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1. Let N be the set of all matrices in GLn(K) with exactly one non-zero entry in
every row and every column. Show that N is a closed subgroup of GLn(K), that
its identity component N◦ = Dn is the subgroup of diagonal matrices, that N has
n! connected components and that N is the normaliser of Dn.

2. Give examples of non-closed subgroups of GL2(C) and compute their closures.

3. Describe the Hopf algebra structures on the coordinate rings of Ga and GLn.

4. Prove that a T0 topological group is already T2. Show that an infinite linear
algebraic group is always T0 but never T2. Explain the discrepancy!

5. Show that the product of irreducible affine K-varieties is again irreducible.
This fails for non-algebraically closed fields K: exhibit zero divisors in C⊗R C.
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