Constructing the Deuring Correspondence with Applications to Supersingular Isogeny-Based Cryptography

Dimitrij Ray
Q \(\begin{aligned} \& Technische Universiteit
\& Eindhoven
\& University of Technology\end{aligned}\)

August 3, 2018

Contents

(1) Introduction
(2) Supersingular Elliptic Curves \& SIDH

- Elliptic curves
- Isogenies
- SIDH
(3) Constructing the Deuring Correspondence
- Quaternion algebra
- The Deuring correspondence

The first public-key cryptosystem

Diffie-Hellman key exchange (1976)

Enter quantum computers

Image source: D-Wave Systems

- "Algorithms for quantum computation: Discrete logarithms and factoring" (Peter Shor, 1994)

SIDH to the rescue

- Supersingular Isogeny Diffie-Hellman (SIDH) by Jao and De Feo (2011)
- Uses isogenies between supersingular elliptic curves

TU/e

Curves!

- SIDH uses "initial" curve E_{0} over $\mathbb{F}_{p^{2}}$ as its parameter, where E_{0} has a certain number of points.
- Proposal by Costello, Longa, Naehrig (2016): use $E_{0}: y^{2}=x^{3}+x$ over $\mathbb{F}_{p^{2}}$ where $p=2^{372} 3^{239}-1$.
- Constructing random curves might be difficult
- The Kohel-Lauter-Petit-Tignol algorithm, used in an attack and a signature scheme.

Technische Universiteit
Eindhoven Technische
Eindhoven
University of University of Technology

Elliptic curves

Definition

An elliptic curve over a field K is a nonsingular projective curve of genus one with a specified base point O.

When the field K is not of characteristic 2 or 3 , an elliptic curve can be written as

$$
y^{2}=x^{3}+A x+B
$$

where $A, B \in K$.

Elliptic curves

TU／e
Technische Universiteit Eindhoven University of Technology三 \quad 〇の＠

Dimitrij Ray

Elliptic curves

$$
\begin{gathered}
y^{2}=x^{3}+A x+B, \quad A, B \in K \\
j=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}} .
\end{gathered}
$$

- Elliptic curves E_{1} and E_{2} isomorphic over \bar{K} if and only if $j\left(E_{1}\right)=j\left(E_{2}\right)$ (important for SIDH!).
- Set of points form an abelian group.

Isogenies

Definition

Let E_{1} and E_{2} be elliptic curves. An isogeny from E_{1} to E_{2} is a morphism

$$
\phi: E_{1} \rightarrow E_{2}
$$

such that $\phi\left(O_{E_{1}}\right)=O_{E_{2}}$. Two elliptic curves E_{1} and E_{2} are isogenous if there exists an isogeny from E_{1} to E_{2} where $\phi\left(E_{1}\right) \neq\left\{O_{E_{2}}\right\}$.

- Isogenies are birational maps.
- We can compute isogenies from its kernel (and vice versa).

One ring to rule some of them

－An isogeny from a curve E to itself is called an endomorphism．The set of all endomorphisms of E forms a ring，called the endomorphism ring．
－Some endomorphisms：
－The multiply－by－m map［ m ］
－If E / \mathbb{F}_{q} The Frobenius map $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$
－If a curve is supersingular，there are less obvious ones \rightarrow ＂unusual＂．

Endomorphism ring

Theorem

Let E be an elliptic curve defined over a field K. The endomorphism ring of E is either:
(1) the ring \mathbb{Z},
(2) an order in an imaginary quadratic field, or
(3) a maximal order in a quaternion algebra.

If $\operatorname{char}(K)=0$, only the first two are possible.

The Diffie-Hellman key exchange

TU/e

The Jao－De Feo algorithm（SIDH）

TU／e

Quaternion algebra

Definition

A quaternion algebra B over a field K not of characteristic 2 is an algebra with basis $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ for B as a K－vector space， such that

$$
\mathbf{i}^{2}=a, \mathbf{j}^{2}=b, \quad \text { and } \mathbf{k}=\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}
$$

for some fixed $a, b \in K^{*}$ ．
This quaternion algebra is denoted $\left(\frac{a, b}{K}\right)$ ．
Quaternion algebras are NOT commutative．

Reduced norm

Definition

Let $\alpha=t+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ where $t, x, y, z \in K$ be an element of a quaternion algebra. The reduced norm of α are

$$
\operatorname{nrd}(\alpha)=\alpha \bar{\alpha},
$$

where

$$
\bar{\alpha}=t-x \mathbf{i}-y \mathbf{j}-z \mathbf{k} .
$$

TU/e

There, and back again: Deuring correspondence

Definition

Let B be a finite-dimensional \mathbb{Q}-algebra. An order $\mathcal{O} \subset B$ is a lattice that is also a subring of B. An order is maximal if it is not properly contained in another order.

- Deuring's correspondence:
- The endomorphism ring is isomorphic to a maximal order in the quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right)$.
- For every maximal order in B, there exists a supersingular elliptic curve whose endomorphism ring is isomorphic to it.
- The elements a and b depend on the prime p.

Constructing the Deuring correspondence

Given: a curve E_{0} with a known endomorphism ring \mathcal{O}_{0}; a maximal order \mathcal{O}
(1) Construct a left ideal I of \mathcal{O}_{0} such that there exists an elliptic curve E^{\prime} with endomorphism ring \mathcal{O} and an isogeny $\phi_{I}: E_{0} \mapsto E^{\prime}$ with kernel I. (uses KLPT)
(2) Compute the isogeny $\phi_{I}: E_{0} \mapsto E^{\prime}$.
(Using the isogeny, compute E^{\prime}.

KLPT in a nutshell

- Curve defined over $\mathbb{F}_{p^{2}}$ where $p \equiv 3(\bmod 4)$.
- $B=\left(\frac{-1,-p}{\mathbb{Q}}\right)$
- Uses the maximal order

$$
\mathcal{O}_{0}=\left\langle 1, \mathbf{i}, \frac{1+\mathbf{k}}{2}, \frac{\mathbf{i}+\mathbf{j}}{2}\right\rangle \subseteq B
$$

isomorphic to the endomorphism ring of

$$
E_{0}: y^{2}=x^{3}+x
$$

- Constructing the left ideal I to have powersmooth norm \rightarrow allows the isogeny construction to be efficient. TU/e

Implementation

The Sage program is available at: https://github.com/dimitrijray/masters-thesis

Thank you!

Image: xkcd

The KLPT algorithm

- Let \mathcal{O}_{0} be the maximal order that is generated as a \mathbb{Z}-module as

$$
\mathcal{O}_{0}=\left\langle 1, \mathbf{i}, \frac{1+\mathbf{k}}{2}, \frac{\mathbf{i}+\mathbf{j}}{2}\right\rangle \subseteq B
$$

- The order \mathcal{O}_{0} is isomorphic to the endomorphism ring of the curve

$$
E_{0}: y^{2}=x^{3}+x
$$

TU/e

The KLPT algorithm

Let I be a left \mathcal{O}-ideal, then:
(1) Compute the ideal:
(1) Compute an element $\delta \in I$ and an ideal $I^{\prime}=I \bar{\delta} / \operatorname{nrd}(I)$ of some prime norm N.
(2) Fix a powersmoothness bound $s=(7 / 2) \log p$ and an odd s-powersmooth number S. Find $\beta \in I^{\prime}$ with norm $N S$.
(3) Output $J=I^{\prime} \bar{\beta} / N$.

The KLPT algorithm

Let I be a left \mathcal{O}-ideal, then:
(2) Compute the isogeny:
(1) Write the norm of J as its prime factorization $\operatorname{nrd}(J)=\prod_{i=1}^{r} \ell_{i}^{e_{i}}$ and write $J=\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$.
(2) Let $\varphi_{0}=[1]_{E_{0}}$. For every $1 \leq i \leq r$:
(1) Compute a basis $\left(P_{i}, Q_{i}\right)$ of $E_{0}\left[\ell_{i}^{e_{i}}\right]$.
(2) For every generator α_{k} of J, compute $\alpha_{k}\left(P_{i}\right)$ and $\alpha_{k}\left(Q_{i}\right)$.
(3) Find a point R_{i} of order ℓ_{i} such that $\alpha_{k}\left(R_{i}\right)=O$ for all k. This point generates $\operatorname{ker} \phi_{I} \cap E_{0}\left[\ell_{i}^{e_{i}}\right]$.
(1) Compute an isogeny ϕ_{i} with kernel generated by $\varphi_{i-1}\left(R_{i}\right)$, then compute the composition $\varphi_{i}=\phi_{i} \varphi_{i-1}$.

Constructing an ideal of prime norm

- Target: an ideal I^{\prime} that is equivalent to the input ideal I but with prime norm.
- i.e. $I^{\prime}=I q, q \in B, \operatorname{nrd}\left(I^{\prime}\right)$ prime.

Lemma

Let I be a left \mathcal{O}-ideal of reduced norm $\operatorname{nrd}(I)$ and δ an element of I, then $I \gamma$, where $\gamma=\bar{\delta} / \operatorname{nrd}(I)$ is a left \mathcal{O}-ideal of norm $\operatorname{nrd}(\delta) / \operatorname{nrd}(I)$.

Constructing an ideal of powersmooth norm

- Target: find an element β of I^{\prime} with norm $N S$ where N is prime and S is powersmooth.
- If such an element found: construct $J=I^{\prime} \bar{\beta} / N$. We have $\operatorname{nrd}(J)=S$, thus powersmooth.
- Powersmoothness needed for the isogeny computation step, since we will be solving DLP.
- Finding β requires solving sum-of-squares problem: given positive integers d and m such that $\operatorname{gcd}(d, m)=1$, determine integers (x, y) such that

$$
x^{2}+d y^{2}=m .
$$

- Can be solved with Cornacchia's algorithm.

Searching for β

- Alternative 1: do a brute force search for all β with norm $N S$ such that $I^{\prime} \bar{\beta} \subseteq N \mathcal{O}_{0}$
- Write $\beta=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$, and then solve the norm equation

$$
a^{2}+b^{2}+p\left(c^{2}+d^{2}\right)=N S
$$

using Cornacchia

- Will later see that this is not efficient.

Searching for β

- Alternative 2: write $\beta=\beta_{1} \beta_{2}^{\prime}$, whose norms are $N S_{1}$ and S_{2} respectively, where S_{1} and S_{2} are powersmooth numbers.
- To construct each β : write $I^{\prime}=N \mathcal{O}_{0}+\mathcal{O}_{0} \alpha$, where $\alpha \in I^{\prime}$ such that $\operatorname{gcd}\left(N^{2}, \operatorname{nrd}(\alpha)\right)=N$
- The element β_{1} is then constructed like before: solve

$$
a^{2}+b^{2}=N S_{1}-p\left(c^{2}+d^{2}\right)
$$

Solving for β_{2}^{\prime}

- Find an element β_{2} of the form $C \mathbf{j}+D \mathbf{k}$ which solves

$$
\left(\mathcal{O}_{0} \beta_{1}\right) \beta_{2}=\mathcal{O}_{0} \alpha \quad \bmod N \mathcal{O}_{0}
$$

- How likely to find a solution?

TU/e

Solving for β_{2}^{\prime}

Proposition

Let $\alpha \in I^{\prime}, \beta_{1} \in \mathcal{O}_{0}$, and $\beta_{2} \in \mathbb{Z} \mathbf{j}+\mathbb{Z} \mathbf{k}$. Consider the equation of ideals

$$
\left(\mathcal{O}_{0} \beta_{1}\right) \beta_{2}=\left(\mathcal{O}_{0} \alpha\right) \quad \bmod N \mathcal{O}_{0}
$$

(1) If N is inert, the equation is always solvable.
(2) If N is split, it is solvable with probability $\frac{N^{2}-2 N+3}{(N+1)^{2}}$.

Solving for β_{2}^{\prime}

Lemma

The quotient ring $\mathcal{O}_{0} / N \mathcal{O}_{0}$ is a quaternion algebra over $\mathbb{Z} / N \mathbb{Z}$.

Lemma

The quotient ring $\mathcal{O}_{0} / N \mathcal{O}_{0}$ is isomorphic to the matrix ring $M_{2}(\mathbb{Z} / N \mathbb{Z})$.

Corollary

The quotient ring $\mathcal{O}_{0} / N \mathcal{O}_{0}$ has $N+1$ nontrivial left ideals.

Solving for β_{2}^{\prime}

Lemma

Let R be the ring $\mathbb{Z}+\mathbb{Z} \mathbf{i}$ and let \mathcal{L} be the set of all nontrivial left \mathcal{O}_{0}-ideals. The map

$$
\begin{aligned}
\rho: \quad \mathcal{L} \times(R / N R)^{*} & \rightarrow \mathcal{L} \\
(I, \beta) & \mapsto I \beta
\end{aligned}
$$

is a group action whose kernel is $(\mathbb{Z} / N \mathbb{Z})^{*}$.
(1) If N is split in R, the group action has an orbit of size $N-1$ and two fixed points.
(2) If N is inert in R, the group action has only one orbit.

Solving for β_{2}^{\prime} : after β_{2}

- Find an element β_{2}^{\prime} such that $\beta_{2}^{\prime}=\lambda \beta_{2} \bmod N \mathcal{O}_{0}$ and $\operatorname{nrd}\left(\beta_{2}^{\prime}\right)=S_{2}$ for some $\lambda \in(\mathbb{Z} / N \mathbb{Z})^{*}$.
- Want this β_{2}^{\prime} to be of the form

$$
\beta_{2}^{\prime}=v+w \mathbf{i}+x \mathbf{j}+y \mathbf{k} .
$$

- Solve:

$$
v^{2}+w^{2}+p\left(x^{2}+y^{2}\right)=S_{2} .
$$

Solving for β_{2}^{\prime} : after β_{2}

- Condition that $\beta_{2}^{\prime}=\lambda \beta_{2}\left(\bmod N \mathcal{O}_{0}\right)$ is equivalent to

$$
\begin{aligned}
v & =a N \\
w & =b N \\
x & =\lambda C+c N \\
y & =\lambda D+d N
\end{aligned}
$$

for some $a, b, c, d \in \mathbb{Z}$. Substitute for v, w, x, y.

- Yields

$$
N^{2}\left(a^{2}+b^{2}\right)+p\left((\lambda C+c N)^{2}+(\lambda D+d N)^{2}\right)=S_{2}
$$

- Consider modulo N and N^{2}, then use Cornacchia. TU/e

Computing isogenies

- Need to find the kernel of the isogeny: the set of points P such that $\alpha(P)=O$ for all $\alpha \in J$, the output ideal.
- What is $\alpha(P)$?
- Let $\phi:(x, y) \mapsto(-x, \iota y)$ be the "square root of -1 " map, and $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ be the Frobenius map. There is an isomorphism of quaternion algebras:

$$
\begin{aligned}
\theta: \quad B_{p, \infty} & \rightarrow \operatorname{End}\left(E_{0}\right) \otimes \mathbb{Q} \\
(1, \mathbf{i}, \mathbf{j}, \mathbf{k}) & \mapsto([1], \phi, \pi, \phi \pi)
\end{aligned}
$$

TU/e

Computing isogenies

- Write $\alpha=a_{1}+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k}$
- Compute

$$
\alpha(P)=\left[a_{1}\right] P+\left[a_{2}\right] \pi(P)+\left[a_{3}\right] \phi(P)+\left[a_{4}\right] \phi(\pi(P)) .
$$

TU/e

Computing isogenies

- Strategy: compute the kernels (and therefore the isogenies) in $E_{0}\left[\ell_{i}^{e_{i}}\right]$ for each prime factor $\ell_{i}^{e_{i}}$ of $\operatorname{nrd}(J)$, then compose them Chinese remainder theorem-style.
- Compute a basis of each $E_{0}\left[\ell_{i}^{e_{i}}\right]$. Let $\left\{P_{i}, Q_{i}\right\}$ be a basis.
- Compute $\alpha\left(P_{i}\right)$ and $\alpha\left(Q_{i}\right)$ for every α in the basis of J
- Compute a point R_{i} on $E_{0}\left[\ell_{i}^{e_{i}}\right]$ which satisfies $\alpha\left(R_{i}\right)=O$ for all $\alpha \in J$ using linear algebra.
- Compute an isogeny with kernel generated by $\varphi_{i-1}\left(R_{i}\right)$, where $\varphi_{0}=[1]_{E_{0}}$. Proceed through all i step-by-step, constructing the full isogeny by composition.

A potential improvement

- Recall: a step in the algorithm involved constructing an element β of norm $N S$
- Since I^{\prime} has norm N, we can write

$$
I^{\prime}=N \mathcal{O}_{0}+\mathcal{O}_{0} \alpha
$$

where $\alpha \in I^{\prime}$ such that $\operatorname{gcd}\left(\operatorname{nrd}(\alpha), N^{2}\right)=N$.

- Condition $I^{\prime} \bar{\beta} \subseteq N \mathcal{O}_{0}$ is equivalent to

$$
\left(\mathcal{O}_{0} \alpha\right) \bar{\beta}=\mathbf{0} \quad\left(\bmod N \mathcal{O}_{0}\right)
$$

where $\mathbf{0}$ is the zero ideal.

A potential improvement

- The equation of ideals is then equivalent to

$$
\alpha \bar{\beta}=0 \quad\left(\bmod N \mathcal{O}_{0}\right)
$$

- $\beta=\alpha\left(\bmod N \mathcal{O}_{0}\right)$ is a solution.
- Rewrite this solution as

$$
\beta=\alpha+N u+N v \mathbf{i}+N w \mathbf{j}+N x \mathbf{k}
$$

for some $u, v, w, x \in \frac{1}{2} \mathbb{Z}$.

- Solving the norm equation gives a family of solutions $(v, w, x)=\lambda(b, c, d)$ for some λ.
- May help the KLPT algorithm by plugging back the family of solutions and solving a generalized sum-of-squares problem.

Enumerating powersmooth numbers S_{1} and S_{2}

- Galbraith, Petit, Silva (2017) gave bounds: $S_{1}>p \log p$ and $S_{2}>p^{3} \log p$
- Let s be the powersmooth bound and let ℓ_{i} be the i-th odd prime.

Initializing S_{1}

For S_{1} :
(1) Set $S_{1}=\ell_{1}^{e_{1}}$, where $\left.e_{1}=\left\lfloor\left(\left\lfloor\log _{\ell_{1}} s\right\rfloor\right) / 2\right\rfloor\right)$ and set $i=2$.
(2) While $S_{1} \leq p \log p$ and $e_{i}>0$, replace S_{1} by $S_{1} \cdot \ell_{i}^{e_{i}}$ where

$$
e_{i}=\left\lfloor\frac{\left\lfloor\log _{\ell_{i}} s\right\rfloor}{2}\right\rfloor .
$$

Increment i.

TU/e

Initializing S_{2}

For S_{2} :
(1) Set $S_{2}=\ell_{1}^{e_{1}}$, where $e_{1}=\left\lceil\left(\left\lfloor\log _{\ell_{1}} s\right\rfloor\right) / 2\right\rceil$ and set $i=2$.
(2) While $S_{2} \leq p^{3} \log p$ and $e_{i}>0$, replace S_{2} by $S_{2} \cdot \ell_{i}^{e_{i}}$ where

$$
e_{i}=\left\lceil\frac{\left\lfloor\log _{\ell_{i}} s\right\rfloor}{2}\right\rceil .
$$

Increment i.

TU/e

Enumerating powersmooth numbers S_{1} and S_{2}

- When lower bound is not satisfied: multiply by small primes.
- Otherwise, raise the powersmoothness bound.

Constructing a random input ideal

- Construct a random upper-triangular integer matrix \mathbf{U} of nonzero square determinant.
- Put generators of \mathcal{O}_{0} in a vector \mathbf{b}
- Compute $\mathbf{x}=\mathbf{U b}$
- Check whether \mathbf{x} generates an ideal.

Constructing a random input ideal

Proposition

Let \mathbf{U} be a matrix and \mathbf{b} a vector of generators of \mathcal{O}_{0}. If $\mathbf{U b}$ generates an ideal, then $\operatorname{det}(\mathbf{U})$ is a square.

Corollary

If Ub generates an ideal I, then

$$
\operatorname{nrd}(I)=\sqrt{\operatorname{det}(\mathbf{U})}
$$

TU/e

Constructing a random input ideal

- $O\left(n^{6}\right)$ possible lattices constructed this way.
- There are $n+1$ possible ideals when n is prime.
- Expected running time is $O\left(n^{5}\right)$.

Constructing an ideal of prime norm

- Let $m=\lceil\log p\rceil$ and let $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ be the generators of I
- Perform an exhaustive search for a 4-tuple $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in[-m, m]^{4}$ of integers until we find an element δ, where

$$
\delta=x_{1} b_{1}+x_{2} b_{2}+x_{3} b_{3}+x_{4} b_{4}
$$

- δ should satisfy that $N:=\operatorname{nrd}(\delta) / \operatorname{nrd}(I)$ is a prime.
- Construct the ideal $I^{\prime}=I \bar{\delta} / \operatorname{nrd}(I)$.

Constructing an ideal of powersmooth norm Alternative 1

- Randomly choose β until β satisfies

$$
I^{\prime} \bar{\beta}=\mathbf{0} \quad\left(\bmod N \mathcal{O}_{0}\right)
$$

- There are $\frac{1}{N+3} \mathcal{O}_{0} / N \mathcal{O}_{0}$-ideals, hence runs in $O(N)$.
- From Galbraith, Petit, Silva (2017), N is $O(\sqrt{p})$. Asymptotically exponential.

Constructing an ideal of powersmooth norm Alternative 2

- Need to solve:

$$
\left(\mathcal{O}_{0} \beta_{1}\right) \beta_{2}=\mathcal{O}_{0} \alpha \quad\left(\bmod N \mathcal{O}_{0}\right)
$$

for $\beta_{2}=C \mathbf{j}+D \mathbf{k}$.

- KLPT suggests using explicit isomorphism to $M_{2}(\mathbb{Z} / N \mathbb{Z})$.
- We used more elementary approach.
- Solve

$$
\beta_{1} \beta_{2}=u \alpha \quad\left(\bmod N \mathcal{O}_{0}\right)
$$

for $\left(\beta_{2}, u\right)$ where u is a unit.

Constructing an ideal of powersmooth norm Alternative 2

- Write $u=u_{1}+u_{2} \mathbf{i}+u_{3} \mathbf{j}+u_{4} \mathbf{k}$,

$$
\beta_{1}=b_{1}+b_{2} \mathbf{i}+b_{3} \mathbf{j}+b_{4} \mathbf{k}, \text { and } \alpha=a_{1}+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k}
$$

- We have the following homogeneous system of equations modulo N :

$$
\left[\begin{array}{cccccc}
-p b_{3} & -p b_{4} & -a_{1} & a_{2} & p a_{3} & p a_{4} \\
-p b_{4} & p b_{3} & -a_{2} & -a_{1} & -p a_{4} & p a_{3} \\
b_{1} & -b_{2} & -a_{3} & a_{4} & -a_{1} & -a_{2} \\
b_{2} & b_{1} & -a_{4} & -a_{3} & a_{2} & -a_{1}
\end{array}\right]\left[\begin{array}{c}
C \\
D \\
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Constructing an ideal of powersmooth norm Alternative 2

- Requirement that β_{2} and u are units not reflected in matrix, hence needs some criteria.

TU/e

Constructing an ideal of powersmooth norm Alternative 2

Proposition

Let β_{1} and α be the generators of the ideals $\left(\mathcal{O}_{0} \beta_{1}\right)$ and $\left(\mathcal{O}_{0} \alpha\right)$, respectively. Solving the equation of ideals

$$
\left(\mathcal{O}_{0} \beta_{1}\right) \beta_{2}=\left(\mathcal{O}_{0} \alpha\right) \quad\left(\bmod N \mathcal{O}_{0}\right)
$$

for $\beta_{2}=\mathbb{Z} \mathbf{j}+\mathbb{Z} \mathbf{k}$ is equivalent to solving the linear system of equations

$$
\beta_{1} \beta_{2}=u \alpha \quad\left(\bmod N \mathcal{O}_{0}\right)
$$

for units β_{2} and u. If the solution space of the system is a 4-dimensional $\mathbb{Z} / N \mathbb{Z}$-vector space, there is always a valid solution. If the solution space of the system is 3-dimensional, a family of valid solutions exist if and only if the nonzero solutions for β_{2} are generated by a unit.

Computing the isogeny

- Factor $\operatorname{nrd}(J) \rightarrow$ since powersmooth, is not expensive; if constructed like proposed a few slides ago, factorization known.
- Compute the basis for the torsion groups: pick random points P_{i} and Q_{i} in $E_{0}\left[\ell_{i}^{e_{i}}\right]$ with the correct order.
- Check for independence. Enough to check $\left[\ell^{e-1}\right] P$ and $\left[\ell^{e-1}\right] Q$ using DLP.

Proposition

Let P and Q be points on E_{0} of order ℓ^{e}. If P and Q do not span $E_{0}\left[\ell^{e}\right]$, then $\left[\ell^{e-1}\right] P$ and $\left[\ell^{e-1}\right] Q$ are dependent.

Computing the isogeny

- Compute the point R_{i} such that $\alpha\left(R_{i}\right)=O$ for every generator α of J :
- Write $\alpha\left(P_{i}\right)=[A] P_{i}+[B] Q_{i}$ and $\alpha\left(Q_{i}\right)=[C] P_{i}+[D] Q_{i}$.
- The integers A, B, C, D are determined by solving a generalized discrete logarithm problem.
- Construct the matrix

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

whose nullspace is the set of points $R_{i}^{\prime} \in E_{0}\left[\ell_{i}^{e_{i}}\right]$ where $\alpha\left(R_{i}^{\prime}\right)=0$.

Computing the isogeny

- Once we have the nullspaces for each matrix corresponding to each generator α of J, we intersect the nullspaces and choose a point R_{i} of order $\ell_{i}^{e_{i}}$ in the intersection.
- Such a point R_{i} will be the generator of a generating set of the kernel of the output isogeny in $E_{0}\left[\ell_{i}^{e_{i}}\right]$ with which we perform the composition of isogenies.

Performance

p	S_{1}	S_{2}	Largest extension	Running time of ideals step (sec.)	Running time of isogenies step (sec.)
431	4515	8948537162565	$G F\left(431^{84}\right)$	0.47	443.11
431	4515	8948537162565	$G F\left(431^{84}\right)$	0.45	407.32
431	4515	8948537162565	$G F\left(431^{84}\right)$	0.43	460.69
1619	17017	621058354640325	$G F\left(1619^{84}\right)$	0.48	718.34

Issues

- Choosing S_{2} as described earlier gives abysmal success rate despite satisfying the lower bound $p^{3} \log p$.
- The n-torsion points involved in the computation of the isogeny might be in large extensions of the initial field.

Possible solutions

- Simply increase S_{2} or increase p.
- Optimizing choices made in the computation involving S_{2}
- Replacing powersmooth condition with (e.g.) smooth
- Pick powersmooth numbers S_{1}, S_{2} such that resulting extension is small.

Conclusion

－We have given our implementation details for the KLPT algorithm and suggested an improvement．
－There are some issues which impact the implementation．

Future work

- Optimizing sum-of-squares
- Smoothness vs. powersmoothness
- Looking into the suggested improvement.

