
Monographie



# Komplexometrische (chelatometrische) Titrationen

Peter Bruttel, überarbeitet von Iris Kalkman und Lucia Meier





# Inhaltsverzeichnis

| vorwort                                                       | 06    |
|---------------------------------------------------------------|-------|
| Theoretische Grundlagen                                       | 07-23 |
| Indikation des Titrationsäquivalenzpunktes                    | 09–23 |
| Visuell oder photometrisch                                    | 09    |
| Potentiometrisch                                              | 10–11 |
| Häufig verwendete Komplexbildner/Titriermittel                | 12    |
| Pufferlösungen                                                | 13    |
| Maskierung                                                    | 14    |
| Farbindikatoren                                               | 15–21 |
| Herstellung der Masslösungen                                  | 22    |
| Titerbestimmungen                                             | 22–23 |
| Beispiele aus der Praxis                                      | 24-39 |
| Wasserhärten, Calcium und Magnesium                           | 24-29 |
| Potentiometrische Titration mit der Ca-ISE                    | 25–26 |
| Potentiometrische Titration mit der Cu-ISE                    | 26–27 |
| Photometrische Titration mit der Optrode bei 610 nm           | 27–29 |
| Aluminium und Magnesium, Legierungen und Anacida              | 29-31 |
| Potentiometrische Titration mit der Cu-ISE                    | 29–31 |
| Magnesium und Zink                                            | 31-33 |
| Potentiometrische Titration mit der Cu-ISE                    | 31–33 |
| Aluminium, Calcium, Eisen und Magnesium in Zement und Klinker | 33-37 |
| Photometrische Titrationen mit der Optrode bei 610 nm         | 33–37 |
| Sulfat                                                        | 38-39 |
| Potentiometrisch mit der Ca-ISE                               | 38–39 |
| Einzelbestimmungen                                            | 39-92 |
| AI – Aluminium                                                | 39-42 |
| Allgemeines                                                   | 39–40 |
| Potentiometrisch mit der Cu-ISE                               | 40-41 |
| Photometrisch mit der Optrode bei 610 nm                      | 41–42 |
| Ba – Barium und Sr – Strontium                                | 43-45 |
| Allgemeines                                                   | 43    |
| Potentiometrisch mit der Cu-ISE                               | 44    |
| Photometrisch mit der Optrode bei 574 nm                      | 45    |
| Bi – Bismut                                                   | 46-48 |
| Allgemeines                                                   | 46    |
| Potentiometrisch mit der Cu-ISE                               | 46–47 |
| Photometrisch mit der Optrode bei 520 nm                      | 47–48 |
| Ca – Calcium                                                  | 48-51 |
| Allgemeines                                                   | 48–49 |
| Potentiometrisch mit der Ca-ISE                               | 49–50 |
| Potentiometrisch mit der Cu-ISE                               | 50    |
| Photometrisch mit der Optrode bei 610 nm                      | 51    |
| The content of the detaphone between the                      | J1    |

| Cd – Cadmium                             | 52-54 |
|------------------------------------------|-------|
| Allgemeines                              | 52    |
| Potentiometrisch mit der Cu-ISE          | 52–53 |
| Photometrisch mit der Optrode bei 610 nm | 53–54 |
| Co – Cobalt                              | 54-56 |
| Allgemeines                              | 54    |
| Potentiometrisch mit der Cu-ISE          | 55    |
| Photometrisch mit der Optrode bei 574 nm | 56    |
| Cu – Kupfer                              | 57–59 |
| Allgemeines                              | 57    |
| Potentiometrisch mit der Cu-ISE          | 58    |
| Photometrisch mit der Optrode bei 520 nm | 59    |
| Fe – Eisen                               | 60-62 |
| Allgemeines                              | 60    |
| Potentiometrisch mit der Cu-ISE          | 61    |
| Photometrisch mit der Optrode bei 610 nm | 62    |
| Ga – Gallium und In – Indium             | 63-65 |
| Allgemeines                              | 63    |
| Potentiometrisch mit der Cu-ISE          | 63–64 |
| Photometrisch mit der Optrode bei 610 nm | 65    |
| Hg – Quecksilber                         | 66-67 |
| Allgemeines                              | 66    |
| Photometrisch mit der Optrode bei 502 nm | 67    |
| Mg – Magnesium                           | 68-70 |
| Allgemeines                              | 68    |
| Potentiometrisch mit der Cu-ISE          | 68–69 |
| Photometrisch mit der Optrode bei 610 nm | 69–70 |
| Mn – Mangan                              | 70-73 |
| Allgemeines                              | 70–71 |
| Potentiometrisch mit der Cu-ISE          | 71–72 |
| Photometrisch mit der Optrode bei 610 nm | 72–73 |
| Ni – Nickel                              | 73-76 |
| Allgemeines                              | 73–74 |
| Potentiometrisch mit der Cu-ISE          | 74–75 |
| Photometrisch mit der Optrode bei 574 nm | 75–76 |
| Pb – Blei                                | 76-79 |
| Allgemeines                              | 76–77 |
| Potentiometrisch mit der Cu-ISE          | 77–78 |
| Photometrisch mit der Optrode bei 574 nm | 78–79 |
| Pd – Palladium                           | 79–80 |
| Allgemeines                              | 79    |
| Photometrisch mit der Optrode bei 610 nm | 80    |

| Sn – Zinn                                                   | 81-82 |
|-------------------------------------------------------------|-------|
| Allgemeines                                                 | 81    |
| Photometrisch mit der Optrode bei 574 nm                    | 81–82 |
| Th – Thorium                                                | 82-84 |
| Allgemeines                                                 | 82-83 |
| Photometrisch mit der Optrode bei 574 nm                    | 83-84 |
| TI – Thallium                                               | 84-86 |
| Allgemeines                                                 | 84    |
| Potentiometrisch mit der Cu-ISE                             | 85–86 |
| Photometrisch mit der Optrode bei 610 nm                    | 86    |
| Zn – Zink                                                   | 87-89 |
| Allgemeines                                                 | 87    |
| Potentiometrisch mit der Cu-ISE                             | 87–88 |
| Photometrisch mit der Optrode bei 610 nm                    | 88–89 |
| Zr – Zirkonium und Hf – Hafnium                             | 89-92 |
| Allgemeines                                                 | 89–90 |
| Potentiometrisch mit der Cu-ISE                             | 90–91 |
| Photometrisch mit der Optrode bei 520 nm                    | 91–92 |
| Inhang                                                      | 93-95 |
| Index                                                       | 93-94 |
| Photometrische Indikationen des Titrationsäquivalenzpunktes | 95    |
| Abbildungsverzeichnis                                       | 96-98 |

# Vorwort

06

Gerold Schwarzenbach entdeckte im Jahr 1945, dass Aminocarbonsäuren (z. B. NTA, EDTA) mit Metallionen stabile Komplexe bilden. Auf Basis dieser Entdeckung entwickelte er die komplexometrische Titration, die ab 1950 zunehmend Anerkennung gewann, insbesondere zur Bestimmung der Wasserhärte. Bald wurden neben Calcium und Magnesium auch andere Metallionen tit-

riert. Der Einsatz von neuen Farbindikatoren bzw. Maskierungsmitteln
erlaubte auch die Bestimmung von
Metallionengemischen. Heutzutage
sind komplexometrische Titrationen
neben Säure-Base-, Redox- und Fällungstitrationen die am häufigsten
angewandten massanalytischen Verfahren und werden in vielen internationalen Normen und Richtlinien
empfohlen.



# Theoretische Grundlagen

Als *Komplexe* bezeichnet man alle aus einzelnen Ionen oder Molekülen zusammengesetzten Teilchen der Form [ML<sub>n</sub>]<sup>±z</sup>.

Die Koordinationszahl gibt an, wie viele einzähnige Liganden (auch Komplexbildner) gebunden sind. In wässrigen Lösungen liegen Kationen meist als Aquakomplexe der Form [M(OH<sub>2</sub>)<sub>4</sub>]<sup>2+</sup> oder [M(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup> vor.

Unter Zähnigkeit versteht man die Anzahl der Koordinationsstellen des Liganden. Komplexe mit mehrzähnigen Liganden heissen Chelate.

Für die Stabilität von Komplexen sind thermodynamische und kinetische Faktoren bestimmend. Ein Mass für die thermodynamische Stabilität ist die Komplexbildungskonstante  $K_f$  bzw. die Dissoziationskonstante  $K = 1/K_f$ 

Die Stabilität der Metallkomplexe kann z. B. durch die folgende vereinfachende Gleichung (hier mit EDTA als Ligand) beschrieben werden:

$$K_f = \frac{\left[\text{MeEDTA}^{2^{-}}\right] \times \left[\text{H}_3\text{O}^{+}\right]^2}{\left[\text{Me}^{2^{+}}\right] \times \left[\text{H}_2\text{EDTA}^{2^{-}}\right]}$$

In Tabellen wird die Komplexbildungskonstante meist als log  $K_{\rm f}$  angegeben. Je grösser log  $K_{\rm f}$  ist, desto stabiler ist der Komplex. Die effektiven Komplexbildungskonstanten werden generell durch Protonen (Säuren) erniedrigt, da diese in Konkurrenz zu den Metallionen mit dem Komplexbildner reagieren – sie protonieren z. B. seine Carboxylgruppe.

Als Faustregel gilt:

- Komplexbildungskonstante < 10;</li>
   Titration alkalisch (z. B. Ca<sup>2+</sup>, Mg<sup>2+</sup>)
- Komplexbildungskonstante > 15;
   Titration leicht sauer (z. B. Al<sup>3+</sup>, Pb<sup>2+</sup>)
   (Fe<sup>3+</sup> und Bi<sup>3+</sup> sind sogar noch bei pH = 2 titrierbar).

Titrationen müssen in gepufferten Lösungen durchgeführt werden, da bei der Komplexbildungsreaktion stets Protonen freigesetzt werden. An den folgenden Beispielen sei dies kurz erläutert:

$$Ca^{2+} + Na_2H_2EDTA + 2 H_2O \rightarrow [CaEDTA]^{2-} + 2 Na^+ + 2 H_3O^+$$

$$Al^{3+} + Na_2H_2EDTA + 2 H_2O \rightarrow$$
  
[AIEDTA]<sup>-</sup> + 2 H<sub>3</sub>O<sup>+</sup> + 2 Na<sup>+</sup>

Mit wenigen Ausnahmen bilden die zur Titration verwendeten Chelatbildner mit Metallionen 1:1-Komplexe, egal ob es sich um Metallionen mit der Ladungszahl z = 2+ oder z = 3+ handelt.

| - 4 |     | -  |    |
|-----|-----|----|----|
| 1   | ١.  |    | ال |
| u   | - 1 |    | _  |
|     | //  | ٧. |    |

| Metallion | EDTA <sup>1</sup> | <b>EGTA</b> <sup>2</sup> | DCTA <sup>2</sup> | DTPA <sup>2</sup> | NTA <sup>2</sup> |
|-----------|-------------------|--------------------------|-------------------|-------------------|------------------|
| Al(III)   | 16.4              | 13.9                     | 18.6              | 18.4              | 9.5              |
| Ba(II)    | 7.9               | 8.4                      | 8.6               | 8.6               | 4.8              |
| Bi(III)   | 27.8 <sup>a</sup> | 23.8                     | 31.2              | 29.7              | _                |
| Ca(II)    | 10.7              | 11.0                     | 12.5              | 10.7              | 6.4              |
| Cd(II)    | 16.5              | 16.7                     | 19.2              | 19.3              | 9.5              |
| Co(II)    | 16.5              | 12.5                     | 18.9              | 18.4              | 10.4             |
| Co(III)   | 41.4              | _                        | _                 | _                 | _                |
| Cr(II)    | 13.6ª             | _                        | _                 | _                 | _                |
| Cr(III)   | 23.4ª             | 2.5                      | _                 | _                 | > 10.0           |
| Cu(II)    | 18.8              | 17.8                     | 21.3              | 21.5              | 13.0             |
| Fe(II)    | 14.3              | 11.9                     | 16.3              | 16.6              | 8.8              |
| Fe(III)   | 25.1              | 20.5                     | 28.1              | 28.6              | 15.9             |
| Ga(III)   | 21.7              | _                        | 22.9              | 23.0              | 13.6             |
| Hf(IV)    | 29.5              | _                        | _                 | 35.4              | 20.3             |
| Hg(II)    | 21.5              | 23.1                     | 24.3              | 27.0              | 14.6             |
| In(III)   | 24.9              | -                        | 28.8              | 29.0              | 16.9             |
| Mg(II)    | 8.8               | 5.2                      | 10.3              | 9.3               | 5.5              |
| Mn(II)    | 13.9              | 12.3                     | 16.8              | 15.6              | 7.4              |
| Ni(II)    | 18.4              | 13.6                     | 19.4              | 20.3              | 11.5             |
| Pb(II)    | 18.0              | 14.7                     | 19.7              | 18.8              | 11.4             |
| Pd(II)    | 25.6 <sup>a</sup> | _                        | _                 | _                 | _                |
| Sn(II)    | 18.3 <sup>b</sup> | 23.9                     | -                 | -                 | -                |
| Sr(II)    | 8.7               | 8.5                      | 10.5              | 9.7               | 5.0              |
| Th(IV)    | 23.2              | -                        | 29.3              | 28.8              | 12.4             |
| TI(I)     | 6.4               | -                        | 5.3               | 6.0               | 4.8              |
| TI(III)   | 35.3              |                          | 38.3              | 48.0              | 18.0             |
| Zn(II)    | 16.5              | 14.5                     | 18.7              | 18.8              | 10.7             |
| Zr(IV)    | 29.3              | _                        | 20.7              | 36.9              | 20.85            |

| DCTA | trans-Diaminocyclohexantetraessigsäure          |
|------|-------------------------------------------------|
| DTPA | Diethylentriaminpentaessigsäure                 |
| EDTA | Ethylendiamintetraessigsäure                    |
| EGTA | Ethylenglycol bis-(2-aminoethyl)tetraessigsäure |
| NTA  | Nitrilotriessigsäure                            |

#### Die obige Tabelle lässt folgende Schlüsse zu:

- Dreifach positiv geladene Metallionen bilden stärkere Komplexe als zweifach positiv geladene Metallionen (siehe Fe<sup>2+</sup> – Fe<sup>3+</sup>)
- Liganden mit mehr «Zähnen» bilden stärkere Komplexe (siehe NTA DTPA).
- Den schwächsten Komplex bildet Ba<sup>2+</sup> mit NTA, den stärksten Tl<sup>3+</sup> mit DTPA.

<sup>&</sup>lt;sup>1</sup> Die Werte, falls nicht anders gekennzeichnet, basieren auf Daten bei 25 °C und einer Ionenstärke von 0.1 mol/L.

<sup>&</sup>lt;sup>a</sup> Werte bei 20 °C und einer Ionenstärke von 0.1 mol/L.

<sup>&</sup>lt;sup>b</sup> Werte bei 20 °C und einer Ionenstärke von 1 mol/L. Harris, Daniel (2007): Quantitative Chemical Analysis. 7<sup>th</sup> ed., New York.

<sup>&</sup>lt;sup>2</sup> Werte sind übernommen von Dojindo Molecular Technologies (Hrsg.) http://www.dojindo.com (Stand 28.9.2015).

# Indikation des Titrationsäquivalenzpunktes

#### Visuell oder photometrisch

Die visuelle Indikation mit Farbindikatoren ist die am längsten bekannte Methode zur Erkennung des Titrationsäquivalenzpunktes und wird noch immer häufig angewendet. Sie kann mit geringem gerätetechnischem (und finanziellem) Aufwand realisiert werden. Nachteil dieser Methode ist vor allem, dass sie sich nicht automatisieren und kaum validieren lässt. Das Farbempfinden eines jeden Individuums ist verschieden und auch von der Beleuchtung abhängig. Schwierigkeiten treten darüber hinaus in gefärbten und/oder trüben Lösungen auf.

Eine Verbesserung kann hier die photometrische Indikation bringen. Das subjektive menschliche Auge wird hier durch einen objektiven Sensor ersetzt. Die Methode kann automatisiert und validiert werden – vorausgesetzt, es wird der richtige Farbindikator gewählt und die Lösungen sind nicht zu trüb bzw. es treten während der Titration keine starken Trübungen auf.

Farbindikatoren haben keinen Umschlagspunkt – sie haben einen Umschlagsbereich. Dieser Umstand kann die Richtigkeit der Ergebnisse von Titrationen mit visueller Äquivalenzpunkterkennung erheblich beeinflussen. Als Faustregel gilt: Das menschliche Auge nimmt einen Farbumschlag wahr, wenn sich die Konzentrationsverhältnisse von z. B. 1/10 auf 10/1 geändert haben. Es ist deshalb er-

strebenswert Farbindikatoren zu wählen, die einen scharfen Farbumschlag mit möglichst unterschiedlichen Farben haben.

Die Farbindikatoren bilden mit dem zu bestimmenden Metallion einen Farbkomplex, dessen Farbe sich schlagartig ändert, wenn alle Metallionen durch das Titriermittel (um)komplexiert respektive abtitriert sind.

Für die photometrische Titration werden sogenannte Lichtleitersensoren eingesetzt. Diese bestehen aus einer Lichtquelle, zwei Glasfaser(licht)leitern und einem Verstärker Monochromatisches Licht tritt aus dem Lichtleiter durch die Lösung, wo es durch deren Farbe teilweise absorbiert wird. Je nach Bauart des photometrischen Sensors wird dann das Lichtsignal entweder direkt oder über einen Hohlspiegel und einen zweiten Lichtleiter auf eine Photodiode geleitet Im Verstärker entsteht schliesslich ein Spannungssignal, das über den Elektrodeneingang an den Titrator weitergegeben wird.

Bei photometrischen Titrationen gilt es zu beachten, dass Luftblasen in der Probenlösung einen ungünstigen Einfluss auf die Form der Titrationskurve haben und auch die Resultate beeinflussen können (Auftreten von Spikes oder Geisteräquivalenzpunkten). Generell gilt das folgende Vorgehen:

- Die Rührung so einstellen, dass die Lösung zwar gut gemischt wird, aber keine Luftblasen entstehen.
- Lösung im Vakuum oder Ultraschallbad vor der Analyse entgasen. Probenlösung wenn nötig mit dest. H<sub>2</sub>O verdünnen und vorneutralisieren.

#### Potentiometrisch

Die Messanordnung für potentiometrische Messungen besteht immer aus zwei Elektroden – einer Indikatorelektrode (Messelektrode) und einer Referenzelektrode (Bezugselektrode). Messbar sind nämlich nicht Potentiale (auch Galvanispannungen genannt), sondern Potentialdifferenzen (Spannungen).

Die Indikatorelektrode (ionenselektive Elektrode, kurz ISE) liefert dabei ein Elektrodenpotential, welches von der Zusammensetzung der Messlösung (vor allem auch von der Konzentration des zu bestimmenden Messions) abhängig ist.

Die Referenzelektrode (meist Ag/AgCl) hat die Aufgabe, ein von der Messlösung möglichst unabhängiges Elektrodensignal vorzugeben (Referenz-/Bezugspotential).

Die Spannungsmessung erfolgt praktisch stromlos mit einem «Voltmeter» (z. B. dem Titrator) mit hochohmigem Messeingang. Dies ist wichtig, um Spannungsabfälle zu vermeiden. Bei Verwendung geeigneter Messanordnungen ist die zwischen den beiden Elektroden gemessene Spannung U nur noch von der Messlösung abhängig, genau genommen von der Aktivität a<sub>i</sub> des Messions (nur dissoziierte Ionen werden gemessen). Für ISE-Messungen wird dieser Zusammenhang durch die Nernst-Gleichung beschrieben:

$$U = U_0 + \frac{2.303 \times R \times T}{7 \times F} \times \log a_i = U_0 + U_N \times \log a_i$$

- U: Gemessene Spannung zwischen der Mess- und Referenzelektrode
- U<sub>0</sub>: Standardspannung der Messkette (abhängig von deren Aufbau)
- 2.303: Umrechnungsfaktor vom natürlichen auf den Zehner-Logarithmus
- R: Gaskonstante (8.31441 J/K/mol)
- T: Absolute Temperatur in Kelvin (273.15 + x °C)
- z: Ladung des Messions einschliesslich Vorzeichen (z. B. +2 für Ca<sup>2+</sup>)
- F: Faraday-Konstante (96484.56 C/mol)
- a<sub>i</sub>: Aktivität des Messions
- $U_N$ : Nernst-Steilheit (z. B. 29.58 mV bei 25 °C und z = +2)

Die Nernst-Steilheit  $U_N$  gibt die theoretische Elektrodensteilheit an. Sie entspricht der Spannungsänderung, die die Änderung von  $a_i$  um eine Zehnerpotenz

bewirkt. Sie hängt von der Temperatur der Messlösung und der Ladung z des Messions ab. Die Tabelle zeigt diese Abhängigkeiten:

| Temperatur / °C | U / mV, z = +1 | U / mV, z = +2 |
|-----------------|----------------|----------------|
| 0               | 54.20          | 27.10          |
| 10              | 56.18          | 28.09          |
| 20              | 58.17          | 29.09          |
| 25              | 59.16          | 29.58          |
| 30              | 60.15          | 30.08          |
| 40              | 62.14          | 31.07          |
| 50              | 64.12          | 32.06          |

#### Ionenselektive Elektroden

Ionenselektive Elektroden sprechen – wie ihr Name andeutet – mehr oder weniger selektiv auf das Mession an, für welches sie konzipiert sind. Das lässt vermuten, dass für jedes zu bestimmende Mession eine entsprechende ISE benötigt wird. Dies würde die Äquivalenzpunktindikation mit ionenselektiven Elektroden äusserst unattraktiv gestalten. Abgesehen davon wäre ein solches Konzept viel zu teuer und für einige Messionen schwierig zu realisieren. Wie man mit nur einer ionenselektiven Elektrode auskommen kann, ist unter dem Kapitel Cu-ISE erläutert.

#### a) Die Ca-ISE

Die Ca-ISE ist eine sogenannte Polymermembranelektrode und spricht, wie ihr Name verrät, vorwiegend auf Ca-Ionen an. Hauptsächlich wird sie deshalb auch bei der Titration von Calcium eingesetzt. Mit einem Trick ist es aber möglich, Simultantitrationen von Ca und Mg nebeneinander durchzuführen (z. B. zur Wasserhärtebestimmung). Dazu wird der Messlösung ein Hilfskomplexbildner (Acetylaceton in TRIS-Puffer) zugesetzt. Titriert man nun mit EDTA, wird zuerst Ca komplexiert. Ist kein Ca mehr vorhanden, tritt der Hilfskomplexbildner in Aktion. Mg reagiert mit CaEDTA und es bildet sich MgEDTA. Die entsprechende Menge Ca wird freigesetzt bzw. kann mit EDTA titriert werden.

Bei der Bestimmung von Sulfat wird die Querempfindlichkeit der Ca-ISE gegenüber Ba-Ionen ausgenützt. Sulfat wird mit BaCl<sub>2</sub> gefällt und der Ba-Überschuss mit EDTA zurücktitriert. In Anwesenheit von Ca werden zwei Titrationsäquivalenzpunkte gefunden. Der erste Äquivalenzpunkt entspricht dem von Ca und der zweite dem von Ba.

Mehr Details über diese zwei Möglichkeiten finden Sie unter den Praxisbeispielen (Wasserhärte- bzw. Sulfatbestimmung).

#### b) Die Cu-ISE

Die Cu-ISE ist eine Kristallmembranelektrode. Sie spricht eigentlich nur auf Cu-lonen an. Um sie nicht nur für die Titrationen von Cu-lonen einsetzen zu können, bedient man sich eines Tricks: Der Probenlösung wird etwas CuEDTA zugesetzt. CuEDTA ist ein sehr stabiler Komplex und setzt nur einen sehr kleinen Anteil an Cu(II)-Ionen frei. In alkalischer Lösung und in Gegenwart von z. B. Ni(II)-Ionen werden jedoch alle Cu(II)-Ionen aus dem Komplex freigesetzt und der NiEDTA-Komplex gebildet. Titriert man dann mit EDTA, nimmt die Konzentration der Cu(II)-Ionen ständig ab, bis sie am Äguivalenzpunkt wieder den sehr kleinen Anfangswert erreicht. Die folgenden Gleichungen symbolisieren die drei Schritte:

Cuedta  $\rightarrow$  Cu(II) + EDTA Cuedta + Ni(II)  $\rightarrow$  Niedta + Cu(II) Cu(II) + EDTA  $\rightarrow$  Cuedta

### Häufig verwendete Komplexbildner/ Titriermittel

Der erste für Titrationen eingesetzte Komplexbildner war NTA bzw. das Trinatriumsalz. NTA ist relativ kostengünstig, hat aber den Nachteil, dass es relativ schwache Komplexbildungskonstanten aufweist. Daher wurde es schon bald durch EDTA abgelöst, welches auch heute noch am meisten eingesetzt wird

und in vielen nationalen und internationalen Normen als Titriermittel vorgeschrieben wird. Für Spezialzwecke (z. B. bessere Selektivität, höhere Komplexbildungskonstanten, bessere Trennung bei Gemischen) wurden weitere Komplexbildner entwickelt, die aber meist recht teuer sind.

Handelsübliche Formen sind:

#### NTA

- Nitrilotriessigsäure  $C_6H_9NO_6$ ;  $M_R = 191.14 \text{ g/mol}$
- Nitrilotriessigsäure Trinatriumsalz Monohydrat C<sub>6</sub>H<sub>6</sub>NNa<sub>3</sub>O<sub>6</sub> · H<sub>2</sub>O; M<sub>R</sub> = 275.12 g/mol

#### **EDTA**

- Ethylendiamintetraessigsäure  $C_{10}H_{16}N_2O_8$ ;  $M_R = 292.25$  g/mol
- Ethylendiamintetraessigsäure Dinatriumsalz Dihydrat C<sub>10</sub>H<sub>14</sub>N<sub>2</sub>Na<sub>2</sub>O<sub>8</sub> · 2 H<sub>2</sub>O; M<sub>8</sub> = 372.24 g/mol

#### **EGTA**

 Ethylenglykol-bis-(2-aminoethyltetraessigsäure C<sub>14</sub>H<sub>24</sub>N<sub>2</sub>O<sub>10</sub>;
 M<sub>R</sub> = 380.35 g/mol

#### **DCTA**

 trans-1,2-Diaminocyclohexantetraessigsäure Monohydrat C<sub>14</sub>H<sub>22</sub>N<sub>2</sub>O<sub>6</sub> · H<sub>2</sub>O; M<sub>R</sub> = 364.36 g/mol

#### DTPA

 Diethylentriaminpentaessigsäure C<sub>14</sub>H<sub>23</sub>N<sub>3</sub>O<sub>10</sub>; M<sub>R</sub> = 393.35 g/mol

#### Pufferlösungen

Wie schon in den theoretischen Grundlagen erwähnt, werden bei der Komplexbildung pro Metallion zwei Säureionen freigesetzt. Um zu vermeiden, dass durch den erhöhten pH-Wert keine Metallkomplexe mehr gebildet werden, muss die Probenlösung gepuffert werden. Dies ist besonders für Metallionen wichtig, die nur in alkalischer Lösung titriert werden können.

$$Ca^{2+} + Na_2H_2EDTA + 2 H_2O \rightarrow$$
  
 $CaNa_2EDTA + 2 H_3O^+$ 

#### a) Alkalische Pufferlösungen

Der wohl am häufigsten eingesetzte Puffer ist eine Mischung aus Ammoniak und Ammoniumchlorid – sein pH-Wert liegt bei ca. 10.

Normalerweise enthält die Lösung 5–8 mol/L NH<sub>3</sub> und 1 mol/L NH<sub>4</sub>Cl.

Für Spezialfälle können folgende Alternativen verwendet werden:

- Je 1 mol/L NaOH und H₃BO₃
- 0.2 mol/L Tris(hydroxymethyl)aminomethan (TRIS)
- 1 mol/L Triethanolamin, mit HCl auf einen pH-Wert von 8 eingestellt

#### b) Saure Pufferlösungen

Hier besteht die am häufigsten eingesetzte Pufferlösung aus einem Gemisch von Essigsäure und Ammoniumacetat. 1.4 mol/L CH<sub>3</sub>COOH und 1.5 mol/L NH<sub>4</sub>CH<sub>3</sub>COO ergeben einen pH-Wert von ca. 4.7. Durch Variation besonders der Essigsäure werden Pufferlösungen im pH-Bereich zwischen 4 und 5 hergestellt.

Stark saure Pufferlösungen (pH im Bereich 2–3) werden aus 0.5 mol/L Glycin durch Zusatz von HCl hergestellt.

Wichtig bei allen Pufferlösungen ist, dass ihre Inhaltsstoffe mit dem zu bestimmenden Metallion keine stärkeren Komplexe als das Titriermittel bilden.

### Maskierung

Um zu verhindern, dass störende Metallionen mit dem Titriermittel reagieren, können zur Probenlösung Maskierungsmittel zugegeben werden. Diese bilden mit den Störionen stärkere Komplexe oder Bindungen als das Titriermittel. Dabei ist allerdings wichtig, dass das zu bestimmende Metallion dabei unbeteiligt bleibt.

#### a) Fällungsmaskierung

Die störenden Metallionen werden aus der Lösung gefällt, aber im Unterschied zu einer eigentlichen Abtrennung werden die Fällungsprodukte bei dieser Methode in der Lösung belassen und nicht abfiltriert

Schon früh angewandt wurde diese Methode bei der photometrischen Bestimmung der Wasserhärte. In einer ersten Titration bei pH = 10 bestimmt man die

Summe von Calcium und Magnesium (Gesamthärte). Bei der zweiten Titration wird bei pH = 12 gearbeitet. Magnesium wird als Mg(OH)<sub>2</sub> gefällt und ist damit der Titration nicht mehr zugänglich – es wird nur noch das Calcium bestimmt. Allerdings sind die Ergebnisse, die man für Calcium erhält, in der Regel zu niedrig, da ein Teil davon im Niederschlag adsorbiert wird. Dies gilt generell für Fällungsmaskierungen. Ein weiterer Nachteil dieser Methode liegt darin, dass oft eine Adsorption des Farbindikators erfolgt oder dessen Farbwechsel schlecht erkannt wird.

### b) Komplexbildungsmaskierung

Bei der Komplexbildungsmaskierung muss das Maskierungsmittel ein selektiver Komplexbildner sein, der das zu bestimmende Metallion möglichst wenig und das Störion möglichst stark bindet.

Eine kleine Auswahl oft verwendeter Maskierungsmittel:

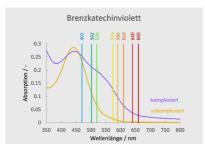
| Maskierungsmittel                    | Element                        |
|--------------------------------------|--------------------------------|
| Ammoniumfluorid                      | Al, Ti, Be, Ca, Mg, Sr, Ba     |
| Kaliumcyanid                         | Zn, Cd, Hg, Cu, Ag, Ni, Co     |
| Acetylaceton                         | Fe, Al, Pd, UO <sub>2</sub>    |
| Tiron (Dihydroxybenzoldisulfonsäure) | Al, Fe, Ti                     |
| Triethanolamin                       | Fe, Al                         |
| 2,3-Dimercaptopropanol (BAL)         | Zn, Cd, Hg, As, Sb, Sn, Pb, Bi |

#### **Farbindikatoren**

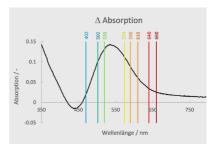
Es wurde schon eine grosse Anzahl von Farbindikatoren beschrieben, die alle ihre Vor- und Nachteile haben. Bewährt und durchgesetzt haben sich dabei einige,

mit denen die meisten komplexometrischen Titrationen durchgeführt werden können. Hier ein kleiner Überblick über solche metallochrome Indikatoren:

| Indikator            | Element                                                                                                         | Farbe mit<br>Metallion | Farbe ohne<br>Metallion |
|----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|
| Brenzkatechinviolett | Bi <sup>3+</sup> , Cd <sup>2+</sup> , Co <sup>2+</sup> , In <sup>3+</sup> , Mn <sup>2+</sup> , Zn <sup>2+</sup> | blau                   | gelb                    |
| Dithizon             | Zn <sup>2+</sup>                                                                                                | rot                    | grünviolett             |
| Eriochromschwarz T   | Ca <sup>2+</sup> , Cd <sup>2+</sup> , Hg <sup>2+</sup> , Mg <sup>2+</sup> , Pb <sup>2+</sup> , Zn <sup>2+</sup> | rot                    | blau                    |
| Calconcarbonsäure    | Ca <sup>2+</sup> neben viel Mg <sup>2+</sup>                                                                    | rot                    | blau                    |
| Hydroxynaphtholblau  | Ca <sup>2+</sup> , Mg <sup>2+</sup>                                                                             | rot                    | blau                    |
| Murexid              | Co <sup>2+</sup> , Cu <sup>2+</sup> , Ni <sup>2+</sup>                                                          | gelb                   | violett                 |
| PAN                  | Cd <sup>2+</sup> , Cu <sup>2+</sup> , Zn <sup>2+</sup>                                                          | rot                    | gelb                    |
| Phthaleinpurpur      | Ba <sup>2+</sup> , Ca <sup>2+</sup> , Sr <sup>2+</sup>                                                          | purpur                 | farblos                 |
| Tiron                | Fe <sup>3+</sup> , SO <sub>4</sub> <sup>2-</sup>                                                                | blau                   | gelb                    |
| Xylenolorange        | Al <sup>3+</sup> , Bi <sup>3+</sup> , La <sup>3+</sup> , Sc <sup>3+</sup> , Th <sup>4+</sup> , Zr <sup>4+</sup> | rot                    | gelb                    |


Die meisten metallochromen Indikatoren sind in Lösungen unbeständig. Sie werden daher oft in fester Form (Tabletten oder Verreibungen mit NaCl) der zu titrierenden Lösung zugegeben. Für die Automation ist dieser Umstand aber schlecht oder gar nicht geeignet. Man behilft sich damit, alkoholische oder sta-

bilisierte wässrige Lösungen herzustellen. Wie lange eine so hergestellte Indikatorlösung verwendet werden kann, muss individuell abgeklärt werden.

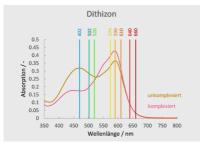

Nachfolgend sind die Vis-Spektren einiger gängiger Indikatoren abgebildet.

## a) Brenzkatechinviolett

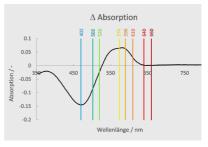
Brenzkatechinsulfonphthalein;  $C_{19}H_{14}O_7S$  0.1 % in Wasser



**Abbildung 1** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Brenzkatechinviolett




**Abbildung 2** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Brenzkatechinviolett

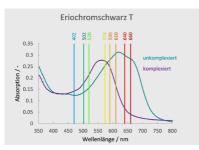

## b) Dithizon

1,5-Diphenylthiocarbazon;  $C_{13}H_{12}N_4S$ 

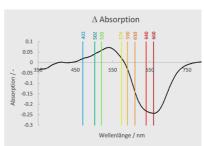
Ca. 30 mg in 100 mL Ethanol (im Kühlschrank 1 Monat haltbar)



**Abbildung 3** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Dithizon



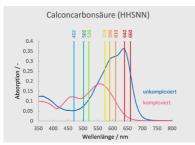

**Abbildung 4** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Dithizon


### c) Eriochromschwarz T

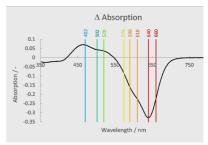
2-Hydroxy-1-(1-hydroxynaphthyl-2-azo)-6-nitrophthalein-4-sulfonsäure Natriumsalz;  $C_{20}H_{12}N_3NaO_7S$ 

1 % verrieben in NaCl oder 100 mg in 100 mL Ethanol oder 100 mg in 100 mL Wasser mit 100 mg Ascorbinsäure stabilisiert




**Abbildung 5** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Eriochromschwarz T



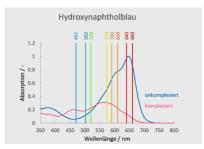

**Abbildung 6** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Eriochromschwarz T

### d) Calconcarbonsäure (HHSNN)

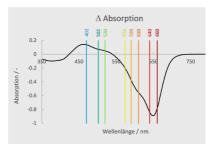
2-Hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphtolsäure;  $C_{21}H_{14}N_2O_7S$  1 % verrieben in NaCl oder 50 mg in 100 mL c(NaOH) = 0.1 mol/L (einen Tag haltbar)



**Abbildung 7** Überlagerte Vis-Spektren für komplexierte und unkomplexierte Calconcarbonsäure




**Abbildung 8** Vis-Absorptionsdifferenzspektrum von komplexierter und unkomplexierter Calconcarbonsäure

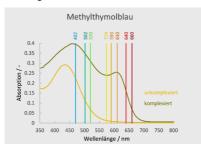

## e) Hydroxynaphtholblau

2,2-Dihydroxy-1,1'-azonaphthalin-3',4,6'-trisulfonsäure Trinatriumsalz;  $C_{20}H_{11}N_2Na_3O_{11}S_3$ 

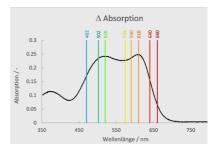
10 % verrieben in NaCl



**Abbildung 9** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Hydroxynaphtholblau



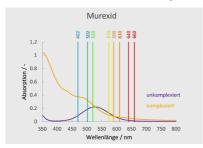

**Abbildung 10** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Hydroxynaphtholblau


### f) Methylthymolblau

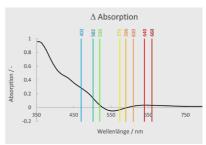
3,3-Bis[N,N-di(carboxymethyl)aminomethyl]thymolsulfophthalein Tetranatriumsalz;  $C_{\rm 37}H_{\rm 40}N_{\rm 2}Na_{\rm 4}O_{\rm 13}S$ 

100 mg in 100 mL Ethanol




**Abbildung 11** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Methylthymolblau

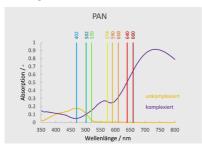



**Abbildung 12** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Methylthymolblau

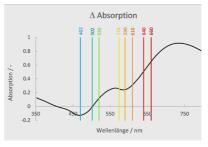
#### g) Murexid

Purpursäure Ammoniumsalz;  $C_8H_8N_6O_6$ 1 % verrieben in NaCl oder 50 mg in 100 mL dest.  $H_2O$ 




**Abbildung 13** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Murexid

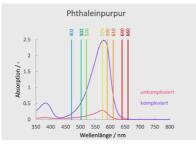



**Abbildung 14** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Murexid

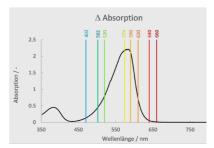
### h) PAN

1-(2-Pyridylazo)-2-naphthol;  $C_{15}H_{11}NO_3$ 100 mg in 100 mL Ethanol




**Abbildung 15** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes PAN

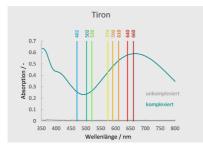



**Abbildung 16** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem PAN

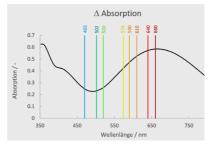
### i) Phthaleinpurpur

3,3'-Bis[bis-(carboxymethyl)-aminomethyl]-kresolphthalein;  $C_{32}H_{32}N_2O_{12}\cdot H_2O$  100 g in 100 mL dest.  $H_2O$ , 1 mL w(NH<sub>3</sub>) = 25 % zusetzen (nicht stabil)




**Abbildung 17** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Phthale-inpurpur



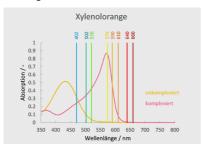

**Abbildung 18** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Phthaleinpurpur

## j) Tiron

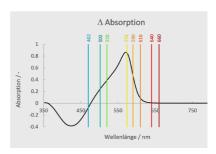
Brenzkatechin-3,5-disulfonsäure Dinatriumsalz;  $C_6H_4Na_2O_2S_2$  Wird in fester Form zugegeben oder 2 % in dest.  $H_2O$ 



**Abbildung 19** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Tiron



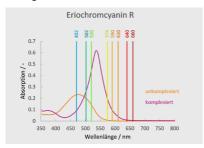

**Abbildung 20** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Tiron


#### k) Xylenolorange

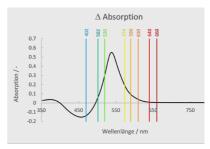
3,3'-Bis[bis(carboxymethyl)-aminomethyl]-kresolsulfophthalein Tetranatriumsalz;  $C_{\rm 31}H_{\rm 28}N_{\rm 2}Na_{\rm 4}O_{\rm 13}S$ 

100 mg in 100 mL deion. H<sub>2</sub>O lösen




**Abbildung 21** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Xylenolorange




**Abbildung 22** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Xylenolorange

### I) Eriochromcyanin R

Benzoesäure, 3,3'-(3H-2,1-benzoxathiol-3-ylidene)bis[6-hydroxy-5-methyl-, S,S-dioxide] Trinatriumsalz,  $C_{23}H_{15}Na_3O_9S$  40 mg in 100 mL dest.  $H_2O$  lösen



**Abbildung 23** Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Eriochromcyanin R



**Abbildung 24** Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Eriochromcyanin R

#### Herstellung der Masslösungen

Viele Masslösungen sind gebrauchsfertig im Handel erhältlich – ihnen ist der Vorzug zu geben. Ihr Titer wurde vom Hersteller bei 20 °C auf 1.0000 eingestellt.

#### a) Direkttitration

Die meisten Komplexbildner sind in reiner Form als Säure erhältlich. Diese sind in Wasser nur sehr schlecht löslich und müssen beim Ansetzen in ihre löslichen Di- oder Trinatriumsalze überführt werden. Die Stoffmengenkonzentration c ist meist 0.1 mol/L. Die Lösungen sind titerstabil.

Als Beispiel sei hier die Herstellung von  $c(Na_2EDTA) = 0.1 \text{ mol/L}$  beschrieben:

In ein Becherglas wird 29.5 g EDTA  $(C_{10}H_{16}N_2O_8)$  eingewogen und unter Rühren in ca. 300 mL dest.  $H_2O$  aufgeschlämmt. Nun gibt man so lange c(NaOH) = 5 mol/L zu, bis sich alles gelöst hat. Man lässt abkühlen, mischt und füllt mit dest.  $H_2O$  auf 1 L auf.

#### b) Rücktitration

Für Rücktitrationen werden meist  $Cu^{2+}$ oder  $Zn^{2+}$ -Lösungen verwendet. Auch diese Lösungen sind titerstabil und werden meist in der Konzentration c(Me) = 0.1 mol/L angesetzt.

c(CuSO<sub>4</sub>) = 0.1 mol/L 25.2 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O (99 %) wird in ca. 500 mL dest. H<sub>2</sub>O gelöst. Nach der Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % füllt man mit dest. H<sub>2</sub>O auf 1 L auf und mischt

c(ZnSO<sub>4</sub>) = 0.1 mol/L 28.9 g ZnSO<sub>4</sub>  $\cdot$  7 H<sub>2</sub>O (99.5 %) wird in ca. 500 mL dest. H<sub>2</sub>O gelöst. Nach der Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % füllt man mit dest. H<sub>2</sub>O auf 1 L auf und mischt.

#### Titerbestimmungen

Urtitersubstanz für die Komplexbildner – im folgenden KB genannt – ist Calciumcarbonat. CaCO<sub>3</sub> wird über Nacht im Trockenschrank bei 140 °C getrocknet und im Exsikkator für mindestens 2 h abgekühlt.

Normalerweise wird die Titerbestimmung dreifach durchgeführt und der Mittelwert als Titer gespeichert.

#### a) Titerbestimmung für die Direkttitration:

In den Titrierbecher wird ca. 100 mg  $CaCO_3$  auf 0.1 mg genau eingewogen und mit 20 mL dest.  $H_2O$  versetzt. Unter Rühren gibt man so lange c(HCI) = 3 mol/L zu, bis sich das  $CaCO_3$  vollständig gelöst hat. Man gibt ca. 80 mL dest.  $H_2O$  und 10 mL ammoniakalische Pufferlösung zu und titriert mit c(KB) = 0.1 mol/L.

#### Berechnung

$$Titer = \frac{m_S}{V_{EP1} \times c_{KB} \times M_{CaCO_3}}$$

m<sub>5</sub>: Einwaage CaCO₃ in mg

 $V_{\text{EP1}}$ : Verbrauch an KB bis zum ersten

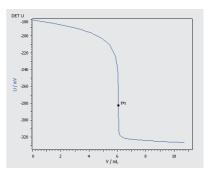
Äquivalenzpunkt in mL

 $c_{KB}$ : Konzentration des Komplexbildners in mol/L

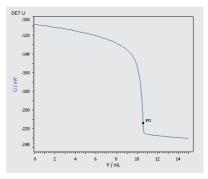
M<sub>CaCO<sub>3</sub></sub>: Molekulare Masse von Calciumcarbonat; 100.09 g/mol

## b) Titerbestimmung für die Rücktitration:

In den Titrierbecher gibt man ca. 50 mL dest.  $H_2O$ , 10 mL c(KB) = 0.1 mol/L und 10 mL Pufferlösung (alkalisch oder sauer). Dann titriert man mit  $c(Cu^{2+}) = 0.1$  mol/L oder  $c(Zn^{2+}) = 0.1$  mol/L.


#### Berechnung

$$Titer = \frac{V_S \times f_{KB}}{V_{FP1}}$$


 $V_S$ : Vorlage von c(KB) = 0.1 mol/L in mL

 $\begin{array}{ll} f_{\text{KB}} \colon & \text{Titer der KB-L\"osung} \\ V_{\text{EP1}} \colon & \text{Verbrauch an Cu}^{\text{2+-}} \text{ oder} \\ & \text{Zn}^{\text{2+-}} \text{-L\"osung bis zum ersten} \\ & \text{\ddot{A}guivalenzpunkt in mL} \end{array}$ 

# Beispiele: Titerbestimmung von EDTA und EGTA mit CaCO<sub>3</sub>



**Abbildung 25** Titrationskurve der potentiometrischen Titerbestimmung von EDTA mit der Ca-ISE



**Abbildung 26** Titrationskurve der potentiometrischen Titerbestimmung von EGTA mit der Ca-ISE

# Beispiele aus der Praxis

# Wasserhärten, Calcium und Magnesium

## **Allgemeines**

24

Härtebildner in Wässern sind vor allem Calcium- und Magnesiumionen. Sie liegen hauptsächlich als Hydrogencarbonate und Sulfate, seltener als Chloride vor. Barium und Strontium, die bei der Bestimmung der Gesamthärte mit erfasst würden, liegen wenn überhaupt nur in geringen Mengen vor und stören dadurch nicht (0.1 mg/L Ba<sup>2+</sup> würde bei einem Probeneinmass von 100 mL nur 0.7 µL c(Na<sub>2</sub>EDTA) = 0.1 mol/L verbrauchen).

Die Wasserhärten werden in mmol/L angegeben. Für Informationszwecke, z. B. auf Waschmittelpackungen, haben zudem Bezeichnungen wie «weich», «hart», «°dH», «°fH» etc. eine gewisse Bedeutung. Über die Zusammenhänge informiert Sie die folgende Tabelle:

| mmol/L  | mg/L<br>CaCO₃ | °fH   | °dH °USH   |            | Härte            |
|---------|---------------|-------|------------|------------|------------------|
| 0-0.7   | 0-70          | 0-7   | 0-3.92     | 0-3.77     | sehr weich       |
| 0.7-1.5 | 70-150        | 7–15  | 3.92-8.4   | 3.77-8.07  | weich            |
| 1.5-2.5 | 150-250       | 15-25 | 8.4-14.0   | 8.07-9.50  | mittelhart       |
| 2.5-3.2 | 250-320       | 25–32 | 14.0-17.92 | 9.50-17.22 | ziemlich<br>hart |
| 3.2-4.2 | 320-420       | 32-42 | 17.92–23.5 | 17.22–22.6 | hart             |
| > 4.2   | > 420         | > 42  | > 23.5     | > 22.6     | sehr hart        |

#### Umrechnungsfaktoren

 $mmol/L \times 100 \rightarrow mg/L CaCO_3$ 

mmol/L  $\times$  10  $\,\rightarrow\,$  °fH (französische

Härtegrade)

mmol/L  $\times$  5.6  $\rightarrow$  °dH (deutsche Härtegrade)

 $mmol/L \times 5.38 \rightarrow \text{°USH (US Härtegrade)}$ 

Liegt in den zu untersuchenden Wässern ein ungünstiges Ca<sup>2+</sup>/Mg<sup>2+</sup>-Verhältnis vor (wenig Mg<sup>2+</sup> neben viel Ca<sup>2+</sup>) treten bei allen titrimetrischen Verfahren Fehler auf. In diesen Fällen empfiehlt es sich, der Pufferlösung eine genau dosierte Menge Mg²+-Standard (z. B. 2.4305 mg Mg²+ absolut, entsprechend 1 mL c(Na₂EDTA) = 0.1 mol/L) zuzusetzen und bei der Berechnung wieder abzuziehen.

Bei weichen Wässern wird am besten mit  $c(Na_2EDTA) = 0.05$  mol/L titriert.

## Potentiometrische Titration mit der Ca-ISE

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L in c(KOH) = 0.1 mol/L
- Hilfskomplexlösung: In einem 1-L-Messkolben wird 24.3 g Tris-(hydroxymethyl)-aminomethan (TRIS) eingewogen und in ca. 500 mL dest. H<sub>2</sub>O gelöst. Man gibt 10 mL Acetylaceton zu, mischt und füllt mit dest. H<sub>2</sub>O zur Marke auf. Vor Gebrauch wird die Lösung 24 h stehen gelassen (max. Haltbarkeit 1 Woche).

#### **Analysen**

In den Titrierbecher wird 100 mL Wasserprobe eingemessen und mit 15 mL Hilfskomplexlösung versetzt. Dann wird im Modus «DET U» mit  $c(Na_2EDTA) =$ 0.1 mol/L über den zweiten Äguivalenzpunkt (EP2) hinaus titriert. EP1 entspricht dem Ca<sup>2+</sup> und die Differenz EP<sub>2</sub> – EP<sub>1</sub> dem  $Ma^{2+}$ .

## Berechnung

$$Calciumh\"{a}rte = \frac{V_{EP1} \times c_{EDTA} \times f \times 1000}{V_c}$$

$$Magnesium h \"{a}rte = \frac{(V_{EP2} - V_{EP1}) \times C_{EDTA} \times f \times 1000}{V_{S}}$$

$$Gesamth \ddot{a}rte = \frac{V_{EP2} \times c_{EDTA} \times f \times 1000}{V_S}$$

$$Calciumgehalt = \frac{V_{EP1} \times c_{EDTA} \times f \times 1000 \times M_{Ca}}{V_{S}}$$

$$Magnesiumgehalt = \frac{(V_{EP2} - V_{EP1}) \times c_{EDTA} \times f \times 1000 \times M_{Mg}}{V_{S}}$$

Calciumhärte: Calciumgehalt

in mmol/L

Magnesiumhärte: Magnesiumgehalt

in mmol/L

Gesamthärte: Gesamthärte

in mmol/L

Calciumgehalt: Calciumgehalt

in mg/L

Magnesiumgehalt: Magnesiumgehalt

in mg/L

Verbrauch an EDTA bis zum  $V_{FP1}$ :

ersten Äguivalenzpunkt in mL

V<sub>FP2</sub>: Verbrauch an EDTA bis zum zweiten Äguivalenzpunkt in mL

Konzentration von EDTA in mol/L

C<sub>EDTA</sub>:

Titer der EDTA-Lösung 1000: Umrechnungsfaktor Vs: Probeneinmass in mL

Molare Masse von Calcium;  $M_{ca}$ :

40.078 g/mol

Molare Masse von Magnesium; M<sub>Ma</sub>:

24.305 g/mol

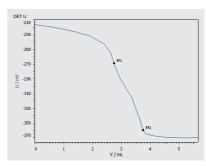



Abbildung 27 Titrationskurve von Leitungswasser aus Herisau, gemessen mit der Ca-ISE

## Weiterführende Literatur zu diesem Thema finden Sie im Application Finder unter

#### www.metrohm.com/applications

Application Bulletin AB-125 –
 Simultaneous determination of
 calcium, magnesium, and alkalinity
 by complexometric titration with
 potentiometric or photometric indi cation in water and beverage samples

## Potentiometrisch mit der Cu-ISE Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(Na<sub>2</sub>EGTA) = 0.1 mol/L
- Pufferlösung: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Cu-Komplexlösung: c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA] = 0.1 mol/L (z. B. Merck Nr. 105217)
- CuEGTA: 2.497 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O werden in dest. H<sub>2</sub>O gelöst, damit auf 100 mL aufgefüllt und gemischt. 25.0 mL dieser Lösung werden mit 25.0 mL c(Na<sub>2</sub>EGTA) = 0.1 mol/L gemischt.

#### **Analyse**

# Gesamthärte (Summe Ca<sup>2+</sup> & Mg<sup>2+</sup>)

In den Titrierbecher wird 100 mL Wasserprobe eingemessen und mit 5 mL Pufferlösung versetzt. Man gibt 0.5 mL Cu-Komplexlösung zu, wartet unter Rühren 20 s und titriert im Modus «MET U» mit  $c(Na_2EDTA) = 0.1$  mol/L. Es können zwei Äquivalenzpunkte auftreten, wobei  $EP_2$  der Summe  $Ca^{2+} + Mg^{2+}$  entspricht (EP<sub>1</sub> kann für die Berechnungen

nicht verwendet werden, es würden ungenaue Resultate resultieren). Da nur der grösste Äquivalenzpunkt benötigt wird, wird als EP-Kriterium «grösster» gewählt, dadurch ist nur noch ein EP sichtbar.

#### Calcium(härte)

In den Titrierbecher wird 100 mL Wasserprobe eingemessen und mit 5 mL Pufferlösung versetzt. Man gibt 0.5 mL CuEGTA zu, wartet unter Rühren 20 s und titriert im Modus «MET U» mit  $c(Na_2EGTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Magnesium(härte)

Diese berechnet sich aus der Differenz von Gesamthärte und Calciumhärte.

#### Berechnung

$$Gesamth \ddot{a}rte = \frac{V_{EP1.1} \times C_{EDTA} \times f_{EDTA} \times 1000}{V_{S}}$$

$$Calciumh \ddot{a}rte = \frac{V_{EP1.2} \times c_{EGTA} \times f_{EGTA} \times 1000}{V_{S}}$$

Magnesiumhärte = Gesamthärte – Calciumhärte

Gesamthärte: Gesamthärte

in mmol/L

Calciumhärte: Calciumgehalt

in mmol/L

Magnesiumhärte: Magnesiumgehalt

in mmol/L

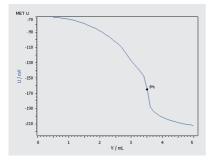
V<sub>EP1.1</sub>: EDTA-Verbauch in mL bis zum grössten Äquivalenzpunkt der Gesamthärtetitration  $c_{\mbox{\scriptsize EDTA}}$ : Konzentration von EDTA in mol/L

f<sub>EDTA</sub>: Titer der EDTA-Lösung1000: UmrechnungsfaktorV<sub>S</sub>: Probeneinmass in mL

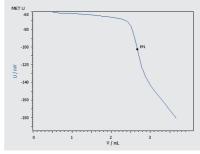
V<sub>EP1.2</sub>: EGTA-Verbrauch in mL bis zum ersten Äquivalenzpunkt der

Calciumhärtetitration

c<sub>EGTA</sub>: Konzentration von EGTA in mol/L


 $f_{EGTA}$ : Titer der EGTA-Lösung

## Weiterführende Literatur zu diesem Thema finden Sie im


- Application Bulletin AB-101 —
  Complexometric titrations with the
  Cu-ISE
- Titration Application Note AN-T-131

   Automatic determination of calcium, magnesium, and total hardness in water with the Cu-ISE

#### Beispiele: Titrationskurven Leitungswasser Herisau mit der Cu-ISE



**Abbildung 28** Titrationskurve der Gesamthärtebestimmung



**Abbildung 29** Titrationskurve der Calciumhärtebestimmung

# Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Pufferlösung: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 2 mol/L
- Na<sub>2</sub>MgEDTA · 1 H<sub>2</sub>O

- Indikatorlösung 1: Eriochromschwarz T;
   100 mg Eriochromschwarz T wird in
   100 mL Ethanol gelöst.
- Indikatorlösung 2: HHSNN;
   50 mg HHSNN wird in 100 mL c(NaOH) = 0.1 mol/L gelöst.

### Allgemeine Bemerkungen

Bei der photometrischen Titration mit optischen Sensoren gilt es, einige Besonderheiten zu beachten:

- Im Lichtweg sollen sich keine störenden Gasblasen befinden. Aus diesem Grund empfehlen wir, die Wasserproben vor der Pufferzugabe zu entgasen und die Rührgeschwindigkeit so einzustellen, dass keine Luftblasen eingerührt werden.
- Bei der Bestimmung der Calciumhärte tritt eine Trübung durch ausfallendes Magnesiumhydroxid auf, die sich im Verlauf der Zeit verstärkt. Es muss deshalb sofort nach der NaOH-Zugabe titriert und am besten mit einem Startvolumen gearbeitet werden. Die resultierenden Titrationskurven sind zwar etwas unruhig und sehen unschön aus, was aber keinen Einfluss auf die Genauigkeit der Resultate hat.

#### **Analyse**

# Gesamthärte (Summe Ca<sup>2+</sup> & Mg<sup>2+</sup>)

In den Titrierbecher wird 100 mL Wasserprobe eingemessen, mit 0.1 g  $Na_2MgEDTA \cdot 1 H_2O$ , 10 mL Pufferlösung und 0.25 mL Indikatorlösung 1 versetzt und dann mit  $c(Na_2EDTA) = 0.1$  mol/L im Modus «MET U» über den Farbumschlag hinaus titriert.

#### Calcium(härte)

In den Titrierbecher wird 100 mL Wasserprobe eingemessen, mit 2 mL c(NaOH) = 2 mol/L (pH > 12) und 1.5 mL Indikatorlösung 2 versetzt und sofort mit  $c(Na_2EDTA) = 0.1$  mol/L im Modus «MET U» bis nach dem Farbumschlag titriert.

#### Magnesium(härte)

Diese berechnet sich aus der Differenz von Gesamthärte und Calciumhärte.

#### Berechnung

$$Gesamth\ddot{a}rte = \frac{V_{EP1.1} \times c_{EDTA} \times f \times 1000}{V_{S}}$$

$$Calciumh\ddot{a}rte = \frac{V_{EP1.2} \times c_{EDTA} \times f \times 1000}{V_{S}}$$

Magnesiumhärte = Gesamthärte -

Calciumhärte

Gesamthärte: Gesamthärte

in mmol/L

Calciumhärte: Calciumgehalt

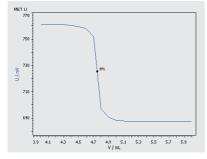
in mmol/L

Magnesiumhärte: Magnesiumgehalt

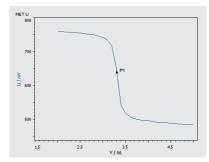
in mmol/L

V<sub>EP1.1</sub>: EDTA-Verbrauch in mL bis zum ersten Äquivalenzpunkt der

Gesamthärtetitration


c<sub>EDTA</sub>: Konzentration von EDTA in mol/L f: Titer der EDTA-Lösung

f: Titer der EDTA-Lösung 1000: Umrechnungsfaktor V<sub>s</sub>: Probeneinmass in mL


 $V_{EP1.2}$ : EDTA-Verbrauch in mL bis zum

ersten Äquivalenzpunkt der Calciumhärtetitration

### Beispiele: Photometrische Titrationskurven Leitungswasser Herisau



**Abbildung 30** Titrationskurve der Gesamthärtebestimmung mit der Optrode bei 610 nm



**Abbildung 31** Titrationskurve der Calicumhärtebestimmung mit der Optrode bei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-125 Simultaneous determination of calcium, magnesium, and alkalinity by complexometric titration with potentiometric or photometric indication in water and beverage samples
- Titration Application Note AN-T-084 Fully automatic determination of the total, calcium and magnesium hardness of water samples using photometric titration

# Aluminium und Magnesium, Legierungen und Anacida

## Potentiometrisch mit der Cu-ISE

### Reagenzien

- Titriermittel 1: c(DCTA) = 0.1 mol/L; 36.463 g trans-1,2-Diaminocyclohexan-tetraessigsäure Monohydrat wird in 400 mL c(NaOH) = 0.5 mol/L gelöst. Nach dem Abkühlen wird die Lösung gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L;
   24.968 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst. Man gibt
- 0.5 mL w( $H_2SO_4$ ) = 96 % zu, mischt und füllt mit dest.  $H_2O$  auf 1 L auf.
- Pufferlösung pH = 4.7: 123 g Natriumacetat und 86 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniaklösung: w(NH<sub>3</sub>) = 10 %
- Natronlauge: c(NaOH) = 2 mol/L

#### Probenvorbereitung

Die saure Probenlösung, die nicht mehr als 12 mg  ${\rm Al}^{3+}$  bzw. 20 mg  ${\rm Mg}^{2+}$  enthalten soll, wird mit c(NaOH) = 2 mol/L auf einen pH-Wert von 2–3 vorneutralisiert und mit dest.  ${\rm H}_2{\rm O}$  auf ca. 50 mL verdünnt

Analyse

Zu der vorbereiteten Probenlösung gibt man 5 mL Pufferlösung pH = 4.7 und 6 mL c(DCTA) = 0.1 mol/L und lässt unter Rühren 1 min reagieren. Anschliessend

wird mit  $c(CuSO_4) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus titriert  $\rightarrow$  Aluminiumgehalt. Der Titriermittelüberschuss des Titriermittels 2 wird als «Common Variable» gespeichert.

Zur austitrierten Probenlösung gibt man 20 mL Ammoniaklösung und nochmals 6 mL c(DCTA) = 0.1 mol/L. Dann titriert man mit c(CuSO<sub>4</sub>) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus  $\rightarrow$  Magnesiumgehalt.

### Berechnung

$$\beta_{AI} = \frac{(V_{DCTA} \times f_1 \times c_{DCTA} - V_{EP1.1} \times f_2 \times c_{CuSO_4}) \times M_{AI}}{V_S}$$

 $V_{Ex} = V_{End} - V_{EP1.1}$ 

$$\beta_{Mg} = \frac{(V_{DCTA} \times f_1 \times c_{DCTA} \cdot (V_{EP1.2} + V_{Ex}) \times f_2 \times c_{CuSO_4}) \times M_{Mg}}{V_S}$$

 $\beta_{\mbox{\tiny Al}} {:}\quad$  Aluminiumgehalt der Probe in g/L

 $\beta_{\text{Mg}}$ : Magnesiumgehalt der Probe in g/L

V<sub>DCTA</sub>: Zugegebene Menge an DCTA Masslösung in mL

V<sub>EP1.1</sub>: Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt der Aluminiumtitration

 $V_{\mbox{\tiny EP1.2}}$ : Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt der Magnesiumtitration

 $V_{\text{Ex}}$ : Überschuss an Titriermittel nach der Aluminiumtitration in mL

V<sub>End</sub>: Endvolumen der Aluminiumtitration in mL

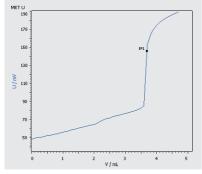
f<sub>1</sub>: Titer der DCTA-Masslösung

f<sub>2</sub>: Titer der CuSO<sub>4</sub>-Masslösung C<sub>DCTA</sub>: Konzentration der DCTA-Mass-

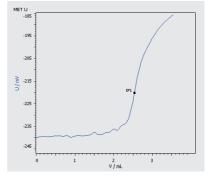
lösung in mol/L

c<sub>cuso<sub>4</sub></sub>: Konzentration der CuSO<sub>4</sub>-Masslösung in mol/L

M<sub>Al</sub>: Molare Masse von Aluminium; 26.982 g/mol


M<sub>Mg</sub>: Molare Masse von Magnesium; 24.305 g/mol

V<sub>S</sub>: Probeneinmass in mL


## Bemerkungen

Von Zeit zu Zeit muss die Oberfläche der Cu-ISE mit Aloxpulver poliert werden (z. B. Polierset 6.2802.000).

# Beispiel: Al<sup>3+</sup> und Mg<sup>2+</sup> in einer wässrigen Lösung



**Abbildung 32** Titrationskurve der potentiometrischen Aluminiumbestimmung mit der Cu-ISE



**Abbildung 33** Titrationskurve der potentiometrischen Magnesiumbestimmung mit der Cu-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-181 Automated potentiometric titration of aluminum and magnesium in the same solution
- Titration Application Note No. AN-T-117 Automatic determination of aluminum and magnesium mixtures with ion-selective copper electrode (Cu-ISE)

# Magnesium und Zink

## Potentiometrisch mit der Cu-ISE

## Reagenzien

- Titriermittel 1:  $c(Na_2EDTA) = 0.1 \text{ mol/L}$
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L;
   24.968 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst. Man gibt
   0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % zu, mischt und füllt mit dest. H<sub>2</sub>O auf 1 L auf.
- Acetatpuffer pH = 4.7: 123 g Natriumacetat und 86 mL Eisessig werden in
- dest.  $H_2O$  gelöst, gemischt und mit dest.  $H_2O$  auf 1 L aufgefüllt.
- Ammoniakpuffer pH = 10: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L

#### Probenvorbereitung

Die Probenlösung, die nicht mehr als 50 mg Zn<sup>2+</sup> bzw. 20 mg Mg<sup>2+</sup> enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und der pH-Wert mit c(NaOH) = 1 mol/L auf 4–4.5 gestellt.

#### **Analyse**

Zu der vorbereiteten Probenlösung gibt man 5 mL Acetatpuffer und 10 mL c(DCTA) = 0.1 mol/L zu und lässt unter Rühren 1 min reagieren. Anschliessend wird mit  $c(CuSO_4) = 0.1$  mol/L über den

ersten Äquivalenzpunkt hinaus titriert → Zinkgehalt. Der Titriermittelüberschuss des Titriermittels 2 wird als «Common Variable» gespeichert.

Zur austitrierten Probenlösung gibt man 10 mL Ammoniakpuffer und nochmals 10 mL c(DCTA) = 0.1 mol/L. Dann titriert man mit c(CuSO<sub>4</sub>) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus  $\rightarrow$  Magnesiumgehalt.

### Berechnung

$$\beta_{Zn} = \frac{(V_{DCTA} \times f_1 \times c_{DCTA} - V_{EP1.1} \times f_2 \times c_{CuSO_4}) \times M_{Zn}}{V_S}$$

 $V_{Ex} = V_{End} - V_{EP1.1}$ 

$$\beta_{Mg} = \frac{(V_{DCTA} \times f_1 \times c_{DCTA} - (V_{EP1.2} + V_{Ex}) \times f_2 \times c_{CuSO_4}) \times M_{Mg}}{V_S}$$

 $\beta_{z_n}$ : Zinkgehalt der Probe in g/L

 $\beta_{Mq}$ : Magnesiumgehalt der Probe in g/L

V<sub>DCTA</sub>: Zugegebene Menge an DCTA-Masslösung in mL

V<sub>EP1.1</sub>: Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt der Zinktitration

V<sub>EP1.2</sub>: Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt der Magnesiumtitration

V<sub>Ex</sub>: Überschuss an Titriermittel nach der Zinktitration in mL

V<sub>End</sub>: Endvolumen der Zinktitration in mI

f<sub>1</sub>: Titer der DCTA-Masslösung

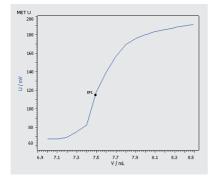
f<sub>2</sub>: Titer der CuSO<sub>4</sub>-Masslösung

c<sub>DCTA</sub>: Konzentration der DCTA-Masslösung in mol/L

 $c_{\text{CuSO}_4}$ : Konzentration der CuSO<sub>4</sub>-Masslösung in mol/L

M<sub>Zn</sub>: Molare Masse von Zink; 65.409 g/mol

M<sub>Mq</sub>: Molare Masse von Magnesium;


24.305 g/mol

V<sub>S</sub>: Probeneinmass in mL

## Bemerkungen

Von Zeit zu Zeit muss die Oberfläche der Cu-ISE mit Aloxpulver poliert werden (z. B. Polierset 6.2802.000).

# Beispiel: Zn<sup>2+</sup> und Mg<sup>2+</sup> in wässriger Lösung



**Abbildung 34** Titrationskurve der potentiometrischen Zinkbestimmung mit der Cu-ISE

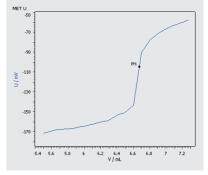



Abbildung 35 Titrationskurve der potentiometrischen Magnesiumbestimmung mit der Cu-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Titration Application Note AN-T-118 – Automatic determination of zinc and magnesium mixtures with ion-selective copper electrode (Cu-ISE)

# Aluminium, Calcium, Eisen und Magnesium in Zement und Klinker

# Photometrisch mit der Optrode bei 610 nm

# Reagenzien

- Salzsäure: w(HCl) = 36 %
- Salpetersäure: w(HNO<sub>3</sub>) = ca. 65 %
- Natriumhydroxid: w(NaOH) > 99 %
- Ammoniak: w(NH<sub>3</sub>) = 25 %
- Ammoniumchlorid: NH<sub>4</sub>Cl p.a.
- Titriermittel 1 für Ca<sup>2+</sup> und Mg<sup>2+</sup>: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2 für Fe<sup>3+</sup>: c(Na<sub>2</sub>EDTA) = 0.025 mol/L
- Titriermittel 3 für Al<sup>3+</sup>: c(Bi(NO<sub>3</sub>)<sub>3</sub>) = 0.05 mol/L; 24.25 g Bi(NO<sub>3</sub>)<sub>3</sub> · 5 H<sub>2</sub>O wird in ca. 500 mL HNO<sub>3</sub> (2 mol/L) gelöst und in einen 1-L-Messkolben überführt. Anschliessend wird mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.

- Ammoniak: c(NH<sub>3</sub>) = 2 mol/L; 144 mL w(NH<sub>3</sub>) = 25 % wird in einen 1-L-Messkolben gegeben und mit dest. H<sub>2</sub>O bis zur Marke aufgefüllt.
- Natronlauge: c(NaOH) = 2 mol/L;
   80 g NaOH wird in ca. 600 mL dest.
   H<sub>2</sub>O gelöst, in einen 1-L-Messkolben überführt und mit dest. H<sub>2</sub>O bis zur Marke aufgefüllt.
- Salzsäure: c(HCl) = 6 mol/L; 590 mL w(HCl) = 37 % wird in einen 1-L-Messkolben gegeben, welcher bereits ca. 200 mL dest. H<sub>2</sub>O enthält. Nachdem die Lösung abgekühlt ist, wird sie mit dest. H<sub>2</sub>O bis zur Marke aufgefüllt.
- Salpetersäure: c(HNO<sub>3</sub>) = 2 mol/L;
   192 mL w(HNO<sub>3</sub>) = 65 % wird in einen 1-L-Messkolben überführt welcher bereits ca. 500 mL dest. H<sub>2</sub>O enthält. Nachdem die Lösung abgekühlt ist, wird sie mit dest. H<sub>2</sub>O bis zur Marke aufgefüllt.
- Acetatpuffer: 60 g Ammoniumacetat und 400 mL Eisessig werden in dest.
   H<sub>2</sub>O gelöst, gemischt und mit dest.
   H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Indikator für Ca<sup>2+</sup>, Murexid: 100 mg
   Murexid wird mit 10 g NaCl verrieben.
- Indikator für Mg<sup>2+</sup>, Methylthymolblau: 100 mg Methylthymolblau wird mit 10 g NaCl verrieben.
- Indikatorlösung für Fe<sup>3+</sup>, Sulfosalicylsäure: 4 g Sulfosalicylsäure wird in 100 mL dest. H<sub>2</sub>O gelöst.

 Indikatorlösung für Al<sup>3+</sup> Xylenolorange: 100 mg Xylenolorange Dinatriumsalz wird in 100 mL dest. H<sub>2</sub>O gelöst.

#### Probenvorbereitung

Ca. 4 g Zement wird mit 4 g  $NH_4Cl$  vermischt, mit 48 mL c(HCl) = 6 mol/L und 3 mL  $c(HNO_3) = 2$  mol/L versetzt, erwärmt und für einige Zeit gekocht. Die Mischung wird mit einem Magnetrührer während ca. 60 min gerührt. Dann wird mit 50 mL heissem dest.  $H_2O$  aufgenommen und durch einen Schwarzbandfilter in einen 500 mL Messkolben filtriert. Der Filter wird gründlich mit heissem dest.  $H_2O$  nachgespült. Nach dem Abkühlen werden die vereinigten Filtrate gemischt und mit dest.  $H_2O$  zur Marke aufgefüllt.

#### **Analysen**

Alle Analysen werden mit der Optrode bei einer Wellenlänge von 610 nm durchgeführt.

#### Calcium

2.5 mL Probenlösung wird mit ca. 70 mL dest.  $H_2O$  aufgefüllt und mit c(NaOH) = 2 mol/L auf pH 12 eingestellt. Nach Zugabe einer Spatelspitze Murexid-Indikator wird die Lösung mit c(Na<sub>2</sub>EDTA) = 0.1 mol/L über den zweiten Knickpunkt hinaus titriert. Der Titriermittelverbrauch bis BP<sub>2</sub> wird als «Common Variable» gespeichert, da er für die  $Mg^{2+}$ -Bestimmung weiterverwendet wird.

#### Berechnung

$$CaO~\% = \frac{V_{BP2} \times c_{EDTA} \times f_{EDTA} \times 40 \times M_{CaO}}{m_S}$$

CaO %: Calciumgehalt als Calciumoxid

 $V_{\text{BP2}}$ : Verbrauch an EDTA in mL bis zum zweiten Knickpunkt

 $c_{\mbox{\scriptsize EDTA}}$ : Konzentration von EDTA in

mol/L; c(EDTA) = 0.1 mol/L

f<sub>EDTA</sub>: Titer der EDTA-Lösung 40: Umrechnungsfaktor

 $M_{\text{CaO}}$ : Molare Masse von Calciumoxid;

56.08 g/mol

m<sub>S</sub>: Probeneinmass in g

### Magnesium

Mit dieser Titration bestimmt man die Summe von Ca<sup>2+</sup> und Mg<sup>2+</sup> und berechnet den Magnesiumgehalt, indem man den Titriermittelverbrauch für die Ca<sup>2+</sup>-Bestimmung vom Gesamtverbrauch abzieht.

In den Titrierbecher wird 2.5 mL Aufschlusslösung pipettiert und mit dest.  $H_2O$  auf ca. 80 mL verdünnt. Der pH-Wert der Lösung wird mit c(NaOH) = 2 mol/L auf 10 eingestellt und mit einer Spatelspitze Methylthymolblau versetzt. Anschliessend wird die Lösung mit  $c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus titriert.

### Berechnung

$$MgO~\% = \frac{(V_{EP1} - V_{Ca,~BP2}) \times c_{EDTA} \times f_{EDTA} \times 40 \times M_{MgO}}{m_{S}}$$

MgO %: Magnesiumgehalt als

Magnesiumoxid in %

V<sub>EP1</sub>: Verbrauch an EDTA bis zum

ersten Äquivalenzpunkt in mL

V<sub>Ca, BP2</sub>: Verbrauch an EDTA der

Calciumbestimmung in mL

 $c_{\text{EDTA}}$ : Konzentration von EDTA in

mol/L; c(EDTA) = 0.1 mol/L

f<sub>EDTA</sub>: Titer der EDTA-Lösung 40: Umrechnungsfaktor

M<sub>MgO</sub>: Molare Masse von Magnesium-

oxid; 40.32 g/mol

m<sub>S</sub>: Probeneinmass in g

#### Eisen

In den Titrierbecher wird 10 mL Aufschlusslösung pipettiert, mit dest.  $H_2O$  verdünnt und 1 mL Sulfosalicylsäure-Indikator zugegeben. Je nach pH-Wert wird die Mischung mit  $c(NH_3) = 2$  mol/L oder mit c(HCI) = 6 mol/L auf pH 1.5–2 gestellt. Anschliessend wird mit  $c(Na_2EDTA) = 0.025$  mol/L über den ersten Knickpunkt hinaus titriert. (Kleine Volumenschritte – z. B. 25  $\mu$ L – verwenden).

Der Titriermittelverbrauch bis  $BP_1$  wird als «Common Variable» gespeichert, da er für die  $Al^{3+}$ -Bestimmung weiterverwendet wird.

### Berechnung

$$Fe_2O_3\% = \frac{V_{EP1} \times c_{EDTA} \times f_{EDTA} \times 10 \times M_{Fe_2O_3}}{m_S \times 2}$$

 $\begin{array}{lll} \text{Fe}_2\text{O}_3 \; \%: \; & \text{Eisengehalt als Eisenoxid in } \% \\ \text{V}_{\text{EP1}}: & & \text{EDTA-Verbrauch in mL bis zum} \\ & & \text{ersten } \ddot{\text{A}} \text{quivalenzpunkt} \\ \text{C}_{\text{EDTA}}: & & \text{Konzentration von EDTA in} \\ & & & \text{mol/L}; \; \text{c(EDTA)} = 0.025 \; \text{mol/L} \\ \text{f}_{\text{FDTA}}: & & \text{Titer der EDTA-Lösung} \\ \end{array}$ 

10: Umrechnungsfaktor

 $M_{Fe_2O_3}$ : Molare Masse von Eisenoxid; 159.69 q/mol

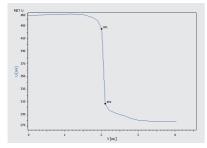
c(EDTA) = 0.025 mol/L

m<sub>S</sub>: Probeneinmass in g2: Stöchiometrischer Faktor

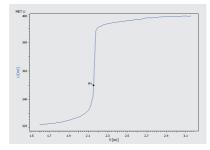
#### Aluminium

Wie bei der Mg<sup>2+</sup>-Bestimmung handelt es sich auch hier um eine Summenbestimmung. Al<sup>3+</sup> und Fe<sup>3+</sup> werden gesamthaft erfasst. Der Aluminiumgehalt wird berechnet, indem der Titriermittelverbrauch für die Fe<sup>3+</sup>-Bestimmung vom Gesamtverbrauch abgezogen wird.

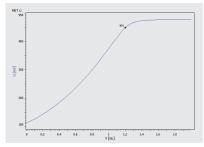
10 mL Probe wird in ein Becherglas pipettiert und mit 70 mL dest.  $H_2O$  aufgefüllt. Nachdem 10 mL Acetatpuffer zugegeben und der pH-Wert mit c(HCI) = 6 mol/L auf pH 3.5 eingestellt wurde, werden 1.25 mL  $c(Na_2EDTA) = 0.1$  mol/L und 1 mL Xylenolorange-Indikatorlösung zugegeben. Die Lösung wird mit  $c(Bi(NO_3)_3) = 0.05$  mol/L über den ersten Äquivalenzpunkt hinaus titriert.


Stöchiometrischer Faktor

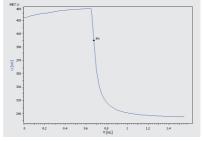
### Berechnung


| Al <sub>2</sub> O <sub>3</sub> % = | $((V_{EDTA1} \times C_{EDTA1} \times f_{EDTA1}) - (V_{EDTA2})$ | × c <sub>EDTA2</sub> × f | $E_{\text{EDTA2}}$ ) - ( $V_{\text{EP1}} \times C_{\text{Bi}} \times f_{\text{Bi}}$ )) $\times M_{\text{Al}_2\text{O}_3} \times 10$ |
|------------------------------------|----------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| A12U3 70 =                         |                                                                | $m_S \times 2$           |                                                                                                                                     |
| Al <sub>2</sub> O <sub>3</sub> %   | 6: Aluminiumgehalt als                                         | f <sub>EDTA2</sub> :     | Titer der Na₂EDTA-Lösung                                                                                                            |
|                                    | Aluminiumoxid in %                                             |                          | $c(Na_2EDTA) = 0.025 \text{ mol/L}$                                                                                                 |
| V <sub>EDTA1</sub> :               | Vorlage an c(Na₂EDTA) =                                        | V <sub>EP1</sub> :       | Verbrauch an $c(Bi(NO_3)_3) =$                                                                                                      |
|                                    | 0.1 mol/L in mL                                                |                          | 0.05 mol/L bis zum ersten                                                                                                           |
| C <sub>EDTA1</sub> :               | Konzentration der Na₂EDTA-                                     |                          | Äquivalenzpunkt in mL                                                                                                               |
|                                    | Lösung in mol/L; c(EDTA) =                                     | C <sub>Bi</sub> :        | Konzentration der Bi(NO <sub>3</sub> ) <sub>3</sub> -                                                                               |
|                                    | 0.1 mol/L                                                      |                          | Lösung in mol/L;                                                                                                                    |
| f <sub>EDTA1</sub> :               | Titer der Na₂EDTA-Lösung                                       |                          | $c(BiNO_3)_3) = 0.05 \text{ mol/L}$                                                                                                 |
|                                    | $c(Na_2EDTA) = 0.1 \text{ mol/L}$                              | $f_{Bi}$ :               | Titer der Bi(NO₃)₃-Lösung;                                                                                                          |
| V <sub>EDTA2</sub> :               | Verbrauch an c(Na₂EDTA) =                                      |                          | c(Bi(NO3)3) = 0.05 mol/L                                                                                                            |
|                                    | 0.025 mol/L für die Eisen-                                     | 10:                      | Umrechnungsfaktor                                                                                                                   |
|                                    | bestimmung in mL                                               | $M_{Al_2O_3}$ :          | Molare Masse von Aluminium-                                                                                                         |
| C <sub>EDTA2</sub> :               | Konzentration der Na₂EDTA-                                     |                          | oxid; 101.96 g/mol                                                                                                                  |
|                                    | Lösung in mol/L;                                               | m <sub>s</sub> :         | Probeneinmass in g                                                                                                                  |

2.


#### Beispiele: Titrationskurven einer Zementprobe




**Abbildung 36** Titrationskurve der photometrischen Bestimmung von Calcium in Zement mit der Optrode bei 610 nm



**Abbildung 37** Titrationskurve der photometrischen Bestimmung von Magnesium in Zement mit der Optrode bei 610 nm



**Abbildung 38** Titrationskurve der photometrischen Bestimmung von Eisen in Zement mit der Optrode bei 610 nm



**Abbildung 39** Titrationskurve der photometrischen Bestimmung von Aluminium in Zement mit der Optrode bei 610 nm

- Application Bulletin AB-063 Determination of silicon, calcium, magnesium, iron, and aluminum in digested cement samples by photometric titrations
- Titration Application Note AN-T-078 Determination of aluminum in cement using photometric titration
- Titration Application Note AN-T-079 Determination of calcium in cement by photometric titration of the solubilized product according to EN 196-2
- Titration Application Note AN-T-080 Determination of iron in cement using photometric titration
- Titration Application Note AN-T-081 Determination of magnesium in cement using photometric titration

## Potentiometrisch mit der Ca-ISE Reagenzien

- Titriermittel: c(Na<sub>2</sub>EGTA) = 0.05 mol/L;
   19.4 g Ethylenglykol-bis-(2-aminoethyl)-tetraessigsäure (w = 98 %) wird in ca. 200 mL dest. H<sub>2</sub>O aufgeschlämmt. Unter Rühren wird so lange c(NaOH) = 10 mol/L zugegeben, bis sich alles gelöst hat. Nach dem Abkühlen wird gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Bariumchloridlösung: c(BaCl<sub>2</sub>) = 0.05 mol/L; 12.34 g BaCl<sub>2</sub> · 2 H<sub>2</sub>O (w = 99 %) wird in c(HCl) = 0.01 mol/L gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Pufferlösung pH = 10: 9 g NH<sub>4</sub>Cl und 60 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ca<sup>2+</sup>-Standard: c(Ca<sup>2+</sup>) = 0.1 mol/L;
   z. B. Metrohm No. 6.2301.070
- Salpetersäure: c(HNO<sub>3</sub>) = 1 mol/L

#### Blindwertbestimmung

In ein Becherglas werden ca. 50 mL dest.  $H_2O$ , 1 mL  $c(HNO_3) = 1$  mol/L, 0.5 mL  $Ca^{2+}$ -Standard  $(c(Ca^{2+}) = 0.1$  mol/L) und 7.5 mL  $c(BaCl_2) = 0.05$  mol/L gegeben. Unter Rühren lässt man 3 min reagieren. Dann versetzt man mit 5 mL Pufferlösung pH = 10, lässt nochmals 30 s reagieren und titriert dann mit  $c(Na_2EGTA) = 0.05$  mol/L über den zweiten Äquivalenzpunkt hinaus.  $EP_1$  entspricht dem Calciumgehalt und die Differenz  $EP_2$ - $EP_1$  dem Bariumgehalt.  $EP_2$ - $EP_1$  (mL) wird als Blindwert («Common Variable») gespeichert.

#### Analyse

Eine Probenlösung, die nicht mehr als 20 mg Sulfat enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und mit  $c(HNO_3)=1$  mol/L auf einen pH-Wert von <4 eingestellt. Man gibt 0.5 mL  $Ca^{2+}$ -Standard  $(c(Ca^{2+})=0.1$  mol/L) und 7.5 mL  $c(BaCl_2)=0.05$  mol/L zu und lässt unter Rühren 3 min reagieren. Nach Zugabe von 5 mL Pufferlösung pH = 10 lässt man nochmals 30 s reagieren und titriert anschliessend mit  $c(Na_2EGTA)=0.05$  mol/L über den zweiten Äquivalenzpunkt hinaus.

#### Berechnung

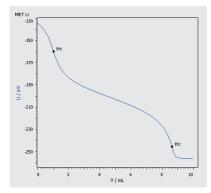
$$\beta_{SO_4^{\ 2^{\cdot}}} = \frac{\left(\text{Blank - } \left(\text{V}_{\text{EP2}} - \text{V}_{\text{EP1}}\right)\right) \times c_{\text{EGTA}} \times f \times \text{M}_{SO_4^{\ 2^{\cdot}}}}{\text{V}_{\varsigma}}$$

 $\beta_{SO_4^2}$ : Sulfatgehalt der Probe in g/L

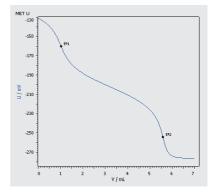
Blank: Blindwert in mL

V<sub>EP2</sub>: Verbrauch an EGTA-Masslösung in mL bis zum zweiten Äquivalenzpunkt

 $V_{\text{EP1}}$ : Verbrauch an EGTA-Masslösung in mL bis zum ersten Äquivalenzpunkt


c<sub>EGTA</sub>: Konzentration der EGTA-Masslösung in mol/L

f: Titer der EGTA-Masslösung


M<sub>so<sub>4</sub></sub><sup>2-</sup>: Molare Masse von Sulfat; 96.063 g/mol

V<sub>s</sub>: Probeneinmass in mL

#### Beispiel: Sulfat in wässriger Lösung



**Abbildung 40** Titrationskurve der Blindwertbestimmung mit der Ca-ISE



**Abbildung 41** Titrationskurve der Sulfatbestimmung mit der Ca-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-140 Titrimetric sulfate determination
- Titration Application Note AN-T-116 Automatic sulfate determination in aqueous solution using a combined ion-selective calcium electrode (Ca-ISE)

## Einzelbestimmungen

### Al - Aluminium

#### **Allgemeines**

Die komplexometrische Titration von Aluminium weist einige Besonderheiten auf, die bei der Bestimmung dieses Metalls beachtet werden sollen.

#### Reaktionsgeschwindigkeit

Die Komplexbildung erfolgt bei Raumtemperatur nur langsam. Aus diesem Grund wurde (früher) in vielen Arbeitsvorschriften in heisser Lösung titriert. Liegt jedoch ein genügend grosser Titriermittelüberschuss vor (> 50 %), erfolgt die Reaktion schnell und es kann bei Raumtemperatur titriert werden. Das heisst, dass Al³+ durch Rücktitration bestimmt werden kann.

#### Bildung von Hydroxokomplexen

Al bildet Hydroxokomplexe, die mit dem Komplexbildner (wenn überhaupt) nur sehr träge reagieren. Aus diesem Grund wird Al in sauren Lösungen titriert. Dabei muss beachtet werden, dass z. B. bei einer Vorneutralisation durch Zugabe von Hydroxidionen nur bis pH  $\approx$  4 neutralisiert wird. Sonst besteht die Gefahr, dass eben diese Hydroxokomplexe (auch

lokal beim Eintrag) gebildet werden und das Resultat verfälschen. Am besten wird Al bei pH-Werten zwischen 4 und 5 titriert.

Da in leicht saurer Lösung titriert wird, stört die Anwesenheit von Ca<sup>2+</sup> und Mg<sup>2+</sup> nicht. Fe<sup>3+</sup> wird quantitativ miterfasst und muss separat bestimmt werden.

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent:

| Formel                                                 | Molare Masse in g/mol | Äquivalent in mg |
|--------------------------------------------------------|-----------------------|------------------|
| Al                                                     | 26.982                | 2.698            |
| Al(OH)₃                                                | 78.004                | 7.800            |
| $Al_2O_3$                                              | 101.961               | 5.098            |
| AICI <sub>3</sub>                                      | 133.341               | 13.334           |
| Al(NO <sub>3</sub> ) <sub>3</sub>                      | 212.996               | 21.300           |
| Al(NO <sub>3</sub> ) <sub>3</sub> · 9 H <sub>2</sub> O | 375.134               | 37.513           |
| $Al_2(SO_4)_3$                                         | 342.151               | 17.108           |
| $Al_2(SO_4)_3 \cdot 18 H_2O$                           | 666.426               | 33.321           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L; 24.97 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O wird in ca. 500 mL dest. H<sub>2</sub>O gelöst, nach Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Acetatpuffer pH = 4.7: 116 g Ammoniumacetat und 86 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.

#### **Analyse**

Die Probenlösung, die höchstens 15 mg  $Al^{3+}$  enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Nach Zugabe von 5 mL Acetatpuffer und 10 mL  $c(Na_2EDTA) = 0.1$  mol/L lässt man unter Rühren 1–3 min reagieren und titriert anschliessend mit  $c(CuSO_4) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

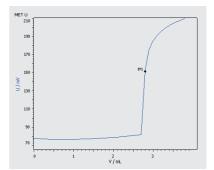
$$\beta_{AI} = \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{CuSO_4}) \times M_{AI}}{V_S}$$

 $\beta_{\text{Al}}$ : Aluminiumgehalt der Probe in g/L

V<sub>EDTA</sub>: Zugegebene Menge an EDTA-Masslösung in mL

f<sub>1</sub>: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L


 $V_{\text{EP1}}$ : Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt

f<sub>2</sub>: Titer der CuSO<sub>4</sub>-Masslösung

C<sub>cuso<sub>4</sub></sub>: Konzentration der CuSO<sub>4</sub>-Masslösung in mol/L

M<sub>Al</sub>: Molare Masse von Aluminium; 26.982 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 42** Beispielkurve einer potentiometrischen Aluminiumbestimmung mit der Cu-ISE

## Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-103

   Fully automated determination of aluminum in aqueous solution

# Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel: c(Bi(NO₃)₃) = 0.05 mol/L;
   24.25 g Bi(NO₃)₃ · 5 H₂O wird in ca.
   500 mL HNO₃ (2 mol/L) gelöst und in einen 1-L-Messkolben überführt. Anschliessend wird mit dest. H₂O auf 1 L aufgefüllt.
- Hilfslösung:  $c(Na_2EDTA) = 0.1 \text{ mol/L}$
- Salzsäure: c(HCl) = 6 mol/L; 590 mL w(HCl) = 37 % wird in einen 1-L-Messkolben gegeben, welcher bereits ca.
- 200 mL dest.  $H_2O$  enthält. Nachdem die Lösung abgekühlt ist, wird sie mit dest.  $H_2O$  bis zur Marke aufgefüllt.
- Acetatpuffer: 60 g Ammoniumacetat werden in ca. 200 mL dest. H<sub>2</sub>O und 400 mL Eisessig gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Indikatorlösung: Xylenolorange;
   100 mg Xylenolorange Dinatriumsalz
   wird in 100 mL dest. H<sub>2</sub>O gelöst.

### 47 Analyse

10 mL Probenlösung wird in ein Becherglas pipettiert und mit 70 mL dest.  $H_2O$  aufgefüllt. Nachdem 10 mL Acetatpuffer zugegeben und der pH-Wert mit c(HCl) = 6 mol/L auf pH 3.5 eingestellt wurde,

werden 1.25 mL  $c(Na_2EDTA) = 0.1$  mol/L und 1 mL Indikatorlösung zugegeben. Die Lösung wird mit  $c(Bi(NO_3)_3) = 0.05$  mol/L über den ersten Äquivalenzpunkt hinaus titriert.

#### Berechnung

$$Al_2O_3 \% = \frac{((V_{EDTA} \times C_{EDTA} \times f_{EDTA}) - (V_{EP1} \times C_{Bi} \times f_{Bi})) \times M_{Al_2O_3} \times 10}{m_5 \times 2}$$

Al<sub>2</sub>O<sub>3</sub> %: Aluminiumgehalt als Aluminiumoxid in %

 $V_{\text{\tiny EDTA}}$ : Zugegebene Menge an EDTA-

Masslösung in mL

 $c_{\mbox{\scriptsize EDTA}}$ : Konzentration der EDTA-Mass-

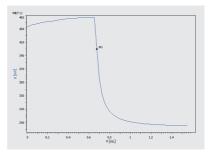
lösung in mol/L

 $f_{EDTA}$ : Titer der EDTA-Masslösung  $V_{EP1}$ : Verbrauch an  $c(Bi(NO_3)_3) =$ 

0.05 mol/L bis zum ersten Äquivalenzpunkt in mL

 $C_{Bi}$ : Konzentration der  $Bi(NO_3)_3$ -

Lösung in mol/L


 $f_{Bi}$ : Titer der  $Bi(NO_3)_3$ -Lösung;  $c(Bi(NO_3)_3) = 0.05 \text{ mol/L}$ 

10: Umrechnungsfaktor

 $\mathsf{M}_{\mathsf{Al}_2\mathsf{O}_3}$ : Molare Masse von Aluminium-

oxid; 101.96 g/mol

m<sub>S</sub>: Probeneinmass in g 2: Stöchiometrischer Faktor



**Abbildung 43** Beispiel einer photometrischen Titrationskurve von Aluminium mit der Optrode bei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

Application Bulletin AB-063 – Determination of silicon, calcium, magnesium, iron, and aluminum in digested cement samples by photometric titrations

### Ba – Barium und Sr – Strontium

#### **Allgemeines**

Barium und Strontium lassen sich sowohl direkt als auch indirekt in alkalischer Lösung titrieren. Ca²+ und Mg²+ werden miterfasst. Ba²+ kann getrennt werden, indem es als BaSO₄ gefällt wird (Vorsicht, BaSO₄ löst sich in einem Na₂EDTA-Überschuss). Schwermetallionen werden durch Zugabe von KCN maskiert. Da nur in alkalischen Lösungen titriert werden kann und Barium und Strontium hierin schwer lösliche Carbonate bilden, besteht die Gefahr von Unterbefunden. Aus diesem Grund werden die Bestimmungen oft durch Rücktitration vorgenommen.

Die nachfolgende Tabelle enthält zur Orientierung einige Löslichkeitsprodukte als  $pK_L$ 

$$K_1 = a[A] \cdot a[B]$$

 $pK_L$  ist der negative Logarithmus von  $K_L$ . Je grösser  $pK_L$  ist, desto geringer ist die Löslichkeit der entsprechenden Verbindung.

| Verbindung        | pK∟  |
|-------------------|------|
| BaCO₃             | 8.2  |
| BaSO <sub>4</sub> | 10.0 |
| CaCO₃             | 7.9  |
| CaSO <sub>4</sub> | 4.3  |
| MgCO₃             | 3.8  |
| SrCO₃             | 8.8  |
| SrSO <sub>4</sub> | 6.6  |

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                            | Molare Masse in g/mol | Äquivalent in mg |
|-----------------------------------|-----------------------|------------------|
| Ва                                | 137.327               | 13.733           |
| BaCO₃                             | 197.336               | 19.734           |
| $BaCl_2$                          | 208.233               | 20.823           |
| Ba(NO <sub>3</sub> ) <sub>2</sub> | 261.337               | 26.134           |
| BaO                               | 153.326               | 15.333           |
| Ba(OH) <sub>2</sub>               | 171.342               | 17.134           |
| BaSO <sub>4</sub>                 | 233.390               | 23.339           |
| Sr                                | 87.620                | 8.762            |
| SrCO₃                             | 147.629               | 14.763           |
| SrCl <sub>2</sub>                 | 158.526               | 15.853           |
| $Sr(NO_3)_2$                      | 211.630               | 21.163           |
| SrO                               | 103.619               | 10.362           |
| Sr(OH) <sub>2</sub>               | 121.635               | 12.164           |
| SrSO <sub>4</sub>                 | 183.683               | 18.368           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Cu-Komplexlösung: c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA] = 0.1 mol/L (z. B. Merck Nr. 105217)
- Ammoniakpuffer pH = 10: 54 g  $NH_4Cl \text{ und } 350 \text{ mL } w(NH_3) = 25 \%$ werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L

#### Analyse

Stark saure Probenlösungen werden mit c(NaOH) = 1 mol/L auf einen pH-Wert von ca. 4 vorneutralisiert. Die Probenlösung wird, wenn nötig, mit dest. H<sub>2</sub>O auf 50 mL verdünnt. Man fügt 1 mL Cu-Komplexlösung und 5 mL Ammoniakpuffer zu, wartet unter Rühren 10-20 s und titriert dann mit  $c(Na_2EDTA) =$ 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{\text{Ba/Sr}} = \frac{V_{\text{EP1}} \times f \times c_{\text{EDTA}} \times M_{\text{Ba/Sr}}}{V_{\text{S}}}$$

 $\beta_{Ba/Sr}$ : Barium- oder Strontiumgehalt

der Probe in q/L

Verbrauch an EDTA-Masslösung  $V_{\text{FP1}}$ :

in mL bis zum ersten Äguivalenz-

punkt

f: Titer der EDTA-Masslösung

CEDTA: Konzentration der EDTA-Mass-

lösung in mol/L

M<sub>Ba/Sr</sub>: Molare Masse von Barium bzw.

Strontium; 137.327 g/mol bzw. 87.620 g/mol

Probeneinmass in mL Vs:

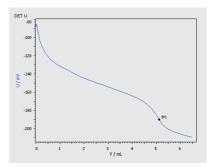



Abbildung 44 Beispiel einer potentiometrischen Titrationskurve von Barium mit der Cu-ISF

- Application Bulletin AB-101 Complexometric titrations with the copper ionselective electrode
- Titration Application Note AN-T-104— Fully automated determination of barium in aqueous solution

## Photometrisch mit der Optrode bei 574 nm

#### Reagenzien

• Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L

Indikatorlösung: Phthaleinpurpur;
 0.1 g Phthaleinpurpur wird in ca.
 75 mL dest. H<sub>2</sub>O und 1 mL w(NH<sub>3</sub>) =
 25 % gelöst, gemischt und mit dest.
 H<sub>2</sub>O auf 100 mL aufgefüllt.

• Ammoniak:  $w(NH_3) = 25 \%$ 

• Natronlauge: c(NaOH) = 1 mol/L

#### **Analyse**

Stark saure Proben werden mit c(NaOH) = 1 mol/L auf einen pH-Wert von 4–5 vorneutralisiert. Zu 50 mL Probenlösung, die nicht mehr als 100 mg Ba²+ oder 80 mg Sr²+ enthalten soll, wird 100 mL dest.  $H_2O$  zugegeben. Dann werden 5 mL w(NH<sub>3</sub>) = 25 % und 0.5 mL Indikatorlösung zugesetzt und *sofort* mit c(Na₂EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt (farblos) hinaus titriert.

#### Berechnung

$$\beta_{\text{Ba/Sr}} = \frac{V_{\text{EP1}} \times \text{f} \times c_{\text{EDTA}} \times M_{\text{Ba/Sr}}}{V_{\text{S}}}$$

 $eta_{ extsf{Ba/Sr}}$ : Barium- oder Strontiumgehalt

der Probe in g/L

 $V_{\text{\tiny EP1}}$ : Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenz-

punkt

f: Titer der EDTA-Masslösung C<sub>FDTA</sub>: Konzentration der EDTA-Mass-

lösung in mol/L

 $M_{\text{Ba/Sr}}$ : Molare Masse von Barium bzw.

Strontium; 137.327 g/mol bzw.

87.620 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 45** Photometrische Titrationskurve von Barium mit der Optrode bei 574 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

• Titration Application Note AN-T-142 – Determination of barium using automatic photometric titration

### Bi - Bismut

#### Allgemeines

Wie beim Al<sup>3+</sup> bildet auch Bi<sup>3+</sup> in wässrigen Lösungen Hydroxokomplexe, die mit dem Komplexbildner nur träge reagieren. Auf der anderen Seite weisen Bi-Komplexe eine sehr hohe Komplexbildungskonstante auf die es erlaubt, Bi<sup>3+</sup> noch in stark sauren Lösungen (pH im Bereich 1–2) problemlos zu titrieren. Die komple-

xometrische Bi-Bestimmung ist dadurch sehr selektiv. Es sind nur Störungen von Metallionen zu erwarten, deren Komplexbildungskonstante bei > 20 liegt (Fe<sup>3+</sup>, Hg<sup>2+</sup>, Sn<sup>2+</sup>, Sn<sup>4+</sup>). Die Bi-Bestimmung in einigen Pharmazeutika (z. B. Bi-subgallat, Bi-subsalicylat) erfolgt nach deren Aufschluss.

#### Hilfstabelle Äquivalentmassen

1 mL  $c(Na_2EDTA) = 0.1 \text{ mol/L} = x \text{ mg Äquivalent}$ 

| Formel                                | Molare Masse in g/mol | Äquivalent in mg |
|---------------------------------------|-----------------------|------------------|
| Bi                                    | 208.980               | 20.898           |
| Bi(OH) <sub>3</sub>                   | 261.013               | 26.101           |
| $Bi_2O_3$                             | 465.959               | 23.298           |
| (BiO) <sub>2</sub> CO <sub>3</sub>    | 509.969               | 25.498           |
| BiONO <sub>3</sub> · H <sub>2</sub> O | 305.000               | 30.500           |
| Bi(NO <sub>3</sub> ) <sub>3</sub>     | 394.995               | 39.500           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L;
   24.97 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst. Nach Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % mischt man und füllt mit dest. H<sub>2</sub>O auf 1 L auf.
- Acetatpuffer pH = 4.7: 116 g Ammoniumacetat und 86 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniak: w(NH₃) = 25 %

#### Analyse

Die saure Probenlösung, die nicht mehr als 160 mg Bi³+ enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Nach Zugabe von 5 mL Acetatpuffer und 10 mL  $c(Na_2EDTA) = 0.1$  mol/L stellt man falls notwendig den pH-Wert mit  $w(NH_3) = 25$ % auf 4.7 ein, lässt ca. 1 min unter Rühren reagieren und titriert anschliessend mit  $c(CuSO_4) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

46

#### Berechnung

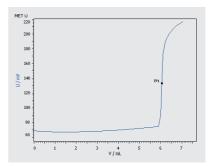
$$\beta_{Bi} = \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{CuSO_4}) \times M_{Bi}}{V_S}$$

 $\begin{array}{ll} \beta_{\text{Bi}} : & \text{Bismutgehalt der Probe in g/L} \\ V_{\text{EDTA}} : & \text{Zugegebene Menge an EDTA-} \end{array}$ 

Masslösung in mL

f<sub>1</sub>: Titer der EDTA-Masslösung

 $c_{\text{EDTA}}$ : Konzentration der EDTA-Masslösung in mol/L


V<sub>EP1</sub>: Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt

f<sub>2</sub>: Titer der CuSO<sub>4</sub>-Masslösung C<sub>cuso.</sub>: Konzentration der CuSO<sub>4</sub>-

Masslösung in mol/L

M<sub>Bi</sub>: Molare Masse von Bismut; 208.980 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 46** Potentiometrische Titrationskurve von Bismut mit der Cu-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 –
   Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-105

   Fully automated determination of bismuth(III) in aqueous solution

#### Photometrisch mit der Optrode bei 520 nm

### Reagenzien

• Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L

• Salpetersäure:  $w(HNO_3) = 65 \%$ 

Indikatorlösung: Xylenolorange;
 100 mg Xylenolorange Dinatriumsalz
 wird in 100 mL dest. H<sub>2</sub>O gelöst.

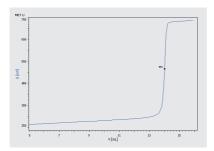
#### **Analyse**

Die Probe wird in wenig  $w(HNO_3) = 65$  % gelöst und mit dest.  $H_2O$  auf ca. 100 mL verdünnt. Nach Zugabe von 0.5 mL Indikatorlösung titriert man mit  $c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Bi} \, = \, \frac{V_{EP1} \, \boldsymbol{\times} \, \boldsymbol{f} \, \boldsymbol{\times} \, \boldsymbol{c}_{EDTA} \, \boldsymbol{\times} \, \boldsymbol{M}_{Bi}}{V_{S}}$$

 $\beta_{\text{Ri}}$ : Bismutgehalt der Probe in g/L


 $V_{\text{EP1}}$ : Verbrauch an Titriermittel bis zum ersten Äquivalenzpunkt in mL

f: Titer der EDTA-Masslösung

C<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>Bi</sub>: Molare Masse von Bismut; 208.980 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 47** Beispiel einer photometrischen Titrationskurve von Bismut bei 520 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Titration Application Note AN-T-088

 Photometric EDTA titration of bismuth nitrate according to Ph. Eur. and USP

### Ca - Calcium

#### **Allgemeines**

Ca<sup>2+</sup> ist eines der ersten Metalle, das anhand komplexometrischer Titration bestimmt wurde. In der Zwischenzeit existieren hunderte, wenn nicht tausende von Publikationen zu diesem Thema. Wir befassen uns in diesem Kapitel nur mit der Bestimmung von Ca<sup>2+</sup>. Liegen Gemische von Ca<sup>2+</sup> mit Mg<sup>2+</sup> vor, verweisen wir auf das Kapitel «Wasserhärten».

Da Ca<sup>2+</sup> immer in alkalischer Lösung titriert wird, besteht stets auch immer die Gefahr, dass es durch CO<sub>2</sub>-Aufnahme

aus der Luft als CaCO<sub>3</sub> ausgefällt wird. Bei zu schneller Titration werden falsche Resultate – Unterbefunde – erhalten. (CaCO<sub>3</sub> wird durch das Titriermittel, den Komplexbildner, nur langsam umgesetzt und auftretende Trübungen stören vor allem bei der photometrischen Titration).

Soll Ca<sup>2+</sup> neben Mg<sup>2+</sup> bestimmt werden, kann anstelle von EDTA das selektivere Titriermittel EGTA verwendet werden (bei der Cu-ISE den Cu-EGTA-Komplex verwenden).

#### Hilfstabelle Äquivalentmassen

1 mL c(KB) = 0.1 mol/L = x mg Äquivalent (KB = Komplexbildner)

| Formel                            | Molare Masse in g/mol | Äquivalent in mg |
|-----------------------------------|-----------------------|------------------|
| Ca                                | 40.078                | 4.008            |
| $CaC_2O_4$                        | 128.097               | 12.810           |
| CaCO <sub>3</sub>                 | 100.087               | 10.009           |
| CaCl <sub>2</sub>                 | 110.984               | 11.098           |
| Ca(NO <sub>3</sub> ) <sub>2</sub> | 164.088               | 16.409           |
| CaO                               | 56.077                | 5.608            |
| Ca(OH) <sub>2</sub>               | 74.093                | 7.409            |
| CaSO₃                             | 120.141               | 12.014           |
| CaSO <sub>4</sub>                 | 136.141               | 13.614           |

#### Potentiometrisch mit der Ca-ISE

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Pufferlösung: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L

#### **Analyse**

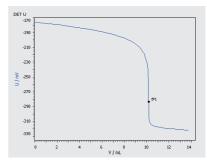
Saure Probenlösungen werden wenn nötig mit c(NaOH)=1 mol/L auf einen pH-Wert von 5–7 vorneutralisiert und falls notwendig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Dann gibt man 5 mL Pufferlösung zu und titriert mit  $c(Na_2EDTA)=0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Ca} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Ca}}{V_{S}}$$

 $\beta_{Ca}$ : Calciumgehalt der Probe in g/L  $V_{FP1}$ : Verbrauch an EDTA-Masslösung

in mL bis zum ersten Äquivalenzpunkt


punkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>Ca</sub>: Molare Masse von Calcium; 40.078 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 48** Beispielkurve einer potentiometrischen Calciumbestimmung mit der Ca-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

Application Bulletin AB-125 –
 Simultaneous determination of
 calcium, magnesium, and alkalinity
 by complexometric titration with
 potentiometric or photometric indi cation in water and beverage samples

## Potentiometrisch mit der Cu-ISE Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Pufferlösung: 54 g NH₄Cl und 350 mL w(NH₃) = 25 % werden in dest. H₂O gelöst, gemischt und mit dest. H₂O auf 1 L aufgefüllt.
- Cu-Komplexlösung: c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA]
   = 0.1 mol/L (z. B. Merck Nr. 105217)
- Natronlauge: c(NaOH) = 1 mol/L

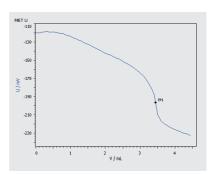
#### **Analyse**

Saure Probenlösungen werden wenn nötig mit c(NaOH) = 1 mol/L auf einen pH-Wert von 5–7 vorneutralisiert und falls notwendig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Dann gibt man 5 mL Pufferlösung und 0.5 mL Cu-Komplexlösung zu, wartet unter Rühren 20 s und titriert mit  $c(Na_2EDTA) = 0.1 \text{ mol/L}$  über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Ca} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Ca}}{V_{S}}$$

 $\begin{array}{ll} \beta_{\text{Ca}} \colon & \text{Calciumgehalt der Probe in g/L} \\ V_{\text{EP1}} \colon & \text{Verbrauch an EDTA-Masslösung} \end{array}$ 


in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>Ca</sub>: Molare Masse von Calcium; 40.078 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 49** Potentiometrische Titrationskurve der Bestimmung von Calcium in Milch mit der Cu-ISE

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-106 Fully automated determination of calcium in milk

## Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

• Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L

• Natronlauge: c(NaOH) = 1 mol/L

 Indikatorlösung: HHSNN; 20 mg HHSNN werden in 50 mL Ethanol gelöst.

#### **Analyse**

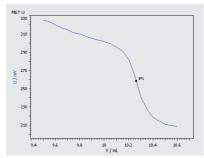
Saure Probenlösungen werden wenn nötig mit c(NaOH)=1 mol/L auf einen pH-Wert von 5–7 vorneutralisiert und falls notwendig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Man gibt 4 mL c(NaOH)=1 mol/L und 1.5 mL Indikatorlösung zu und titriert sofort mit  $c(Na_2EDTA)=0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{\text{Ca}} = \frac{V_{\text{EP1}} \times f \times c_{\text{EDTA}} \times M_{\text{Ca}}}{V_{\text{S}}}$$

 $\beta_{\text{\tiny Ca}}\text{:}\quad$  Calciumgehalt der Probe in g/L

V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt


f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>Ca</sub>: Molare Masse von Calcium;

40.078 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 50** Beispiel einer photometrischen Titrationskurve der Calciumbestimmung mit der Optrode bei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Application Bulletin AB-125 – Simultaneous determination of calcium, magnesium, and alkalinity by complexometric titration with potentiometric or photometric indication in water and beverage samples

### Cd - Cadmium

### 52 Allgemeines

Cd<sup>2+</sup> verhält sich in seinen Komplexen sehr ähnlich wie Zink. Es kann problemlos in alkalischer Lösung titriert werden. Allerdings wird die Bestimmung durch die Anwesenheit von Ca<sup>2+</sup> und Mg<sup>2+</sup> gestört, die mit erfasst werden.

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                            | Molare Masse in g/mol | Äquivalent in mg |
|-----------------------------------|-----------------------|------------------|
| Cd                                | 112.411               | 11.241           |
| CdCO₃                             | 172.420               | 17.242           |
| CdCl <sub>2</sub>                 | 183.317               | 18.332           |
| Cd(NO <sub>3</sub> ) <sub>2</sub> | 236.421               | 23.642           |
| $Cd(NO_3)_2 \cdot 2 H_2O$         | 272.451               | 27.245           |
| CdO                               | 128.410               | 12.841           |
| Cd(OH) <sub>2</sub>               | 146.426               | 14.643           |
| CdSO <sub>4</sub>                 | 208.474               | 20.847           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Cu-Komplexlösung: c[Cu(NH₄)₂EDTA]
   = 0.1 mol/L (z. B. Merck Nr. 105217)
- Natronlauge: c(NaOH) = 1 mol/L

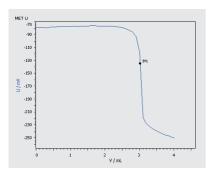
#### **Analyse**

Saure Probenlösungen werden wenn nötig mit c(NaOH)=1 mol/L auf einen pH-Wert von 4–5 vorneutralisiert und falls notwendig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Man gibt 5 mL Ammoniakpuffer und 0.5 mL Cu-Komplexlösung zu, wartet unter Rühren 20 s und titriert mit  $c(Na_2EDTA)=0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Cd} = \; \frac{V_{EP1} \; \textbf{x} \; \textbf{f} \; \textbf{x} \; c_{EDTA} \; \textbf{x} \; M_{Cd}}{V_{S}}$$

 $\beta_{\text{Cd}}\text{:}\quad$  Cadmiumgehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenz-

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>cd</sub>: Molare Masse von Cadmium; 112.411 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 51** Potentiometische Titrationskurve von Cadmium mit der Cu-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 –
   Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-125

   Automatic determination of cadmium in aqueous solution with the Cu-ISE

#### Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(ZnSO<sub>4</sub>) = 0.1 mol/L;
   28.8 g ZnSO<sub>4</sub> · 7 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst, nach Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniakpuffer pH = 10: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L
- Indikatorlösung: Eriochromschwarz T;
   100 mg Eriochromschwarz T wird in
   100 mL Ethanol gelöst.

#### **Analyse**

Saure Probenlösungen werden wenn nötig mit c(NaOH) = 1 mol/L auf einen pH-Wert von ca. 5 vorneutralisiert und falls notwendig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Dann gibt man 5 mL Ammoniakpuffer, 10 mL  $c(Na_2EDTA) =$ 

0.1 mol/L und 0.25 mL Indikatorlösung zu und titriert mit  $c(ZnSO_4) = 0.1$  mol/L über den ersten Äguivalenzpunkt hinaus.

#### Berechnung

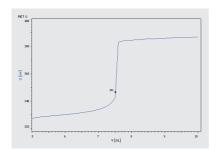
$$\beta_{Cd} = \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{ZnSO_4}) \times M_{Cd}}{V_S}$$

 $\beta_{Cd}$ : Cadmiumgehalt der Probe in g/L

V<sub>EDTA</sub>: Zugegebene Menge an EDTA-Masslösung in mL

 $f_1$ : Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L


V<sub>EP1</sub>: Verbrauch an ZnSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt

f<sub>2</sub>: Titer der ZnSO<sub>4</sub>-Masslösung

 $c_{ZnSO_4}$ : Konzentration der  $ZnSO_4$ -Masslösung in mol/L

M<sub>Cd</sub>: Molare Masse von Cadmium; 112.411 g/mol

 $V_S$ : Probeneinmass in mL



**Abbildung 52** Photometrische Titrationskurve der Cadmiumbestimmung mit der Optrode bei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Titration Application Note AN-T-153
 Determination of cadmium using automatic photometric titration

### Co - Cobalt

#### **Allgemeines**

Kobalt verhält sich in seinen Komplexen ähnlich wie Nickel und hat fast die gleichen Komplexbildungskonstanten. In alkalischer Lösung bildet Co<sup>2+</sup> bei EDTA-Überschuss unter Zusatz von H<sub>2</sub>O<sub>2</sub> äusserst robuste und stark gefärbte Co<sup>3+</sup>EDTA-Komplexe, die auch in sauren Medien beständig sind. Dieser Umstand

wurde von einigen Autoren dazu benutzt, Cobalt mit gesteigerter Selektivität komplexometrisch zu bestimmen. Die Methoden konnten sich aber nicht durchsetzen, weil die zugesetzte H<sub>2</sub>O<sub>2</sub>-Menge kritisch ist und bei der photometrischen Titration die Eigenfarbe des Co<sup>3+</sup>-Komplexes den Indikatorumschlag stört.

#### Hilfstabelle für Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                 | Molare Masse in g/mol | Äquivalent in mg |
|----------------------------------------|-----------------------|------------------|
| Co                                     | 58.933                | 5.893            |
| $Co(CH_3COO)_2 \cdot 4 H_2O$           | 249.083               | 24.908           |
| CoCO <sub>3</sub>                      | 118.942               | 11.894           |
| CoCl <sub>2</sub>                      | 129.839               | 12.984           |
| CoCl <sub>2</sub> · 6 H <sub>2</sub> O | 237.930               | 23.793           |
| Co(NO <sub>3</sub> ) <sub>2</sub>      | 182.943               | 18.294           |
| $Co(NO_3)_2 \cdot 6 H_2O$              | 291.034               | 29.103           |
| CoO                                    | 74.933                | 7.493            |
| $Co_2O_3$                              | 165.865               | 8.293            |
| CoSO <sub>4</sub>                      | 154.996               | 15.500           |
| CoSO <sub>4</sub> · 7 H <sub>2</sub> O | 281.103               | 28.110           |

### Potentiometrisch mit der Cu-ISE

#### Reagenzien

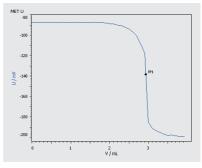
- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Cu-Komplexlösung: c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA]
   = 0.1 mol/L (z. B. Merck No. 105217)
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L

#### Analyse

Die Probenlösung wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und falls notwendig mit c(NaOH) = 1 mol/L auf einen pH-Wert von 4–5 vorneutralisiert. Man fügt 5 mL Ammoniakpuffer und 0.5 mL Cu-Komplexlösung zu, wartet unter Rühren 10–20 s und titriert dann mit  $c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Co} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Co}}{V_{S}}$$


 $\beta_{\text{Co}}$ : Cobaltgehalt der Probe in g/L  $V_{\text{EP1}}$ : Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

C<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>co</sub>: Molare Masse von Cobalt; 58.933 g/mol

V<sub>s</sub>: Probeneinmass in mL



**Abbildung 53** Beispiel einer potentiometrischen Titrationskurve von Cobalt mit der Cu-ISE

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-126 Automatic determination of cobalt in aqueous solution with the Cu-ISE

## Photometrisch mit der Optrode bei 574 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Indikatorlösung: Murexid; 0.2 g Murexid (1:100 mit NaCl verrieben) wird in 50 mL dest. H<sub>2</sub>O gelöst.
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in ca. 800 mL dest. H<sub>2</sub>O gelöst und anschliessend mit c(HCl) = 6 mol/L auf pH 9 eingestellt, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.

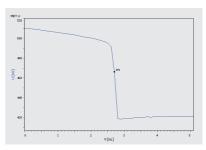
#### **Analyse**

Die saure Probenlösung, die nicht mehr als 40 mg Co²+ enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf 100 mL verdünnt und entgast. Nach Zugabe von 10 mL Ammoniakpufferlösung und 5 mL Indikatorlösung wird mit  $c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus titriert.

#### Berechnung

$$\beta_{\text{Co}} = \, \frac{V_{\text{EP1}} \, \textbf{x} \, \, \textbf{f} \, \textbf{x} \, \, \textbf{c}_{\text{EDTA}} \, \textbf{x} \, \, \textbf{M}_{\text{Co}}}{V_{\text{S}}}$$

 $\beta_{\text{Co}}$ : Cobaltgehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>Co</sub>: Molare Masse von Cobalt; 58.933 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 54** Photometrische Titrationskurve von Cobalt mit der Optrode bei 574 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

• Titration Application Note AN-T-143 – Determination of cobalt using automatic photometric titration

### Cu – Kupfer

#### **Allgemeines**

Wegen seiner relativ hohen Komplexbildungskonstante lässt sich Kupfer sowohl in alkalischer als auch in leicht saurer Lösung titrieren. Bestimmen lässt sich nur das Cu²+-lon. Bei der photometrischen Titration in ammoniakalischer Lösung gilt es zu beachten, dass kein zu grosser Ammoniaküberschuss verwendet wird und dass stets in verdünnten Lösungen titriert werden sollte. Dies, weil der Cu²+-Amin-Komplex relativ stabil und stark gefärbt ist und so in Konkurrenz zum Farbindikator (z. B. Murexid) tritt.

Der Probenlösung wird so lange  $NH_3$  zugesetzt, bis  $Cu(OH)_2$  ausfällt. Dann wird weiter  $NH_3$  zugesetzt, bis sich alles wieder gelöst hat, mit dest.  $H_2O$  mindestens 1:1 verdünnt, Murexid zugesetzt und mit  $c(Na_2EDTA) = 0.1$  mol/L titriert.

Besser ist die photometrische Titration bei pH = 5.0 mit PAN als Indikator. Damit nicht in der Wärme titriert werden muss, wird die Probenlösung mit Ethanol ca. 1:1 verdünnt.

#### Hilfstabelle mit Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                                  | Molare Masse in g/mol | Äquivalent in mg |
|---------------------------------------------------------|-----------------------|------------------|
| Cu                                                      | 63.546                | 6.355            |
| Cu(CH <sub>3</sub> COO) <sub>2</sub> · H <sub>2</sub> O | 199.650               | 19.965           |
| CuCN                                                    | 89.564                | 8.956            |
| Cu(CN) <sub>2</sub>                                     | 115.581               | 11.558           |
| CuCl <sub>2</sub>                                       | 134.452               | 13.445           |
| CuCl <sub>2</sub> · 2 H <sub>2</sub> O                  | 170.842               | 17.084           |
| Cu(NO <sub>3</sub> ) <sub>2</sub>                       | 187.556               | 18.756           |
| $Cu(NO_3)_2 \cdot 3 H_2O$                               | 241.601               | 24.160           |
| CuO                                                     | 79.544                | 7.954            |
| Cu(OH) <sub>2</sub>                                     | 97.561                | 9.756            |
| CuSO <sub>4</sub>                                       | 159.600               | 15.960           |
| CuSO <sub>4</sub> · 5 H <sub>2</sub> O                  | 249.680               | 24.968           |

### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Ammoniakpuffer pH = 10: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L

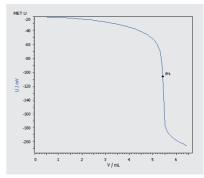
#### **Analyse**

Saure Probenlösungen werden wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und mit c(NaOH) = 1 mol/L auf einen pH-Wert im Bereich von 4 bis 5 vorneutralisiert. Nach Zugabe von 5 mL Ammoniakpuffer titriert man mit  $c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Cu} = \, \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Cu}}{V_S}$$

 $\beta_{\text{Cu}}$ : Kupfergehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>edta</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>cu</sub>: Molare Masse von Kupfer; 63.546 g/mol

V<sub>s</sub>: Probeneinmass in mL



**Abbildung 55** Potentiometrische Titrationskurve von Kupfer mit der Cu-ISE

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-127 Automatic determination of copper in aqueous solution with the Cu-ISE

## Photometrisch mit der Optrode bei 520 nm

#### Reagenzien

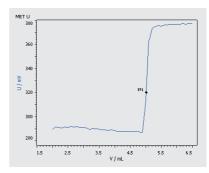
- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Acetatpuffer pH = 5.0: 116 g Ammoniumacetat wird in ca. 500 mL dest.
   H<sub>2</sub>O gelöst. Man stellt den pH-Wert durch Zugabe von Eisessig auf 5.0 ein, mischt und füllt mit dest. H<sub>2</sub>O auf 1 L auf.
- Natronlauge: c(NaOH) = 1 mol/L
- Ethanol: w(Ethanol) = 96–98 %
- Indikatorlösung: PAN; 100 mg PAN wird in 100 mL Ethanol gelöst.

#### **Analyse**

Saure Probenlösungen werden wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und mit c(NaOH) = 1 mol/L auf einen pH-Wert von ca. 4–5 vorneutralisiert. Nach Zugabe von 50 mL Ethanol wird entgast, 5 mL Acetatpuffer und 0.5 mL Indikatorlösung zugesetzt und mit c(Na<sub>2</sub>EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus titriert.

#### Berechnung

$$\beta_{Cu} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Cu}}{V_c}$$


 $\begin{array}{ll} \beta_{\text{cu}} \colon & \text{Kupfergehalt der Probe in g/L} \\ V_{\text{EP1}} \colon & \text{Verbrauch an EDTA-Masslösung} \\ & \text{in mL bis zum ersten Äquivalenz-punkt} \end{array}$ 

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>cu</sub>: Molare Masse von Kupfer; 63.546 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 56** Photometrische Titrationskurve von Kupfer mit der Optrode bei 520 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

• Titration Application Note AN-T-124 – Photometric copper determination in aqueous solution

### Fe - Eisen

### 60 Allgemeines

Eisen bildet sowohl in seiner zweiwertigen als auch in seiner dreiwertigen Form Komplexe. Die Komplexbildungskonstanten sind jedoch sehr unterschiedlich (ca. 12 Zehnerpotenzen), wobei Fe<sup>3+</sup> sehr starke Komplexe bildet, die auch in saurer Lösung noch stabil sind. Dies erlaubt es, Fe neben anderen Metallionen weitgehend störungsfrei zu titrieren. In Gegenwart von z. B. EDTA wird Fe<sup>2+</sup> zu einem sehr starken Reduktionsmittel (Normalpotential -0.1 V), das sogar Ag<sup>+</sup> zum Metall reduziert.

Die Titration von Fe<sup>2+</sup>-lonen ist in der Regel nicht sinnvoll. Wegen der relativ niedrigen Komplexbildungskonstante müsste in alkalischer Lösung unter Inertgas titriert werden, um eine Oxidation zu Fe<sup>3+</sup> zu vermeiden. Umgekehrt kann störendes Fe<sup>3+</sup> durch Reduktion mit z. B. Ascorbinsäure maskiert werden. So wird in der Regel nur das Fe<sup>3+</sup>-lon titriert. Seine Oxidation kann mittels H<sub>2</sub>O<sub>2</sub> oder Peroxodisulfat erfolgen.

#### Hilfstabelle für Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                                                                 | Molare Masse in g/mol | Äquivalent in mg |
|----------------------------------------------------------------------------------------|-----------------------|------------------|
| Fe                                                                                     | 55.845                | 5.585            |
| FeCO <sub>3</sub>                                                                      | 115.856               | 11.586           |
| FeCl <sub>2</sub>                                                                      | 126.753               | 12.675           |
| FeCl <sub>2</sub> · 4 H <sub>2</sub> O                                                 | 198.813               | 19.881           |
| FeCl₃                                                                                  | 162.206               | 16.221           |
| FeCl <sub>3</sub> · 6 H <sub>2</sub> O                                                 | 270.297               | 27.030           |
| Fe(NO <sub>3</sub> ) <sub>3</sub>                                                      | 241.862               | 24.186           |
| Fe(NO <sub>3</sub> ) <sub>3</sub> · 6 H <sub>2</sub> O                                 | 349.953               | 34.995           |
| FeO                                                                                    | 71.846                | 7.185            |
| Fe <sub>2</sub> O <sub>3</sub>                                                         | 159.692               | 7.985            |
| FeSO <sub>4</sub>                                                                      | 151.910               | 15.191           |
| FeSO <sub>4</sub> · 7 H <sub>2</sub> O                                                 | 278.010               | 27.801           |
| $Fe_2(SO_4)_3$                                                                         | 399.870               | 19.994           |
| $Fe_2(SO_4)_3 \cdot 9 H_2O$                                                            | 562.010               | 28.101           |
| Fe(NH <sub>4</sub> ) <sub>2</sub> (SO <sub>4</sub> ) <sub>2</sub> · 6 H <sub>2</sub> O | 392.130               | 39.213           |
| Fe(NH <sub>4</sub> )(SO <sub>4</sub> ) <sub>2</sub> · 12 H <sub>2</sub> O              | 482.180               | 48.218           |

### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2:  $c(CuSO_4) = 0.1 \text{ mol/L};$  24.97 g  $CuSO_4 \cdot 5 \text{ H}_2\text{O}$  wird in ca. 500 mL dest.  $H_2\text{O}$  gelöst, nach Zugabe von 0.5 mL  $w(H_2SO_4) = 96 \%$  gemischt und mit dest.  $H_2\text{O}$  auf 1 L aufgefüllt.
- Acetatpuffer pH = 4.7: 116 g Ammoniumacetat und 86 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L

#### **Analyse**

Die saure Probenlösung, die höchstens 50 mg Fe³+ enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt, mit 5 mL Acetatpuffer versetzt und der pH-Wert mit c(NaOH) = 1 mol/L auf 4.7 gestellt. Nach Zugabe von 10 mL c(Na₂EDTA) = 0.1 mol/L lässt man unter Rühren 1–2 min reagieren und titriert dann mit c(CuSO₄) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Fe} = \frac{(V_{EDTA} \times f_1 \times C_{EDTA} - V_{EP1} \times f_2 \times C_{CuSO_4}) \times M_{Fe}}{V_S}$$

 $\beta_{\text{Fe}}$ : Eisengehalt der Probe in g/L

V<sub>EDTA</sub>: Zugegebene Menge an EDTA-

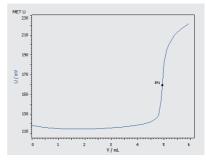
Masslösung in mL

 $f_1$ : Titer der EDTA-Masslösung  $c_{\text{EDTA}}$ : Konzentration der EDTA-Mass-

lösung in mol/L

V<sub>EP1</sub>: Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten

Äquivalenzpunkt


f<sub>2</sub>: Titer der CuSO<sub>4</sub>-Masslösung

c<sub>cuso<sub>4</sub></sub>: Konzentration der CuSO<sub>4</sub>-Masslösung in mol/L

M<sub>Ea</sub>: Molare Masse von Eisen:

55.845 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 57** Beispiel einer potentiometrischen Titrationskurve von Eisen mit der Cu-ISE

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-107 Fully automated determination of total iron in cement

## Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Ammoniak: w(NH<sub>3</sub>) = 25 %
- Indikatorlösung: Sulfosalicylsäure;
   4 g Sulfosalicylsäure wird in 100 mL dest. H<sub>2</sub>O gelöst.
- Glycin

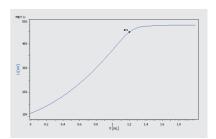
#### **Analyse**

Die saure Probenlösung wird wenn nötig mit dest.  $H_2O$  auf ca. 100 mL verdünnt. 0.5 g Glycin und 1 mL Indikatorlösung werden zugesetzt und der pH-Wert mit w(NH<sub>3</sub>) = 25 % auf 1.5–2 gestellt. Man erwärmt das Gemisch auf 50 °C um das Glycin zu lösen. Nach dem Abkühlen titriert man mit c(Na<sub>2</sub>EDTA) = 0.1 mol/L über den ersten Knickpunkt hinaus.

#### Berechnung

$$\beta_{Fe} = \, \frac{V_{BP1} \, \textbf{x} \, \, \textbf{f} \, \textbf{x} \, \, \textbf{C}_{EDTA} \, \textbf{x} \, \, \textbf{M}_{Fe}}{V_{S}}$$

 $\beta_{\text{Fe}}$ : Eisengehalt der Probe in g/L


V<sub>BP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

C<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>A</sub>: Molare Masse von Eisen; 55.847 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 58** Photometrische Titrationskurve von Eisen mit der Optrode bei 610 nm

- Application Bulletin AB-063 Determination of silicon, calcium, magnesium, iron, and aluminum in digested cement samples by photometric titrations.
- Titration Application Note AN-T-080 Determination of iron in cement by photometric titration

### Ga - Gallium und In - Indium

#### **Allgemeines**

Gallium und Indium bilden Komplexe mit recht hohen Komplexbildungskonstanten (z. B. InEDTA; log  $K_f = 24.9$ ). Sie neigen aber gleichzeitig dazu, Hydroxokomplexe zu bilden, die sich nur unvollständig oder gar nicht titrieren lassen. Deshalb werden Acetationen als Hilfskomplexbildner zugesetzt und die Metalle durch Rücktitration in leicht saurer Lösung bestimmt. Dadurch entfallen mögliche Störungen durch Ca<sup>2+</sup>- und/oder Mq<sup>2+</sup>-lonen.

Eine photometrische Rücktitration mit Mn-Masslösung gegen Eriochromschwarz T wäre auch in alkalischer Lösung möglich. Allerdings kann nicht der übliche Ammoniakpuffer pH = 10 verwendet werden. Ein pH-Wert von 8.5–9 wird mit Ammoniak eingestellt, nachdem Tartrat als Hilfskomplexbildner zugesetzt wurde, um Fällungen als Ga(OH)<sub>3</sub> bzw. In(OH)<sub>3</sub> zu vermeiden. Falls vorhanden können Zn<sup>2+</sup>, Cd<sup>2+</sup>, Hg<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup> und Co<sup>2+</sup> in diesem Fall mit KCN maskiert werden.

#### Hilfstabelle für Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                       | Molare Masse in g/mol | Äquivalent in mg |
|------------------------------|-----------------------|------------------|
| Ga                           | 69.723                | 6.972            |
| $Ga(NO_3)_3 \cdot 8 H_2O$    | 399.860               | 39.986           |
| $Ga_2O_3$                    | 187.444               | 9.372            |
| $Ga_2(SO_4)_3$               | 427.634               | 21.382           |
| $Ga_2(SO_4)_3 \cdot 18 H_2O$ | 751.909               | 37.595           |
| In                           | 114.818               | 11.482           |
| InCl <sub>3</sub>            | 221.177               | 22.118           |
| $In_2O_3$                    | 277.634               | 13.882           |
| $In_2(SO_4)_3$               | 517.824               | 25.891           |
| $In_2(SO_4)_3 \cdot 9 H_2O$  | 679.961               | 33.998           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L;
   24.97 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst, nach Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Acetatpuffer pH = 4.7: 116 g Ammoniumacetat und 86 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniak:  $w(NH_3) = 25 \%$

### 64 Analyse

Die saure Probenlösung, die nicht mehr als 60 mg  $Ga^{3+}$  bzw. 100 mg  $In^{3+}$  enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Nach Zugabe von 5 mL Acetatpuffer und 10 mL  $c(Na_2EDTA)=0.1$  mol/L stellt man, falls notwendig, den pH-Wert mit  $w(NH_3)=25$ % auf 4.7 ein, lässt ca. 30 s unter Rühren reagieren und titriert anschliessend mit  $c(CuSO_4)=0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{\text{Ga/In}} = \frac{(V_{\text{EDTA}} \times f_1 \times c_{\text{EDTA}} - V_{\text{EP1}} \times f_2 \times c_{\text{CuSO}_4}) \times M_{\text{Ga/In}}}{V_{\text{S}}}$$

 $\beta_{\text{Ga/In}}$ : Gallium- oder Indiumgehalt der

Probe in g/L

 $V_{\mbox{\tiny EDTA}}$ : Zugegebene Menge an EDTA-

Masslösung in mL

f<sub>1</sub>: Titer der EDTA-Masslösung

C<sub>FDTA</sub>: Konzentration der EDTA-Mass-

lösung in mol/L

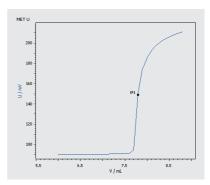
V<sub>EP1</sub>: Verbrauch an CuSO<sub>4</sub>-Mass-

lösung in mL bis zum ersten

Äquivalenzpunkt

f<sub>2</sub>: Titer der CuSO<sub>4</sub>-Masslösung

c<sub>cusO4</sub>: Konzentration der CuSO<sub>4</sub>-Mass-


lösung in mol/L

 $M_{\text{Ga/ln}}$ : Molare Masse von Gallium

bzw. Indium; 69.723 g/mol

bzw. 114.818 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 59** Potentiometrische Titrationskurve von Indium mit der Cu-ISE

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-121

   Automatic indium determination in aqueous solution using the ion-selective copper electrode (Cu-ISE)

## Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(ZnSO<sub>4</sub>) = 0.1 mol/L;
   28.8 g ZnSO<sub>4</sub> · 7 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst, nach der Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Acetatpuffer pH = 4.7: 116 g Ammoniumacetat werden in ca. 200 mL dest. H<sub>2</sub>O gelöst, mit 86 mL Eisessig versetzt, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Indikatorlösung: Xylenolorange;
   25 mg Xylenolorange Dinatriumsalz wird in 100 mL dest. H<sub>2</sub>O gelöst.

#### **Analyse**

Die saure Probenlösung, die nicht mehr als 60 mg Ga³+ bzw. 100 mg In³+ enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 100 mL verdünnt und entgast. Man gibt 5 mL Acetatpuffer, 10 mL  $c(Na_2EDTA) = 0.1$  mol/L und 2 mL Indikatorlösung zu und titriert mit  $c(ZnSO_4) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

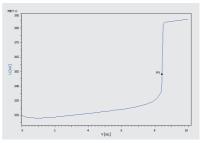
#### Berechnung

$$\beta_{\text{Ga/In}} = \frac{(V_{\text{EDTA}} \times f_1 \times c_{\text{EDTA}} - V_{\text{EP1}} \times f_2 \times c_{\text{ZnSO}_4}) \times M_{\text{Ga/In}}}{V_{\text{S}}}$$

 $\beta_{\text{Ga/In}}$ : Gallium- oder Indiumgehalt der Probe in g/L

V<sub>EDTA</sub>: Zugegebene Menge an EDTA-Masslösung in mL

f<sub>1</sub>: Titer der EDTA-Masslösung C<sub>EDTA</sub>: Konzentration der EDTA-Mass-


lösung in mol/L

 $V_{\text{EP1}}$ : Verbrauch an ZnSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt

f<sub>2</sub>: Titer der ZnSO<sub>4</sub>-Masslösung c<sub>ZnSO<sub>4</sub></sub>: Konzentration der ZnSO<sub>4</sub>-Masslösung in mol/L

M<sub>Ga/in</sub>: Molare Masse von Gallium bzw. Indium; 69.723 g/mol bzw. 114.818 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 60** Beispiel einer photometrischen Titrationskurve von Gallium mit der Optrode hei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Titration Application Note AN-T-158 – Determination of gallium using automatic photometric titration

## Hg – Quecksilber

### 66 Allgemeines

Quecksilber bildet relativ starke Komplexe und kann demzufolge gut titriert werden. Allerdings muss es als Hg<sup>2+</sup> vorliegen, da Hg<sup>+</sup> in Gegenwart von z. B. EDTA in Hg<sup>2+</sup> und metallisches Hg disproportioniert. Hg<sup>2+</sup> kann relativ leicht maskiert werden. Durch den Zusatz von Kaliumiodidlösung wird es als Hgl<sub>2</sub> gefällt und die entsprechende Menge Komplexbildner (z. B. EDTA) freigesetzt. Dies ermöglicht z. B. Folgetitrationen neben Cu<sup>2+</sup>.

In einigen (pharmazeutischen) Präparaten kann Hg<sup>2+</sup> direkt titriert werden, ohne es vorher von der organischen Matrix abzutrennen.

Für die potentiometrische Indikation kann die Cu-ISE nicht verwendet werden, da Hg<sup>2+</sup> die Kristallmembran vergiftet und die Elektrode unbrauchbar macht.

Hg-Komplexe sind starke Umweltgifte! Die bei der Titration anfallenden Lösungen sollten daher gesammelt und entgiftet werden. Dazu schlagen wir die folgende Methode vor:

Die gesammelten Lösungen werden z. B. mit NaOH alkalisch gestellt. Dann versetzt man sie unter Rühren mit einem Überschuss an Natriumsulfidlösung. Das ausgefallene (sehr schwer lösliche) Hg<sub>2</sub>S kann gesammelt und separat entsorgt werden.

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                            | Molare Masse in g/mol | Äquivalent in mg |
|-----------------------------------|-----------------------|------------------|
| Hg                                | 200.590               | 20.059           |
| HgCl <sub>2</sub>                 | 271.496               | 27.150           |
| Hg(NO <sub>3</sub> ) <sub>2</sub> | 324.600               | 32.460           |
| $Hg(NO_3)_2 \cdot H_2O$           | 342.615               | 34.262           |
| HgO                               | 216.589               | 21.659           |
| HgSO <sub>4</sub>                 | 296.653               | 29.665           |

## Photometrisch mit der Optrode bei 502 nm

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(ZnSO<sub>4</sub>) = 0.1 mol/L;
   28.8 g ZnSO<sub>4</sub> · 7 H<sub>2</sub>O wird in dest.
   H<sub>2</sub>O gelöst, gemischt und mit dest.
   H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniakpuffer pH = 10: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L
- Indikatorlösung: Eriochromschwarz T;
   100 mg Eriochromschwarz T wird in
   100 mL Ethanol gelöst.

#### **Analyse**

Die saure Probenlösung, die nicht mehr als 75 mg  ${\rm Hg}^{2+}$  enthalten soll, wird wenn nötig mit dest.  ${\rm H_2O}$  auf ca. 50 mL verdünnt. Man gibt 5.00 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L zu und neutralisiert die Lösung mit c(NaOH) = 1 mol/L auf einen pH-Wert von ca. 5–7. Nach Zugabe von 5 mL Ammoniakpuffer und 1 mL Indikatorlösung titriert man mit c(ZnSO<sub>4</sub>) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Hg} = \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{ZnSO_4}) \times M_{Hg}}{V_S}$$

 $\beta_{\mbox{\tiny Hg}}$ : Quecksilbergehalt der Probe in g/L

 $V_{\text{EDTA}}$ : Zugegebene Menge an EDTA-

Masslösung in mL

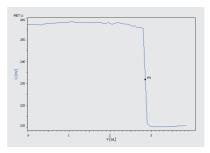
 $f_1$ : Titer der EDTA-Masslösung

C<sub>EDTA</sub>: Konzentration der EDTA-Mass-

lösung in mol/L

V<sub>EP1</sub>: Verbrauch an ZnSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt

f<sub>2</sub>: Titer der ZnSO<sub>4</sub>-Masslösung


 $c_{ZnSO_4}$ : Konzentration der ZnSO<sub>4</sub>-Mass-

lösung in mol/L

 $M_{Hg}$ : Molare Masse von Quecksilber;

200.590 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 61** Photometrische Titrationskurve von Quecksilber mit der Optrode bei 502 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Titration Application Note AN-T-144 – Mercury analysis using automatic photometric titration

## Mg – Magnesium

#### Allgemeines

Magnesium ist neben Calcium eines der ersten Metalle, das komplexometrisch titriert wurde. Die Titration erfolgt in der Regel in ammoniakalischer gepufferter Lösung bei pH = 10 und kann direkt erfolgen. Da  ${\rm Mg}^{2+}$  sehr oft in Begleitung von  ${\rm Ca}^{2+}$  vorliegt, verweisen wir hier auf die getrennte Bestimmung der beiden Metalle unter «Wasserhärten».

Störmetalle wie Cu<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Fe<sup>3+</sup> und Mn<sup>2+</sup> können durch Fällung mit Na<sub>2</sub>S-Lösung eliminiert werden. Die Probe sollte danach abfiltriert und die überschüssigen Sulfide durch Oxidation zu Sulfat (z. B. mit H<sub>2</sub>O<sub>2</sub>) vernichtet werden.

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                 | Molare Masse in g/mol | Äquivalent in mg |
|----------------------------------------|-----------------------|------------------|
| Mg                                     | 24.305                | 2.431            |
| Mg(CH3COO)2 · 4 H2O                    | 214.450               | 21.445           |
| MgCO₃                                  | 84.318                | 8.432            |
| MgCl <sub>2</sub>                      | 95.211                | 9.521            |
| MgCl <sub>2</sub> · 6 H <sub>2</sub> O | 203.302               | 20.330           |
| $Mg(NO_3)_2$                           | 148.315               | 14.832           |
| $Mg(NO_3)_2 \cdot 6 H_2O$              | 256.406               | 25.641           |
| MgO                                    | 40.304                | 4.030            |
| Mg(OH) <sub>2</sub>                    | 58.320                | 5.832            |
| MgSO <sub>4</sub>                      | 120.360               | 12.036           |
| $MgSO_4 \cdot H_2O$                    | 138.380               | 13.838           |
| MgSO <sub>4</sub> · 7 H <sub>2</sub> O | 246.470               | 24.647           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

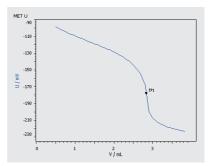
- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Cu-Komplexlösung: c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA] = 0.1 mol/L (z. B. Merck No. 105217)
- Ammoniakpuffer pH = 10: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniak:  $w(NH_3) = 25 \%$

#### Analyse

Saure Probenlösungen werden wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und mit w(NH $_3$ ) = 25 % auf einen pH-Wert von ca. 4–5 vorneutralisiert. Man fügt 0.5 mL Cu-Komplexlösung und 5 mL Ammoniakpuffer zu, wartet unter Rühren 10–20 s und titriert dann mit c(Na $_2$ EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

68

#### Berechnung


$$\beta_{Mg} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Mg}}{V_{S}}$$

 $\begin{array}{ll} \beta_{\text{Mg}} \colon & \text{Magnesiumgehalt der Probe in g/L} \\ \text{V}_{\text{EP1}} \colon & \text{Verbrauch an EDTA-Masslösung} \\ & \text{in mL bis zum ersten Äquivalenz-punkt} \end{array}$ 

 $\begin{array}{ll} \text{f:} & \text{Titer der EDTA-Massl\"osung} \\ c_{\text{EDTA}}\text{:} & \text{Konzentration der EDTA-Massl\"osung in mol/L} \\ \end{array}$ 

 $M_{Mg}$ : Molare Masse von Magnesium; 24.305 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 62** Beispiel einer potentiometrischen Titrationskurve von Magnesium mit der Cu-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-128 Automatic determination of magnesium in aqueous solution with the Cu-ISE

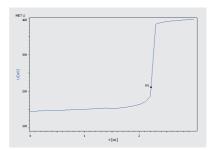
## Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Ammoniakpuffer pH = 10: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniak: w(NH<sub>3</sub>) = 25 %
- Indikatorlösung: Eriochromschwarz T;
   100 mg Eriochromschwarz T wird in
   100 mL Ethanol gelöst.

#### Analyse

Saure Probenlösungen werden wenn nötig mit dest.  $H_2O$  auf ca. 100 mL verdünnt, mit w(NH<sub>3</sub>) = 25 % auf einen pH-Wert von ca. 4–5 vorneutralisiert und entgast. Nach Zugabe von 5 mL Ammoniakpuffer und 0.5 mL Indikatorlösung titriert man mit c(Na<sub>2</sub>EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.


$$\beta_{Mg} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Mg}}{V_{S}}$$

 $\begin{array}{ll} \beta_{\text{Mg}} \colon & \text{Magnesiumgehalt der Probe in g/L} \\ \text{V}_{\text{EP1}} \colon & \text{Verbrauch an EDTA-Masslösung} \\ & \text{in mL bis zum ersten Äquivalenz-punkt} \end{array}$ 

f: Titer der EDTA-Masslösung c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

 $M_{Mg}$ : Molare Masse von Magnesium; 24.305 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 63** Photometrische Titrationskurve von Magnesium mit der Optrode bei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Application Bulletin AB-125 – Simultaneous determination of calcium, magnesium, and alkalinity by complexometric titration with potentiometric or photometric indication in water and beverage samples

## Mn – Mangan

#### **Allgemeines**

Mangan verhält sich bei der komplexometrischen Titration ganz ähnlich wie das Mg<sup>2+</sup>. Zu beachten ist aber, dass nur Mn<sup>2+</sup> titriert werden kann. Da in alkalischer Lösung zuerst Mn(OH)<sub>2</sub> und dann, durch Reaktion mit Luftsauerstoff, Mn(OH)<sub>3</sub> gebildet wird, sind bei der photometrischen Titration einige Vorkehrungen zu treffen. Der Probenlösung wird Ascorbinsäure zugesetzt, um allfälliges Mn<sup>3+</sup> zu reduzieren, und Triethanol-

amin-hydrochlorid, um eine Ausfällung von Mn(OH)<sub>2</sub> zu verhindern. Dadurch werden zusätzlich Fe<sup>3+</sup>- und Al<sup>3+</sup>-lonen maskiert. Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup>, Hg<sup>2+</sup> und die Pt-Metalle können bei der photometrischen Titration durch KCN maskiert werden. Ca<sup>2+</sup> und Mg<sup>2+</sup> werden miterfasst. In ihrer Anwesenheit muss Mangan vorgängig z. B. als MnO<sub>2</sub> abgetrennt werden. (Die Reduktion von MnO<sub>2</sub> kann durch Oxalsäure erfolgen).

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                    | Molare Masse in g/mol | Äquivalent in mg |
|---------------------------|-----------------------|------------------|
| Mn                        | 54.938                | 5.494            |
| MnCO₃                     | 114.974               | 11.497           |
| MnCl <sub>2</sub>         | 125.844               | 12.584           |
| $MnCl_2 \cdot 4 H_2O$     | 197.905               | 19.791           |
| $Mn(NO_3)_2 \cdot 4 H_2O$ | 251.009               | 25.101           |
| MnO                       | 70.937                | 7.094            |
| $MnO_2$                   | 86.937                | 8.694            |
| Mn(OH) <sub>2</sub>       | 88.953                | 8.895            |
| MnSO <sub>4</sub>         | 151.000               | 15.100           |
| $MnSO_4 \cdot H_2O$       | 169.015               | 16.902           |
| MnSO₄ · 4 H₂O             | 223.060               | 22.306           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L: 24.97 g CuSO<sub>4</sub>  $\cdot$  5 H<sub>2</sub>O wird in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL  $w(NH_3) = 25 \%$  werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniak: w(NH<sub>3</sub>) = 25 %

#### Analyse

Die saure Probenlösung, die nicht mehr als 45 mg Mn<sup>2+</sup> enthalten soll, wird wenn nötig mit dest. H<sub>2</sub>O auf ca. 50 mL verdünnt und falls notwendig mit w(NH<sub>3</sub>) = 25 % auf einen pH-Wert im Bereich 3-4 vorneutralisiert. Nach Zugabe von 10 mL  $c(Na_2EDTA) = 0.1 \text{ mol/L und 5 mL Ammo-}$ niakpuffer titriert man mit  $c(CuSO_4) =$ 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Mn} = \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{CuSO_4}) \times M_{Mn}}{V_s}$$

B<sub>Mn</sub>: Mangangehalt der Probe in g/L V<sub>EDTA</sub>: Zugegebene Menge an EDTA-

Masslösung in mL

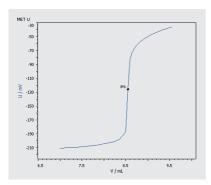
f<sub>1</sub>: Titer der EDTA-Masslösung C<sub>FDTA</sub>:

Konzentration der EDTA-Mass-

lösung in mol/L

V<sub>EP1</sub>: Verbrauch an CuSO₄-Masslösung in mL bis zum ersten

Äquivalenzpunkt Titer der CuSO<sub>4</sub>-Masslösung


f<sub>2</sub>: Konzentration der CuSO<sub>4</sub>-Mass-C<sub>CuSO</sub>,:

lösung in mol/L

Molare Masse von Mangan;  $M_{Mn}$ :

54.938 g/mol

Probeneinmass in mL Vς:



**Abbildung 64** Potentiometrische Titrationskurve von Mangan mit der Cu-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 –
   Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-120

   Automatic manganese determination in aqueous solution using the ion-selective copper electrode
   (Cu-ISE)

## Photometrisch mit der Optrode bei 610 nm

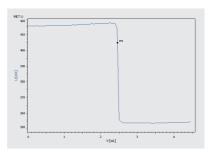
#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Triethanolamin-hydrochlorid  $W(C_6H_{15}NO_3\cdot HCl)=20$  %; 100 g  $C_6H_{15}NO_3\cdot HCl$  wird in dest.  $H_2O$  gelöst, gemischt und mit dest.  $H_2O$  auf 500 mL aufgefüllt.
- Ascorbinsäure: (Vitamin C), p.a.
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L
- Indikatorlösung: Eriochromschwarz T;
   100 mg Eriochromschwarz T wird in
   100 mL Ethanol gelöst.

#### **Analyse**

Die saure Probenlösung wird mit 10 mL  $w(C_6H_{15}NO_3\cdot HCl)=20$  % und einer Spatelspitze Ascorbinsäure versetzt und wenn nötig mit dest.  $H_2O$  auf ca. 75 mL verdünnt. Dann wird mit c(NaOH) = 1 mol/L auf einen pH-Wert von ca. 7 vorneutralisiert. Nach Zugabe von 5 mL Ammoniakpuffer und 0.25 mL Indikatorlösung titriert man mit c(Na $_2$ EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

### Berechnung


$$\beta_{Mn} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Mn}}{V_{S}}$$

 $\beta_{\text{Mn}}$ : Mangangehalt der Probe in g/L  $V_{\text{EP1:}}$  Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>Mn</sub>: Molare Masse von Mangan; 54.938 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 65** Beispiel einer photometrischen Titrationskurve von Mangan mit der Optrode bei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

• Titration Application Note AN-T-141 – Automatic photometric determination of manganese using the Optrode

# Ni - Nickel

# **Allgemeines**

Nickel lässt sich in ammoniakalischen Lösungen sehr gut titrieren. Allerdings werden hier Erdalkaliionen miterfasst, wenn sie in grösseren Mengen vorliegen. Hohe Konzentrationen von Al<sup>3+</sup>, Fe<sup>3+</sup> und Mn<sup>2+</sup> können durch Zusatz von Triethanolamin maskiert werden

Ni<sup>2+</sup> kann von störenden Metallionen (Ausnahme Pd<sup>2+</sup>) abgetrennt werden, indem man es mit Dimethylglyoxim ausfällt. Der Niederschlag wird in konz. HCl gelöst, mit einem Überschuss von Na<sub>2</sub>EDTA versetzt, mit NH<sub>3</sub> auf einen pH-Wert von 10 gestellt und dann mit z. B. Zn<sup>2+</sup>-Masslösung gegen Eriochromschwarz Tittriert

## Hilfstabelle für Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                 | Molare Masse in g/mol | Äquivalent in mg |
|----------------------------------------|-----------------------|------------------|
| Ni                                     | 58.693                | 5.869            |
| NiCO <sub>3</sub>                      | 118.702               | 11.870           |
| NiCl <sub>2</sub>                      | 129.599               | 12.960           |
| NiCl <sub>2</sub> · 6 H <sub>2</sub> O | 237.691               | 23.769           |
| $Ni(NO_3)_2$                           | 182.703               | 18.270           |
| $Ni(NO_3)_2 \cdot 6 H_2O$              | 290.795               | 29.080           |
| NiO                                    | 74.693                | 7.469            |
| NiSO <sub>4</sub>                      | 154.756               | 15.476           |
| NiSO <sub>4</sub> · 7 H <sub>2</sub> O | 280.863               | 28.086           |

#### Potentiometrisch mit der Cu-ISE

### Reagenzien

• Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L

Cu-Komplexlösung:
 c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA] = 0.1 mol/L
 (z. B. Merck No. 105217)

 Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.

• Natronlauge: c(NaOH) = 1 mol/L

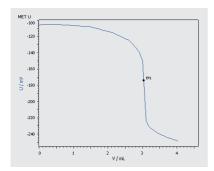
## **Analyse**

Die Probenlösung wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und falls notwendig mit c(NaOH) = 1 mol/L auf einen pH-Wert von 4–5 vorneutralisiert. Man fügt 5 mL Ammoniakpuffer und 0.5 mL Cu-Komplexlösung zu, wartet unter Rühren 10–20 s und titriert dann mit c(Na<sub>2</sub>EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

### Berechnung

$$\beta_{Ni} = \frac{V_{\text{EP1}} \times f \times c_{\text{EDTA}} \times M_{Ni}}{V_{\text{S}}}$$

 $\beta_{Ni}$ : Nickelgehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>Ni</sub>: Molare Masse von Nickel; 58.693 g/mol

V<sub>s</sub>: Probeneinmass in mL



**Abbildung 66** Potentiometrische Titrationskurve von Nickel mit der Cu-ISE

# Photometrisch mit der Optrode bei 574 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L
- Indikatorlösung: Murexid; 0.2 g Murexid (1:100 mit NaCl vermischt) wird in 50 mL dest. H<sub>2</sub>O gelöst.

#### Analyse

Die Probenlösung wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und falls notwendig mit c(NaOH) = 1 mol/L auf einen pH-Wert von 4–5 vorneutralisiert. Nach Zugabe von 5 mL Ammoniakpuffer und 5 mL Indikatorlösung titriert man mit c(Na<sub>2</sub>EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus. Im Umschlagsbereich darf nicht zu schnell titriert werden.

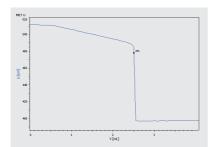
### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-129

   Automatic determination of nickel in aqueous solution with the Cu-ISE

#### Berechnung

$$\beta_{Ni} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Ni}}{V_{S}}$$


 $eta_N$ : Nickelgehalt der Probe in g/L V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in ml. bis zum ersten Äquivalenz

in mL bis zum ersten Äquivalenzpunkt Titer der EDTA-Masslösung

C<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

 $M_{Ni}$ : Molare Masse von Nickel; 58.693 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 67** Beispiel einer photometrischen Titrationskurve von Nickel mit der Optrode bei 574 nm

 Titration Application Note AN-T-150
 Determination of nickel using automatic photometric titration

# Pb - Blei

### **Allgemeines**

Die komplexometrische Titration von Pb<sup>2+</sup> kann direkt, über Verdrängungsreaktionen (z. B. mit MgEDTA) oder durch Rücktitration in alkalischer Lösung erfolgen. Sulfate sollten möglichst nicht vorhanden sein, da in deren Gegenwart Pb<sup>2+</sup> als PbSO<sub>4</sub> gefällt wird. In alkalischer Lösung sollte der pH-Wert mit NaOH auf 10 eingestellt und Tartrat als Hilfskomplexbildner verwendet werden. Dies verhindert eine Ausfällung von Pb<sup>2+</sup> als Pb(OH)<sub>2</sub>. Dabei darf der Tartratüberschuss nicht zu

gross sein, da sonst die effektiven Stabilitätskonstanten des Indikators (Eriochromschwarz T) bzw. des PbEDTA-Komplexes zu stark herabgesetzt würden.

Die photometrische Titration in leicht saurem Medium erlaubt die Pb-Bestimmung auch in Gegenwart von Phosphat und Erdalkaliionen und ist auch für Bestimmungen in niedrigen Konzentrationsbereichen geeignet.

### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                            | Molare Masse in g/mol | Äquivalent in mg |
|---------------------------------------------------|-----------------------|------------------|
| Pb                                                | 207.200               | 20.720           |
| Pb(CH <sub>3</sub> COO) <sub>2</sub>              | 325.288               | 32.529           |
| $Pb(CH_3COO)_2 \cdot 3 H_2O$                      | 379.334               | 37.933           |
| Pb(CH <sub>3</sub> CH <sub>2</sub> ) <sub>4</sub> | 323.444               | 32.344           |
| PbCO₃                                             | 267.209               | 26.721           |
| PbCl <sub>2</sub>                                 | 278.106               | 27.811           |
| PbO                                               | 223.199               | 22.320           |
| Pb(OH) <sub>2</sub>                               | 241.215               | 24.122           |
| $Pb_3(PO_4)_2$                                    | 811.543               | 27.051           |
| PbSO <sub>4</sub>                                 | 303.263               | 30.326           |
| Pb(NO <sub>3</sub> ) <sub>2</sub>                 | 331.210               | 33.121           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Cu-Komplexlösung: c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA]
   = 0.1 mol/L (z. B. Merck No. 105217)
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 2 mol/L
- Ammoniumtartrat-Lösung:  $\beta((NH_4)_2C_4H_4O_6) = 250 \text{ g/L}$

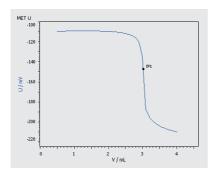
## **Analyse**

Saure Probenlösungen werden wenn nötig mit c(NaOH)=2 mol/L auf einen pH-Wert von 4–5 vorneutralisiert. Anschliessend gibt man 50 mL Ammoniumtartrat-Lösung, 1 mL Ammoniakpuffer, 0.5 mL Cu-Komplexlösung und 5 mL c(NaOH)=2 mol/L zu, wartet unter Rühren 30 s und titriert mit  $c(Na_2EDTA)=0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

# Berechnung

$$\beta_{Pb} = \, \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Pb}}{V_S}$$

 $\beta_{Pb}$ : Bleigehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

 $M_{Pb}$ : Molare Masse von Blei; 207.200 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 68** Potentiometrische Titrationskurve von Blei mit der Cu-ISE

- Application Bulletin AB-101 –
   Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-130

   Automatic determination of lead in aqueous solution with the Cu-ISE

# Photometrisch mit der Optrode bei 574 nm

### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(ZnSO<sub>4</sub>) = 0.1 mol/L;
   28.8 g ZnSO<sub>4</sub> · 7 H<sub>2</sub>O wird in dest.
   H<sub>2</sub>O gelöst, gemischt und mit dest.
   H<sub>2</sub>O auf 1 L aufgefüllt.
- Acetatpuffer: 123 g Natriumacetat und 50 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Natronlauge: c(NaOH) = 1 mol/L
- Indikatorlösung: Xylenolorange;
   50 mg Xylenolorange Dinatriumsalz;
   wird in 50 mL dest. H₂O gelöst.

## **Analyse**

Die Probenlösung wird wenn nötig mit dest.  $H_2O$  auf ca. 50 mL verdünnt und falls notwendig mit c(NaOH) = 1 mol/L auf einen pH-Wert zwischen 5 und 6 eingestellt. Man gibt 10 mL Acetatpuffer, 5 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L und 0.5 mL Indikatorlösung zu. Man lässt 1 min reagieren und titriert mit c(ZnSO<sub>4</sub>) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

### Berechnung

$$\beta_{Pb} = \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{ZnSO_4}) \times M_{Pb}}{V_S}$$

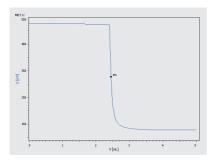
 $ho_{Pb}$  -  $ho_S$   $ho_{Pb}$ : Bleigehalt der Probe in g/L

V<sub>EDTA</sub>: Zugegebene Menge an EDTA-

Masslösung in mL

 $f_1$ : Titer der EDTA-Masslösung  $c_{\text{EDTA}}$ : Konzentration der EDTA-Mass-

lösung in mol/L


 $V_{\mbox{\tiny EP1}}$ : Verbrauch an ZnSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt

f<sub>2</sub>: Titer der ZnSO<sub>4</sub>-Masslösung

c<sub>ZnSO<sub>4</sub></sub>: Konzentration der ZnSO<sub>4</sub>-Masslösung in mol/L

M<sub>Pb</sub>: Molare Masse von Blei; 207.200 g/mol

V<sub>S</sub>: Probeneinmass in mL



Titration Application Note AN-T-140

 Automated photometric determination of lead using the Optrode

**Abbildung 69** Beispiel einer photometrischen Titrationskurve von Blei mit der Optrode bei 574 nm

# Pd - Palladium

#### **Allgemeines**

Über die komplexometrische Titration der Platinmetalle existieren relativ wenige Literaturangaben. Pd²+ wird in der Regel durch Rücktitration eines EDTA-Überschusses bestimmt. Dieser Überschuss wird mit einer geeigneten Masslösung titriert, z. B. mit Zn²+ in alkalischer Lösung gegen Eriochromschwarz T. (Die Lösung muss in diesem Fall mit NaOH alkalisch gestellt werden, da Pd²+ mit Ammoniak sehr stabile, nicht titrierbare Pd-Amin-Komplexe bildet). Gegen Xylenolorange wird bei pH

= 3.0 mit Th<sup>4+</sup> oder bei einem pH-Wert im Bereich von 4 bis 5 mit Tl<sup>3+</sup> der EDTA-Überschuss zurücktitriert. In unserem Beispiel titrieren wir im pH-Bereich von 4 bis 5 gegen Xylenorange und verwenden als Titrant das weniger toxische Zn<sup>2+</sup>.

Da Pt mit Chloridionen sehr starke Komplexe bildet, kann Pd<sup>2+</sup> in Gegenwart von Chloridionen störungsfrei neben Pt bestimmt werden.

# Hilfstabelle für Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                 | Molare Masse in g/mol | Äquivalent in mg |
|----------------------------------------|-----------------------|------------------|
| Pd                                     | 106.420               | 10.642           |
| PdCl <sub>2</sub>                      | 177.326               | 17.733           |
| PdCl <sub>2</sub> · 2 H <sub>2</sub> O | 213.357               | 21.336           |
| PdCl <sub>4</sub>                      | 248.232               | 24.823           |
| PdCl <sub>6</sub>                      | 319.138               | 31.914           |
| Pd(NO <sub>3</sub> ) <sub>2</sub>      | 230.430               | 23.043           |
| PdO                                    | 122.419               | 12.242           |
| PdSO <sub>4</sub>                      | 202.483               | 20.248           |
| PdSO <sub>4</sub> · 2 H <sub>2</sub> O | 238.513               | 23.851           |

# Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(ZnSO<sub>4</sub>) = 0.1 mol/L;
   28.8 g ZnSO<sub>4</sub> · 7 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst. Man gibt
   0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % zu, mischt und füllt mit dest. H<sub>2</sub>O auf 1 L auf.
   100 mL dieser Lösung werden gemischt und mit dest. H<sub>2</sub>O auf
   1 L verdünnt.
- Acetatpuffer pH = 4.7: 123 g Natriumacetat und 50 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Indikatorlösung: Xylenolorange;
   100 mg Xylenolorange Dinatriumsalz
   wird in 100 mL deion. H<sub>2</sub>O gelöst.

# **Analyse**

Die saure Probenlösung, die nicht mehr als ca. 20 mg  $Pd^{2+}$  enthalten soll, wird wenn nötig mit dest.  $H_2O$  auf ca. 100 mL verdünnt und entgast. Man gibt 10 mL Acetatpuffer, 5 mL c( $Na_2EDTA$ ) = 0.1 mol/L und 10 mL Indikatorlösung zu und titriert mit c( $ZnSO_4$ ) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{Pd} = \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{ZnSO_4}) \times M_{Pd}}{V_S}$$

 $\beta_{Pd}$ : Palladiumgehalt der Probe in g/L

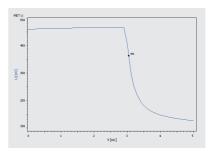
V<sub>EDTA</sub>: Zugegebene Menge an EDTA-

Masslösung in mL

 $f_1$ : Titer der EDTA-Masslösung

C<sub>EDTA</sub>: Konzentration der EDTA-Mass-

lösung in mol/L


V<sub>EP1</sub>: Verbrauch an ZnSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenz-

f<sub>2</sub>: Titer der ZnSO<sub>4</sub>-Masslösung

c<sub>ZnSO<sub>4</sub></sub>: Konzentration der ZnSO<sub>4</sub>-Masslösung in mol/L

M<sub>Pd</sub>: Molare Masse von Palladium; 106.420 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 70** Photometrische Titrationskurve von Palladium mit der Optrode bei 610 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

 Titration Application Note AN-T-145 – Determination of palladium using automatic photometric titration

# Sn – Zinn

#### **Allgemeines**

Zinn bildet in seinen beiden Wertigkeitsstufen (II und IV) mit z. B. EDTA stabile Komplexe, die wegen ihrer hohen Komplexbildungskonstanten (log  $K_f = ca. 22$ ) in sauren Lösungen titriert werden.

Saure Lösungen sind auch deshalb anzuwenden, weil Zinnionen stabile Hydroxokomplexe bilden, die sich nicht oder nur sehr schwer titrieren lassen. Vorneutralisierungen müssen entsprechend sorgfältig unter starkem Rühren durchgeführt werden.

Störende Pb<sup>2+</sup>-Ionen werden in der Regel als PbSO<sub>4</sub> ausgefällt und durch Filtration aus der Lösung entfernt.

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                 | Molare Masse in g/mol | Äquivalent in mg |
|----------------------------------------|-----------------------|------------------|
| Sn                                     | 118.710               | 11.871           |
| SnCl <sub>2</sub>                      | 189.616               | 18.962           |
| SnCl <sub>2</sub> · 2 H <sub>2</sub> O | 225.647               | 22.565           |
| SnCl <sub>4</sub>                      | 260.522               | 26.052           |
| SnCl₄ · 5 H₂O                          | 350.598               | 35.060           |
| SnF <sub>2</sub>                       | 156.707               | 15.671           |
| SnF <sub>4</sub>                       | 194.704               | 19.470           |
| SnO                                    | 134.709               | 13.471           |
| SnO <sub>2</sub>                       | 150.709               | 15.071           |
| Sn(OH) <sub>2</sub>                    | 152.725               | 15.273           |
| Sn(OH) <sub>4</sub>                    | 186.739               | 18.674           |
| SnSO <sub>4</sub>                      | 214.773               | 21.477           |

# Photometrisch mit der Optrode bei 574 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Puffer: pH = 2.1; 5.88 g Zitronensäure und 3.58 g NaCl werden in 700 mL c(HCl) = 0.1 mol/L gelöst und mit c(NaOH) = 2 mol/L auf pH 2.1 eingestellt. Die Lösung wird in einen
- 1-L-Messkolben überführt und mit dest. H₂O bis zur Marke aufgefüllt.
- Indikatorlösung: Xylenolorange;
   25 mg Xylenolorange Dinatriumsalz wird in 100 mL dest. H<sub>2</sub>O gelöst.

## **Analyse**

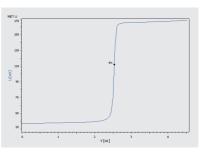
Die stark saure Probenlösung, die nicht mehr als 100 mg  $\rm Sn^{2+}$  oder  $\rm Sn^{4+}$  enthalten soll, wird mit 10 mL Puffer pH = 2.1 und 80 mL deion.  $\rm H_2O$  versetzt. Anschliessend wird 0.5 mL Indikatorlösung zugegeben und mit  $\rm c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus titriert.

### Berechnung

$$\beta_{Sn} = \, \frac{V_{EP1} \, \boldsymbol{\times} \, \boldsymbol{f} \, \boldsymbol{\times} \, \boldsymbol{c}_{EDTA} \, \boldsymbol{\times} \, \boldsymbol{M}_{Sn}}{V_{S}}$$

 $\beta_{Sn}$ : Zinngehalt der Probe in g/L

V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenz-


punkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>sn</sub>: Molare Masse von Zinn; 118.710 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 71** Beispiel einer photometrischen Titrationskurve von Zinn mit der Optrode bei 574 nm

# Weiterführende Literatur zu diesem Thema finden Sie im

 Titration Application Note AN-T-146
 Automatic determination of tin using photometric titration

# Th - Thorium

# **Allgemeines**

Thorium bildet mit Komplexbildnern sehr starke Komplexe mit hohen Komplexbildungskonstanten. So kann es mit z. B. Na<sub>2</sub>EDTA gegen Xylenolorange noch bei pH-Werten < 1 titriert werden. Bei diesen tiefen pH-Werten stören zweiwertige Kationen (mit Ausnahme von Hg<sup>2+</sup>) nicht.

Einige Autoren (Pribil, R., Burger, K., Milner, G. W. C., Edwards, J. W.) weisen darauf hin, dass Thorium mit Sulfaten noch stärkere Komplexe als mit EDTA bilden kann und dadurch bei pH-Werten > 1 wieder EDTA freigesetzt wird. Diesen Umstand nutzen sie aus, um Th<sup>4+</sup> neben

Zr<sup>4+</sup> zu bestimmen. Zuerst wird die Summe von Th<sup>4+</sup> und Zr<sup>4+</sup> bestimmt, indem man einen EDTA-Überschuss bei enem pH-Wert von 2.5–2.7 mit Bi<sup>3+</sup>-Masslösung gegen Xylenorange zurücktitriert. Dann wird die austitrierte Lösung mit HNO<sub>3</sub> auf pH 1.2–1.3 angesäuert, ca. 2 g Ammoniumsulfat zugesetzt und die frei gewordenen EDTA- Moleküle wiederum mit Bi<sup>3+</sup>-Masslösung gegen denselben Indikator titriert.

#### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                            | Molare Masse in g/mol | Äquivalent in mg |
|-----------------------------------|-----------------------|------------------|
| Th                                | 232.038               | 23.204           |
| $Th(NO_3)_4 \cdot 5 H_2O$         | 570.134               | 57.013           |
| $ThO_2$                           | 264.037               | 26.404           |
| Th(OH) <sub>4</sub>               | 300.067               | 30.007           |
| Th(SO <sub>4</sub> ) <sub>2</sub> | 424.150               | 42.415           |
| $Th(SO_4)_2 \cdot 9 H_2O$         | 586.290               | 58.629           |

# Photometrisch mit der Optrode bei 574 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Acetatpuffer: 123 g Natriumacetat und 50 mL w(NH<sub>3</sub>) = 25 % werden in einen 1-L-Messkolben gegeben, gemischt und mit dest. H<sub>2</sub>O bis zur Marke aufgefüllt.
- Indikatorlösung: Xylenolorange;
   50 mg Xylenolorange Dinatriumsalz wird in 50 mL dest. H<sub>2</sub>O gelöst.

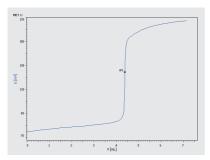
#### **Analyse**

Die Probenlösung wird wenn nötig mit dest.  $H_2O$  auf ca. 100 mL verdünnt. Anschliessend wird entgast und 0.5 mL Indikatorlösung sowie 10 mL Acetatpuffer zugegeben. Danach wird mit  $c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus titriert.

## Berechnung

$$\beta_{Th} = \, \frac{V_{EP1} \, \boldsymbol{\times} \, \boldsymbol{f} \, \boldsymbol{\times} \, \boldsymbol{c}_{EDTA} \, \boldsymbol{\times} \, \boldsymbol{M}_{Th}}{V_{S}}$$

 $\beta_{Th}$ : Thoriumgehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

 $M_{Th}$ : Molare Masse von Thorium; 232.038 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 72** Photometrische Titrationskurve von Thorium mit der Optrode bei 574 nm

 Titration Application Note AN-T-149
 Determination of thorium using automatic photometric titration

# Tl - Thallium

## **Allgemeines**

Tl<sup>+</sup> bildet nur sehr schwache Komplexe, während Tl<sup>3+</sup> starke Komplexe mit einer hohen Komplexbildungskonstante bildet. Dieses Metall wird daher in seiner dreiwertigen Form titriert. Die Bestimmungen erfolgen in leicht saurer Lösung, wo sie z. B. durch allfällig vorhandene Erdalkaliionen nicht gestört werden.

Das Thallium liegt oft als TI<sup>\*</sup>-Ion vor. Zur Oxidation zum TI<sup>3\*</sup> verwendet man am besten Königswasser (Mischung aus HNO₃ und HCl), da Salpetersäure allein nicht ausreicht. Dabei wird die Probe mit Königswasser versetzt und fast bis zur Trockne eingedampft.

Tl<sup>+</sup> kann gut von störenden Metallionen abgetrennt werden, indem man der Probenlösung etwas Kaliumiodid-Lösung zusetzt, das ausgefallene TII abfiltriert und wie oben beschrieben mit Königswasser zu Tl<sup>3+</sup> oxidiert.

### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                      | Molare Masse in g/mol | Äquivalent in mg |
|-----------------------------|-----------------------|------------------|
| TI                          | 204.383               | 20.438           |
| $Tl_2CO_3$                  | 468.775               | 23.439           |
| TICI                        | 239.836               | 23.439           |
| TICl <sub>3</sub>           | 310.742               | 31.074           |
| TII                         | 331.287               | 33.129           |
| TINO₃                       | 266.387               | 26.639           |
| $TI(NO_3)_3$                | 444.765               | 44.477           |
| $Tl_2O$                     | 424.762               | 21.238           |
| $Tl_2O_3$                   | 456.764               | 22.838           |
| $Tl_2SO_4$                  | 504.829               | 25.241           |
| $TI_2(SO_4)_3 \cdot 7 H_2O$ | 823.061               | 41.153           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L 24.97 g CuSO<sub>4</sub>  $\cdot$  5 H<sub>2</sub>O wird in ca. 500 mL dest. H<sub>2</sub>O gelöst, nach Zugabe von 0.5 mL  $w(H_2SO_4) = 96 \%$ gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Acetatpuffer pH = 4.7: 116 g Ammoniumacetat und 86 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniak: w(NH<sub>2</sub>) = 25 %

### **Analyse**

Die saure Probenlösung, die nicht mehr als 150 mg Tl<sup>3+</sup> enthalten soll, wird wenn nötig mit dest. H<sub>2</sub>O auf ca. 50 mL verdünnt. Man gibt 5 mL Acetatpuffer und 10 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L zu und stellt den pH-Wert falls notwendig mit  $w(NH_2) = 25 \% \text{ auf } 4.5-4.7 \text{ ein. Dann}$ titriert man mit  $c(CuSO_4) = 0.1 \text{ mol/L}$  über den ersten Äguivalenzpunkt hinaus.

#### Berechnung

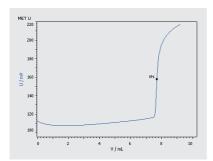
$$\beta_{TI} \, = \, \frac{(V_{EDTA} \times f_1 \times c_{EDTA} - V_{EP1} \times f_2 \times c_{CuSO_4}) \times M_{TI}}{V_S}$$

β<sub>π</sub>: Thalliumgehalt der Probe in g/L V<sub>FDTA</sub>: Zugegebene Menge an EDTA-

Masslösung in mL

f<sub>1</sub>: Titer der EDTA-Masslösung

CEDTA: Konzentration der EDTA-Masslösung in mol/L


V<sub>EP1</sub>: Verbrauch an CuSO<sub>4</sub>-Masslösung in mL bis zum ersten Äquivalenzpunkt

f<sub>2</sub>: Titer der CuSO₄-Masslösung

c<sub>CuSO<sub>4</sub></sub>: Konzentration der CuSO<sub>4</sub>-Masslösung in mol/L

Molare Masse von Thallium;  $M_{TI}$ : 204.383 g/mol

Vς: Probeneinmass in mL



**Abbildung 73** Potentiometrische Titrationskurve von Thallium mit der Cu-ISE

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-122

   Automatic thallium determination
   in aqueous solution using the ion-selective copper electrode (Cu-ISE)

# Photometrisch mit der Optrode bei 574 nm

# Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Acetatpuffer pH = 4.9: 123 g Natriumacetat und 50 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Indikatorlösung: Xylenolorange;
   50 mg Xylenolorange Dinatriumsalz wird in 50 mL H<sub>2</sub>O gelöst.

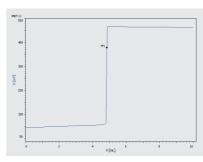
#### Analyse

Die saure Probenlösung wird mit 5 mL Acetatpuffer versetzt und wenn nötig mit dest.  $H_2O$  auf ca. 100 mL verdünnt. Man entgast, gibt 0.5 mL Indikatorlösung zu und titriert mit  $c(Na_2EDTA) = 0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

#### Berechnung

$$\beta_{TI} = \, \frac{V_{EP1} \, \boldsymbol{\times} \, \boldsymbol{f} \, \boldsymbol{\times} \, \boldsymbol{c}_{EDTA} \, \boldsymbol{\times} \, \boldsymbol{M}_{TI}}{V_{S}}$$

 $\beta_{TI}$ : Thalliumgehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

 $M_{\text{T}}$ : Molare Masse von Thallium; 204.383 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 74** Beispiel einer photometrischen Titrationskurve von Thallium mit der Optrode bei 610 nm

#### Metrohm-Literatur zu diesem Thema

 Titration Application Note AN-T-147 – Determination of thallium using automatic photometric titration

# Zn – Zink

#### **Allgemeines**

Zn<sup>2+</sup> verhält sich in seinen Komplexen sehr ähnlich wie das Cadmium. Es kann problemlos in alkalischer Lösung titriert werden. Hier wird es allerdings durch die Anwesenheit von Ca<sup>2+</sup> und Mg<sup>2+</sup> gestört, die miterfasst werden. In alkalischer Lösung könnte so vorgegangen werden, dass in einer ersten Titration die Gesamtsumme von Zn<sup>2+</sup> plus Ca<sup>2+</sup> und Mg<sup>2+</sup> gegen Eriochromschwarz T erfasst würde.

Dann wird das Zn<sup>2+</sup> mit KCN maskiert und das freigesetzte Na<sub>2</sub>EDTA in einer Folgetitration, z. B. mit MgSO<sub>4</sub>-Masslösung zurücktitriert.

Viel einfacher ist es jedoch, die (photometrische) Titration bei pH  $\approx 5$  durchzuführen – hier stören  $Ca^{2+}$  und  $Mg^{2+}$  nicht mehr.

### Hilfstabelle Äquivalentmassen

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                                    | Molare Masse in g/mol | Äquivalent in mg |
|-----------------------------------------------------------|-----------------------|------------------|
| Zn                                                        | 65.409                | 6.541            |
| Zn(CH <sub>3</sub> COO) <sub>2</sub>                      | 183.497               | 18.350           |
| Zn(CH <sub>3</sub> COO) <sub>2</sub> · 2 H <sub>2</sub> O | 219.528               | 21.953           |
| Zn(CN) <sub>2</sub>                                       | 117.444               | 11.744           |
| ZnCO <sub>3</sub>                                         | 125.418               | 12.542           |
| ZnCl <sub>2</sub>                                         | 136.315               | 13.632           |
| $Zn(NO_3)_2$                                              | 189.419               | 18.942           |
| $Zn(NO_3)_2 \cdot 6 H_2O$                                 | 297.510               | 29.751           |
| ZnO                                                       | 81.408                | 8.142            |
| Zn(OH) <sub>2</sub>                                       | 99.424                | 9.942            |
| ZnSO <sub>4</sub>                                         | 161.472               | 16.147           |
| ZnSO <sub>4</sub> · 7 H <sub>2</sub> O                    | 287.579               | 28.758           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Ammoniakpuffer: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Cu-Komplexlösung: c[Cu(NH<sub>4</sub>)<sub>2</sub>EDTA]
   = 0.1 mol/L (z. B. Merck No. 105217)
- Natronlauge: c(NaOH) = 1 mol/L

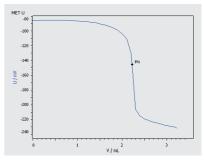
### **Analyse**

Saure Probenlösungen werden wenn nötig mit c(NaOH) = 1 mol/L auf einen pH-Wert von ca. 5–7 vorneutralisiert und falls notwendig mit dest.  $H_2O$  auf ca. 50 mL aufgefüllt. Man gibt 5 mL Pufferlösung und 1 mL Cu-Komplexlösung zu, wartet unter Rühren 20 s und titriert mit  $c(Na_2EDTA) = 0.1 \text{ mol/L}$  über den ersten Äquivalenzpunkt hinaus.

### Berechnung

$$\beta_{Zn} = \, \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Zn}}{V_S}$$

 $\beta_{\text{Zn}}$ : Zinkgehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>edta</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>zn</sub>: Molare Masse von Zink; 65.409 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 75** Potentiometrische Titrationskurve von Zink mit der Cu-ISE

## Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-108

   Fully automated determination of zinc(II) in aqueous solution

# Photometrisch mit der Optrode bei 610 nm

#### Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Ammoniakpuffer pH = 10: 54 g NH<sub>4</sub>Cl und 350 mL w(NH<sub>3</sub>) = 25 % werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Indikatorlösung: Eriochromschwarz T; Jeweils 100 mg Eriochromschwarz T und Ascorbinsäure in 100 mL dest. H<sub>2</sub>O lösen.
- Natronlauge: c(NaOH) = 1 mol/L

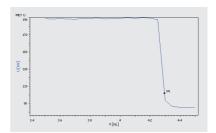
### Analyse

Saure Probenlösungen werden wenn nötig mit c(NaOH)=1 mol/L auf einen pH-Wert von ca. 5 vorneutralisiert und falls notwendig mit dest.  $H_2O$  auf ca. 50 mL verdünnt. Dann gibt man 5 mL Ammoniakpuffer und 0.25 mL Indikatorlösung zu und titriert mit  $c(Na_2EDTA)=0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

### Berechnung

$$\beta_{Zn} = \, \frac{V_{EP1} \, \boldsymbol{\times} \, \boldsymbol{f} \, \boldsymbol{\times} \, \boldsymbol{c}_{EDTA} \, \boldsymbol{\times} \, \boldsymbol{M}_{Zn}}{V_{S}}$$

 $\beta_{Zn}$ : Zinkgehalt der Probe in g/L


V<sub>EP1</sub>: Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>zn</sub>: Molare Masse von Zink; 65.409 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 76** Beispiel einer photometrischen Titrationskurve von Zink mit der Optrode bei 610 nm

#### Metrohm-Literatur zu diesem Thema

• Titration Application Note AN-T-090 – Photometric EDTA titration of zinc sulfate according to Ph. Eur. and USP

# Zr – Zirkonium und Hf – Hafnium

# **Allgemeines**

Zirkonium neigt wie Al<sup>3+</sup> zur Bildung von Hydroxokomplexen und muss deshalb in saurer Lösung titriert werden. Fe<sup>3+</sup>-lonen stören, können aber durch Zusatz von Ascorbinsäure (Vitamin C) zu nicht mehr störenden Fe<sup>2+</sup>-lonen reduziert werden (gilt nur für die photometrische Titration).

Hafnium verhält sich genau gleich wie Zr<sup>4+</sup> und wird nach den gleichen Vorschriften titriert. Eine titrimetrische Trennung der beiden Metalle ist nicht möglich.

Die EDTA-Komplexe beider Metalle sind relativ stabil (log  $K_f$  Zr = 19.4 / log  $K_f$  Hf = 19.1).

1 mL c(Na<sub>2</sub>EDTA) = 0.1 mol/L = x mg Äquivalent

| Formel                                  | Molaro Masso in g/mol | Äquivalent in mg |
|-----------------------------------------|-----------------------|------------------|
|                                         | Molare Masse in g/mol | Äquivalent in mg |
| Hf                                      | 178.490               | 17.849           |
| HfCl <sub>4</sub>                       | 320.302               | 32.030           |
| Hf(NO <sub>3</sub> ) <sub>4</sub>       | 426.510               | 42.651           |
| HfO <sub>2</sub>                        | 210.489               | 21.049           |
| HfSO₄                                   | 274.553               | 27.455           |
| Zr                                      | 91.224                | 9.122            |
| $ZrCl_4$                                | 233.036               | 23.304           |
| ZrOCl <sub>2</sub> · 8 H <sub>2</sub> O | 322.252               | 32.225           |
| Zr(NO <sub>3</sub> ) <sub>4</sub>       | 339.244               | 33.924           |
| $Zr(NO_3)_4 \cdot 5 H_2O$               | 429.320               | 42.932           |
| $ZrO_2$                                 | 123.223               | 12.322           |
| Zr(OH) <sub>4</sub>                     | 159.253               | 15.925           |
| $Zr(SO_4)_2$                            | 283.349               | 28.335           |
| $Zr(SO_4)_2 \cdot 4 H_2O$               | 355.410               | 35.541           |

#### Potentiometrisch mit der Cu-ISE

#### Reagenzien

- Titriermittel 1: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Titriermittel 2: c(CuSO<sub>4</sub>) = 0.1 mol/L;
   24.97 g CuSO<sub>4</sub> · 5 H<sub>2</sub>O wird in ca.
   500 mL dest. H<sub>2</sub>O gelöst. Nach Zugabe von 0.5 mL w(H<sub>2</sub>SO<sub>4</sub>) = 96 % mischt man und füllt mit dest. H<sub>2</sub>O auf 1 L auf.
- Acetatpuffer pH = 4.7: 116 g Ammoniumacetat und 86 mL Eisessig werden in dest. H<sub>2</sub>O gelöst, gemischt und mit dest. H<sub>2</sub>O auf 1 L aufgefüllt.
- Ammoniak:  $w(NH_3) = 25 \%$

## Analyse

Die saure Probenlösung, die nicht mehr als 70 mg  ${\rm Zr}^{4+}$  bzw. 130 mg  ${\rm Hf}^{4+}$  enthalten soll, wird wenn nötig mit dest.  ${\rm H}_2{\rm O}$  auf ca. 50 mL verdünnt. Nach Zugabe von 5 mL Acetatpuffer und 10 mL  ${\rm c(Na}_2{\rm EDTA})=0.1$  mol/L stellt man falls notwendig den pH-Wert mit  ${\rm w(NH}_3)=25$ % auf 4.7 ein, lässt ca. 1 min unter Rühren reagieren und titriert anschliessend mit  ${\rm c(CuSO}_4)=0.1$  mol/L über den ersten Äquivalenzpunkt hinaus.

### Berechnung

$$\beta_{\text{Zr/Hf}} = \frac{(V_{\text{EDTA}} \times f_1 \times c_{\text{EDTA}} - V_{\text{EP1}} \times f_2 \times c_{\text{CuSO}_4}) \times M_{\text{Zr/Hf}}}{V_{\text{S}}}$$

 $\beta_{\text{Zr/Hf}}$ : Zirkonium- oder Hafniumgehalt

der Probe in g/L

 $V_{\text{EDTA}}$ : Zugegebene Menge an EDTA-

Masslösung in mL

f<sub>1</sub>: Titer der EDTA-Masslösung

 $c_{\mbox{\scriptsize EDTA}}$ : Konzentration der EDTA-Mass-

lösung in mol/L

 $V_{\text{EP1}}$ : Verbrauch an  $\text{CuSO}_4\text{-Mass-}$ lösung in mL bis zum ersten

Äquivalenzpunkt

f<sub>2</sub>: Titer der CuSO<sub>4</sub>-Masslösung

 $c_{\text{CuSO}_4}$ : Konzentration der CuSO<sub>4</sub>-Mass-

lösung in mol/L

M<sub>Zr/Hf</sub>: Molare Masse von Zirkonium bzw. Hafnium; 91.224 g/mol

bzw. 178.490 g/mol

V<sub>S</sub>: Probeneinmass in mL

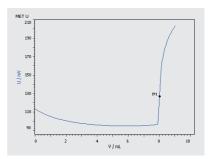



Abbildung 77 Beispiel einer potentiometrischen Titrationskurve von Zirkonium mit der Cu-ISE

#### Weiterführende Literatur zu diesem Thema finden Sie im

- Application Bulletin AB-101 Complexometric titrations with the Cu-ISE
- Titration Application Note AN-T-123 Automatic zirconium determination in aqueous solution with ion-selective copper electrode (Cu-ISE)

# Photometrisch mit der Optrode bei 520 nm

# Reagenzien

- Titriermittel: c(Na<sub>2</sub>EDTA) = 0.1 mol/L
- Puffer pH = 1 (Glycin / Salzsäure):
   z. B. Merck 109881
- Indikatorlösung: Eriochromcyanin;
   40 mg Eriochromcyanin wird in
   100 mL dest. H<sub>2</sub>O gelöst.

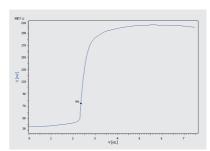
## Analyse

Die saure Probenlösung, die nicht mehr als 70 mg Zr $^{4+}$  bzw. 130 mg Hf $^{4+}$  enthalten soll, wird mit 10 mL Puffer pH = 1 und 1 mL Indikatorlösung versetzt. Anschliessend wird die Lösung mit 80 mL dest. H $_2$ O versetzt und mit c(Na $_2$ EDTA) = 0.1 mol/L über den ersten Äquivalenzpunkt hinaus titriert.

# 92 Berechnung

$$\beta_{Zr/Hf} = \frac{V_{EP1} \times f \times c_{EDTA} \times M_{Zr/Hf}}{V_S}$$

 $\beta_{\text{Zr/Hf}}$ : Zirkonium- oder Hafniumgehalt der Probe in q/L


 $V_{\mbox{\scriptsize EP1}}$ : Verbrauch an EDTA-Masslösung in mL bis zum ersten Äquivalenzpunkt

f: Titer der EDTA-Masslösung

c<sub>EDTA</sub>: Konzentration der EDTA-Masslösung in mol/L

M<sub>zr/Hr</sub>: Molare Masse von Zirkonium bzw. Hafnium; 91.224 g/mol bzw. 178.490 g/mol

V<sub>S</sub>: Probeneinmass in mL



**Abbildung 78** Photometrische Titrationskurve von Zirkonium mit der Optrode bei 520 nm

#### Weiterführende Literatur zu diesem Thema finden Sie im

• Titration Application Note AN-T-148 – Determination of zirconium using automatic photometric titration

# **Anhang**

# Index

| Spezies        | Bemerkungen          | Sensor             | Seiten |
|----------------|----------------------|--------------------|--------|
| Al             | allgemein            | Cu-ISE             | 40-41  |
| Al             | allgemein            | Optrode bei 610 nm | 41–42  |
| Al und Mg      | Legierungen, Anacida | Cu-ISE             | 29–31  |
| Al, Ca, Fe, Mg | Zement, Klinker      | Optrode bei 610 nm | 33–37  |
| Ва             | allgemein            | Cu-ISE             | 44     |
| Ва             | allgemein            | Optrode bei 574 nm | 45     |
| Bi             | allgemein            | Cu-ISE             | 46–47  |
| Bi             | allgemein            | Optrode bei 520 nm | 47–48  |
| Ca             | allgemein            | Ca-ISE             | 49–50  |
| Ca             | allgemein            | Cu-ISE             | 50     |
| Ca             | allgemein            | Optrode bei 610 nm | 51     |
| Ca, Al, Fe, Mg | Zement, Klinker      | Optrode bei 610 nm | 33–37  |
| Cd             | allgemein            | Cu-ISE             | 52-53  |
| Cd             | allgemein            | Optrode bei 610 nm | 53-54  |
| Со             | allgemein            | Cu-ISE             | 55     |
| Co             | allgemein            | Optrode bei 574 nm | 56     |
| Cu             | allgemein            | Cu-ISE             | 58     |
| Cu             | allgemein            | Optrode bei 520 nm | 59     |
| Fe             | allgemein            | Cu-ISE             | 61     |
| Fe             | allgemein            | Optrode bei 610 nm | 62     |
| Fe, Al, Ca, Mg | Zement, Klinker      | Optrode bei 610 nm | 33–37  |
| Ga             | allgemein            | Cu-ISE             | 63–64  |
| Ga             | allgemein            | Optrode bei 610 nm | 65     |
| Hf             | allgemein            | Cu-ISE             | 90–91  |
| Hf             | allgemein            | Optrode bei 520 nm | 91–92  |
| Hg             | allgemein            | Optrode bei 502 nm | 67     |
| In             | allgemein            | Cu-ISE             | 63–64  |
| In             | allgemein            | Optrode bei 610 nm | 65     |
| Mg             | allgemein            | Cu-ISE             | 68–69  |
| Mg             | allgemein            | Optrode bei 610 nm | 69–70  |

# 94 Index

| Spezies        | Bemerkungen          | Sensor             | Seiten |
|----------------|----------------------|--------------------|--------|
| Mg und Al      | Legierungen, Anacida | Cu-ISE             | 29-31  |
| Mg und Zn      | allgemein            | Cu-ISE             | 31–33  |
| Mg, Al, Ca, Fe | Zement, Klinker      | Optrode bei 610 nm | 33–37  |
| Mn             | allgemein            | Cu-ISE             | 71–72  |
| Mn             | allgemein            | Optrode bei 610 nm | 72-73  |
| Ni             | allgemein            | Cu-ISE             | 74–75  |
| Ni             | allgemein            | Optrode bei 574 nm | 75–76  |
| Pb             | allgemein            | Cu-ISE             | 77–78  |
| Pb             | allgemein            | Optrode bei 574 nm | 78–79  |
| Pd             | allgemein            | Optrode bei 610 nm | 80     |
| Sn             | allgemein            | Optrode bei 574 nm | 81–82  |
| Sr             | allgemein            | Cu-ISE             | 44     |
| Sr             | allgemein            | Optrode bei 574 nm | 45     |
| Sulfat         | allgemein            | Ca-ISE             | 38–39  |
| Th             | allgemein            | Optrode bei 574 nm | 83-84  |
| TI             | allgemein            | Cu-ISE             | 85–86  |
| TI             | allgemein            | Optrode bei 574 nm | 86     |
| Wasserhärten   | Ca und Mg            | Ca-ISE             | 25–26  |
| Wasserhärten   | Ca und Mg            | Cu-ISE             | 26–27  |
| Wasserhärten   | Ca und Mg            | Optrode bei 610 nm | 27-29  |
| Zn             | allgemein            | Cu-ISE             | 87–88  |
| Zn             | allgemein            | Optrode bei 610 nm | 88–89  |
| Zn und Mg      | allgemein            | Cu-ISE             | 31–33  |
| Zr             | allgemein            | Cu-ISE             | 90–91  |
| Zr             | allgemein            | Optrode bei 520 nm | 91–92  |

# Photometrische Indikation des Titrationsäquivalenzpunktes

| Spezies              | Indikator          | Wellenlänge |
|----------------------|--------------------|-------------|
| Al                   | Xylenolorange      | 610 nm      |
| Al in Zement         | Xylenolorange      | 610 nm      |
| Ва                   | Phthaleinpurpur    | 574 nm      |
| Ві                   | Xylenolorange      | 520 nm      |
| Ca                   | HHSNN              | 610 nm      |
| Ca in Zement         | Murexid            | 610 nm      |
| Cd                   | Eriochromschwarz T | 610 nm      |
| Co                   | Murexid            | 574 nm      |
| Cu                   | PAN                | 520 nm      |
| Fe                   | Sulfosalicylsäure  | 610 nm      |
| Fe in Zement         | Sulfosalicylsäure  | 610 nm      |
| Ga                   | Xylenolorange      | 610 nm      |
| Hf                   | Eriochromcyanin    | 520 nm      |
| Hg                   | Eriochromschwarz T | 502 nm      |
| In                   | Xylenolorange      | 610 nm      |
| Mg                   | Eriochromschwarz T | 610 nm      |
| Mg in Zement         | Methylthymolblau   | 610 nm      |
| Mn                   | Eriochromschwarz T | 610 nm      |
| Ni                   | Murexid            | 574 nm      |
| Pb                   | Xylenolorange      | 574 nm      |
| Pd                   | Xylenolorange      | 610 nm      |
| Sn                   | Xylenolorange      | 574 nm      |
| Sr                   | Phthaleinpurpur    | 574 nm      |
| Th                   | Xylenolorange      | 574 nm      |
| TI                   | Xylenolorange      | 574 nm      |
| Wasser, Calciumhärte | HHSNN              | 610 nm      |
| Wasser, Gesamthärte  | Eriochromschwarz T | 610 nm      |
| Zn                   | Eriochromschwarz T | 610 nm      |
| Zr                   | Eriochromcyanin    | 520 nm      |

| Abbildung 1               | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Brenzkatechinviolett                                                        | 16 |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abbildung 2               | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Brenzkatechinviolett                                                   | 16 |
| Abbildung 3               | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Dithizon                                                                    | 16 |
| Abbildung 4               | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Dithizon                                                               | 16 |
| Abbildung 5               | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Eriochromschwarz T                                                          | 17 |
| Abbildung 6               | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Eriochromschwarz T                                                     | 17 |
| Abbildung 7               | Überlagerte Vis-Spektren für komplexierte und unkomplexierte<br>Calconcarbonsäure                                                             | 17 |
| Abbildung 8               | Vis-Absorptionsdifferenzspektrum von komplexierter und unkomplexierter Calconcarbonsäure                                                      | 17 |
| Abbildung 9               | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Hydroxynaphtholblau                                                            | 18 |
| Abbildung 10              | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Hydroxynaphtholblau                                                    | 18 |
| Abbildung 11              | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Methylthymolblau                                                            | 18 |
| Abbildung 12              | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Methylthymolblau                                                       | 18 |
| Abbildung 13              | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Murexid                                                                     | 19 |
| Abbildung 14              | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Murexid                                                                | 19 |
| Abbildung 15 Abbildung 16 | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes PAN Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem PAN | 19 |
| Abbildung 17              | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Phthaleinpurpur                                                             | 20 |
| Abbildung 18              | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Phthaleinpurpur                                                        | 20 |
| Abbildung 19              | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes Tiron                                                                          | 20 |
| Abbildung 20              | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Tiron                                                                  | 20 |
| Abbildung 21              | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Xylenolorange                                                               | 21 |
| Abbildung 22              | Vis-Absorptionsdifferenzspektrum von komplexiertem und unkomplexiertem Xylenolorange                                                          | 21 |

| Abbildung 23 | Überlagerte Vis-Spektren für komplexiertes und unkomplexiertes<br>Eriochromcyanin R                  | 21 |
|--------------|------------------------------------------------------------------------------------------------------|----|
| Abbildung 24 | Vis-Absorptionsdifferenzspektrum von komplexiertem und                                               | 21 |
| _            | unkomplexiertem Eriochromcyanin R                                                                    |    |
| Abbildung 25 | Titrationskurve der potentiometrischen Titerbestimmung von EDTA mit der Ca-ISE                       | 23 |
| Abbildung 26 | Titrationskurve der potentiometrischen Titerbestimmung von EGTA mit der Ca-ISE                       | 23 |
| Abbildung 27 | Titrationskurve von Leitungswasser aus Herisau, gemessen mit der<br>Ca-ISE                           | 25 |
| Abbildung 28 | Titrationskurve der Gesamthärtebestimmung                                                            | 27 |
| Abbildung 29 | Titrationskurve der Calciumhärtebestimmung                                                           | 27 |
| Abbildung 30 | Titrationskurve der Gesamthärtebestimmung mit der Optrode bei<br>610 nm                              | 29 |
| Abbildung 31 | Titrationskurve der Calicumhärtebestimmung mit der Optrode bei<br>610 nm                             | 29 |
| Abbildung 32 | Titrationskurve der potentiometrischen Aluminiumbestimmung mit der<br>Cu-ISE                         | 31 |
| Abbildung 33 | Titrationskurve der potentiometrischen Magnesiumbestimmung mit der Cu-ISE                            | 31 |
| Abbildung 34 | Titrationskurve der potentiometrischen Zinkbestimmung mit der Cu-ISE                                 | 33 |
| Abbildung 35 | Titrationskurve der potentiometrischen Magnesiumbestimmung mit der Cu-ISE                            | 33 |
| Abbildung 36 | Titrationskurve der photometrischen Bestimmung von Calcium in<br>Zement mit der Optrode bei 610 nm   | 37 |
| Abbildung 37 | Titrationskurve der photometrischen Bestimmung von Magnesium in<br>Zement mit der Optrode bei 610 nm | 37 |
| Abbildung 38 | Titrationskurve der photometrischen Bestimmung von Eisen in Zement<br>mit der Optrode bei 610 nm     | 37 |
| Abbildung 39 | Titrationskurve der photometrischen Bestimmung von Aluminium in<br>Zement mit der Optrode bei 610 nm | 37 |
| Abbildung 40 | Titrationskurve der Blindwertbestimmung mit der Ca-ISE                                               | 39 |
| Abbildung 41 | Titrationskurve der Sulfatbestimmung mit der Ca-ISE                                                  | 39 |
| Abbildung 42 | Beispielkurve einer potentiometrischen Aluminiumbestimmung mit der<br>Cu-ISE                         | 41 |
| Abbildung 43 | Beispiel einer photometrischen Titrationskurve von Aluminium mit der<br>Optrode bei 610 nm           | 42 |
| Abbildung 44 | Beispiel einer potentiometrischen Titrationskurve von Barium mit der Cu-ISE                          | 44 |
| Abbildung 45 | Photometrische Titrationskurve Barium mit der Optrode bei 574 nm                                     | 45 |
| Abbildung 46 | Potentiometrische Titrationskurve von Bismut mit der Cu-ISE                                          | 47 |

| Abbildung 47 | Beispiel einer photometrischen Titrationskurve von Bismut bei 520 nm                               | 48 |
|--------------|----------------------------------------------------------------------------------------------------|----|
| Abbildung 48 | Beispielkurve einer potentiometrischen Calciumbestimmung mit der<br>Ca-ISE                         | 49 |
| Abbildung 49 | Potentiometrische Titrationskurve der Bestimmung von Calcium in Milch<br>mit der Cu-ISE            | 50 |
| Abbildung 50 | Beispiel einer photometrischen Titrationskurve der Calciumbestimmung<br>mit der Optrode bei 610 nm | 51 |
| Abbildung 51 | Potentiometische Titrationskurve von Cadmium mit der Cu-ISE                                        | 53 |
| Abbildung 52 | Photometrische Titrationskurve der Cadmiumbestimmung mit der<br>Optrode bei 610 nm                 | 54 |
| Abbildung 53 | Beispiel einer potentiometrischen Titrationskurve von Cobalt mit der<br>Cu-ISE                     | 55 |
| Abbildung 54 | Photometrische Titrationskurve von Cobalt mit der Optrode bei 574 nm                               | 56 |
| Abbildung 55 | Potentiometrische Titrationskurve von Kupfer mit der Cu-ISE                                        | 58 |
| Abbildung 56 | Photometrische Titrationskurve von Kupfer mit der Optrode bei 520 nm                               | 59 |
| Abbildung 57 | Beispiel einer potentiometrischen Titrationskurve von Eisen mit der<br>Cu-ISE                      | 61 |
| Abbildung 58 | Photometrische Titrationskurve von Eisen mit der Optrode bei 610 nm                                | 62 |
| Abbildung 59 | Potentiometrische Titrationskurve von Indium mit der Cu-ISE                                        | 64 |
| Abbildung 60 | Beispiel einer photometrischen Titrationskurve von Gallium mit der<br>Optrode bei 610 nm           | 65 |
| Abbildung 61 | Photometrische Titrationskurve von Quecksilber mit der Optrode bei<br>502 nm                       | 67 |
| Abbildung 62 | Beispiel einer potentiometrischen Titrationskurve von Magnesium mit<br>der Cu-ISE                  | 69 |
| Abbildung 63 | Photometrische Titrationskurve von Magnesium mit der Optrode bei<br>610 nm                         | 70 |
| Abbildung 64 | Potentiometrische Titrationskurve von Mangan mit der Cu-ISE                                        | 72 |
| Abbildung 65 | Beispiel einer photometrischen Titrationskurve von Mangan mit der<br>Optrode bei 610 nm            | 73 |
| Abbildung 66 | Potentiometrische Titrationskurve von Nickel mit der Cu-ISE                                        | 75 |
| Abbildung 67 | Beispiel einer photometrischen Titrationskurve von Nickel mit der<br>Optrode bei 574 nm            | 76 |
| Abbildung 68 | Potentiometrische Titrationskurve von Blei mit der Cu-ISE                                          | 78 |
| Abbildung 69 | Beispiel einer photometrischen Titrationskurve von Blei mit der Optrode<br>bei 574 nm              | 79 |
| Abbildung 70 | Photometrische Titrationskurve von Palladium mit der Optrode bei<br>610 nm                         | 80 |
| Abbildung 71 | Beispiel einer photometrischen Titrationskurve von Zinn mit der Optrode                            | 82 |

| Abbildung 72 | Photometrische Titrationskurve von Thorium mit der Optrode bei<br>574 nm                  | 84 |
|--------------|-------------------------------------------------------------------------------------------|----|
| Abbildung 73 | Potentiometrische Titrationskurve von Thallium mit der Cu-ISE                             | 86 |
| Abbildung 74 | Beispiel einer photometrischen Titrationskurve von Thallium mit der<br>Optrode bei 610 nm | 86 |
| Abbildung 75 | Potentiometrische Titrationskurve von Zink mit der Cu-ISE                                 | 88 |
| Abbildung 76 | Beispiel einer photometrischen Titrationskurve von Zink mit der Optrode<br>bei 610 nm     | 89 |
| Abbildung 77 | Beispiel einer potentiometrischen Titrationskurve von Zirkonium mit der<br>Cu-ISE         | 91 |
| Abbildung 78 | Photometrische Titrationskurve von Zirkonium mit der Optrode bei<br>520 nm                | 92 |

www.metrohm.com

