MATH 2050A - HW 1 - Solutions

We would be using the following Lemmas.

Lemma 0.1. Let $A \subset \mathbb{R}$ be a subset. Suppose max A (resp. min A) exists. Then $\sup A = \max A$ (resp. inf $A = \min A$).

Proof. By definition of maximal element, $\max A$ is an upper bound of A.

Let $\epsilon > 0$. Then max $A - \epsilon < \max A$ while max $A \in A$ by definition of a maximal element.

Using equivalence definition of supremum, we have $\max A = \sup A$.

The respective result for minimum/infernum follows from that of supremum/maximum by considering -A and $\inf A = -\sup -A$

Lemma 0.2. Let $\phi \neq A, B \subset \mathbb{R}$ such that $A \subset B$. Suppose $\sup B$ exists. Then $\sup A$ exists and $\sup A \leq \sup B$.

Proof. Let $a \in A$. Then $a \in B$.

Since $\sup B$ exists and is an upper bounded of B, we have $a \leq \sup B$. Therefore, $\sup B$ is an upper bound of A and by Axiom of Completeness, $\sup A$ exists. Being the least upper bound, $\sup A \leq \sup B$.

Solutions

1 (P.39 Q4). Let
$$S_4 := \left\{ 1 - \frac{(-1)^n}{n} | n \in \mathbb{N} \right\}$$
. Find $\inf S_4$ and $\sup S_4$.

Solution. Define $x_n := 1 - \frac{(-1)^n}{n}$ for all $n \in \mathbb{N}$, so $S_4 = \{x_n\}_{n \in \mathbb{N}}$. Note that for all $k \in \mathbb{N}$, $x_{2k} = 1 - \frac{1}{2k} \le 1$ and $x_{2k-1} = 1 + \frac{1}{2k-1} \ge 1$.

Note that for all $k \in \mathbb{N}$, $x_{2k} = 1 - \frac{1}{2k} \leq 1$ and $x_{2k-1} = 1 + \frac{1}{2k-1} \geq 1$. Therefore, (x_{2k}) is an increasing sequence bounded above by 1 and (x_{2k-1}) is a decreasing sequence

bounded below by 1. Therefore, we have for all $j, k \in N$.

$$x_2 \le x_{2i} \le 1 \le x_{2k-1} \le x_1$$

Hence, $x_2 = \min\{x_n\}_{n \in \mathbb{N}} = \min S_4$ and $x_1 = \max\{x_n\}_{n \in \mathbb{N}} = \max S_4$. By Lemma 0.1, $\inf S_4 = \min S_4 = x_2 = \frac{1}{2}$ and $\sup S_4 = \max s_4 = x_1 = 2$

2 (P.39 Q10). Let $A, B \subset \mathbb{R}$ be bounded subsets. Show that

- (i) $A \cup B$ is a bounded set.
- (ii) $\sup(A \cup B) = \sup\{\sup A, \sup B\}$

Solution. We consider only non-empty A, B.

(i) Since A, B are bounded sets, their supremums and infernums exist. Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$. If $x \in A$ (resp. $x \in B$), then

 $\min\{\inf A, \inf B\} \le \inf A \ (resp. \inf B) \le x \le \sup A \ (resp. \sup B) \le \max\{\sup A, \sup B\}$

In either case, $A \cup B$ is both bounded above by $\max\{\sup A, \sup B\}$ and below by $\min\{\inf A, \inf B\}$ and is thus bounded.

(ii) We have already shown in (i) that A ∪ B is bounded above by max{sup A, sup B}, which by Lemma 0.1, is sup{sup A, sup B}. Thus, sup(A∪B) ≤ sup{sup A, sup B}. (Note that sup A∪B exists by the Axiom of Copmleteness)
For the other inequality, since A, B ⊂ A ∪ B and sup A ∪ B exists, by Lemma 0.2, we have sup A, sup B ≤ sup A ∪ B. Hence, sup{sup A, sup B} ≤ sup(A ∪ B)
The equality follows since ≤ is symmetric.

3 (P.39 Q12). Let $S \subset \mathbb{R}$. Suppose $s^* := \sup S \in S$. Show that $\sup(S \cup \{u\}) = \sup\{s^*, u\}$ for all $u \notin S$,

Solution. Observe that the proof of Q2 (ii) is still valid if we only assume A, B are bounded above (instead of being bounded). Therefore, for any non-empty bounded above subsets $\phi \neq A, B$, we still have

$$\sup(A \cup B) = \sup\{\sup A, \sup B\}$$

Back to the question. Let $u \notin S$. Since $\sup S \in S$, $\sup S < \infty$, that is supremum exists for S. So, S is bounded above.

Moreover, it is easy to see that $u = \max\{u\}$ since $\max\{u\} \in \{u\}$. So, by Lemma 0.1, $\sup\{u\} = u$ and so $\{u\}$ is bounded above.

By the above observation on Q2, we have

$$\sup(S \cup \{u\}) = \sup\{\sup S, \sup\{u\}\} = \sup\{s^*, u\}$$