Prof. Mathias Schacht, Fabian Hundertmark

Übungen zur Grapentheorie 2 - Blatt 11

Besprechung am 26. Januar 2012

- Eine Mengenfamilie heißt ein Δ-System, wenn je zwei dieser Mengen den gleichen Durchschnitt haben. Zeige, dass jede unendliche Familie von Mengen gleicher endlicher Kardinalität ein unendliches Δ-System enthält.
- 2. Zeige: Zu jedem $r \in \mathbb{N}$ und jedem Baum T existiert ein $k \in \mathbb{N}$ mit der Eigenschaft, dass jeder Graph G mit $\chi(G) \geqslant k$ und $\omega(G) < r$ eine Unterteilung von T als Teilgraphen enthält, bei der keine zwei in T nicht benachbarten Verzweigungsecken in G benachbart sind.
- 3. Zeige, dass für jedes $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert, so dass jeder tripartite 3-uniforme Hypergraph \mathcal{H} mit Partitionsklassen $V_1, V_2, V_3, |V_i| = n \ge n_0$ und $\delta_1(\mathcal{H}) \ge (\frac{2}{3} + \varepsilon)n^2$ ein perfektes Matching besitzt.

Für allgemeine 3-uniforme Hypergraphen \mathcal{H} auf n=3m Ecken können wir ein perfektes Matching erzwingen, wenn wir $\delta_1(\mathcal{H}) \geqslant (\frac{5}{9}+\varepsilon)\binom{n}{2}$ oder $\delta_2(\mathcal{H}) \geqslant (\frac{1}{2}+\varepsilon)n$ verlangen. In der folgenden Aufgabe wollen wir zeigen, dass diese Schranken bis auf das ε bestmöglich sind:

- 4. Zeige, dass es für jedes $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass es für jedes $n \ge n_0$ einen 3-uniformen Hypergraphen \mathcal{H} bzw. \mathcal{H}' auf n Ecken gibt, der kein perfektes Matching enthält und die folgende Bedingung erfüllt:
 - (i) $\delta_1(\mathcal{H}) \geqslant (\frac{5}{9} \varepsilon) \binom{n}{2}$, bzw.
 - (ii) $\delta_2(\mathcal{H}') \geqslant (\frac{1}{2} \varepsilon)n$.

Zusatzaufgabe:

5.⁺ Zeige, dass ein Graph auf \mathbb{R} weder einen vollständigen noch einen kantenlosen Untergraphen auf $|\mathbb{R}|=2^{\aleph_0}$ Ecken zu haben braucht. (Der Satz von Ramsey ist also nicht auf überabzählbare Mengen verallgemeinerbar.)

Hinweise

- 1. Finde zuerst unendlich viele Mengen, deren paarweise Schnitte alle gleich groß sind.
- 2. Die Aufgabe enthält ein Überangebot an Information. Kapitel 6.2 gibt Aufschluss darüber, was davon relevant ist.
- 3. Betrachte ein maximales Matching M und nehme an, es sei nicht perfekt. Wie viele Kanten kann \mathcal{H} haben, ohne dass ein Verbesserungsweg zu M existiert?
- 4. Versuche die Konstruktionen aus der Vorlesung auf 3-uniforme Hypergraphen zu verallgemeinern:
 - (i) Platz
 - (ii) Parität
- $5.^+$ Wähle eine Wohlordnung auf $\mathbb R,$ und vergleiche sie mit der natürlichen Ordnung. Benutze, dass jede abzählbare Vereinigung abzählbarer Mengen abzählbar ist.