Deuring Correspondence

(日)

Technische U Eindhoven

Quaternion algebra The Deuring correspondence

There, and back again: Deuring correspondence

Definition

Let *B* be a finite-dimensional \mathbb{Q} -algebra. An order $\mathcal{O} \subset B$ is a lattice that is also a subring of *B*. An order is *maximal* if it is not properly contained in another order.

- Deuring's correspondence:
 - The endomorphism ring is isomorphic to a maximal order in the quaternion algebra $B = \begin{pmatrix} a, b \\ \mathbb{O} \end{pmatrix}$.
 - For every maximal order in *B*, there exists a supersingular elliptic curve whose endomorphism ring is isomorphic to it.
- The elements a and b depend on the prime p.

Quaternion algebra The Deuring correspondence

Constructing the Deuring correspondence

Given: a curve E_0 with a known endomorphism ring $\mathcal{O}_0;$ a maximal order \mathcal{O}

- Construct a left ideal I of \mathcal{O}_0 such that there exists an elliptic curve E' with endomorphism ring \mathcal{O} and an isogeny $\phi_I : E_0 \mapsto E'$ with kernel I. (uses KLPT)
- **2** Compute the isogeny $\phi_I : E_0 \mapsto E'$.
- **③** Using the isogeny, compute E'.

< ロ > < 同 > < 三 > < 三 >

Quaternion algebra The Deuring correspondence

KLPT in a nutshell

- Curve defined over \mathbb{F}_{p^2} where $p \equiv 3 \pmod{4}$.
- $B = \left(\frac{-1,-p}{\mathbb{Q}}\right)$
- Uses the maximal order

$$\mathcal{O}_0 = \left\langle 1, \mathbf{i}, \frac{1+\mathbf{k}}{2}, \frac{\mathbf{i}+\mathbf{j}}{2} \right\rangle \subseteq B.$$

isomorphic to the endomorphism ring of

$$E_0: y^2 = x^3 + x.$$

• Constructing the left ideal I to have powersmooth norm \rightarrow allows the isogeny construction to be efficient. TU/e

Quaternion algebra The Deuring correspondence

Implementation

The Sage program is available at: https://github.com/dimitrijray/masters-thesis

Quaternion algebra The Deuring correspondence

Thank you!

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.

Image: xkcd

< □ > < □ > < □ > < □ >

< E

Technische Universitei Eindhoven

The KLPT algorithm

• Let \mathcal{O}_0 be the maximal order that is generated as a \mathbb{Z} -module as

$$\mathcal{O}_0 = \left\langle 1, \mathbf{i}, \frac{1+\mathbf{k}}{2}, \frac{\mathbf{i}+\mathbf{j}}{2} \right\rangle \subseteq B.$$

• The order \mathcal{O}_0 is isomorphic to the endomorphism ring of the curve

$$E_0: y^2 = x^3 + x.$$

• □ > • □ > • □ > ·

TU/e Technische U

A 3 b

The KLPT algorithm

Let I be a left \mathcal{O} -ideal, then:

- **1** Compute the ideal:
 - Compute an element $\delta \in I$ and an ideal $I' = I\overline{\delta}/ \operatorname{nrd}(I)$ of some prime norm N.
 - Fix a powersmoothness bound s = (7/2) log p and an odd s-powersmooth number S. Find β ∈ I' with norm NS.
 - **3** Output $J = I'\bar{\beta}/N$.

< D > < A > < B > < B >

The KLPT algorithm

Let I be a left \mathcal{O} -ideal, then:

- Ompute the isogeny:
 - Write the norm of J as its prime factorization $\operatorname{nrd}(J) = \prod_{i=1}^{r} \ell_{\underline{i}}^{e_i}$ and write $J = \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle$.

2 Let
$$\varphi_0 = [1]_{E_0}^{i-1}$$
. For every $1 \le i \le r$:

- Compute a basis (P_i, Q_i) of $E_0[\ell_i^{e_i}]$.
- **2** For every generator α_k of J, compute $\alpha_k(P_i)$ and $\alpha_k(Q_i)$.
- Find a point R_i of order ℓ_i such that α_k(R_i) = O for all k. This point generates ker φ_I ∩ E₀[ℓ_i^{e_i}].
- Compute an isogeny ϕ_i with kernel generated by $\varphi_{i-1}(R_i)$, then compute the composition $\varphi_i = \phi_i \varphi_{i-1}$.

< ロ > < 同 > < 三 > < 三

TU/e Technische Universiteit

Constructing an ideal of prime norm

• Target: an ideal I' that is equivalent to the input ideal I but with prime norm.

• i.e.
$$I' = Iq$$
, $q \in B$, $nrd(I')$ prime.

Lemma

Let I be a left \mathcal{O} -ideal of reduced norm $\operatorname{nrd}(I)$ and δ an element of I, then $I\gamma$, where $\gamma = \overline{\delta}/\operatorname{nrd}(I)$ is a left \mathcal{O} -ideal of norm $\operatorname{nrd}(\delta)/\operatorname{nrd}(I)$.

< D > < A > < B > < B >

Constructing an ideal of powersmooth norm

- Target: find an element β of I' with norm NS where N is prime and S is powersmooth.
- If such an element found: construct $J = I'\bar{\beta}/N$. We have nrd(J) = S, thus powersmooth.
- Powersmoothness needed for the isogeny computation step, since we will be solving DLP.
- Finding β requires solving *sum-of-squares problem*: given positive integers d and m such that gcd(d,m) = 1, determine integers (x, y) such that

$$x^2 + dy^2 = m.$$

• Can be solved with Cornacchia's algorithm.

Searching for β

- Alternative 1: do a brute force search for all β with norm NS such that $I'\bar\beta\subseteq N\mathcal{O}_0$
- Write $\beta = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$, and then solve the norm equation

$$a^2 + b^2 + p(c^2 + d^2) = NS$$

using Cornacchia

• Will later see that this is not efficient.

< D > < A > < B > < B >

Searching for β

- Alternative 2: write $\beta = \beta_1 \beta'_2$, whose norms are NS_1 and S_2 respectively, where S_1 and S_2 are powersmooth numbers.
- To construct each β : write $I' = N\mathcal{O}_0 + \mathcal{O}_0 \alpha$, where $\alpha \in I'$ such that $gcd(N^2, nrd(\alpha)) = N$
- The element β_1 is then constructed like before: solve

$$a^2 + b^2 = NS_1 - p(c^2 + d^2).$$

< ロ > < 同 > < 三 > < 三

• Find an element β_2 of the form $C\mathbf{j} + D\mathbf{k}$ which solves

$$(\mathcal{O}_0\beta_1)\beta_2 = \mathcal{O}_0\alpha \mod N\mathcal{O}_0.$$

• How likely to find a solution?

Solving for β'_2

Proposition

Let $\alpha \in I'$, $\beta_1 \in \mathcal{O}_0$, and $\beta_2 \in \mathbb{Z}\mathbf{j} + \mathbb{Z}\mathbf{k}$. Consider the equation of ideals

$$(\mathcal{O}_0\beta_1)\beta_2 = (\mathcal{O}_0\alpha) \mod N\mathcal{O}_0.$$

If N is inert, the equation is always solvable.
 If N is split, it is solvable with probability ^{N²-2N+3}/_{(N+1)²}.

< D > < P > < P > < P >

Technische Eindhoven

Solving for β'_2

Lemma

The quotient ring $\mathcal{O}_0/N\mathcal{O}_0$ is a quaternion algebra over $\mathbb{Z}/N\mathbb{Z}$.

Lemma

The quotient ring $\mathcal{O}_0/N\mathcal{O}_0$ is isomorphic to the matrix ring $M_2(\mathbb{Z}/N\mathbb{Z})$.

Corollary

The quotient ring $\mathcal{O}_0/N\mathcal{O}_0$ has N+1 nontrivial left ideals.

< D > < A > < B > < B >

Solving for β'_2

Lemma

Let R be the ring $\mathbb{Z} + \mathbb{Z}\mathbf{i}$ and let \mathcal{L} be the set of all nontrivial left \mathcal{O}_0 -ideals. The map

$$\rho: \quad \mathcal{L} \times (R/NR)^* \to \mathcal{L}$$
$$(I,\beta) \mapsto I\beta$$

is a group action whose kernel is $(\mathbb{Z}/N\mathbb{Z})^*$.

- If N is split in R, the group action has an orbit of size N-1 and two fixed points.
- 2) If N is inert in R, the group action has only one orbit.

Universiteit

Solving for β'_2 : after β_2

- Find an element β'_2 such that $\beta'_2 = \lambda \beta_2 \mod N\mathcal{O}_0$ and $\operatorname{nrd}(\beta'_2) = S_2$ for some $\lambda \in (\mathbb{Z}/N\mathbb{Z})^*$.
- Want this β'_2 to be of the form

$$\beta_2' = v + w\mathbf{i} + x\mathbf{j} + y\mathbf{k}.$$

Solve:

$$v^2 + w^2 + p(x^2 + y^2) = S_2.$$

(日)

Eindhoven

Solving for β'_2 : after β_2

• Condition that $\beta_2' = \lambda \beta_2 \pmod{N\mathcal{O}_0}$ is equivalent to

v = aN w = bN $x = \lambda C + cN$ $y = \lambda D + dN,$

for some $a, b, c, d \in \mathbb{Z}$. Substitute for v, w, x, y.

Yields

$$N^{2}(a^{2} + b^{2}) + p\left((\lambda C + cN)^{2} + (\lambda D + dN)^{2}\right) = S_{2}.$$

• Consider modulo N and N^2 , then use Cornacchia. The transformation of the transfo

Computing isogenies

- Need to find the kernel of the isogeny: the set of points P such that $\alpha(P) = O$ for all $\alpha \in J$, the output ideal.
- What is $\alpha(P)$?
- Let $\phi : (x, y) \mapsto (-x, \iota y)$ be the "square root of -1" map, and $\pi : (x, y) \mapsto (x^p, y^p)$ be the Frobenius map. There is an isomorphism of quaternion algebras:

$$\theta: \quad B_{p,\infty} \to \operatorname{End}(E_0) \otimes \mathbb{Q}$$
$$(1, \mathbf{i}, \mathbf{j}, \mathbf{k}) \mapsto ([1], \phi, \pi, \phi\pi)$$

< ロ > < 同 > < 三 > < 三 >

Computing isogenies

- Write $\alpha = a_1 + a_2 \mathbf{i} + a_3 \mathbf{j} + a_4 \mathbf{k}$
- Compute

$$\alpha(P) = [a_1]P + [a_2]\pi(P) + [a_3]\phi(P) + [a_4]\phi(\pi(P)).$$

Computing isogenies

- Strategy: compute the kernels (and therefore the isogenies) in E₀[l^{ei}_i] for each prime factor l^{ei}_i of nrd(J), then compose them Chinese remainder theorem-style.
- Compute a basis of each $E_0[\ell_i^{e_i}]$. Let $\{P_i, Q_i\}$ be a basis.
- Compute $\alpha(P_i)$ and $\alpha(Q_i)$ for every α in the basis of J
- Compute a point R_i on $E_0[\ell_i^{e_i}]$ which satisfies $\alpha(R_i) = O$ for all $\alpha \in J$ using linear algebra.
- Compute an isogeny with kernel generated by $\varphi_{i-1}(R_i)$, where $\varphi_0 = [1]_{E_0}$. Proceed through all *i* step-by-step, constructing the full isogeny by composition.

< ロ > < 同 > < 三 > < 三

A potential improvement

- Recall: a step in the algorithm involved constructing an element β of norm NS
- Since I' has norm N, we can write

$$I' = N\mathcal{O}_0 + \mathcal{O}_0 \alpha$$

where $\alpha \in I'$ such that $gcd(nrd(\alpha), N^2) = N$.

• Condition $I'\bar{\beta}\subseteq N\mathcal{O}_0$ is equivalent to

$$(\mathcal{O}_0\alpha)\bar{\beta} = \mathbf{0} \pmod{N\mathcal{O}_0}$$

where $\mathbf{0}$ is the zero ideal.

A potential improvement

• The equation of ideals is then equivalent to

$$\alpha\bar{\beta} = 0 \pmod{N\mathcal{O}_0}$$

- $\beta = \alpha \pmod{N\mathcal{O}_0}$ is a solution.
- Rewrite this solution as

$$\beta = \alpha + Nu + Nv\mathbf{i} + Nw\mathbf{j} + Nx\mathbf{k}$$

for some u, v, w, $x \in \frac{1}{2}\mathbb{Z}$.

- Solving the norm equation gives a family of solutions $(v, w, x) = \lambda(b, c, d)$ for some λ .
- May help the KLPT algorithm by plugging back the family of solutions and solving a generalized sum-of-squares problem.

Enumerating powersmooth numbers S_1 and S_2

- Galbraith, Petit, Silva (2017) gave bounds: $S_1 > p \log p$ and $S_2 > p^3 \log p$
- Let s be the powersmooth bound and let ℓ_i be the *i*-th odd prime.

• □ ▶ • □ ▶ • □ ▶

Initializing S_1

For S_1 :

Set S₁ = ℓ^{e₁}₁, where e₁ = ⌊(⌊log_{ℓ1} s⌋)/2⌋) and set i = 2.
While S₁ i</sub> > 0, replace S₁ by S₁ · ℓ^{e_i}_i where

$$e_i = \left\lfloor \frac{\lfloor \log_{\ell_i} s \rfloor}{2} \right\rfloor$$

Increment *i*.

(日)

Technische Un Eindhoven

Initializing S_2

For S_2 :

- Set $S_2 = \ell_1^{e_1}$, where $e_1 = \lceil (\lfloor \log_{\ell_1} s \rfloor)/2 \rceil$ and set i = 2.
- While $S_2 \le p^3 \log p$ and $e_i > 0$, replace S_2 by $S_2 \cdot \ell_i^{e_i}$ where

$$e_i = \left| \frac{\lfloor \log_{\ell_i} s \rfloor}{2} \right|$$

Increment *i*.

(日)

Technische U Eindhoven

Enumerating powersmooth numbers S_1 and S_2

- When lower bound is not satisfied: multiply by small primes.
- Otherwise, raise the powersmoothness bound.

Constructing a random input ideal

- Construct a random upper-triangular integer matrix U of nonzero square determinant.
- Put generators of \mathcal{O}_0 in a vector \mathbf{b}
- Compute $\mathbf{x} = \mathbf{U}\mathbf{b}$
- Check whether x generates an ideal.

Constructing a random input ideal

Proposition

Let U be a matrix and b a vector of generators of \mathcal{O}_0 . If Ub generates an ideal, then det(U) is a square.

Corollary

If Ub generates an ideal I, then

$$\operatorname{nrd}(I) = \sqrt{\operatorname{det}(\mathbf{U})}.$$

Dimitrij Ray Constructing the Deuring Correspondence

< D > < P > < P > < P >

Constructing a random input ideal

- $\bullet \ O(n^6)$ possible lattices constructed this way.
- There are n+1 possible ideals when n is prime.
- Expected running time is $O(n^5)$.

Constructing an ideal of prime norm

- Let $m = \lceil \log p \rceil$ and let $\{b_1, b_2, b_3, b_4\}$ be the generators of I
- Perform an exhaustive search for a 4-tuple $(x_1, x_2, x_3, x_4) \in [-m, m]^4$ of integers until we find an element δ , where

$$\delta = x_1 b_1 + x_2 b_2 + x_3 b_3 + x_4 b_4$$

- δ should satisfy that $N := \operatorname{nrd}(\delta) / \operatorname{nrd}(I)$ is a prime.
- Construct the ideal $I' = I\overline{\delta}/\operatorname{nrd}(I)$.

< ロ > < 同 > < 三 > < 三

Constructing an ideal of powersmooth norm - Alternative 1

• Randomly choose β until β satisfies

$$I'\bar{\beta} = \mathbf{0} \pmod{N\mathcal{O}_0}$$

- There are $\frac{1}{N+3} \mathcal{O}_0/N\mathcal{O}_0$ -ideals, hence runs in O(N).
- From Galbraith, Petit, Silva (2017), N is $O(\sqrt{p})$. Asymptotically exponential.

< ロ > < 同 > < 三 > < 三 >

Constructing an ideal of powersmooth norm - Alternative 2

Need to solve:

$$(\mathcal{O}_0\beta_1)\beta_2 = \mathcal{O}_0\alpha \pmod{N\mathcal{O}_0}$$

for $\beta_2 = C\mathbf{j} + D\mathbf{k}$.

- KLPT suggests using explicit isomorphism to $M_2(\mathbb{Z}/N\mathbb{Z})$.
- We used more elementary approach.

Solve

$$\beta_1 \beta_2 = u\alpha \pmod{N\mathcal{O}_0}$$

for (β_2, u) where u is a unit.

Constructing an ideal of powersmooth norm -Alternative 2

• Write
$$u = u_1 + u_2 \mathbf{i} + u_3 \mathbf{j} + u_4 \mathbf{k}$$
,
 $\beta_1 = b_1 + b_2 \mathbf{i} + b_3 \mathbf{j} + b_4 \mathbf{k}$, and $\alpha = a_1 + a_2 \mathbf{i} + a_3 \mathbf{j} + a_4 \mathbf{k}$.

• We have the following homogeneous system of equations modulo N:

$$\begin{bmatrix} -pb_3 & -pb_4 & -a_1 & a_2 & pa_3 & pa_4 \\ -pb_4 & pb_3 & -a_2 & -a_1 & -pa_4 & pa_3 \\ b_1 & -b_2 & -a_3 & a_4 & -a_1 & -a_2 \\ b_2 & b_1 & -a_4 & -a_3 & a_2 & -a_1 \end{bmatrix} \begin{bmatrix} C \\ D \\ u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Constructing an ideal of powersmooth norm -Alternative 2

• Requirement that β_2 and u are units not reflected in matrix, hence needs some criteria.

Constructing an ideal of powersmooth norm -Alternative 2

Proposition

Let β_1 and α be the generators of the ideals $(\mathcal{O}_0\beta_1)$ and $(\mathcal{O}_0\alpha)$, respectively. Solving the equation of ideals

$$(\mathcal{O}_0\beta_1)\beta_2 = (\mathcal{O}_0\alpha) \pmod{N\mathcal{O}_0}$$

for $\beta_2 = \mathbb{Z}\mathbf{j} + \mathbb{Z}\mathbf{k}$ is equivalent to solving the linear system of equations

$$\beta_1\beta_2 = u\alpha \pmod{N\mathcal{O}_0}.$$

for units β_2 and u. If the solution space of the system is a 4-dimensional $\mathbb{Z}/N\mathbb{Z}$ -vector space, there is always a valid solution. If the solution space of the system is 3-dimensional, a family of valid solutions exist if and only if the nonzero solutions for β_2 are generated by a unit.

Universiteit

イロト イボト イヨト イヨト

Computing the isogeny

- Factor $nrd(J) \rightarrow$ since powersmooth, is not expensive; if constructed like proposed a few slides ago, factorization known.
- Compute the basis for the torsion groups: pick random points P_i and Q_i in $E_0[\ell_i^{e_i}]$ with the correct order.
- Check for independence. Enough to check $[\ell^{e-1}]P$ and $[\ell^{e-1}]Q$ using DLP.

Proposition

Let P and Q be points on E_0 of order ℓ^e . If P and Q do not span $E_0[\ell^e]$, then $[\ell^{e-1}]P$ and $[\ell^{e-1}]Q$ are dependent.

of Technology

< ロ > < 同 > < 三 > < 三 >

Computing the isogeny

- Compute the point R_i such that $\alpha(R_i) = O$ for every generator α of J:
- Write $\alpha(P_i) = [A]P_i + [B]Q_i$ and $\alpha(Q_i) = [C]P_i + [D]Q_i$.
- The integers A, B, C, D are determined by solving a generalized discrete logarithm problem.
- Construct the matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

whose nullspace is the set of points $R'_i \in E_0[\ell_i^{e_i}]$ where $\alpha(R'_i) = 0.$ TU/e

・ 同 ト ・ ヨ ト ・ ヨ

Computing the isogeny

- Once we have the nullspaces for each matrix corresponding to each generator α of J, we intersect the nullspaces and choose a point R_i of order ℓ^{e_i}_i in the intersection.
- Such a point R_i will be the generator of a generating set of the kernel of the output isogeny in $E_0[\ell_i^{e_i}]$ with which we perform the composition of isogenies.

• □ ▶ • □ ▶ • □ ▶

Performance

p	S_1	S_2	Largest	Running time of	Running time of
			extension	ideals step (sec.)	isogenies step (sec.)
431	4515	8948537162565	$GF(431^{84})$	0.47	443.11
431	4515	8948537162565	$GF(431^{84})$	0.45	407.32
431	4515	8948537162565	$GF(431^{84})$	0.43	460.69
1619	17017	621058354640325	$GF(1619^{84})$	0.48	718.34

Issues

- Choosing S₂ as described earlier gives abysmal success rate despite satisfying the lower bound p³ log p.
- The *n*-torsion points involved in the computation of the isogeny might be in large extensions of the initial field.

• □ ▶ • □ ▶ • □ ▶

Possible solutions

- Simply increase S_2 or increase p.
- Optimizing choices made in the computation involving S_2
- Replacing powersmooth condition with (e.g.) smooth
- Pick powersmooth numbers S_1 , S_2 such that resulting extension is small.

Dimitrii Rav

- We have given our implementation details for the KLPT algorithm and suggested an improvement.
- There are some issues which impact the implementation.

Future work

- Optimizing sum-of-squares
- Smoothness vs. powersmoothness
- Looking into the suggested improvement.

4 3 b