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Acht Jahre nachdem die P-NP-Frage von Cook gestellt wurde [Coo71], war es auch Cook zusammen
mit Reckhow, der den engen Zusammenhang dieser Frage mit Beweissystemen feststellte [CR79].

Die Bedeutung der bis heute ungeklärten P-NP-Frage ist immens. Die Gleichheit dieser Men-
gen würde bedeuten, dass man zu jedem Problem, dessen Lösung sich leicht überprüfen lässt,
auch leicht eine Lösung finden kann. Es wäre beispielsweise genau so schwer, einen Beweis zu
verifzieren, wie einen Beweis zu finden. Es würde kaum einen Unterschied machen, ob man die
PIN zu einer EC-Karte herausfinden möchte, oder überprüfen möchte, ob die eingegebene Num-
mer die korrekte ist. Aufgrund dieser unwirklich erscheinenden Implikationen glauben die meisten
Komplexitätstheoretiker, dass P 6= NP.

Der Zusammenhang der P-NP-Frage mit Beweissystemen lässt sich wie folgt formulieren. Existiert
kein polynomiell beschränktes Beweissystem für TAUT, dann folgt P 6= NP. Diesen Satz wer-
den wir im Laufe dieser Arbeit beweisen, und anschließend noch etwas tiefer in die Theorie der
Beweisssysteme einsteigen.

Zunächst wird der Leser in die wichtigsten Defintionen und Begriffe aus dem Gebiet der Beweis-
systeme eingeführt. Anschließend werden in Kapitel 3 einige wichtige Ergebnisse zusammengefasst.
In Kapitel 4 wird bewiesen, dass in bestimmten superpolynomiellen Komplexitätsklassen Sprachen
existieren, die keine optimalen Beweissysteme besitzen. Abschließend werden die Ergebnisse der
Arbeit zusammengefasst und ein Ausblick auf weitere interessante und offene Fragen gegeben.
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1 Introduction

After Cook stated the P versus NP question in 1971 [Coo71], he gave the main motivation to
study proof systems in 1979. Cook and Reckhow showed in their article the close relation between
the separation of complexity classes and the existence of polynomially bounded proof systems
[CR79].

Despite its importance, the P versus NP question remains still open. Informally speaking, P = NP
means that for every problem that has an efficiently verifiable solution, we can find that solution
efficiently as well. While most theoreticians assume that P 6= NP, their equality would have heavy
implications. One consequence affects the security of communication, as public-key cryptography
depends on the existence of certain problems in NP that are not efficiently to decide. If there are
no problems with solutions fast to verify but hard to find—as P = NP would imply—the small lock
beside the URL in one’s browser could not indicate a secure communication anymore [For09].

P = NP would also have fundamental implications on mathematics: As mathematical proofs must
by definition be efficiently verifiable, P = NP would imply that they are efficiently to find [CR79].
This argument to believe that P 6= NP is further illustrated in the following quotation, taken from
Aaronsons Blog1.

“If P = NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in ‘creative leaps’, no fundamental
gap between solving a problem and recognizing the solution once it’s found. Everyone
who could appreciate a symphony would be Mozart; everyone who could follow a step-
by-step argument would be Gauss; everyone who could recognize a good investment
strategy would be Warren Buffett.“

Closely related to the P versus NP problem is the question if NP = co-NP. If P = NP, then
NP = co-NP, since P is closed under complement. In return, if one can separate NP from co-NP,
then P 6= NP. To connect the field of proof systems with the P versus NP questions, we state

Proposition 1 ([KMT03], [CR79]). NP = co-NP if and only if a polynomially bounded proof
system for TAUT exists.

In order to introduce the reader into the field of proof systems, we will first define the important
notions used related to it. Subsequently, we will prove proposition 1 and give an overview of
important results about proof systems in chapter 3. These results will connect proof systems with
the P versus NP question as mentioned above and will give a basis for later proofs. In chapter 4
we will proof the main theorem of this thesis, showing that there are languages without optimal
proof systems in all super-polynomial complexity classes. This chapter features also an analysis of
the the inner structure of these languages that do not possess an optimal proof system.

Finally, we will give a conclusion and look forward to currently unresolved problems and further
questions.

1http://www.scottaaronson.com/blog/
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2 Preliminaries

As mentioned before, we will first introduce important symbols and definitions. Although some
familiarity with standard notions of complexity theory is assumed, we will here define most of the
notions used in this thesis. For the most important ones, we will provide a short discussion.

Let Σ = {0, 1} denote the alphabet. The output of a Turing transducer M on input x ∈ Σ∗ is
denoted by M(x). If the transducer M does not accept or runs forever on input x, we define
M(x) = ⊥. We say a Turing transducer calculates a partial function f , if M(x) = f(x) for all
x ∈ Σ∗. We further define timeM (x) as the number of steps the transducer M runs on input
x ∈ Σ∗. With FP we denote the set of all partial functions f for which a Turing transducer M
calculating f exists such that timeM (x) ≤ p(|x|) for a polynomial p.

Definition 1. A function h ∈ FP is called proof system for a language L if the range of h is L.
A string w with h(w) = x is called an h-proof for x. h is called an polynomially bounded proof
system, if there is a polynomial p such that for every x ∈ L, there is a h-proof w with |w| ≤ p(|x|).

With this definition, a proof system for L is basically a polynomial-time bounded function that
enumerates L. To give an example, let h be defined by

sat(x) =

{
ϕ (x = 〈a, ϕ〉 and α is an satisfying assignment for ϕ),

⊥ (otherwise).

Then h is a proof system for SAT.

Notice, in spite of its time bound against the input, the shortest proof of a string w ∈ L can
be be very long. There may be various proof systems for a language L. In order to make them
comparable, we define the notion of simulation of proof systems. It turns out that the notion of
simulation corresponds in a certain way with the notion of many-one reducibility [KM00]. The
following definitions are constructed in a way that will keep this correspondence.

Definition 2. Let h and h′ be proof systems for a language L. If there is a polynomial p and a
function f such that for all w ∈ Σ∗

h(f(w)) = h′(w)

and |f(w)| ≤ p(|w|), then h simulates h′.

Informally speaking, f translates h-proofs into polynomial length bounded h′-proofs. In the given
definition, f could be hard or even impossible to calculate. Hence we define a stronger version of
this notion, demanding f ∈ FP.

Definition 3. Again, let h and h′ be proof systems for a language L. If h simulates h′ with a
function f and additionally f ∈ FP, h p-simulates h′.

Notice, if f is a function that can be calculated in polynomial time p, then we obtain |f(w)| ≤ p(|w|)
as required in the definition of simulation. With a proof system p-simulating another, we can
translate proofs as described above in polynomial short time. The notion of simulation of proof
systems allows us to compare different proof systems for a language L. With respect to these
notions, we will define a notion of the best proof system as follows.
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Definition 4. A proof system h for L is called optimal, if it simulates every proof system for L.
It is called p-optimal, if it p-simulates every proof system for L.

Like noted above, this definition corresponds with the definition of complete problems in respect of
many-one-reducibility [KMT03]. We will investigate further on the connection between complete
problems and optimal proof systems in lemma 2.

It is an open question whether sat is p-optimal. Köbler and Messner showed that this question is
equivalent to a variety of well studied complexity theoretic assumptions [KM00].

The existence of optimal proof systems for a arbitrary language L is an important question in
complexity theory. For languages in P and NP, there is always an optimal proof system, as we
will see in lemma 4. For super-polynomial time complexity classes, there are languages without an
optimal proof system, as we will show in chapter 4. For that reason, we will define a complexity
class containing all languages possessing an optimal proof system.

Definition 5. Let OPT be the complexity class of all languages that have an optimal proof system.

Observe that for OPT we use the weaker notion of simulation. As noted above, we can easily state
a proof system for languages in P or NP, therefore we obtain NP ⊆ OPT. It is an open question
whether OPT ⊆ NP.

With these notions, we will take a look at important results in the field of optimal proof systems in
the next chapter. For notions not defined in this thesis, refer to a standard work of computational
complexity like the one by Papadimitriou [Pap94].
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3 A Brief Overview of Proof Systems

After defining the important notions for this thesis, we will give a brief overview of some important
results in the field of optimal proof systems.

3.1 Languages Possessing Optimal Proof Systems

One basic lemma that is widely used formalizes a part of the connection between optimal proof
systems and polynomial many-one-reducibility. Later in this thesis, we will use it to proof corollary
12. The following proof is mainly taken from Köbler et al. We will omit the proof for optimal
proof systems, as it easily follows from the proof for p-optimal ones.

Lemma 2 ([KMT03]). If A has a (p-)optimal proof system and if B ≤pm A, then B has a (p-)
optimal proof system, too.

Proof. Let h be a p-optimal proof system for A and let B many-one reduce to A via f ∈ FP, that
is x ∈ B ⇔ f(x) ∈ A. Then h′ defined by

h′(〈x,w〉) =

{
x (h(w) = f(x)),

⊥ (otherwise),

is a proof system for B, as h(w) = f(x) ∈ A is equivalent to x ∈ B. To show h′ is optimal, let g′

be a proof system for B. In order to obtain a proof system for A, let g be

g(bw) =

{
h(w) (b = 0),

f(g′(w)) (b = 1).

Since both h(w) and f(g′(w)) are in A and h is a proof system for A, g is also a proof system for
A. As h is p-optimal, there is a function t ∈ FP translating g-proofs to h-proofs implying that

h(t(1w)) = g(1w) = f(g′(w)).

This implies h′(〈g′(w), t(1w)〉) = g′(w). Hence, h′ p-simulates g′.

In contraposition to this, we can state that for B ≤pm A, if B has no (p-)optimal proof system,
then A has not either.

Using this lemma, for a language L ∈ OPT, we can construct further languages possessing optimal
proof systems. We call two languages A and B polynomial time equivalent, if A ≤pm B and B ≤pm A.
With this notion, we can easily state the following.

Corollary 3. For polynomial time equivalent languages A and B, A ∈ OPT if and only if B ∈
OPT. Especially, if L /∈ OPT, then for b ∈ Σ, bL := {bw : w ∈ L} /∈ OPT as well as 0L ∪ 1L /∈
OPT.
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Proof. From A ≤pm B we obtain B ∈ OPT ⇒ A ∈ OPT, using lemma 2. Similar, we obtain
A ∈ OPT⇒ B ∈ OPT from B ≤pm A.

We now construct polynomial time functions in order to show that L, bL and 0L∪1L are polynomial
time equivalent. With the function discarding the first bit of any word, bw 7→ w, we obtain
bL ≤pm L. With the function adding b to the start of any word, w 7→ bw, we obtain L ≤pm bL.
With x 7→ 0x, we obtain L ≤pm 0L ∪ 1L, as x ∈ L ⇔ 0x ∈ 0L ∪ 1L. Using bw 7→ w, we further
obtain 0L ∪ 1L ≤pm L.

The following lemma gives a partial answer to the basic question, which languages actually have
optimal proof systems. Although Koebler et al. omitted the proof of the following theorem due to
its straightforwardness, we will give a proof for the purpose of this thesis.

Lemma 4 ([KMT03]). (i) Every language in P has a p-optimal proof system.

(ii) Every language in NP has an optimal proof system.

Proof. (i) Let L ∈ P. Then there is a function f ∈ FP with f(w) = 1⇔ w ∈ L. To show there
is a proof system, let h be defined by

h(w) =

{
w (f(w) = 1),

⊥ (otherwise).

Then h is a proof system for L. To show h is optimal, let h′ be an arbitrary proof system
for L. Then h′ ∈ FP by definition and we can translate h′-proofs with h′ in polynomial time
into h-proofs, in formulas

h(h′(w)) = h′(w).

Therefore, h p-simulates every proof system h′.

(ii) Let L ∈ NP. Then there is a nondeterministic Turing transducer M deciding L in polynomial
time. Let fi(x) ∈ FP be the function calculating the i-th path of the nondeterministic
calculation of M . Finally, let h be defined by

h(〈i, w〉) =

{
w (fi(w) accepts),

⊥ (otherwise).

Then h ∈ FP is a proof system for L. To show h is optimal, let h′ be an arbitrary proof
system for L. Let g be a function that maps an w ∈ L to an i such that fi(w) accepts in
polynomial time. Notice that g may be not in FP. With these definitions, we obtain

h(〈g(h′(w)), h′(w)〉) = h′(w).

Therefore, h simulates every proof system h′ via the translating function

w 7→ 〈g(h′(w)), h′(w)〉.

3.2 Proof Systems and the P Versus NP Question

As we have seen, NP ⊆ OPT. It is an open question whether NP ⊇ OPT. Lemma 4 connects to
the P-versus-NP-question by stating different properties for P and NP: if one would find a set in
NP without an p-optimal proof system, one would have separated P from NP.
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Corollary 5. If there is no p-optimal proof system for SAT, then P 6= NP.

In order to prove proposition 1, we will show two lemmata of which the first is taken from the
work of Cook and Reckhow [CR79]. It gives an equivalent formulation of the question whether
NP = co-NP.

Lemma 6. NP = co-NP if and only if TAUT ∈ NP.

Proof. Assume TAUT ∈ NP, then SAT is in co-NP. As SAT is NP complete, is follows that
co-NP = NP. Assume TAUT /∈ NP, then TAUT /∈ co-NP. As TAUT ∈ NP, we obtain NP 6=
co-NP.

The second lemma connects with the theory of proof systems by formulating a necessary and
sufficient condition for a language being in NP [CR79].

Lemma 7. A set L 6= ∅ is in NP if and only if L has a polynomially bounded proof system.

Proof. Assume L ∈ NP, then some nondeterministic Turing transducer M accepts L in polynomial
time. Let fi(x) ∈ FP be the function calculating the i-th path of the nondeterministic calculation
of M . We define f by

f(〈i, x〉) =

{
x (fi(x) accepts),

⊥ (otherwise).

Then f is a polynomially bounded proof system for L.

Conversely, assume f is a polynomially bounded proof system for L. Then a nondeterministic
Turing transducer on input y can guess a proof x and verify f(x) = y.

Putting lemma 6 and 7 together, we obtain proposition 1,

NP = co-NP⇔ there is a polynomially bounded proof system for TAUT.

Using this theorem, one tried to separate NP from co-NP by studying more and more powerful
proof systems, showing that they are not polynomially bounded [KMT03]. As mentioned before,
there was no success in answering this questions yet. To take the notion of optimal proof systems
into account, one could ask if there is an optimal or even p-optimal proof system for TAUT. If
that were the case, the existence of one specific proof system that is not polynomially bounded
would suffice to proof that NP 6= co-NP and hence P 6= NP [KMT03].

Kraj́ıcek and Pudlák proved a sufficient condition for the existence of optimal proof systems for
TAUT [KP89].

Theorem 8. If NE = co-NE then optimal proof systems for TAUT exist. If E = NE then p-optimal
proof systems for TAUT exists.

We will omit their proof in this thesis, since it uses many notions of formal logics and a huge
equivalence theorem not introduced here.

Corollary 9. As a conclusion, we can state the following implication diagram.

E = NE
⇓

P = NP ⇒ NP = co-NP ⇔ TAUT ∈ NP ⇔ TAUT ∈ OPT
⇑

NE = co-NE

9



4 A set in co-NEXP \OPT

In the main theorem of this thesis, we will show that in certain complexity classes above of NP there
are always languages that possess no optimal proof system. To formalize this, we say a function is
time-constructible, if there is a Turing transducer that stops on input n after t(n) steps.

4.1 Basic Construction

Before stating and proofing the main theorem of this thesis, we will have a look at universal Turing
transducers. In contrast to usual transducers, an universal transducer U is able to simulate any
other given transducer Mα. Given a program α and an input y, it calculates Mα(y) = U(α, y).
Doing so, the runtime of U is quadratic slower than the runtime of M . We will need the propositions
proven here later to proof theorem 11.

Lemma 10. (i) There is an enumeration of all FP-functions fi such that for each function it
holds time(fi) ≤ ni + i.

(ii) Let α ∈ Σ∗ be an arbitrary program, and Mα the associated Turing transducer. Then there is
an universal Turing transducer U that can simulate Mα on any input in O(n2) steps, where
n is the number of steps Mα runs on the same input.

(iii) There is an universal Turing transducer U that simulates for every i ∈ N and every input
y ∈ Σ∗ the function fi(y) in O(n2i) steps, where n = |y|.

Proof. (i) Let M1,M2, ... be Gödel’s enumeration of all Turing transducers. We modify this
enumeration by applying a clock to each transducer Mi that rejects the given input y after
the (|y|i+ |y|)-th step, obtaining an enumeration M ′1,M

′
2, ... of machines runtime bounded by

ni + i. Now let f1, f2, ... be the functions calculated by the transducers M ′i . As the runtime
maximum is unbounded for n→∞, this enumeration contains all polynomial time functions.

(ii) Based on a similar proof in the book of Arora and Barak [AB09]. Without loss of generality,
we can assume that Mα has only one work tape and runs on alphabet {F,�, 0, 1}. This
is possible, as if Mα runs on more tapes or uses a greater alphabet, we can construct a
transducer M ′ that fulfills our requirements and uses O(n2) steps on input y, where n is the
number of steps needed for the calculation of Mα(y).

Let now U be a Turing transducer with five tapes, an input tape, an output tape, a tape to
store the description of Mα, a tape to store the current status in the simulation of Mα and
finally a tape that simulates the working tape of Mα.

In order to simulate one computational step of M , U scans the transition table of Mα to
obtain the new status, a symbol to write and the head movement. It then simulates the
actions that would be done by Mα. As we can see, the simulation of one step of Mα takes c
steps of U , where c is a number depending only on the size of the transition’s function table
of M .
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(iii) By construction of the enumeration f1, f2, ..., for each fi there is a transducer Mi with
timeM (y) ≤ |y|i+|y|. As proven before, there is an universal transducer that can simulate M ′i
with quadratic slowdown. It follows that timeU (i, y) ≤ (|y|i+|y|)2, and therefore timeU (i, y) ∈
O(|y|2i).

Theorem 11. Let t : N → N be a time-constructible function such that for every polynomial p
there is a number n with p(n) ≤ t(n). Then there is a language L ∈ co-NTIME(t(n)) that has no
optimal proof system.

Notice that, if for a function f there is an n ∈ N with f(n) ≥ p(n) for every polynomial p, then for
every polynomial p there are infinitely many n ∈ N for which f(n) ≥ p(n) is satisfied. Otherwise,
we could construct a polynomial q that is greater than f for every n ∈ N. To see this, let p be a
polynomial for which f(n) ≥ p(n) for only finitely many n ∈ N. Then we can determine the greatest
difference between f and p by taking the maximum of the set η = max{f(n)−p(n) : f(n) ≥ p(n)}.
Then for the polynomial p′(n) = η + p(n) + 1 there is no n with f(n) ≥ p′(n), which contradicts
the assumption that for every polynomial p there is a natural number such that f(n) ≥ p(n).

Messner showed that under the same presumptions as in our theorem, there is a language L ∈
co-NTIME(t(n)) without an optimal acceptor [Mes99]. He also proved that the existence of an
optimal acceptor is equivalent to the existence of an optimal proof system for every p-cylinder L.
We will here give a proof that is based on the work of Messner, but stays in the notion of proof
systems.

Before formally proofing theorem 11, let us briefly discuss the main idea of the proof. As proven
before, there is an enumeration of all FP-functions fi such that time(fi) ≤ ni + i. We construct
a language L by uniting languages L′i, which we construct in a way such that there are only long
fi-proofs for all strings in L′i. Afterwards we assume there is an optimal proof system fi for L. As
for every FP-function there is a subset that has only long proofs, there is such a subset L′i for fi.
But as it turns out, we can state a proof system for L′i that has short proofs, we can combine both
proof systems to a system that runs polynomial equally fast on nearly every string in L, but way
faster on strings in L′i. Hence, fi cannot be an optimal proof system.

Formal proof of theorem 11. Let f1, f2, ... be a enumeration of all FP-functions with time(fi) ≤
ni + i. For any i > 0, let Li be the regular language described by the expression 0i10∗. Define

L′i = {x ∈ Li|∀y∈Σ∗ |y|2i ≤ t(|x|) =⇒ fi(y) 6= x}.

That is, as long as we put strings of length |y|2i ≤ t(|x|) into fi, we will not obtain x. Let
L =

⋃
i>0 L

′
i.

First, we prove L ∈ co-NTIME(t(n)). To show this, one considers

L ∈ co-NTIME(t(n))⇔ L =
⋃
i>0

L′i =
⋂
i>0

L′i ∈ NTIME(t(n)).

By negating the condition for L′i, we obtain

L′i = {x ∈ Σ∗|x /∈ Li ∨
(
∃y∈Σ∗ |y|2i ≤ t(|x|) ∧ fi(y) = x

)
}.

For any given x, we can decide in polynomial time whether it is in any Li or not. If it is not, then
x is in L′i for all i > 0 and therefore x ∈ L, so we are done. If it is in any Li, it is in exactly
one Li. Let i∗ be the set with x ∈ Li∗ . Using the abilities of the nondeterministic time bound,
we now simulate the Turing transducer Mi∗ that corresponds to fi∗ with an universal transducer

11



on every input y ∈ Σ∗ with |y|2i ≤ t(|x|). As proven before in lemma 10, this is possible with
quadratic slowdown. Hence the calculation takes O((timeMi∗ (y))2) = O(|y|2i) steps to complete.
As |y|2i < t(|x|), this is within our time bound. We then can decide whether x ∈ L. If, and only
if, there is a path with fi∗(y) = x, then x ∈ L. In both cases, we obtain L ∈ NTIME(t(n)).

For a proof system fi with fi(Σ
∗) = L, we observe that L′i = Li. Assume there is an x = 0i1z ∈ Li

that is not in L′i. Then there is an y with |y|2i ≤ t(|x|) and fi(y) = x. Since fi is a proof system
for L, this yields x = 0i1z ∈ L and so x ∈ L′i, which contradicts the assumption. Therefore, for
any y with fi(y) = x ∈ Li we know that |y|2i > t(|x|). Speaking informally, every proof system fi
for L has long proofs on L′i ⊂ L.

Assume now, for contradiction, that fi is an optimal proof system for L. Let g be a function
defined as

g(bx) =

{
fi(x) (b = 0),

x (b = 1 and x = 0i10∗ ∈ Li = L′i).

g is a proof system for L with polynomial length-bounded proofs for all x ∈ Li. As fi is optimal,
there is a function f∗ such that for all x ∈ L′i, fi(f

∗(x)) = g(x) and |f∗(x)| ≤ p(|x|) for a
polynomial p. Let q be the polynomial q(n) = p(n)2i. Then p(|x|) ≤ p(|x|)2i. As there is an n with
q(n) ≤ t(n), there is an x in Li such that |f∗(x)| ≤ p(|x|) ≤ q(|x|) = p(|x|)2i ≤ t(|x|). According to
the definition of L′i, this yields fi(f

∗(x)) 6= x. Therefore, fi is not optimal on L′i, which contradicts
the assumption that fi is optimal on L.

Using the relation to many-one-hard reducible sets proven in lemma 2, we obtain

Corollary 12. No set ≤pm-hard for co-NE has an optimal proof system.

Proof. With t(n) = 2n, we can get an L ∈ co-NE that has no optimal proof system. Any ≤pm-hard
set A for co-NE is L ≤pm A. Together with lemma 2 we obtain, that A cannot have an optimal
proof system.

4.2 Making the Language Tally

Now, let us take a closer look at this set L that has no optimal proof system. One first observation
is that L is sparse. As every L′i only contains strings that are of the form 0i10∗, L is a subset of the
regular language LR = 0∗10∗. Therefore, the density of LR is an upper bound for the density of

L. In LR, there are exactly n words of length n. As a consequence, densLR
(n) =

∑n
i=1 i = n2+n

2 .
Hence, LR and L are both sparse. But we can construct even less dense languages by constructing
tally sets without optimal proof systems.

Theorem 13. If L ⊆ 0∗10∗ has no optimal proof system, then there is a T ∈ TALLY, that has no
optimal proof system and is polynomial time equivalent to L.

Proof. Using the Cantor pairing function, we can construct a bijective function t ∈ FP thats
maps each element of L one-to-one to an element of T ⊆ TALLY. Since all strings in L are almost
tally—namely every string in L contains only one 1—t is a polynomial time function.

Let g be an optimal proof system for T = {t(x), x ∈ L}. Then t−1 ◦ g is a proof system for L. Let
h be an arbitrary proof system for L. Then t ◦ h is a proof system for T . As g is optimal, there is
a polynomial bounded f with g(f(x)) = t(h(x)). It follows that t−1(g(f(x))) = h(x) for all proof
systems h for L. Hence, t−1 ◦g is an optimal proof system for L, which contradicts the assumption
that L has no optimal proof system. Using t we obtain L ≤pm T and T ≤pm L.
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Using this theorem, we can further improve our results on the density of languages not possessing
an optimal proof system. For any tally language p(n) = n is an upper bound of its density.

Corollary 14. There is a language L with densL(n) ≤ n that possesses no optimal proof system.

4.3 Super-Sparse Sets without an Optimal Proof System

By adapting the proof of our main theorem 11, we can show that there are even arbitrary sparse
sets in co-NTIME(t(n)) that do not possess an optimal proof system. To formalize the notion of
arbitrary sparse, we introduce a polynomial-time computable, strictly increasing function u : N→
N. Notice, as u is strictly increasing, we have u(n) ≥ n for all n ∈ N.

We will use u to constrain the length of any string in L. Therefore, we define

L̃′i = {x ∈ L′i : ∃k∈N|x| = u(k)}.

By definition we obtain L̃′i ⊆ Li. We further define L̃ =
⋃
i>0 L̃i. By doing so, in L̃ will only be

strings whose length is in the range of u. Informally speaking, the faster u is growing, the more
sparse becomes L̃. By choosing fast-growing u, we can obtain arbitrary sparse sets in OPT.

In order to adapt the proof of theorem 11 to this new circumstances, we have to discuss one issue.
It occurs in the proof that L̃ is in co-NTIME(t(n)). In order to decide whether an given string x

is in the complement of L̃, we have to additionally check in polynomial time whether there is an
k ∈ N such that |x| = u(k). Since u ∈ FP and is strictly increasing, this is possible. As for any
k > |x|, it follows u(k) ≥ |x|, we have to calculate at most |x| times the value of u(k) in order to
check if there is an k with u(k) = |x|. If there is no such k, then the given x is for sure in the

complement of L̃ and we are done. If there is such a k, we proceed with the algorithm as described
before.

Adapting the proof as described yields

Corollary 15. Let t : N → N be a time-constructible function such that for every polynomial p
there is a number n with p(n) ≤ t(n). Let u : N → N be a polynomial-time computable, strictly
increasing function. Then there is a language L ∈ co-NTIME(t(n)) that has no optimal proof
system and possesses only strings whose length is in u(N).

4.4 Adding Redundancy

Given a language L not possessing an optimal proof system, we can show that there is even a
mitotic language that has no optimal proof system. To show this, we mainly rely on results proven
in chapter 3.

Theorem 16. If L possesses no optimal proof system, there is an polynomial time equivalent,
many-one-mitotic language L′ = 0L ∪ 1L not possessing an optimal proof system, too.

Proof. As L has no optimal proof system, corollary 3 states that L′ = 0L∪ 1L is polynomial time
equivalent and does not possess an optimal proof system.

To show that L′ is many-one-mitotic, let A be the language 0Σ∗, then A = 1Σ∗ ∪ {ε}. We
obtain L′ ∩ A = 0L and L′ ∩ A = 1L. As shown in corollary 3, L and bL are polynomial time
equivalent. We obtain 0L and L polynomial time equivalent, as well as L and 1L. Hence, L′ is
many-one-mitotic.
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4.5 Putting the Results Together

In this section, we will show that we can combine all results into one language, that is arbitrary
sparse, tally, has no optimal proof system and possesses redundancy.

Corollary 17. Let t : N → N be a time-constructible function such that for every polynomial p
there is a number n with p(n) ≤ t(n). Then there is a language T ⊆ Σ∗ that is polynomial time
equivalent to a language of co-NTIME(t(n)), possesses no optimal proof system and is

(i) arbitrary sparse,

(ii) many-one-mitotic,

(iii) and tally.

Proof. Let u be a polynomial-time computable, strictly increasing function u : N→ N. As we have
seen in corollary 15, we can obtain a language L ∈ co-NTIME(t(n)) that has no optimal proof
system and possesses only strings whose length is in the range of u. As there is no upper bound
for growth of u, L is arbitrary sparse.

By using theorem 16, we obtain the language 0L∪ 1L that is polynomial time-equivalent to L and
possesses no optimal proof system. Is contains only strings of length u(N) + 1; is density is given
by dens0L∪1L(n) = 2 densL(n).

Finally, we can use theorem 13 to construct a tally set T /∈ OPT that is polynomial time-equivalent
to L. As we use a strictly increasing pairing function, T is even more sparse than 0L ∪ 1L. Is
follows that densT (n) ≤ 2 densL(n). Hence, T is arbitrary sparse.

By choosing t(n) = kn respectively t(n) = 2n
k

, we can obtain all results for the complexity classes
co-NE respectively co-NEXP.
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5 Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented some fundamental insights into proof systems and the notion of the
optimality of proof systems. The main motivation to study proof systems was given by some
implications that propositions on proof systems could have on the P versus NP question and the
separation of NP and co-NP.

In the first part, we proved some basic lemmata and showed which relatively easy complexity
classes contain languages that possess optimal proof systems. The proof that every language L in
P or NP has an optimal proof system was straightforward and did not depend on results proven
earlier. Differently, we needed more work to prove the proposition establishing the connection
between proof systems and the P versus NP problem.

Subsequently, we moved on to complexity classes above the polynomial ones. We showed that by
leaving the polynomial area, we can construct a language in co-NTIME(t(n)) that does not possess
an optimal proof system. By further research on L, we could state that we even obtain sparse, tally
or redundant languages that do not have an optimal proof system. In conclusion, we succeeded on
combining these properties in one language, uniting all previous stated attributes.

5.2 Future Work

As mentioned before, the question whether NP = OPT remains still open. Although we could
easily prove NP ⊆ OPT, we do not know if every set that possesses an optimal proof system is in
NP.

In order to get some insight into this question, we could define variations of the simulation notion
for proof systems. Let h, h′ be proof systems for L. One could define h simulates h′ f -bounded, if
there is a function g such that for every string w ∈ Σ∗

h(g(w)) = h′(w)

and |g(w)| ≤ f(|w|). By doing so, we obtain f -optimal proof systems in the same way as defined
before and are able to define complexity classes OPTf . One could investigate whether OPTf ⊇ NP
for an arbitrary f , like f(n) = c · n or f(n) = n+ c.
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