MATH 150 MIDTERM 1 PRACTICE PROBLEMS

1. Give an inductive definition for the follwing:
(i) Number of occurences of connective \wedge in a formula φ. Similarly do for other connectives.
(ii) Number of occurrences of letter A in a formula φ.
(iii) Numer of occurrences of a formula $A \rightarrow B$ as a subformula in φ. In general do the same with an arbitrary formula ψ in place of $A \rightarrow B$.
(iv) Numer of symbols in φ that are not parentheses.
2. We make the following definitions:

$A \perp B$	is always false, regardless of the values of A and B.
$A \triangle B$	is tautologically equivalent to $\neg(A \leftrightarrow B)$.
NAND	is tautologically equivalent to $\neg(A \wedge B)$.
NOR	is tautologically equivalent to $\neg(A \vee B)$.

Decide if the given set of connectives is complete or incomplete, and in each case justify your decision with an argument.
(a) $\{\neg, \leftrightarrow\}$.
(b) $\{\rightarrow, \vee, \wedge\}$.
(c) $\{\rightarrow, \leftrightarrow, \wedge$.
(d) $\{\perp, \rightarrow\}$.
(e) $\{\perp, \leftrightarrow\}$.
(f) $\{\perp, \vee, \wedge\}$.
(g) $\{\triangle, \rightarrow\}$.
(h) $\{\triangle, \leftrightarrow\}$.
(i) $\{\triangle, \neg\}$.
(j) $\{$ NAND $\}$.
(k) NOR\}.
3. Build the following circuits using the following units:
(A) Unit NAND only.
(B) Unit NOR only.
(C) Both units NAND and NOR, but try to use minimum number of units.

Description of circuits: There are three lights, A, B and C. Input signals at A, B and C sending by sensors into the circuit are as follows: If the light is on then input signal is " 1 ", if the light is off then input signal is " 0 ". Output signals:
(i) If one or more light is off, output signal is " 1 ". If all of the lights are on, the output signal is " 0 ".
(ii) If two or more light is off, output signal is "1". If all of the lights are on, the output signal is " 0 ".
(iii) If precisely two lights are on then the output signal is " 0 ". Otherwise the output signal is " 1 ".
(iv) If at least one, but not all lighs are on then the output signal is " 0 ". Otherwise the output signal is " 1 ".
(v) If light A is on and precisely one of B, C is also on then the output signal is " 1 ". Otherwise the output signal is " 0 ".
4. Given is a set of formulas Σ. Decide if the following is correct, and justify by an argument.
(a) $\Sigma \models A \rightarrow B$ or $\Sigma \models A \wedge \neg B$.
(b) If $\Sigma \models A \vee B$ and $\Sigma \models \neg A$ then $\Sigma \models B$.
(c) If $\Sigma \cup\{A \wedge B\}$ is not satisfiable then $\Sigma \models \neg A$ or $\Sigma \models \neg B$.
(d) If $\Sigma \cup\{A \vee B\}$ is not satisfiable then $\Sigma \models \neg A$ and $\Sigma \models \neg B$.

