MATH 150 MIDTERM 1 PRACTICE PROBLEMS

- **1.** Give an inductive definition for the following:
 - (i) Number of occurrences of connective \wedge in a formula φ . Similarly do for other connectives.
 - (ii) Number of occurrences of letter A in a formula φ .
 - (iii) Numer of occurrences of a formula $A \to B$ as a subformula in φ . In general do the same with an arbitrary formula ψ in place of $A \to B$.
 - (iv) Numer of symbols in φ that are not parentheses.
- 2. We make the following definitions:

ues of A and B
$\neg (A \leftrightarrow B).$
$\neg (A \land B).$
$\neg (A \lor B).$

Decide if the given set of connectives is complete or incomplete, and in each case justify your decision with an argument.

- $(a) \ \{\neg, \leftrightarrow\}.$
- (b) $\{ \rightarrow, \lor, \land \}$.
- (c) $\{\rightarrow, \leftrightarrow, \land$.
- (d) $\{\perp, \rightarrow\}$. (e) $\{\perp, \leftrightarrow\}$.
- (f) $\{\perp, \lor, \land\}$.
- (g) $\{\Delta, \rightarrow\}$.
- (h) $\{\Delta, \leftrightarrow\}$.
- (i) $\{\Delta, \neg\}$.
- (j) {NAND}.
- (\tilde{k}) NOR}.

3. Build the following circuits using the following units:

- (A) Unit NAND only.
- (B) Unit NOR only.
- (C) Both units NAND and NOR, but try to use minimum number of units.

Description of circuits: There are three lights, A, B and C. Input signals at A, B and C sending by sensors into the circuit are as follows: If the light is on then input signal is "1", if the light is off then input signal is "0". Output signals:

- (i) If one or more light is off, output signal is "1". If all of the lights are on, the output signal is "0".
- (ii) If two or more light is off, output signal is "1". If all of the lights are on, the output signal is "0".
- (iii) If precisely two lights are on then the output signal is "0". Otherwise the output signal is "1".
- (iv) If at least one, but not all lighs are on then the output signal is "0". Otherwise the output signal is "1".
- (v) If light A is on and precisely one of B, C is also on then the output signal is "1". Otherwise the output signal is "0".

4. Given is a set of formulas Σ . Decide if the following is correct, and justify by an argument.

- (a) $\Sigma \models A \to B$ or $\Sigma \models A \land \neg B$.
- (b) If $\Sigma \models A \lor B$ and $\Sigma \models \neg A$ then $\Sigma \models B$.
- (c) If $\Sigma \cup \{A \land B\}$ is not satisfiable then $\Sigma \models \neg A$ or $\Sigma \models \neg B$. (d) If $\Sigma \cup \{A \lor B\}$ is not satisfiable then $\Sigma \models \neg A$ and $\Sigma \models \neg B$.
- $\mathbf{2}$