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Zusammenfassung

Die folgende wissenschaftliche Arbeit beschäftigt sich in einem ersten Teil mit konvexen und nichtkon-
vexen Optimierungsmethoden für bestimmte Problemklassen. Diese Optimierungsmethoden finden ins-
besondere Anwendung bei der Lösung vieler grundlegender Problemstellungen im Bereich Computer
Vision. Als ein Beispiel sei an dieser Stelle die Berechnung des optischen Flusses zwischen zwei Bildern
genannt. Diese Verbesserungen wirken sich wiederum positiv auf zahlreiche bewegungsbasierte Ansätze
aus. Der zweite Teil dieser Arbeit konzentriert sich auf solch eine Methode, die Objekte in Videos auf
der Grundlage einer Bewegungsanalyse segmentiert.

Ein Kapitel zur konvexen Optimierung erweitert die Analyse von der so genannten “Heavy-ball-
Methode” von glatten, stark konvexen auf nichtglatte, stark konvexe Zielfunktionen. Diese Erweiterung
ist analog zur Weiterentwicklung der Gradientenabstiegsmethode zu dem “forward–backward splitting”.
Der zentrale Beitrag ist der Nachweis, dass sich die Optimalität der bekannten Konvergenzrate der Heavy-
ball Methode auch verallgemeinert. Der neue Algorithmus wird “iPiasco” genannt.

Es zeigt sich sogar, dass die generelle Idee des formalen Berechnens der neuen Iterierten, auch auf
nichtkonvexe Probleme mit einer speziellen Struktur anwendbar ist. Das ist die Grundlage von “iPi-
ano”, der Verallgemeinerung von iPiasco auf nichtkonvexe Probleme. Die Anforderung an die Struktur,
die wir zur Entwicklung von diesem Algorithmus stellen, fordert, dass sich die Zielfunktion als eine
Summe einer glatten, nichtkonvexen und einer nichtglatten, nichtkonvexen, aber “einfachen” Funktion
ausdrücken lässt. Im Gegensatz zum konvexen Fall, sind Konvergenzraten im nichtkonvexen nur schwer
zu finden. Meist erschließt sich nur eine sehr grobe Abschätzung. Die Problematik für nichtkonvexe
Optimierungsmethoden ist, ob der Algorithmus überhaupt konvergiert. Das Schlüsselkonzept für unseren
Konvergenzbeweis, der auf der Verallgemeinerung des Beweises eines verwandten Algorithmus beruht,
ist die so genannte Kurdyka–Łojasiewicz (KL) Eigenschaft. Die KL Eigenschaft ist eine schwache An-
nahme, die die meisten Funktionen, insbesondere im Anwendungsbereich, erfüllen. Daher ist iPiano ein
vielversprechender Algorithmus für eine Fülle von Problemen.

Obwohl iPiano effizient ist und auch die Konvergenz gezeigt ist, ist er auf manche Probleme aus dem
Bereich Computer Vision nicht anwendbar, da ein Teil der Zielfunktion als differenzierbar vorausgesetzt
sein muss. Um auch solche, schwierigen Optimierungsprobleme lösen zu können, wird der “IRconvex-
Algorithmus” eingeführt, welcher zu einer Klasse von Majorisierungs-Minimierungs-Ansätzen (MM)
gehört. Für einige Funktionen, die in die Problemklasse von IRconvex fallen, werden explizit konvexe,
majorisierende Funktionen, die sich dann recht einfach minimieren lassen, konstruiert. Dabei treffen
wir auf schon bekannte Spezialfälle, wie zum Beispiel den “iteratively reweighted (IR) least squares”
(IRLS) oder den “IR `1” (IRL1) Algorithmus. Jedoch erschließen sich auch neue Algorithmen, wie der
“IRTight-” oder der “IRHuber-Algorithmus”. In dem allgemeinen Rahmen von MM Methoden wird
die Konvergenz für all diese Algorithmen bewiesen. Wieder spielt die KL Eigenschaft eine wesentliche
Rolle. In einer ausgiebigen numerischen Analyse zeigt sich, dass die IRconvex-Algorithmen besonderes
geeignet sind, wenn die Zielfunktionen einen nichtdifferenzierbaren Anteil haben, und ansonsten iPiano

i



effizienter ist.

Die bisher beschriebenen Ergebnisse setzen einiges an mathematischem Vorwissen voraus. Um diese
Arbeit diesbezüglich zu vervollständigen und unabhängig zu verfassen, werden alle diese Grundlagen
sorgfältig in eigenständigen Kapiteln aufgearbeitet.

Als eine Anwendung von IRconvex wollen wir die Berechnung des optischen Flusses herausstellen,
die, wie zuvor erwähnt, weitreichende positive Einflüsse auf die Bewegungssegmentierung in Videos
haben kann. Obwohl interessante Aspekte ansatzweise beobachtet werden können, bedarf es noch mehr
Untersuchungen, um wirklich aus den Neuerungen praktischen Nutzen ziehen zu können.

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit einer Methode zur objektorientierten Seg-
mentierung in Videos auf der Basis einer Bewegungsanalyse. Die grundlegenden Einheiten, woraus sich
diese Methode zusammensetzt, sind: Schätzung des optischen Flusses, Tracking, Bewegungsanalyse von
Punkttrajektorien und Gruppieren der Trajektorien. Es werden verwandte Arbeiten besprochen und die
Grenzen des Segmentierungsansatzes diskutiert. Im Wesentlichen handelt es sich um die ausschließliche
Analyse des translatorischen Anteils von Bewegungen und das Segmentieren von semi-dicht berechneten
Trajektorien.

Da die Bewegungsanalyse auf Paaren von Punkttrajektorien beruht, lässt sich nur der translatorische
Anteil vergleichen. Drehungen und Skalierungen werden bestraft und führen leicht zu einer ungewollten
Unterteilung der Segmentierung innerhalb der Objekte. Die Idee, die Beziehung von mehr als zwei
Trajektorien zueinander zu berücksichtigen, erlaubt es uns, auch solche etwas komplexeren Bewegungen
straffrei zu beschreiben. Das darunterliegende Modell ist das eines Hypergraphen, dessen (Hyper-)Kanten
mehr als zwei Trajektorien umfassen. Diese fundamentale Änderung in der Modellierung des Problems
hat zur Folge, dass wir auch die spektrale Gruppierungsmethode anpassen müssen. Die erfolgreiche
Umsetzung führt allerdings zu einer deutlichen Verbesserung auf einem anerkannten Benchmark.

Die zweite Einschränkung, die wir oben genannt haben, ist das semi-dichte Tracken. Obwohl der
optische Fluss dicht berechnet wird, ist er jedoch oft in der Nähe von Objektkanten unzuverlässig und
anfällig für Fehler. Ein positiver Aspekt des semi-dichten Tracking ist eine vergleichsweise geringe An-
zahl an Trajektorien, die auch wesentlich für die Komplexität – sie ist quadratisch – bei dem Gruppieren
verantwortlich ist. Daher sieht unser Ansatz so aus, dass zuerst die Trajektorien gruppiert, und dann die
Labels der Trajektorien auf alle Pixel ausgeweitet werden. Erreicht wird dies durch einen variationellen
Ansatz mit einem Potts-Regularisierungsmodell. Außerdem berücksichtigt diese Methode auch Bildkan-
ten. Sie ist auf der GPU implementiert und die Genauigkeit der Segmentierung ist, obwohl sich nun jeder
Pixel für ein Label entscheiden muss, vergleichbar mit der der semi-dichten Segmentierung.

Um die Genauigkeit der vorgeschlagenen Methoden zu messen und auch gegen andere Methoden zu
vergleichen, stellen wir den Freiburg Berkeley Motion Segmentation (FBMS) Datensatz vor. Die Auswer-
tung auf diesem Datensatz ist getrennt in eine Trainingsmenge und eine Testmenge von Sequenzen. Die
Auswertungsmaße beruhen auf der Idee von Precision, Recall und dem F-Maß, das die Qualität in einer
vereinheitlichten Zahl widerspiegelt. Basierend auf diesem Datensatz, der den weitläufig anerkannten
BMS Datensatz erweitert, erweist sich die Methodik, die in dieser Arbeit vorgestellt wird, als neuester
Stand der Technik.
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Abstract

This work deals with theoretical and practical aspects of convex and nonconvex optimization algorithms
for several classes of problems. They are applied to several (low-level) computer vision tasks. The optical
flow motion estimation problem, which is among them, is a potential source for improving motion based
segmentation methods. The second, more practical part of this work focuses on such an object-level
motion segmentation method for videos.

The part about convex optimization extends the analysis of the so-called “Heavy-ball method” for
smooth, strongly convex objective functions to nonsmooth, strongly convex problems. The algorithm
that is developed is motivated by the extension of the gradient descent method to forward–backward
splitting methods. Its optimality in the sense of rates of convergence for the considered class of problems
is proved. We termed the algorithm “iPiasco”. It extends the optimal rate of convergence that is known
from the Heavy-ball method to the generalized setting.

The iteration structure of iPiasco, i.e., the way the next iterate is computed, even generalizes to a
certain class of nonconvex optimization problems. This opportunity is used to introduce “iPiano”, which
is an algorithm that is applicable to the sum of a nonsmooth, nonconvex function and a smooth, nonconvex
function. Since convergence rates in the nonconvex setting are hard to find, the focus of this research
is to proof convergence. Key for the convergence analysis is the so-called Kurdyka–Łojasiewicz (KL)
property. Convergence is obtained by extending a preexisting convergence result for abstract descent
methods to fit the setting of iPiano. As the KL property is a rather weak assumption—many functions
emerging in computer vision are shown to have this property—iPiano is a promising algorithm for a
wealth of problems.

Although iPiano is an efficient algorithm that is proved to converge, it is limited to composite func-
tions where one part is differentiable. In order to deal with hard, nondifferentiable objective functions
the “IRconvex” algorithm is introduced. It belongs to the class of majorization minimization (MM) al-
gorithms. For several instances of problems explicit convex majorizers are constructed and minimized.
This leads to well-known algorithms like the iteratively reweighted (IR) least squares (IRLS) or the IR `1
(IRL1) algorithm, but also allows for new algorithm like the IR tight convex (IRTight) or the IR Huber
algorithm (IRHuber). In the unified, much more general framework of MM algorithms, convergence is
proved under some mild assumption, among them the KL property. An extensive numerical analysis of
IRconvex algorithms shows that it is particularly efficient for nonsmooth optimization problems, whereas
iPiano should (in most cases) be preferred when a part of the function is smooth.

The part of the thesis about optimization attaches importance to a thorough introduction of basic re-
sults from convex and nonconvex analysis and a recapitulation of the most prominent convex optimization
algorithms (for computer vision applications).

IRconvex is applied to the optical flow problem in computer vision. It shows some favorable proper-
ties, however further investigation is required to benefit in practice. There is potential to improve optical
flow and therefore also many motion based algorithms. The second part of the thesis is devoted to motion
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segmentation in videos. The basic building blocks of the method that is considered are: optical flow, point
tracking, motion analysis of point trajectories, and clustering of point trajectories. After introducing the
method and related work, the limitations are addressed. These are the analysis of trajectories only based
the translational portion of the motion and the semi-dense tracking.

As the motion analysis of point trajectories is based on pairs of trajectories, only the translational
portion of the motions can be analyzed. Rotation and scaling of objects are assigned a penalty and
the objects are likely to be split. Considering higher order relationships of trajectories can be done in
the model of hypergraphs, where (hyper-)edges can comprise more than two trajectories. The proposed
analysis of such higher order cliques and the adaptation of spectral clustering to this setting improves the
performance on a well-established benchmark.

Another issue is the semi-dense tracking of points. Although optical flow is computed densely, its
reliability close to object boundaries reduces and tracking is prone to errors. Moreover the clustering of
the trajectories scales quadratically. Therefore the semi-dense trajectories are clustered first, and then their
label information is propagated to unlabeled areas in the video. This is achieved by a variational approach
with Potts regularization. The method considers image structures, runs on the GPU, and the performance
of the (now dense) motion segmentation approach is as good as the semi-dense segmentation.

The performance of the proposed motion segmentation approach is compared with other methods on
our new benchmark, the Freiburg Berkeley Motion Segmentation (FBMS) dataset. The evaluation of the
FBMS dataset is split into a training and a test set. The evaluation metric uses the idea of precision,
recall, and F-measure, which allows for a single comparable number between methods with different
focus. Based on this benchmark, which comprises the widely used BMS dataset, the framework that is
proposed in this thesis is considered as state-of-the-art.
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Introduction

The ultimate goal of computer vision is to imitate the human visual system. This includes not only the
perception, but also the analytic process. Given the computer an arbitrary image with an object, we
would expect it to detect whether there is a person, an animal, an airplane, ..., or even more detailed
information. Moreover, the exact position and size of the object in the image is of interest. Contemporary
object detectors achieve this by learning a representation of each object to be sought. Then they verify
the learned representation in the image. However, where does the machine learn it from? It learns from
training examples showing the object class in different variations, (e.g. different types, poses, scales,
etc.). In order to select these training examples automatically, the machine must have already learned
the representation of the object class and must be able to detect it. This is like a “chicken-and-egg
problem”: in order to learn an object detector, the machine requires training examples where the object
of interest is present, which can be obtained using the specific object detector. The simplest solution is
to manually provide a set of training examples. Unfortunately, depending on the complexity of the object
to be learned the number of training examples is of the order hundred or thousand—usually, the more
training examples, the better.

Figure 1: In the image, sepa-
rating the man from the back-
ground without any information
about the human’s appearance is
nearly hopeless.

There is great interest in generating such training examples automat-
ically with little or without supervision. Potentially interesting for this
task are unsupervised image segmentation techniques. Although a lot of
research was done on image segmentation and methods improved signif-
icantly, the intrinsic ambiguity still requires some top-down knowledge
to make the results usable as training examples. For example in Fig-
ure 1, how could the machine—without being provided with the know-
ledge from top-down—know that the white shirt and the black vest should
be separated from the dark background and, at the same time, they should
be grouped as a single object. In general, this is not possible.

Prior knowledge for image segmentation or grouping is based on sim-
ple rules. Such rules are explored in the so-called Gestalt theory. Ac-
cording to the Helmholz principle [Low85] “Gestalts are sets of points
whose (geometric regular) spatial arrangement could not occur in noise”,
see [DMM07]. This is still very abstract and hard to formulate as rule
for grouping. There are other definitions: Gestalt theory is based on the assumption that there are active
grouping laws in visual perception [Kan80, Kan97, Wer23] and aims to understand the activation of vi-
sual stimuli. Points that share attributes are grouped and represent a (new) larger object. This is a gestalt.
Wertheimer formulated this in his founding paper 1923 [Wer23] as follows (translated):

“If a number of stimuli acts simultaneously, for the human there is, in general, not a corre-
sponding (‘equally large’) number of individual actualities, one and the other and the third
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(a) color constancy (b) vicinity (c) similarity (d) closure

(e) constant width (f) symmetry (g) convexity (h) good continuation

Figure 2: Examples for (basic) Gestalt principles formulated by Wertheimer [Wer23] and others. (Figures are reproduced from
[DMM07])

and so on; instead there are actualities of larger range, in a determinate distinction, deter-
minate conjunction, determinate separation. And whatever the theoretical concept may be,
whether one—far away from the plain finding, for theoretical reasons—supposes, though,
the sum of the ‘[many] sensations’ as basis, there is a plain problem of facts for any con-
cept: Are there principles for the type of so resulting ‘conjunction’ and ‘separation’? Which
ones?”

Figure 2 shows a few examples. Note, that we do not claim at all to present a complete list of Gestalt
principles. This would be far beyond the scope of this thesis and our purpose. Unfortunately, none of
these principles would help us group the image in Figure 1.

However, many problems of image segmentation are resolved when the object’s motion is considered.
Motion is much more homogeneous within objects. This phenomenon is known as the Gestalt principle
of “common fate” [Kof35]: particles that move homogeneously are perceived as a single object; see
Figure 3. Figure 4 demonstrates the difference for the example in Figure 1. Not all ambiguities can
be resolved. Two people walking next to each other in the same direction are (according to the Gestalt
principle of common fate) perceived as one object. Obviously, the same is true for a segmentation method
that is built upon this.

Similar problems occur in the presence of articulated motion, i.e., the possibly distinct motion of
individual parts of a single object. Usually, considered over a short time, legs and arms of a person move
differently than the person. Nevertheless, a good visual system should be capable of grouping articulated
parts as one. Tracking them over a longer time shows a common trend of motion among them, namely
that of the person. The motion segmentation framework that is developed in this thesis builds on and
combines the two preceding principles: grouping according to the Gestalt principle of common fate and
the long term analysis of moving particles.

Therefore, an essential part is the extraction and tracking of the particles. Henceforth, the trace of
such a particle is called a point trajectory. The success of generating point trajectories heavily relies
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Figure 3: The flock of birds is perceived as unity [WIK]. This is
explained by the Gestalt principle of “common fate”.

Figure 4: The behavior of pixels throughout the video sequence
provides distinct information for separating the person from the
background.

on the ability to find the apparent motion between two successive frames of the video sequence—the
so-called optical flow problem. As only the images are known to the computer, it can only try to find
the motion between the projections of the 3D world points onto the image plane. Estimating the optical
flow between images itself is a very difficult task. Despite its investigation for more than three decades,
it is still not solved satisfactorily. Unsolved problems are still the estimation of large displacements,
sharp object boundaries, and, particularly, problems due to occlusion, to name only a few of the major
challenges.

Like other parts in the motion segmentation framework, the optical flow estimation problem is formu-
lated in a variational framework, which is nowadays quite common for many tasks in computer vision.
The rationale is the definition of an energy functional, which assigns a real value (an energy value) to each
possible configuration, such that the state with lowest energy yields the desired solution. Variational ap-
proaches convince by their transparency, i.e., it is clear what can be expected from the optimal state of the
energy. Clearly, in practice it is a little bit more complicated as the second part of an energy formulation
is not less important: the optimal state of the energy must be determined efficiently.

A class of optimization problems that can be solved involves functions that are convex. Another
class, which usually allows for more accurate models, are nonconvex functions. They are in general more
difficult so solve. Therefore there is a trade-off between accuracy of modeling and ease of solving the
variational problem. Unfortunately, some of the most challenging problems in optical flow estimation
should be modeled with nonconvex functions, for example the occlusion problem.

As nonconvex optimization problems are in general too hard to solve, subclasses of problems are
considered. The more task-specific the problem the more hope to find solutions efficiently. The develop-
ment of numerical solvers for nonconvex optimization problems that are efficient on one hand and general
enough for computer vision (and related fields) on the other hand are also subject of this thesis. A central
question in the design and analysis of these methods is about their reliability, i.e., theoretical proofs of
whether their usage leads to the desired solution (convergence analysis).

With efficient and reliable solvers for nonconvex optimization problems at hand, the next step is to
achieve the practical advantages that nonconvex models promise. An interesting application is automatic
occlusion detection in the optical flow problem, which could lead to far-reaching improvements in many
computer vision problems. Particularly, point trajectories could be extracted more reliably, which would
improve the whole motion segmentation framework and, therefore, we would achieve further progress in
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the automatic learning of objects.

Outline and contributions

The thesis consists of two parts: “Optimization” and “Motion Segmentation in Videos”. The relation
between both parts has been outlined in the introduction above.

Before the part on optimization begins Chapter 0 discusses a few very basic comments about images
and their mathematical interpretation as functions or vectors. This discussion intends to help readers who
are new to computer vision to get familiar with the terminology and conventions.

Part I contains the contributions of this thesis to the field of optimization. As it might be not clear how
and where optimization problems arise in computer vision, Chapter 1 introduces the kind of optimization
problems that we usually face in computer vision applications. On a more abstract level the problems can
be grouped into categories according to the structure of the objective function. A rough, but important
distinction, is between convex and nonconvex problems.

For many convex optimization problems there are efficient numerical algorithms. In order to introduce
some of the most prominent methods some theory from convex analysis is required, which is described in
Chapter 2. This chapter starts on a very basic level that enables the reader to learn all required techniques
for understanding the remainder of the thesis. The reader who is familiar with convex analysis might
want to skip Section 2.1 and consult this section only for definitions and notational issues. The second
part of this chapter is devoted to the introduction of convex optimization algorithms. They are put into a
unifying framework to highlight relations among the methods.

The subsequent Chapter 3 describes my contribution from [OBP15]. Subject of this chapter is the
generalization of an algorithm that has a long tradition; It was introduced by Polyak in 1964 [Pol64] and
named the “Heavy-ball method”. The generalization that we propose in this chapter (named iPiasco) is
from differentiable, strongly convex functions to nonsmooth, strongly convex functions. Although the
algorithm is more general, the efficiency that we prove is the same as before. Key to this contribution is
the so-called proximal map.

However, as we described in the introduction above, the main motivation for the optimization part
were nonconvex optimization problems. They are usually much harder than convex problems. Again we
introduce all basics for understanding our contributions in later chapters. Chapter 4 introduces several
important concepts from variational analysis in a compact way. A more expanded treatment of these
basics is beyond the scope of the thesis. Section 4.5 deals with the Kurdyka–Łojasiewicz property of a
function and a general class of functions that naturally have this property. It provides a powerful inequality
for proving convergence of algorithms for nonconvex functions.

Indeed, it is used to prove an abstract convergence theorem in Chapter 5 for descent methods. This
contribution to the thesis is developed as a part of [OCBP14]. It is a modification of a similar result from
Attouch et al. [ABS13]. Our result seems to be better suited for algorithms that incorporate not only the
last point into the update step, but the last two points.

The remaining part of the contribution in [OCBP14] is described in Chapter 6. It is an algorithm
for a general class of nonconvex optimization problems with an update rule that is related to that in
Chapter 3. We call the algorithm iPiano. Where [OCBP14] applies to problems that can be written as
a sum of a nonsmooth, convex, simple and a smooth, nonconvex function, Chapter 6 presents a more
general framework. It considers objectives that are the sum of a nonsmooth, nonconvex, simple function
and a smooth, nonconvex function. Convergence of this algorithm is proved under the assumption that
the objective function has the Kurdyka–Łojasiewicz property. Several experiments with computer vision
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problems confirm the efficiency of the algorithm. The experiments were mainly contributed by the co-
authors of [OCBP14].

In some sense Chapter 7 can be seen as a generalization of the class of problems that can be tackled
with (the original) iPiano (from [OCBP14]); The nonconvex part of the objective function can also be
nonsmooth. However the structure of the algorithm (IRconvex) is different to iPiano. This chapter is
based on the manuscript [ODBP15]. The IRconvex algorithm is a majorization minimization algorithm.
In fact this interpretation is used to prove convergence of several special instances of the algorithm in
an unified framework. The proof is again based on the Kurdyka–Łojasiewicz property of the objective
function. The instances of the algorithm that we propose are iteratively reweighted algorithms. These
concrete constructions of the algorithm are extensively tested in numerical experiments and applied to
the optical flow problem in computer vision.

Nonconvex penalties for modeling the optical flow problem have several favorable properties. In the
first part we introduce algorithms that can efficiently solve such models. However improving results
compared to the well established convex models is hard and requires further investigation. Nevertheless
nonconvex penalties are a potential source for improving the optical flow and, therefore, also the motion
segmentation framework that is presented in Part II of this thesis.

Chapter 8 introduces the state-of-the-art [BM10] for motion segmentation in videos and discusses
related work. Within the scope of a journal article [OMB14], I contributed to this motion segmentation
framework. The idea of this method is to analyze the motion behavior of a semi-dense set of point
trajectories generated by optical flow. The estimated similarities are used for clustering the trajectories,
which yields a temporally consistent, semi-dense segmentation of a video shot.

The subsequent chapters present my contributions to several conferences. Chapter 10 improves the
computation of the similarities between the trajectories. The approach, which we published in [OB12],
overcomes the limitation of [BM10, OMB14] that only the pairwise relationship between trajectories
is explored. Pairwise considerations allow to capture the similarity of motions with respect to their
translational portion. The model in Chapter 10 proposes a way to analyze more complex motions like
those described by similarity transformations.

Chapter 11 focuses on various clustering tasks along the motion segmentation framework. The con-
tribution, which is inspired by [OB11, OMB14], deals with the clustering of the trajectories according to
the motion based similarities. Moreover, this chapter presents ways towards a densification of the semi-
dense set of trajectories to a per pixel decision for each pixel in a video shot for one of the clusters. This
approach can be considered as an interpolation of the cluster labels to all other pixels with an automatic
error correction.

In order to prove that the presented way for motion segmentation is successful in many cases a pre-
existing benchmark for this task was extended and introduced in [OMB14]. Chapter 9 discusses the new
benchmark and evaluation metric and compares it with the previous benchmark. As this Freiburg Berke-
ley Motion Segmentation benchmark (FBMS) is split into a training and a test set, it allows for a clean
comparison.

Chapter 12 evaluates the proposed motion segmentation method on the FBMS benchmark and com-
pares it to several other methods.

Finally, Chapter 13 concludes the thesis and presents some ideas for future work.
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Chapter 0

Preliminaries of computer vision

0.1 Representation of images

When we mathematically talk about images there are two common representations: continuous and dis-
crete.

In the continuous formulation, a two-dimensional image1 can be represented as a function I : Ω→ R,
where Ω is usually a rectangular bounded subset of R2, e.g., Ω = [0, a]× [0, b], a, b ∈ R+. The range of
the image function R ⊂ RK models the color or gray values of the image (K = 1 for gray values and,
for example, K = 3 for RGB-values). Images can have various properties as functions. For example they
can be continuous, (weakly) differentiable, Lebesgue integrable, thus, they are from different spaces like
the Lp-space or the Sobolev space. For specific tasks from image processing, it is crucial to know the
underlying image model, i.e., the function space.

In the discrete formulation, images are represented as vectors in an Euclidean vector space RN . Both
formulations, vectors in an Euclidean vector space, or functions in an infinite dimensional space, have
their advantages and it is useful to always have both representations in mind. In fact, a discrete formu-
lation can always be derived from the continuous formulation by sampling the function at discrete point.
Usually, this sampling is on a regular Cartesian grid of the domain of the image function, denoted the
pixel grid. Going from a discrete to a continuous formulation is possible by interpolation, however go-
ing this direction is usually avoided since additional information about the image must be invented and
therefore it is not unique.

Thanks to the rich structure and properties the continuous formulation is preferably used for (theo-
retically) analyzing solutions and modeling optimization problems for computer vision problems. The
discrete formulation is particularly important for practically solving problems. In order to apply opti-
mization algorithms objects from the “continuous world” need to be transfered to the discrete case.

In the computer vision community the two concepts are often merged—one should always have both
concepts in mind.

0.2 Discretization

Part I of this thesis deals with optimization algorithms for practical problems in image processing and
1For simplicity, we restrict to a two dimensional domain. It is straight forward to generalize the concept to any dimension.

7
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computer vision. These algorithms are formulated on finite dimensional vector spaces. Therefore, we
solve problems using the discrete representation of images. However, the models that are optimized are
motivated in the continuous setting and, therefore, continuous objects like derivatives need to be imitated
in the discrete setting. We think of our image model as a function discretized by sampling on a regular
Cartesian grid with pixel width and height h ∈ R+ with Nx points in x-direction and Ny points in y-
direction. Let I : Ω→ R, where Ω = [0, Nxh]×[0, Nyh], be a gray-valued image function. The sampling
defines the grid

{((i− 1
2 )h, (j − 1

2 )h) ∈ Ω| i = 1, . . . , Nx, j = 1, . . . , Ny}
and a discrete representation u ∈ RNx ×RNy of the image via ui,j = I((i− 1

2 )h, (j − 1
2 )h). Obviously,

there is a one-to-one correspondence between the discrete image defined on the grid and an Euclidean
vector space RN of dimension dimRN = NxNy by concatenating the columns of the grid into a vector,
i.e., ui,j ←→ u(i−1)Nx+j . We will work with both representation as both have their advantages, however
it will always be clear from the context; If the index is a pair we assume the grid is defined as above
without mentioning it.

As mentioned above, we want to imitate continuous objects on such a pixel grid. The gradient of
a differentiable function can be represented in the discrete setting using a tensor–vector multiplication
between a tensor ∇ : RN → RN × RN and a vector (an image), where the range of ∇ is arranged as a
column. The gradient operator is defined for u ∈ RN as follows

∇ :=

(
∂x
∂y

)
, ∂x, ∂y : X → X ,

(∂xu)i,j :=


ui+1,j − ui,j

h
, if i ∈ {1, . . . , Nx − 1}, j ∈ {1, . . . , Ny} ,

0, if i = Nx, j ∈ {1, . . . , Ny} ,

(∂yu)i,j :=


ui,j+1 − ui,j

h
, if i ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny − 1} ,

0, if i ∈ {1, . . . , Nx}, j = Ny ,

where the implementation of the image boundary assumes that the gradient of the image function vanishes
along the boundary. This kind of boundary treatment is called Neumann boundary conditions. Then, the
(discrete) gradient∇ of the (discrete) image u ∈ RN is defined by

(∇u)i :=

(
(∂xu)i
(∂yu)i

)
, ∀i ∈ {1, . . . , N} ,

where we make use of the identification ui,j ←→ u(i−1)Nx+j . Other notations are also common, however
this one seems to be appropriate for our usage. If not stated differently, we will always assume that the
pixel dimensions are given by h = 1. For one dimensional functions (signals instead of images) we use
the notation ∇ = ∂x for the discrete derivative operator.

As RN and RN × RN are Euclidean vector spaces, an inner product is defined:

〈u, v〉RN :=

N∑
i=1

uivi (u, v ∈ RN ) , and 〈p, q〉RN×RN :=

N∑
i=1

pxi q
x
i + pyi q

y
i (p, q ∈ RN × RN ) ,

where the superscripts in the second expression refer to the first and second coordinates of RN × RN .
The inner products induce a norm ‖ · ‖RN :=

√
〈·, ·〉RN and ‖ · ‖RN×RN :=

√
〈·, ·〉RN×RN , respectively.

Whenever the underlying space is intuitively known from the context, we drop the subscript at the inner
product symbol.
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Using the inner product, we define the adjoint operator ∇∗ (or ∇>), which emerges as the discrete
divergence operator∇∗ = −div, by

〈∇u, p〉RN×RN = −〈u,div p〉RN ∀u ∈ RN , p ∈ RN × RN .

In the remainder of this section, we want to clarify some more notation and introduce some more norms
that will be play a role throughout the thesis. The absolute value of ui ∈ R and the Euclidean norm, the
length, of a vector pi ∈ R2 are denoted by

|ui| :=
{
ui, if ui ≥ 0 ,

−ui, if ui < 0 ,
and |pi| :=

√
(pxi )2 + (pyi )2 .

We define some norms for u ∈ RN and p ∈ RN × RN :

‖u‖2 :=

(
N∑
i=1

|ui|2
) 1

2

, and ‖p‖2 :=

(
N∑
i=1

|pi|2
) 1

2

, (`2-norm)

‖u‖1 :=

N∑
i=1

|ui| , and ‖p‖1 :=

N∑
i=1

|pxi |+ |pyi | , (`1-norm)

‖u‖2,1 :=

N∑
i=1

|ui| , and ‖p‖2,1 :=

N∑
i=1

|pi| . (`2,1-norm)
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Optimization

11





Chapter 1

Optimization problems in computer
vision

Many computer vision problems are solved in a so called variational formulation. The goal is to find a
state of a function for which the variation vanishes. Such a state is for example the minimum (or max-
imum or saddle point) of a function. To be more precise the variational formulation is the design of a
function such that the minimum corresponds to the solution of the problem at hand. The term “energy
formulation” is also common. In this terminology, the state of minimal energy is sought. Problems for
which minimization is equivalent to maximizing the negative function, we always focus on the minimiza-
tion problem.

Solving a problem in an energy formulation consists of two steps: modeling the energy and solving it
for a minimum. Unfortunately, these two steps are often complementary in the sense that better models are
more difficult to optimize and simpler models are easier to solve. The modeling step is a formulation of
assumptions how a good solution looks like, for example a good solution should be smooth. Deviations
from the model assumptions yield a higher energy value. Therefore, the optimal solution of such a
variational energy formulation is the optimal compromise between all the model assumptions. Where
the modeling can be posed as a continuous or a discrete problem, i.e., the minimizer of the energy is a
function or a vector, the optimization part (at least to obtain a numeric solution) must be posed as a finite
dimensional problem.

As this part of the thesis focuses on developing and analyzing optimization algorithms, we consider
energy functions E : RN → R on a real Euclidean vector space and seek for a vector û ∈ RN that min-
imizes the energy. For many computer vision problems the solution vector corresponds to a (discrete)
image, which itself corresponds to a sampled (continuous) image function (cf. Chapter 0). Mathemati-
cally, we want to solve for the minimizer of

min
u∈RN

E(u), i.e. û := arg min
u∈RN

E(u) . (1.1)

Actually, using minimum in (1.1) instead of infimum requires some a priori consideration (see also Sec-
tion 2.1.3). In general, it is not clear whether the minimum exists, i.e., whether min = inf . As this
problem is rather a modeling issue than an optimization issue, we always assume that a minimizer exists.

Energy formulations have several advantages compared to ad-hoc solutions:

• The model assumptions must be clearly stated and even quantified in terms of penalties.
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• There are no hidden details, if the energy is optimized properly.

• Imposing a local relationship between pixels asks for a global agreement on the model among all
pixels.

Energies for computer vision problems often consists of two terms

E(u) := F (u) + λR(u) , (1.2)

the data (fidelity) term F and the regularization term or penalizer R, and a nonnegative weighting param-
eter. The data term penalizes the deviation from a certain data fidelity measure. The regularization term,
which is also called smoothness term, regularizes the energy such that the solution is more plausible.
Usually, it is based on prior knowledge about a general solution of the problem. “Smoothness” refers to a
(locally) low variation of the image pixel values. The level of smoothness depends on the weighting pa-
rameter λ ≥ 0. For larger values of λ the regularization term is more important and we expect a smoother
solution, whereas small values of λ are associated with a high confidence of the solution to satisfy the
model for the data term. The data term is specific to the task at hand. The smoothness term also has to be
adapted to different tasks, however, the most common ones obey certain common principles.

Let us consider the example of image denoising from computer vision to make the energy modeling
more concrete. In the task of image denoising the input is a noisy image g ∈ RN and the goal is to recover
a clean image. Assumptions about the noise formation process simplify the problem. We assume that
there is an “original image” h ∈ RN without noise and a noise function n ∈ RN such that the observed
noisy image is given by

g = h+ n ,

i.e. we assume an additive noise model. Under these model assumptions we want to find the image
u ∈ RN that approximates the clean image h as good as possible such that in the optimal case u = g−n.
Unfortunately the noise n is unknown. However, it is common to assume some knowledge about the
distribution of the noise. A possible data term for this problem is

F (u) = ‖u− g‖22 . (1.3)

The data term in (1.3) is particularly suitable when the noisy image can be modeled by an independent
and identically distributed Gaussian noise model (normal distribution) with zero mean. We present here
only an ad-hoc motivation. For a normal distribution with zero mean the probability to draw zero is the
highest, low values occur frequently, and high values rarely. The quadratic data term models that. Small
deviations of the sought solution from the noisy image are penalized little, whereas if the sought solution
deviates a lot from the noisy image a high penalty (growing quadratically) is assigned.

On the other hand, this reasoning shows that quadratic penalizers are not good when impulse noise has
deteriorated the image. Impulse noise or salt and pepper noise would lead to high penalties everywhere.
A better penalty term only penalizes whether a pixel is corrupted or not. The best convex approximation
to such a term is the absolute deviation. Assume that g ∈ RN was recorded with impulse noise. Then g
can be denoised with u ∈ RN by minimizing (1.2) with

F (u) = ‖u− g‖1 . (1.4)

Figure 1.1 shows an example for image denoising with these two models of noise. The results are obtained
using (1.2) with (1.3) or (1.4) and one of the regularization terms that are considered in the following.

Smoothness of a solution function can be achieved by locally penalizing the deviation from the con-
stant function. In quantitative terms, a function with vanishing gradient magnitude is considered smooth.
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Figure 1.1: Example for image denoising. BOTH BLOCKS, TOP LEFT: Clean image. LEFT BLOCK, BOTTOM LEFT: Noisy image
(Gaussian noise with standard deviation σ = 0.35). RIGHT BLOCK, BOTTOM LEFT: Noisy image (Salt and pepper noise with
noise density 0.2). BOTH BLOCKS, TOP RIGHT: Minimizer of the TV-L2 denoising model (1.3) and (1.6). BOTTOM RIGHT:
Minimizer of the TV-L1 model (1.4) and (1.6).

A solution vector is considered smooth when the discrete gradient magnitude vanishes. Cast as a regular-
ization term for (1.2) the Tikhonov regularization [TA77] can be used:

R(u) = ‖∇u‖22

(
=

N∑
i=1

((∂xu)i)
2 + ((∂yu)i)

2

)
. (1.5)

Therefore, if we look for a minimizer of E in (1.2), the solution is a compromise between the data
fidelity and the constant solution. As the square of the gradient magnitude of the function u is penalized,
higher deviations from a constant function are assigned a significantly (quadratically growing) higher
cost. Therefore, the variation of the resulting function is likely to be small, which means that the result is
smooth.

Usually, images have strong edges and we want the solution to respect these edges. In order to achieve
this we have to allow the result to have discontinuities, or at least, high deviations from the constant
function should not be penalized more than small deviations; It could have been caused by an edge. This
leads to the so called total variation regularization (TV):

R(u) = TV(u) := ‖∇u‖2,1
(

=

N∑
i=1

√
((∂xu)i)2 + ((∂yu)i)2

)
. (1.6)

It penalizes deviations from the constant solution proportionally. The TV regularizer has many nice
properties, which can be verified in the continuous domain1. Important properties for computer vision
are: TV preserves discontinuities of functions, it measures the boundary length of a set represented by a
binary function, and for differentiable functions it is the integral over the gradient magnitude.

Figure 1.2 shows results for the image denoising problem using the regularization terms (1.5) and
(1.6) with different weighting parameter λ in (1.2).

1For doing so, we would need to introduce weak derivatives, the space of functions with bounded variation, and some more
analysis tools. As this is beyond the scope of this thesis, we refer the interested reader for example to [BL11, ABM06, CCC+10,
Zie89].
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CHAPTER 1. OPTIMIZATION PROBLEMS IN COMPUTER VISION

Figure 1.2: Example for image denoising with different regularization terms. LEFT COLUMN: Clean image and noisy image
deteriorated by gaussian noise with standard deviation σ = 0.35. MIDDLE COLUMN: Minimizer using TV regularization. RIGHT
COLUMN: Minimizer using Tikhonov regularization. The parameter λ is tuned for a good quality of the upper result.

Another property of TV is convexity, i.e., the connecting line between two points of its graph lies
above the graph. Details are given in Chapter 2. For now it is enough to know that convexity is a fa-
vorable property, especially, when optimization is considered. For many classes of such problems there
are efficient algorithms. Often even worst-case complexity estimates are available. Maybe the most im-
portant feature of convex functions is that any local minimizer is necessarily a global minimizer of the
function. Their disadvantage is that often there is some loss regarding the accuracy of the model to the
real world problem. The much more general class of nonconvex problems, on one hand, allows for better
energy models, however on the other hand, comes with several problems for optimization like multi-
ple local minima. While there has been vast progress in convex optimization—today, many nonsmooth
convex optimization programs can be solved with comparable efficiency to linear programs—nonconvex
optimization is still rarely applied in practice. Indeed, in a SIAM review in 1993, R. Rockafellar pointed
out that: “The great watershed in optimization is not between linearity and nonlinearity, but convexity and
nonconvexity”. Particularly in computer vision, it is known that nonconvex regularization terms usually
better model the problem than convex ones. The nonconvexity can be motivated and justified from dif-
ferent viewpoints, including robust statistics [BR96], nonlinear partial differential equations [PM87], and
natural image statistics [HM99]. Numerous works demonstrated through experiments [BR96, RB09], that
nonconvex potential functions are the right choice. However, due to the issues arising in the optimization
they are still rarely used.

The nonconvexity that is mentioned here can be expressed in a formula as

R(u) =

N∑
i=1

ψ(|(∇u)i|) , (1.7)

where ψ : R+ → R+ is a nondecreasing function like those in Figure 1.3. Obviously, when minimizing
(1.2) with (1.7) the preference for a vanishing gradient magnitude is still present, however, larger devia-
tions from this are not penalized proportionally, unlike for TV. The effect is a good compromise between
overall smoothness and allowing for discontinuities. This is advantageous as locations with high varia-
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Figure 1.3: Examples for functions that are used to penalize the gradient magnitude in many regularization tasks in computer vision
as in (1.7). For convex functions ψ (green and blue) the convex regularizers (1.5) and (1.6) are recovered. However, for computer
vision problems there is a strong motivation to use nonconvex functions like log(1 + 2|x|) on the left or those on the right.

tions in the gradient magnitude are usually associated with edges, important image characteristics. Part I
of this thesis aims on bridging the gap between modeling computer vision problems with nonconvex
penalty terms and their efficient optimization.
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Chapter 2

Basics of convex analysis and
optimization

In general optimization problems are unsolvable. That is also the starting message for an introductory
lecture on optimization by Yurii Nesterov [Nes04]. There is no optimization algorithm that can solve all
problems. Although there are commercial optimization packages that have a wide range of applicability,
many optimization problems are not solved satisfactorily. Moreover, there is always the question whether
we can trust the solution; Did the algorithm really solve the problem that we wanted it to solve? Some-
times, for practical problems the solution can be validated by a plausibility check. However, if we seek
for efficiency and guarantees, we should know our problem well and be aware about the mechanisms of
optimization.

The foundation for this consciousness is built by the theory. Already during the time when the problem
is modeled, strategies for solving it must be taken into account. Perfectly modeling the problem, but not
being able to solve it, is not better than a simple model that can be solved. Important modeling aspects
are well-posedness, the class of functions that is used, the solution space, and what solution can be
expected. The better the structure of the problem is known, the more properties can be used during the
optimization and the bigger the chance to solve the problem efficiently and accurate. Convexity of the
objective function is such a property. In that case efficient optimization algorithms exist. Nevertheless, in
order to decide whether a function is convex, we need to know what convexity means.

If we want to use the newest and fastest algorithms, to determine the expected efficiency, or to de-
velop new and more efficient optimization algorithms, a strong knowledge about the underlying theory
is important. In this chapter, we focus on the introduction of the basic tools from convex analysis. Af-
ter Section 2.1 we are equipped with the tools to consider some algorithms that play an important role
in solving convex optimization problems. They reveal several similarities that can only be understood
with some theory in the background. In the next chapter, using the knowledge gained in this chapter we
develop a new and efficient algorithm for a certain class of convex optimization problems.

In all what follows, we work in the Euclidean vector space RN of dimension N ∈ N equipped with
the standard inner product 〈x, y〉 :=

∑N
i=1 xiyi and the Euclidean norm ‖x‖ :=

√
〈x, x〉 whenever

x, y ∈ RN .
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CHAPTER 2. BASICS OF CONVEX ANALYSIS AND OPTIMIZATION

Figure 2.1: LEFT: Convex set. RIGHT: Nonconvex set. A set is convex if and only if the connecting line between each pair of
points is completely contained in the set.

2.1 Convex analysis

We introduce some basic facts from convex analysis. Results are selected from Rockafellar [Roc70,
RW98]; Bredies and Lorenz [BL11]1; Bauschke and Combettes [BC11]1 and Nesterov [Nes04]. Most
proofs and examples are taken from these references. Sometimes the proofs are slightly modified in
order to better suit our needs. For readers who are familiar with convex analysis, this section serves as a
reference for the notation that is used later on. The reader, who just wants to get an overview may skip
the proofs.

2.1.1 Basics of convex sets

In order to decide whether an optimization problem can be solved with tools from convex analysis or not,
the question about convexity must be answered. As the minimization of the objective function can be
restricted to a certain set, convexity must be verified for the objective function and the constraints.

We start the section about convex analysis by considering the notion of convex sets. Considering
convex sets is crucial for convex functions, as there is a strong relation between them. A function is
convex if the set of points lying above the graph of the function is convex. Therefore, we first define
convexity of sets.

Definition 2.1 (convex set). A subset C ⊂ RN is said to be convex if (1 − λ)x + λy ∈ C whenever
x, y ∈ C and 0 < λ < 1.

Figure 2.1 shows a discriminative example for a convex and a nonconvex set. In order to determine
whether a set is convex or not, it is helpful to know how convex sets can be generated. For the construction
of convex sets, the following theorem is of interest. Its proof is elementary.

Theorem 2.2 (intersection of convex sets). The intersection of an arbitrary collection of convex sets is
convex, i.e., for an arbitrary index set I and convex sets Ci ⊂ RN it holds that

⋂
i∈I Ci is convex.

Proof. Let x, y ∈ ⋂i∈I Ci lie in the intersection of all convex sets Ci ⊂ RN . By definition of convexity
z = (1− λ)x+ λy ∈ Ci for all sets Ci, thus z ∈ ⋂i∈I Ci.

Examples for convex sets are given by half-spaces.

1This book considers infinite dimensional spaces, whereas we work in finite dimensions. Results from this reference are reduced
to the finite dimensional setting here.
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2.1. CONVEX ANALYSIS

Figure 2.2: LEFT: Convex conve. RIGHT: Nonconvex cone. A cone contains for each point the ray emanating from the origin that
goes through that point.

Definition 2.3 (half-space). For any non-zero 0 6= b ∈ RN and any β ∈ R the set

{x ∈ RN | 〈x, b〉 ≤ β} is a closed , and {x ∈ RN | 〈x, b〉 < β} is an open

half-space.

Using the preceding theorem half-spaces may be used to construct other convex sets like a ball.

Example 2.1. The (open) unit ball Br(0) := {x ∈ RN | ‖x‖ < r} ⊂ RN with radius r > 0 is convex by
Theorem 2.2 and due to

Br(0) =
⋂

b∈RN ,‖b‖=1

{x ∈ RN | 〈x, b〉 < r} .

Analogously the closed unit ball Br(0) can be constructed with closed half-spaces.

Another source of examples for convex sets is the convex cone. The general concept of cones is im-
portant for many considerations—not only in convex analysis. A cone is the union of half-lines emanating
from the origin. See Figure 2.2 for an example of a convex and a nonconvex cone.

Definition 2.4 (cone, convex cone). A subset K of RN is called a cone if it is closed under nonnegative
scalar multiplication, i.e., λx ∈ K when x ∈ K and λ ≥ 0. The cone is a convex cone when K is a
convex set.

Theorem 2.5. A subset of RN is a convex cone if and only if it is closed under addition and nonnegative
scalar multiplication.

Proof. “⇒”: Let K ⊂ RN be a convex cone and let x, y ∈ K. By definition K is closed under nonnega-
tive scalar multiplication. The convex combination z = (x+ y)/2 lies in K and hence x+ y = 2z ∈ K.
Thus, it is also closed under addition. “⇐”: If K is closed under nonnegative scalar multiplication, then
K is a cone. Therefore, for x, y ∈ K also (1− λ)x, λy belong to K. Closedness under addition implies
(1− λ)x+ λy ∈ K, which verifies the convexity of K.

2.1.2 Basics of convex functions

In order to work with convex functions, it is convenient to allow functions to take values on the extended
real line R := R ∪ {∞}. The conventions for handling ∞ are as follows. For all α ∈ R it holds that
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dom f

f

∞ ∞
epi f

Figure 2.3: A proper convex function with marked epigraph and effective domain.

α ≤ ∞ and α <∞ holds if and only if α ∈ R. Formally, we define

α+∞ =∞ , for all α ∈ R , α · ∞ =∞ , for all α > 0 , 0 · ∞ = 0 .

Other operations like subtraction and multiplication with negative numbers are not defined. The concept
of the extended real line allows us to treat convex functions defined on RN and functions defined on a
subset C ⊂ RN in an unified way. However, let us first define a convex function. As mentioned earlier,
we make use of a relation between a function and a suitable set associated with the function. The set
under consideration is the epigraph.

Definition 2.6 (epigraph). Let f : RN → R be a function taking values on the extended real line. We
denote by

epi f := {(x, α) ∈ RN+1|α ≥ f(x)}
the epigraph of the function f . (Note that for (x, α) ∈ epi f it holds that α <∞.)

Definition 2.7 (convex function). A function f : RN → R is convex (on RN ) if epi f is convex as a subset
of RN+1.

We will only work with convex functions defined on the whole space RN . The reason is that any
convex function on a convex subset S of RN can be extended to a convex function on the whole space by
setting f(x) =∞ for all x ∈ RN r S. Statements that are true only on the subset where a function takes
on finite values make use of the following definition.

Definition 2.8 (effective domain). For a function f : RN → R the set

dom f := {x ∈ RN | f(x) <∞}

is called the (effective) domain of the function f .

As a function that takes the value∞ everywhere usually requires additional technical considerations,
it is often excluded from statements.

Definition 2.9 (proper function). A function f : RN → R is called proper if dom f 6= ∅.

Figure 2.3 visualizes the epigraph and the effective domain of a proper convex function.
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2.1. CONVEX ANALYSIS

Example 2.2. (i) Consider the function f : R → R with f(x) = 0 if x ∈ [−1, 1] and f(x) = ∞
otherwise. The function is convex since epi f = [−1, 1]× R and the intersection of half-spaces

[−1, 1]× R = {x ∈ R2|x2 ≥ 0} ∩ {x ∈ R2|x1 ≤ 1} ∩ {x ∈ R2|x1 ≥ −1} , x = (x1, x2)> ,

is convex.

(ii) Let the function f : RN → R be given as f(x) = ‖x‖. The function is convex since the epigraph
is a convex cone. Let x, y ∈ RN , αx, αy ∈ R, and λ ≥ 0. If (x, αx) ∈ epi f then αx ≥ ‖x‖ and
λ(x, αx) = (λx, λαx) with λαx ≥ λ‖x‖ = ‖λx‖, thus epi f is a cone. Furthermore, the cone is
closed under addition. For (y, αy) ∈ epi f it holds that (x, αx) + (y, αy) = (x+ y, αx + αy) and
αx +αy ≥ ‖x‖+ ‖y‖ ≥ ‖x+ y‖ by the triangle inequality. Theorem 2.5 implies the convexity of
epi f , hence of f .

As we have seen in Example 2.2, it is cumbersome to verify convexity of a function. A first step
towards simplifying this task is made by the next theorem. The analogy between a convex function and a
convex set gives rise to more examples of convex functions. Theorem 2.2 tells us that the intersection of
an arbitrary collection of epigraphs (of convex functions) yields a convex set. This set is also an epigraph,
namely the epigraph of the function constructed as the pointwise supremum of the collection of convex
functions.

Theorem 2.10 (convexity of the pointwise supremum). The pointwise supremum of an arbitrary collec-
tion of convex functions is convex.

Proof. By Theorem 2.2 the intersection of an arbitrary collection of convex sets is a convex set. If a
function is given as the pointwise supremum of convex functions, then its epigraph is the intersection of
the epigraphs of those functions.

Example 2.3. (i) Consider the collection of functions gx : RN → R, gx(p) = 〈x, p〉 − ‖x‖ where
x ∈ RN . The pointwise supremum G : RN → R, G(p) = supx∈RN gx(p), which is given by
G(p) =∞ for ‖p‖ > 1 and G(p) = 0 for ‖p‖ ≤ 1, is convex.

(ii) Now, we consider for all p ∈ RN with ‖p‖ ≤ 1 the function fp : RN → R, fp(x) = 〈x, p〉 −G(p)
with G as defined in (i). Then, the pointwise supremum F : RN → R, F (x) = sup‖p‖≤1 fp(x)

(for all x 6= 0 it is taken at p = x/‖x‖ and for x = 0 it is taken at any p ∈ B1(0)), which is given
by F (x) = ‖x‖, is convex.

Next, we introduce some results that make the verification of convexity much easier. The following
inequality characterizes convex functions without the need to work with the epigraph explicitly. It serves
as an useful tool at many places in convex analysis.

Theorem 2.11 (Jensen’s inequality). Let f : RN → R. Then f is convex if and only if

f(λ1x1 + . . .+ λmxm) ≤ λ1f(x1) + . . .+ λmf(xm)

whenever all λi ≥ 0 and λ1 + . . .+ λm = 1.

Proof. We omit the proof as it is technical and can be found in nearly all text books covering the topic
convex analysis. (See, for example, [Roc70, Thm. 4.3].)

From Jensen’s inequality we can immediately derive a theorem for the convexity of functions that are
the sum of convex functions. From the opposite point of view the following theorem provides a way to
often reduce the question about convexity to simpler terms. The purpose of the subsequent theorem is the
same.
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f ϕ

ϕ ◦ f

Figure 2.4: Plot of the function considered in Example 2.4.

Theorem 2.12 (convexity of linear combinations). If f1 and f2 are proper convex functions on RN and
λ1, λ2 ≥ 0, then λ1f1 + λ2f2 is convex.

Proof. We verify the statement using Theorem 2.11. For x, y ∈ RN , λ ∈ (0, 1) it is

λ1f1((1− λ)x+ λy) + λ2f2((1− λ)x+ λy)

≤ λ1 ((1− λ)f1(x) + λf1(y)) + λ2 ((1− λ)f2(x) + λf2(y))

= (1− λ)(λ1f1(x) + λ2f2(x)) + λ(λ1f1(y) + λ2f2(y)) .

Theorem 2.13 (convexity of compoisitions). Let f : RN → R be a convex function, and let ϕ : R → R
be a nondecreasing, convex function. Then ϕ ◦ f is a convex function on RN (set ϕ(∞) =∞).

Proof. The convexity of f gives (Theorem 2.11) for x, y ∈ RN and λ ∈ (0, 1)

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) .

Now, we apply ϕ to both sides. Since ϕ is nondecreasing the order of the inequality is preserved. Again
using Theorem 2.11 concludes the proof.

Example 2.4. A simple example shows the necessity of ϕ being nondecreasing in Theorem 2.13. Let
f(x) = |x| and ϕ(x) = |x − 1|. Then h := ϕ ◦ f is not convex because h is symmetric h(−x) = h(x)
and h(±1) = 0 < 1 = h(0). (See Figure 2.4.)

There exists a simple characterization of convexity for differentiable functions. First, we present it
for the one dimensional case and then for higher dimensions. The proof for the latter is by restricting
the multi-dimensional function to line segments and applying the result from the one dimensional case.
Actually, convexity can be seen as a one dimensional phenomenon. A function is convex if and only if its
restriction to any one dimensional line segment is convex. First, we need a lemma, which is interesting
in its own right. The situation is shown in Figure 2.5.

Lemma 2.14 (slope inequality). Let f : (a, b)→ R be a real-valued function on the open interval (a, b) ⊂
R. Then f is convex if and only if for all x0 < y < x1 in C it holds that

f(y)− f(x0)

y − x0
≤ f(x1)− f(x0)

x1 − x0
≤ f(x1)− f(y)

x1 − y
.

Moreover, for an x ∈ (a, b) the difference quotient ∆x(y) := (f(y) − f(x))/(y − x) is nondecreasing
for y ∈ (a, b) r {x}.
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f

x0 y x1

f(y)−f(x0)
y−x0

f(x1)−f(x0)
x1−x0

f(x1)−f(y)
x1−y

Figure 2.5: Plot of the situation in Lemma 2.14.

Proof. Thanks to Theorem 2.11 with m = 2 convexity is easily seen to be equivalent to

f(y) ≤ x1 − y
x1 − x0

f(x0) +
y − x0

x1 − x0
f(x1), when x0 < y < x1 in (a, b) .

Subtracting f(x0) or f(x1) from both sides yields the first or the second inequality, respectively. Nonde-
screasingness of ∆x(y) is obvious by the inequalities just verified.

Theorem 2.15 (monotonicity and convexity in one dimension). Let f : (a, b) → R be a real-valued
differentiable function on the open interval (a, b) ⊂ R. Then the following conditions are equivalent on
(a, b):

(i) f is convex,

(ii) f ′ is nondecreasing,

(iii) f(x) ≥ f(y) + f ′(y)(x− y) for all x and y in (a, b).

Proof. Convexity implies by the preceding Lemma 2.14 (nondecreasingness of ∆x(y)) for x0 < x1 in
(a, b)

f ′(x0) ≤ f(x1)− f(x0)

x1 − x0
=
f(x0)− f(x1)

x0 − x1
≤ f ′(x1) ,

which is (ii). Now, assume that (ii) holds. The convex function gy(x) := f(x) − f(y) − f ′(y)(x − y)
satisfies g′y(x) ≤ 0 for x < y in (a, b) and g′y(x) ≥ 0 for x < y in (a, b), which implies that gy
attains its global minimum 0 at y ∈ (a, b), hence (iii) holds. It remains to show that (iii) implies (i).
Suppose (iii) holds and consider the affine functions ly(x) := f(y) + f ′(y)(x − y) for y ∈ (a, b). Then
f(x) = supy∈(a,b) ly(x) is a pointwise supremum over all y ∈ (a, b) of convex functions and thus itself
is convex.

Corollary 2.16 (second derivative test in one dimension). Let f : (a, b) → R be a twice differentiable
function on the open interval (a, b) ⊂ R. Then f is convex if and only if its second derivative is nonneg-
ative on (a, b).

Proof. Theorem 2.15 together with the equivalence of f ′′ being nonnegative on (a, b) and f ′ being non-
decreasing on (a, b) proves the statement.
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Opposed to Example 2.2, where it was “hard work” to verify convexity for a relatively simple function,
the criteria that we have at hand now provide more convenient tools. However they can only be applied
to sufficiently smooth one dimensional functions. The generalization to multi dimensional functions
immediately follows after the next example. For the generalization to nonsmooth functions we ask for
the readers patience till the next subsection. If Theorems 2.12, 2.13 and 2.17 and Corollary 2.18 are
used together, convexity is often a trivial question; For functions that are composite of differentiable parts
sometimes some simple calculations are required.

Example 2.5. Convexity of the following examples can be verified using Theorem 2.15 and Corol-
lary 2.16.

(i) f : R→ R, f(x) = exp(λx) with λ ∈ R.

(ii) f : R→ R, f(x) = −
√

1− x2 for |x| < 1 and f(x) =∞ for |x| ≥ 1.

(iii) f : R→ R, f(x) = |x|p with p > 1.

(iv) f : R→ R, f(x) = 1
2qx

2 + ax+ λ with λ ∈ R, a ∈ R and a positive constant q ∈ R+.

The following theorem generalizes Theorem 2.15 to functions with domain in RN .

Theorem 2.17 (monotonicity and convexity). Let f : C → R be a real-valued differentiable function on
the open set C ⊂ RN . Then the following conditions are equivalent on C:

(i) f is convex,

(ii) 〈∇f(x)−∇f(y), x− y〉 ≥ 0 for all x and y in C,

(iii) f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x and y in C.

Proof. The proof is simple. Consider the restriction of f onto line segments and use Theorem 2.15 for
the arising one dimensional function. Therefore, we omit the details here.

Corollary 2.18 (second derivative test). Let f : C → R be a twice differentiable function on an open
convex set C ⊂ RN . Then f is convex on C if and only if its Hessian matrix

Hf (x) :=

(
∂2f

∂xi∂xj
(x1, . . . , xN )

)
1≤i,j≤N

, x = (x1, . . . , xN )> .

is positive semi-definite for every x ∈ C.

Proof. The proof works in parallel fashion to Theorem 2.17.

Now, we are well equipped to consider a few examples of convex functions.

Example 2.6. We start with examples that can be verified as being convex using the second order deriva-
tive criterion.

(i) f : RN → R, f(x) = ‖x‖pp with p > 1.

(ii) f : RN → R, f(x) = 1
2 〈x,Qx〉 + 〈x, a〉 + λ with λ ∈ R, a ∈ RN and a positive semi-definite

matrix Q ∈ RN×N .
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−ε ε

Figure 2.6: Plot of the Huber function considered in Example 2.7.

Example 2.7. An example where the second order criterion cannot be used, but Theorem 2.17 can be
used is the following. Consider f : RN → R, f(x) = 1

2ε‖x‖2 for ‖x‖ < ε and f(x) = ‖x‖ − ε
2 for

‖x‖ ≥ ε with ε > 0. This is the so-called Huber function (or sometimes Huber-norm). (See Figure 2.6.)

Indicator functions of convex sets are particularly interesting for optimization. They are used to treat
unconstrained and constrained convex optimization problems in an unified framework. The convex con-
straint set can be associated with an indicator function. In order to avoid solutions outside the constraint
set, indicator functions are defined different to other branches of analysis by assigning∞ to unfeasible
solutions.

Definition 2.19 (indicator function). The indicator function associated with a convex set C ⊂ RN is
defined by

δC(x) :=

{
0, if x ∈ C ,
∞, if x 6∈ C .

Example 2.8. In Example 2.3, we have already seen an example for an indicator function. The function
G(p) in Example 2.3(i) is the indicator function of the unit ball B1(0) at the origin.

In the remainder of this subsection, we consider some topological aspects of a convex function. The
next theorem proves that convexity is strongly related to continuity of a function.

Definition 2.20 (interior, closure). For any set C ⊂ RN the interior intC := {x ∈ RN | ∃ε > 0: x +
εB1 ⊂ C} and the closure clC :=

⋂{C + εB1| ε > 0} are defined.

Definition 2.21 (lower semi-continuity). A proper function f : RN → R is said to be lower semi-
continuous (lsc) at a point x̄ ∈ dom f if f(x̄) ≤ lim infx→x̄ f(x).

Of course, there exists the analogous concept of upper semi-continuity, which requires for x̄ ∈ dom f
that f(x̄) ≥ lim supx→x̄ f(x). A function f being upper and lower semi-continuous at a point x̄ ∈ dom f
is continuous at point x̄.

Definition 2.22 (relative continuity). A function f : RN → R is continuous relative to a subset S ⊂
dom f if the restriction of f to S is a continuous function.

Theorem 2.23 (continuity of convex functions). Let f : RN → R be a proper lower semi-continuous
convex function and let C be an open convex subset of dom f . Then f is continuous relative to C.

Proof. Without loss of generality we may assume that C = dom f . Otherwise we could replace f by
a function g with dom g = C. In order to prove continuity of f we show that the level sets Uα :=
{x| f(x) ≥ α}, α ∈ R, are closed, and prove that this implies upper semi-continuity of f and thus
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continuity of f . The complement U c
α = {x| f(x) < α} of Uα is open for all α ∈ R, since it arises

as projection on RN of the intersection of the open set {(x, β)|β > f(x)} with the open half-space
{(x, β)|β < α} in RN+1. Thus Uα is closed. Now, we verify the implication of upper semi-continuity
of f . Let (xν)ν∈N be sequence with limν→∞ xν = x̄ and limν→∞ f(xν) =: β. For all α < β there
exists να ∈ N such that f(xν) > α for all ν ≥ να, i.e., xν ∈ Uα for all ν ≥ να. As Uα is closed, it
holds that x̄ ∈ Uα and, moreover, x̄ ∈ ⋂α<β Uα = Uβ . Therefore, f(x̄) ≥ β and hence f is upper
semi-continuous.

As a particular example to which the preceding theorem can be applied is when the function f is
defined on an open set, i.e. dom f = C for an open set C. Moreover, if dom f = RN then any convex
function is necessarily continuous on RN .
Remark 2.9. In Theorem 2.23 the requirement of lower semi-continuity is not necessary. Rockafellar
[RW98, Theorem 7.4] shows that any proper convex function on RN is lower semi-continuous except
perhaps at relative boundary points of the domain of the function. For N -dimensional domain dom f the
relative boundary coincides with (cl dom f) r (int dom f).

The result about continuity can be sharpened on compact subsets of the interior of the domain of a
function (Theorem 2.25). Lipschitz continuity can be proved in this setting. Lipschitz continuity is a
stronger notion of continuity in the sense that the change of function values is limited.

Definition 2.24 (Lipschitz continuous). A real-valued function f : S → RM , M ∈ N, with S ⊂ RN is
called Lipschitzian (or Lipschitz continuous) relative to the set S if there exists a real number L ≥ 0 such
that

‖f(y)− f(x)‖ ≤ L‖y − x‖ , ∀x, y ∈ S .

Lipschitz continuity is key for many optimization algorithms. We meet this concept again in Sec-
tion 2.1.8. There, we will see that Lipschitz continuity (of the gradient of a function) allows for majorizing
quadratic functions, i.e., there is a quadratic function whose epigraph is contained in that of the majorized
function and the functions meet in at least one point. Many optimization methods (e.g. the Gradient
method (Section 2.2.1), some splitting methods (Section 2.2.3), the Fista method (Section 2.2.5), and
many others) then focus on minimizing the original function via minimizing such quadratic majorizers.

The Lipschitz continuity that is dicussed in the following theorem is based on the function values (not
on the gradient of the function), i.e., M = 1 in Definition 2.24.

Theorem 2.25. Let f : RN → R be a proper convex function and let S ⊂ int dom f be a compact subset.
Then f is Lipschitzian relative to S.

Proof. For each ε > 0 the map (x, u) 7→ x + εu is continuous, thus, for each ε > 0 the set S + εB1

is compact. The intersection over all ε > 0 of the sets (S + εB1) ∩ (RN r int dom f) is empty, hence
one of these sets must be empty. Therefore, there exists ε > 0 such that S + εB1 ⊂ int dom f . By
Theorem 2.23 f is continuous on S + εB1. As S + εB1 is closed and bounded, there exists α+, α− ∈ R
such that α− ≤ f(x) ≤ α+ for all x ∈ S + εB1.

Now, let x, y ∈ S be two distinct points and let z ∈ S + εB1 be an extrapolation of the line segment
from x to y, i.e., let z = y + ε(y − x)/‖y − x‖ ∈ S + εB1. It holds that y = (1 − λ)x + λz with
λ = ‖y−x‖/(ε+‖y−x‖) and by convexity of f we have f(y) ≤ f(x) +λ(f(z)− f(x)). This implies
f(y)− f(x) ≤ λ(α+ − α−) ≤ (α+ − α−)/ε · ‖y − x‖ for all x, y ∈ S, which concludes the Lipschitz
continuity of f relative to S.

Remark 2.10. In fact, using the same strategy as in the proof of Theorem 2.25, we can show that a proper
convex function is Lipschitz continuous relative to any open bounded subset of its domain.
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2.1.3 Attainment of local optima

In the next subsection, we face problems of minimizing a function, i.e. find x ∈ RN that minimizes a
function f : RN → R. The immediate question that arises when considering this problem is the existence
of such a solution. This issue was mentioned earlier in (1.1). Note that this subsection is not specific
to convex functions. The optimal value of a function is given by infx∈RN f(x). The question about
existence is that of whether inf can be replaced by min. We define:

Definition 2.26 (minimizers of a minimization problem). Let f : RN → R be a function. The set of
optimal solutions to a minimization problem infx∈RN f is defined as:

arg min
x∈RN

f(x) := {x̄ ∈ RN | f(x̄) = inf
x∈RN

f(x) and f(x̄) <∞} .

Fortunately, existence of minimizers can be guaranteed under mild assumptions. A basic result is
formulated in Theorem 2.28 ([RW98, Thm 1.9]). It requires another definition.

Definition 2.27 (coercivity). A function f : RN → R is called coercive, if ‖x‖ → ∞ implies f(x)→∞.

This property is often considered in the context of existence of minimizers, however, sometimes it
appears with different names. For example in [RW98] it is expressed via level boundedness. A function f
is said to be level-bounded, if for every α ∈ R the set levα := {x ∈ RN | f(x) ≤ α} is bounded (possibly
empty).

Theorem 2.28 (attainment of minimizers). Suppose f : RN → R is lsc, coercive (or level-bounded), and
proper. Then the value infx∈RN f is finite and the set arg minx∈RN f(x) is nonempty and compact.

Proof. As f is proper ᾱ := inf f is finite. For any α ∈ (ᾱ,∞) the set levα is nonempty and bounded.
Thanks to the lower semi-continuity, it is also closed ([RW98, Thm.1 1.6], cf. proof of Theorem 2.23),
hence, compact. Obviously, it holds that levβ ⊂ levα, whenever β < α. Moreover, as arbitrary in-
tersections of nonempty and closed sets are nonempty and closed,

⋂
α>ᾱ levα is nonempty and closed.

Therefore,
⋂
α>ᾱ levα = levᾱ = arg min f is compact and nonempty. As f(x) > −∞ for all x ∈ RN ,

it follows that ᾱ > −∞.

2.1.4 Subgradient and subdifferential

The subgradient of a convex function is a generalization of the gradient of a differentiable convex func-
tion. The generalization of gradients to subgradients can be motivated geometrically. The gradient is
associated with the locally best linear approximation of a differentiable function. This geometric con-
sideration is not limited to differentiable functions. Linearly approximating a nondifferentiable convex
function is also possible. However, we have to dispense with a single best approximation. In nondif-
ferentiable points there exist many linear approximations that are tangent to the graph of the function.
Therefore, the subgradient of a convex function is defined as a set-valued mapping. See Figure 2.7 for an
example. The details of this figures become clear with Definition 2.31.

As a generalization of the well-known concept of differentiability—Proposition 2.32 verifies that—,
we expect some useful properties for optimization. Indeed Fermat’s rule, which relates stationary points
of a differentiable function with the zeros of its derivative, is generalized to not necessarily differentiable
convex functions in Theorem 2.34. Moreover, the same theorem shows that convexity sharpens this result,
in the sense that a stationary point is always a (global) minimum. The remainder of this section is devoted
to the simplification of characterizing subgradients.
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Figure 2.7: The function f1 is not differentiable at 0 and f2 is not differentiable at −1 and 2. The function f2 is the indicator
function of the interval [−1, 2]. The subdifferential generalizes differentiability for convex functions using the property of a local
linear approximation. Thanks to convexity, if such tangent lines to the graph exist, they lie below the graph. The subdifferential
mapping is a set-valued mapping. For each point it maps to the set of possible slopes that yield a tangent line to the graph (at this
point). The lower plots visualize the respective subdifferentials of the functions in the upper plot. The slopes of the tangents that
are visualized at the top are represented by a dot in the lower plot.

Definition 2.29 (set-valued mapping). A set-valued mapping F : RN ⇒ RM is a mapping that maps
each x ∈ RN to a subset of RM . The graph of the mapping F is given by

GraphF := {(x, u) ∈ RN × RM |u ∈ F (x)} ⊂ RN × RM .

For a set-valued mapping the (effective) domain is defined by

domF := {x ∈ RN |F (x) 6= ∅} ⊂ RN .

This concept generalizes that of functions. A single-valued mapping can also be considered as a set-
valued mapping. Therefore, it is common to abuse notation and use u ∈ F (x) for single-valued mappings
F equivalent to u = F (x). Vice versa it is also common to use u = F (x) instead of u ∈ F (x) for a
singleton-valued mapping, i.e., a set-valued mapping that maps to sets that contain only a single element.
As for single-valued mappings, we assume that set-valued mappings are defined on the whole space RN
by possibly extending them with the value ∅ (the empty set).

We introduce some operations on and with set-valued mappings.

Definition 2.30 (operations with set-valued mappings). Let F,G : RN ⇒ RM , H : RM ⇒ RL be set-
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valued mappings and let λ ∈ R. Then

(F +G)(x) := {u1 + u2|u1 ∈ F (x), u2 ∈ G(x)} ,
(λF )(x) := {λu|u ∈ F (x)} ,

the composition of H and G is given as

(H ◦G)(x) := {w ∈ H(u)|u ∈ G(x)} ,

and the inverse mapping F−1 : RM ⇒ RN is defined as

F−1(u) := {x ∈ RN |u ∈ F (x)} .

Figure 2.7 suggests that tangents to the graph of a convex function f : RN → R always lie below
the graph. This property is used for defining the subgradient (for convex functions). In Definition 4.12
we encounter another generalization of the subgradient to not necessarily convex functions. However,
understanding the convex case first is fundamental.

Definition 2.31 (subgradient, subdifferential). Let f : RN → R be a convex function. A vector v ∈ RN
is called subgradient at x̄ ∈ RN , denoted by v ∈ ∂f(x̄), if the following subgradient inequality holds:

f(x) ≥ f(x̄) + 〈v, x− x̄〉 , for all x ∈ RN . (2.1)

The relation of x̄ and v gives rise to define the subdifferential of f as the set-valued mapping ∂f : RN ⇒
RN by Graph ∂f := {(x, v) ∈ RN × RN | v ∈ ∂f(x)}.

Moreover, the function f is called subdifferentiable at x̄ ∈ RN if ∂f(x̄) 6= ∅. If the function is
subdifferentiable at all points x̄ ∈ dom f , then the function f is called subdifferentiable.

It is common to also call the set of subgradient vectors ∂f(x̄) at a point x̄ the subgradient at x̄. The
different meanings will always be clear from the context.

Example 2.11. Let C ⊂ RN be a closed convex set and denote by δC the associated indicator function.
According to the subgradient inequality, for x̄ ∈ C, it holds that

v ∈ ∂δC(x̄) ⇔ δC(x) ≥ δC(x̄)+〈v, x− x̄〉 , ∀x ∈ RN ⇔ 0 ≥ 〈v, x− x̄〉 , ∀x ∈ C .

Obviously, if v1, v2 ∈ ∂δC(x̄) and λ ≥ 0, then v1+v2 ∈ ∂δC(x̄) and λv1 ∈ ∂δC(x̄). Using Theorem 2.5,
this implies that ∂δC(x̄) is a convex cone. It is the so-called normal cone to the set C, which can be
defined by the last relation. In particular, 0 ∈ ∂δC(x̄). Therefore, the subgradient is not empty in C. In
the context of variational analysis (see Chapter 4) we consider the normal cone to an (arbitrary) set in
more detail.

Example 2.12. We continue Example 2.11. Let C = [0,∞)× [0,∞) ⊂ R2. It is a closed convex subset
and the subdifferential is given as

∂δC(x) =


{0}, if x ∈ intC ,

(−∞, 0]× {0}, if x ∈ (0,∞)× {0} ,
{0} × (−∞, 0], if x ∈ {0} × (0,∞) ,

(−∞, 0]× (−∞, 0], if x = (0, 0)> .

Let us first make sure that the subgradient of a convex function is a generalization of the gradient for
a smooth convex function. Since the subgradient represents a tangent that lies below the graph of the
function this fact is clear.
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Proposition 2.32 (subgradient of a differentiable convex function). Let f : RN → R be a proper convex
function and let f be differentiable at x̄ ∈ dom f . Then ∂f(x̄) = {∇f(x̄)}, and in particular

f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉 , for all x ∈ RN .

Proof. We omit the proof as Proposition 4.13 presents a more general statement. For a direct proof of
this statement see, for example, [Roc70, Thm. 25.1].

Proposition 2.33 (existence of subgradients). Let f : RN → R be a proper convex function. Then
∂f(x) 6= ∅ for all x ∈ int dom f .

Proof. The proof can be found in [BC11, Prop. 16.14, Cor. 16.15].

From the analysis of differentiable functions, we have an important characterization of minimizers,
namely the derivative (the gradient) of the function necessarily vanishes at a minimum. As the subgradient
is a generalization of the gradient, we can expect an analogue property for proper convex functions. In
Examples 2.11 and 2.12 the minimum is the whole set C and for all x ∈ C the subdifferential contains 0
(even at the boundary of C). The following theorem formalizes this property, which is known as Fermat’s
rule. For convex functions this property is also sufficient. The existence of minimizers was discussed in
Section 2.1.3.

Theorem 2.34 (Fermat’s rule). Let f : RN → R be a proper convex functions. Then

x̄ ∈ arg min
x∈RN

f(x) ⇔ 0 ∈ ∂f(x̄) .

Proof. By definition x̄ solves minx∈RN f(x) is equivalent to f(x̄) ≤ f(x) for all x ∈ RN . This is
equivalent to f(x̄) + 〈0, x− x̄〉 ≤ f(x), which is the subgradient inequality for the subgradient 0 ∈
∂f(x̄).

Now, we collect some properties for the subdifferential of a convex function. These will sharpen the
intuition and provide tools for calculations with the subdifferential.

Proposition 2.35 (convexity of the subgradient). The subdifferential of a function f : RN → R at x̄ ∈
RN is a closed convex set.

Proof. Obviously, for any x ∈ RN the set {v ∈ RN | f(x) ≥ f(x̄) + 〈v, x− x̄〉} is convex and closed.
Theorem 2.2 and ∂f(x̄) =

⋂
x∈RN {v ∈ RN | f(x) ≥ f(x̄) + 〈v, x− x̄〉} imply convexity and closedness

of ∂f(x̄).

Proposition 2.36 (calculation rules for subgradients). Let f, g : RN → R be two proper convex functions
and letA : RM → RN be a linear transformation. Denote by Tx̄ : RN → RN the mapping that translates
x ∈ RN to the point x+ x̄. Then it holds that

(i) ∂(λf) = λ∂f whenever λ > 0,

(ii) ∂(f ◦ Tx̄)(x) = ∂f(x+ x̄) for x̄ ∈ RN ,

(iii) ∂(f + g) ⊃ ∂f + ∂g and equality holds if f is continuous in a point x̄ ∈ dom f ∩ dom g,

(iv) ∂(f ◦A) ⊃ A> ◦ ∂f ◦A and equality holds if f is continuous in a point x̄ ∈ dom f ∩ imA.
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Proof. These properties are also valid for proper convex functions in infinite dimensional normed real
vector spaces, which is proved in [BL11, Thm. 6.51].

We extend Example 2.11 and show some practical examples for subgradients. They will appear again
in the next section, e.g., in Example 2.16, where we consider a key building block for many convex
optimization algorithms in Section 2.2.

Example 2.13 (Constrained minimization). Let C ⊂ RN be a closed convex set and let f : RN → R be
a proper convex function that is differentiable on C. Fermat’s rule (Theorem 2.34) implies that x̄ ∈ RN
minimizes f+δC is equivalent to 0 ∈ ∂(f+δC)(x̄). Using Proposition 2.36, it holds that ∂(f+δC)(x̄) =
∂f(x̄) + ∂δC(x̄). Thanks to Proposition 2.32 it further reduces to −∇f(x̄) ∈ ∂δC(x̄). Assuming the
minimizer x̄ lies in the interior of C, we have the condition 0 = ∇f(x̄). If the solution lies on the
boundary, then Fermat’s rule states that the negative gradient (the direction of the steepest descent of f )
is in the normal cone of the set C at x̄ (cf. Example 2.11), which is a geometric interpretation.

Example 2.14. (i) Let f : RN → R, x 7→ 1
2‖x‖2. Then ∂f(x) = {∇f(x)} = {x} for all x ∈ RN .

(ii) Let A : RN → RM be a linear transformation, x̄ ∈ RM , and f : RN → R, x 7→ 1
2‖Ax − x̄‖2.

Then ∇f(x) = A>Ax−A>x̄ for all x ∈ RN .

(iii) Let f : RN → R, x 7→ ‖x‖1 =
∑n
i=1 |xi|. Then (∂f(x))i = {xi/|xi|} whenever xi 6= 0 and

(∂f(x))i = [−1, 1] otherwise.

(iv) Let f : RN → R, x 7→ ‖x‖. Then (∂f(x))i = xi/‖x‖ whenever x 6= 0 and (∂f(x))i = B1(0)
otherwise.

We conclude this subsection with another characterization of convexity, which is based on the subdif-
ferential and thus valid for nonsmooth functions—in analogy to Theorem 2.15 for smooth functions. We
will meet this property later again. For example it can be used to define stronger versions of convexity.
Furthermore, there is a powerful theory about objects whose definition is purely based on this prop-
erty: namely monotone operators (see [BC11]). We meet these objects briefly in Definition 2.50. The
monotony of the subgradient mapping can be used to characterize convexity. The proof of the following
theorem is a simple consequence of the subgradient inequality.

Theorem 2.37 (monotonicity of the subdifferential). Let f : RN → R be a proper convex function. Then,
for all x, x̄ ∈ dom ∂f it holds that

〈v − v̄, x− x̄〉 ≥ 0 , for all v ∈ ∂f(x), v̄ ∈ ∂f(x̄) .

Proof. The proof follows by summing the subgradient inequality for x and x̄ and the subgradient inequal-
ity for swapped x and x̄.

Combining this results with Proposition 2.33 for convex functions f with dom f = int dom f directly
implies monotonicity of the subdifferential.

2.1.5 Proximal mapping

In this section we introduce the proximity operator, which traces back to Moreau in 1965 [Mor65]. The
proximity operator or proximal mapping can be seen as a generalization to the projection onto a convex
set, i.e., the operator that maps x̃ 7→ arg minx∈C 1

2‖x− x̃‖2 for a convex set C. The proximity operator
is one of the key construction elements of many convex optimization algorithms. It defines the proximal

33



CHAPTER 2. BASICS OF CONVEX ANALYSIS AND OPTIMIZATION

point algorithm (see Section 2.2.2), appears in the update step of forward–backward splitting methods
(Section 2.2.3), in Fista (Section 2.2.5), the primal–dual algorithm in Section 2.2.6 and many other related
algorithms. Moreover, it is essential for the algorithm that we propose in Chapter 3.

Definition 2.38 (proximity operator). Let f : RN → R be a proper, lsc, convex function and let λ > 0.
The proximity operator (id + λ∂f)−1 that maps from RN to RN is defined by

(id + λ∂f)−1(x̄) := arg min
x∈RN

f(x) +
1

2λ
‖x− x̄‖2 .

Lemma 2.39 (well-definedness of the proximal operator). Consider the situation of Definition 2.38.
The mapping (id + λ∂f)−1 is well-defined in the sense that the minimization problem yields a unique
minimizer.

Proof. Let F (x) := f(x) + 1
2λ‖x − x̄‖2. Since f is proper domF 6= ∅. The second term ensures

coercivity of F (see Definition 2.27). Applying Theorem 2.28 yields the existence of a minimizer.

In order to verify uniqueness, let x′ 6= x′′ be two minimizers of F . Then, due to the strict convexity of
F , we have F ( 1

2 (x′+x′′)) < 1
2 (F (x′) +F (x′′)). Optimality of x′ and x′′ implies that F ( 1

2 (x′+x′′)) <
minx∈RN F (x), which is a contradiction. Hence x′ = x′′.

Remark 2.15. At first glance the symbol for the proximity operator in Definition 2.38 seems to be unnat-
ural, however, it is not just a symbol. Let us compute the minimizer of the problem in its definition by
means of Fermat’s rule (Theorem 2.34):

0 ∈ ∂
(
f(x) +

1

2λ
‖x− x̄‖2

)
= ∂f(x) +

1

λ
(x− x̄) ,

where the equality uses Proposition 2.36. This can be equivalently expressed as

x̄ ∈ (id + λ∂f)(x) ,

which gives a meaning to the notation in Definition 2.38.

As we mentioned above, the proximity operator generalizes the projection operator onto convex sets.
Consider the indicator function δC of a nonempty, closed, convex set C ⊂ RN (Definition 2.19). The
value of the corresponding proximity operator (id +λ∂δC)−1 for a point x̄ ∈ RN can be estimated as the
minimizer of the following equivalent problems:

min
x∈RN

δC(x) +
1

2λ
‖x− x̄‖2 = min

x∈C
1

2λ
‖x− x̄‖2 ,

where the right problem seeks for minimizing the squared distance to the convex set C. The minimizer
exists and is the projection of x̄ onto the convex set C. An important property that the proximity operator
shares with the projection operator is the following. It is a Lipschitz continuous function with Lipschitz
constant 1 as defined in Definition 2.24. This can also be considered as a nonexpansiveness.

Proposition 2.40 (nonexpansiveness of the proximity operator). Let the assumptions be as in Defini-
tion 2.38. The proximity operator is nonexpansive, i.e., for x, y ∈ dom ∂f holds

‖(id + λ∂f)−1(x)− (id + λ∂f)−1(y)‖ ≤ ‖x− y‖ .
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Proof. As (id + λ∂f)−1 is a well-defined single-valued mapping, we may define x̄ := (id + λ∂f)−1(x)
and ȳ := (id + λ∂f)−1(y). Then, by definition of the inverse mapping x ∈ (id + λ∂f)(x̄) and y ∈
(id + λ∂f)(ȳ). There exist v̄x ∈ ∂f(x̄) and v̄y ∈ ∂f(ȳ) such that x = x̄+ λv̄x and y = ȳ + λv̄y , and it
holds that

‖x− y‖2 = ‖(x̄+ λv̄x)− (ȳ + λv̄y)‖2

= ‖x̄− ȳ‖2 + λ2‖v̄x − v̄y‖2 + 2λ 〈x̄− ȳ, v̄x − v̄y〉 ≥ ‖x̄− ȳ‖2 ,

where the inequality holds due to Theorem 2.37. This concludes the proof.

Before we present some more examples, we summarize some rules to simplify calculations with
proximity operators.

Lemma 2.41 (calculation rules for the proximity operator). Let f : RN → R be a proper, convex, lsc
function, Tx̄ be as in Proposition 2.36, and let λ > 0.

(i) For σ ∈ R: g = f + σ ⇒ (id + λ∂g)−1 = (id + λ∂f)−1.

(ii) For τ, σ > 0: g = (τf) ◦ (σid)⇒ (id + λ∂g)−1 = σ−1id ◦ (id + λτσ2∂f)−1 ◦ σid.

(iii) For x0, y0 ∈ RN : g = f ◦ Tx0 +
〈
y0, ·

〉
⇒ (id + λ∂g)−1 = T−x0 ◦ (id + λ∂f)−1 ◦ Tx0−λy0 .

(iv) Let L : RN → RN be an isometric isomorphism. Then

g = f ◦ L⇒ (id + λ∂g)−1 = L> ◦ (id + λ∂f)−1 ◦ L .

(v) Let g : RN → R be proper, convex, lsc. Then

h(x, y) = f(x) + g(y)⇒ (id + λ∂h)−1(x, y) =

(
(id + λ∂f)−1(x)
(id + λ∂g)−1(y)

)
.

Proof. (i) This is obvious from the definition.

(ii) The following simple equations verify the item. For σ, τ > 0 holds that

(id + λ∂g)−1(x̃) = arg min
x∈RN

τf(σx) +
1

2λ
‖x− x̃‖2

= σ−1 · arg min
y∈RN

f(y) +
1

2λτ
‖σ−1y − x̃‖2

= σ−1 · arg min
y∈RN

f(y) +
1

2λτσ2
‖y − (σx̃)‖2

= (σ−1id ◦ (id + λτσ2∂f)−1 ◦ σid)(x̃) .

(iii) For x0, y0 ∈ RN holds that

(id + λ∂g)−1(x̃) = arg min
x∈RN

f(x+ x0) +
〈
y0, x

〉
+

1

2λ
‖x− x̃‖2

= arg min
x∈RN

f(x+ x0) +
1

2λ
‖x− (x̃− λy0)‖2

= − x0 + arg min
y∈RN

f(y) +
1

2λ
‖y − (x̃+ x0 − λy0)‖2

=(T−x0 ◦ (id + λ∂f)−1 ◦ Tx0−λy0)(x̃) .
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(iv) It holds that L>L = id and ‖Lx‖ = ‖x‖. Therefore the following proves the statement.

(id + λ∂g)−1(x̃) = arg min
x∈RN

f(Lx) +
1

2λ
‖x− x̃‖2

= arg min
x∈imL>

f(Lx) +
1

2λ
‖L(x− x̃)‖2

= L> · arg min
y∈RN

f(y) +
1

2λ
‖y − Lx̃‖2

= (L> ◦ (id + λ∂f)−1 ◦ L)(x̃)

(v) The last statement is obvious as variables are strictly separated.

Finally, we present several solutions to the proximal operator of convex functions. As the evaluation
of the proximal operator will play an important role for optimization algorithms, we consider terms that
are particularly interesting in applications.

Example 2.16. For all examples, let λ > 0.

(i) Let f : RN → R, x 7→ 1
2‖x‖2, and x̃ ∈ RN . Then (id + λ∂f)−1(x̃) = x̃

1+λ .

(ii) Let f : RN → R, x 7→ 1
2‖Ax−y‖2,A : RN → RM a linear transformation, and x̃ ∈ RN , y ∈ RM .

Then (id + λ∂f)−1(x̃) is given as solution of the system of equations (id + λA>A)x = x̃+A>y.

(iii) Let f : RN → R, x 7→ δB1(0)(x), and x̃ ∈ RN . Then (id + λ∂f)−1(x̃) is given as the orthogonal
projection of x̃ onto the closed unit ball, i.e.,

(id + λ∂δB1(0))
−1(x̃) =

{
x̃/‖x̃‖, if x̃ ∈ RN rB1(0) ,

x̃, if x̃ ∈ B1(0) .

(iv) Let f : RN → R, x 7→ ‖x‖1, and x̃ ∈ RN . Then (id+λ∂f)−1(x̃) is the soft thresholding operator,
thanks to Lemma 2.41(v), given coordinate-wise by (for a ∈ R define sign a := a/|a| if a 6= 0 and
sign 0 := 0 otherwise)

(id + λ∂f)−1(x̃i) = max(0, |x̃i| − λ) sign(x̃i)

In the next subsection, we meet the celebrated Moreau identity in Theorem 2.44. It relates the prox-
imal map of a function with the proximal map of its convex conjugate function, which we introduce in
next. However, considering conjugate functions has many other advantages.

2.1.6 Legendre–Fenchel conjugate

In this subsection, we will see that convex functions reveal an interesting and powerful duality. This
duality is important for the primal–dual algorithm in Section 2.2.6. It is related to the dual representation
of, for example, a conic. A conic can be described as a set of points or—in the dual representation—as
an envelope of tangents to the conic. In convex analysis the dual of a closed convex set may be described
as intersection of half-spaces that contain the set. As usual in convex analysis, the concept is transported
from convex sets to convex functions via the epigraph. We define the (convex) conjugate of a convex
function and provide properties, which will make clear the descriptive duality principle just mentioned.
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Figure 2.8: All plots visualize the value of the dual function f∗ at a certain x∗ ∈ RN in a different way. TOP LEFT: Shows the
function for which we seek the supremum 〈x∗, x〉 − f(x). TOP RIGHT: The value of f∗(x∗) is found as the largest “gap” (with
sign) between 〈x∗, x〉 and f(x). BOTTOM: At the optimum (x̂, f(x̂)), the linearization with slope x∗ is tangent to f at x̂ and
intersects the y-axis in −f∗(x∗).

As the duality theory of convex functions is very complex and goes far beyond the scope of this
thesis, we only focus on the definition, some intuition and a few examples. This is sufficient to under-
stand the material that is considered in this thesis. The Legendre–Fenchel conjugate is not central for
the development of the contribution of this thesis. For further reading we refer the interested reader to
[Roc70].

Definition 2.42 (Legendre–Fenchel conjugate). Let f : RN → R be a proper function. We define the
convex conjugate or Legendre–Fenchel conjugate by

f∗(x∗) = sup
x∈RN

〈x∗, x〉 − f(x) .

Figure 2.8 shows three different ways to consider this definition. As the third point of view in Fig-
ure 2.8 suggests, the negative of the value of the dual function at x∗ is determined by the intersection
with supremal value of lines with slope x∗ below the function f . The line that yields the supremum is
necessarily tangent to the graph. Let us confirm this by a simple consideration of a proper, lsc, convex
function f . The optimality condition for 〈x∗, x〉 − f(x), which is 0 ∈ x∗ − ∂f(x), immediately implies
x∗ ∈ ∂f(x). For a differentiable function f it is x∗ = ∇f(x). This is exactly the condition for tangency.

37



CHAPTER 2. BASICS OF CONVEX ANALYSIS AND OPTIMIZATION

−2 −1 1 2

−3

−2

−1

1

2

3

−2 −1 1 2

−3

−2

−1

1

2

3

f = f∗∗

f∗

Figure 2.9: Construction of the Legendre–Fenchel conjugate of a convex function. The left plot shows the function f with some
tangent lines—these are exemplary samples—to the graph of f . The intersection of a tangent with the y-axis yields the negative of
the value of the dual for the respective slope. In order to cope with the sign flip, the y-axis of the right plot points downwards. The
correspondences between tangents in the left plot and points in the right plot is indicated by the dotted lines and the respective big
dots. In the same way, the left plot is constructed from the right one. The duality f∗∗ = f becomes clear.

The Legendre–Fenchel conjugate has the property that for proper, lsc, convex functions f it holds
that (f∗)∗ =: f∗∗ = f (see [Roc70, Thm. 12.2]). This means that the convex conjugate of the convex
conjugate of a function coincides with the original function. Figure 2.9 confirms this fact. Moreover, it
shows a geometric construction of the convex conjugate.

Before we come to some examples, we present a simplification when it comes to calculations.

Proposition 2.43 (calculation rule for the Legendre–Fenchel transform). Let g be a convex function on
RN , and let

f(x) = g(A(x− a)) + 〈x, a∗〉+ λ ,

whereA is a one-to-one linear transformation form RN onto RN , a and a∗ are vectors in RN , and λ ∈ R.
Then

f∗(x∗) = g∗(A−>(x∗ − a∗)) + 〈x∗, a〉+ λ∗ ,

where A−> = (A−1)> and λ∗ = −λ− 〈a, a∗〉.
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Proof. Using the substituition y = A(x− a) allows us to compute f∗

f∗(x∗) = sup
x∈RN

〈x, x∗〉 − g(A(x− a))− 〈x, a∗〉 − λ

= sup
y∈RN

〈
A−1y + a, x∗

〉
− g(y)−

〈
A−1y + a, a∗

〉
− λ

= sup
y∈RN

〈
A−1y, x∗ − a∗

〉
− g(y) + 〈a, x∗ − a∗〉 − λ

= sup
y∈RN

〈
y,A−>(x∗ − a∗)

〉
− g(y) + 〈x∗, a〉+ λ∗ .

The supremum in the last line is g∗(A−>(x∗ − a∗)) by definition.

Example 2.17. In order to understand the geometry of dualization best, it is important to know which
functions do not change under the dualization operation.

(i) Let f : R→ R, x 7→ 1
2x

2. Then f∗(x∗) = 1
2 (x∗)2. The supremum supx∈R xx

∗ − 1
2x

2 is attained
at x = x∗. Plugging-in yields the expression for f∗.

(ii) Let f : RN → R, x 7→ 1
2‖x‖2. Then f∗(x∗) = 1

2‖x∗‖2.

Example 2.18. (i) Let f : RN → R, x 7→ ‖x‖. Then f∗(x∗) = δB1(0)(x
∗). Consider the expression

g(x) := 〈x, x∗〉 − ‖x‖. We determine for each x∗ the point x ∈ RN for which g attains its
supremum. Obviously, g(tx∗/‖x∗‖) ≥ g(x) for all x ∈ RN with ‖x‖ = t ∈ R+. Therefore,
for each x∗ the supremum of g is found along the one-dimensional line in direction of x∗. As
g(tx∗/‖x∗‖) = t(‖x∗‖ − 1), it is clear that for x∗ ∈ B1(0) the supremum is 0 and is attained for
t = 0. For x∗ ∈ RN rB1(0) the supremum of g is∞.

(ii) Consider the Huber function, i.e., let f : RN → R, f(x) = 1
2ε‖x‖2 for ‖x‖ < ε and f(x) =

‖x‖ − ε
2 for ‖x‖ ≥ ε with ε > 0. A simple calculation shows that the convex conjugate is

f∗(x∗) = ε
2‖x∗‖2 + δB1(0)(x

∗).

As promised at the end of the preceding section, we state Moreau’s identity.

Theorem 2.44 (Moreau’s identity). Let f : RN → R be a lsc, proper, convex function and denote by f∗

its convex conjugate function. Then, it holds that

x = (id + λ∂f)−1(x) + λ

(
id +

1

λ
∂f∗

)−1 (x
λ

)
.

Proof. The proof can be found in [Roc70, Thm. 31.5].

For example, Moreau’s identity allows us to evaluate the proximal map of the convex conjugate func-
tion without actually computing the conjugate function. Only the function f and its associated proximal
map must be computed. For λ = 1, Moreau’s identity has a particularly simple form; It reads

x = (id + ∂f)−1(x) + (id + ∂f∗)−1(x) .
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2.1.7 Strong convexity

Based on Theorem 2.37 we want to introduce a stronger notion of convexity: strong convexity. A convex
function that is additionally strongly convex has many nice properties and provides several interesting
inequalities. However, we will only need a few. For example, a strongly convex function has a particularly
simple lower bound. For each point there is a quadratic minorizer of the function such that they meet in
that point. See Figure 2.10. Strongly convex functions play a central role in Chapter 3, where we develop
a new algorithm for functions with this property.

Definition 2.45 (strong convexity). A convex function f : RN → R is called strongly convex if there
exists m > 0 such that the function f(x)− (m/2)‖x‖2 is convex. The largest such parameter m is called
convexity parameter or modulus.

We denote the class of proper, strongly convex functions with convexity parameter m > 0 by Sm. In
order to make it easier to work with both, convex and strongly convex functions, we define the class of
proper convex functions by S0.

Strongly convex functions allow us to sharpen the subgradient inequality.

Lemma 2.46 (quadratic subgradient inequality). Let f : RN → R be a proper, strongly convex function
with convexity parameter m > 0. Then for any x̄ ∈ dom ∂f it holds that

f(x) ≥ f(x̄) + 〈v, x− x̄〉+
m

2
‖x− x̄‖2 , for all v ∈ ∂f(x̄) and x ∈ dom f .

Proof. A simple calculation with the subgradient inequality (2.1) applied to f(x) − (m/2)‖x‖2 proves
the statement.

Moreover, strong convexity is also reflected in the Lipschitz continuity of the proximal mapping.

Proposition 2.47 (Lipschitz continuity of proximal map). Let f ∈ Sm, m > 0, λ > 0. Then λf ∈ Sλm

and (id + λf)−1 is (1 + λm)−1-Lipschitz continuous, i.e. for all x, y ∈ RN :

‖(id + λf)−1(x)− (id + λf)−1(y)‖ ≤ (λm+ 1)−1‖x− y‖ . (2.2)

Proof. For the proof we refer to [BC11, Prop. 23.11].

Another useful characterization in analogy to Theorem 2.37 is the following.

Theorem 2.48 (monotonicity for strongly convex functions). Let f : RN → R be a proper, strongly
convex function. Then for all x, x̄ ∈ dom ∂f it holds that

〈v − v̄, x− x̄〉 ≥ m‖x− x̄‖2 , for all v ∈ ∂f(x), v̄ ∈ ∂f(x̄) .

Proof. The proof follows from summing the quadratic subgradient inequality (Lemma 2.46) for x and x̄
and the quadratic subgradient inequality for swapped x and x̄.

As this characterization of strong convexity is purely based on subgradients (and not on function
values), it is well-suited for generalizations to more abstract concepts. An example for this are maximal
monotone operators, which we define in Definition 2.50. In that context, this kind of relation is used to
introduce strongly monotone operators. For details we refer to [BC11].
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Figure 2.10: A strongly convex function f and (in red) the
quadratic minorizer from Lemma 2.46 at −1.

Figure 2.11: A function f with Lipschitz continuous gradient
and (in red) the quadratic majorizer from Lemma 2.49 at −1.5.

2.1.8 Lipschitz continuity of the gradient of a function

Lipschitz continuity of the gradient of a function is in some way complementary to strong convexity
of a function. In Lemma 2.46, we have seen that strongly convex functions have a particularly simple
minorizer in each point. Functions with Lipschitz continuous gradient provide a simple majorizer. An
example is shown in Figure 2.11.

Let us apply the definition of Lipschitz continuity to the gradient of a function f : RN → R. Assume
that f is differentiable on a set C ⊂ dom f . Then ∇f : C → RN is Lipschitz continuous with Lipschitz
constant L ≥ 0, sometimes called L-Lipschitzian, if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for all x, y ∈ C .
Obviously, ∇f being L-Lipschitzian implies that f is continuously differentiable on C. We denote the
class of functions with this property by2 f ∈ C 1,1

L (C). If the Lipschitz continuity holds on the domain of
the function f we abbreviate the notation by f ∈ C 1,1

L .

As mentioned before, functions with this property allow for quadratic majorizers, as stated in the
following descent Lemma.

Lemma 2.49 (descent Lemma). Let f : C → R have Lipschitz continuous gradient with L > 0 on the
convex set C ⊂ RN . Then for any x̄ ∈ C it holds that

f(x) ≤ f(x̄) + 〈∇f(x̄), x− x̄〉+
L

2
‖x− x̄‖2 , for all x ∈ C . (2.3)

Proof. This proof is classical, but it is written in a few lines: By the mean value theorem, we have that

f(x) = f(x̄) +

∫ 1

0

〈∇f(x̄+ t(x− x̄)), x− x̄〉 dt

= f(x̄) + 〈∇f(x̄), x− x̄〉+

∫ 1

0

〈∇f(x̄+ t(x− x̄))−∇f(x̄), x− x̄〉 dt .

2This notation is also used in [Nes04]. C k,mL denotes the class of functions that are k-times continuously differentiable and the
m-th derivative is Lipschitz continuous with Lipschitz constant L.
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Using the Cauchy-Schwarz inequality it follows that

f(x) ≤ f(x̄) + 〈∇f(x̄), x− x̄〉+

∫ 1

0

‖∇f(x̄+ t(x− x̄))−∇f(x̄)‖‖x− x̄‖ dt

≤ f(x̄) + 〈∇f(x̄), x− x̄〉+

∫ 1

0

Lt‖x− x̄‖2 dt

= f(x̄) + 〈∇f(x̄), x− x̄〉+
L

2
‖x− x̄‖2 .

Usually, this inequality is referred to as (quadratic) Lipschitz upper bound of f . Note that it does not
require convexity.

This inequality is very important for many optimization algorithms. It provides a quadratic majorizer
that touches the original function in one point, where they also have the same slope. As Figure 2.11
suggests, the minimizer of the quadratic majorizer yields a lower (at least not higher) function value of
the original function. This idea is key for most of the algorithms considered in Section 2.2.

Before, we introduce the algorithms we recap a few facts about convergence rates.

2.1.9 Convergence rates

Let us quickly recap the different rates of convergence of an algorithm that will be important for us. It is
inspired by [Nes04, Ber99]. First of all, we need to refine what quantity is to be measured. Usually, the
object that converges is denoted residual (or error). For example, the residual at iteration n ∈ N can be
one of the following:

rn = ‖∇f(xn)‖ , rn = ‖xn − x∗‖ , or rn = |f(xn)− f(x∗)| ,

where x∗ is the limit of the sequence (xn)n∈N.

If the convergence of the sequence (xn)n∈N is comparable with the geometric progression of a stan-
dard sequence (qn)n∈N with q ∈ (0, 1), the sequence (xn)n∈N converges with a linear rate of conver-
gence. This is the case, if there exists c > 0 such that rn ≤ c qn, which is usually abbreviated with
rn ∈ O(qn). Another characterization is the existence of q ∈ (0, 1) such that

lim sup
n→∞

rn+1

rn
≤ q .

The associated complexity is given by the maximal number of iterations that are required for the residual
to fall below a certain bound ε > 0.

The convergence rate of the residual is called superlinear if lim supn→∞
rn+1

rn
= 0, and sublinear, if

lim supn→∞
rn+1

rn
= 1.

Furthermore, we distinguish different rates of superlinear convergence like quadratic or cubic. For the
sublinear rate, we consider convergence at the rate of (1/np)n∈N with p > 0, i.e., rn ≤ c/np, in which
case we write rn ∈ O(1/np). The larger the value of p the faster the convergence.
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Figure 2.12: LEFT: Graph of a monotone operator. RIGHT: Graph of a maximal monotone operator. Adding the red pieces to the
graph on the left yields a maximal monotone operator.

2.2 First order convex optimization

In Sections 2.2.4 to 2.2.6 we present algorithms that will be of importance throughout this thesis. In order
to arrange them in the jungle of convex optimization algorithms, we give a rough overview about some
important algorithmic concepts for convex optimization. The concept of maximal monotone operators has
proved to be a suitable framework for that. On one hand, it is general enough to cover many algorithms
and, on the other hand, it carries enough structure to develop (also practically) efficient optimization
algorithms. For example finding a minimum of a convex function or finding the saddle point of a convex–
concave saddle point problem comes down to the same problem, namely the problem of finding the zero
of such a maximal monotone operator T , i.e., we seek3 x ∈ RN such that 0 ∈ T (x).

Definition 2.50 (maximal monotone operator (see [BC11, Def. 20.1 and 20.20])). (i) Let A : RN ⇒
RN . Then A is monotone if

∀(x, v), (x̄, v̄) ∈ GraphA : 〈x− x̄, v − v̄〉 ≥ 0 .

(ii) A monotone operator A is maximal monotone if there exists no monotone operator B : RN ⇒ RN
such that GraphB properly contains GraphA, i.e., for every (x, v) ∈ RN × RN ,

(x, v) ∈ GraphA ⇔ ∀(x̄, v̄) ∈ GraphA : 〈x− x̄, v − v̄〉 ≥ 0 .

The graphs of a monotone and a maximal monotone operator are shown in Figure 2.12. An important
example is the subdifferential of a convex function. Let f : RN → R be proper convex function. Then ∂f
is a monotone operator. Moreover, if f is also lower semi-continuous, then ∂f is a maximal monotone
operator (see for example [BC11, Thm. 20.40]). The relation is intuitive by Theorem 2.37.

Therefore, the reader who is not familiar with the concept of maximal monotone operators can think
of it as ∂f with a proper, lsc, convex function f , or even as ∇f if f is additionally differentiable. We
also show examples, which should make the overview understandable without prior knowledge about
monotone operators.

As mentioned earlier, the proximal operator is a key concept for many practical optimization algo-
rithms. This statement is also true when formulating them with monotone operators. However, in this
context, the proximal operator is usually refered to as resolvent operator. Maximality of a monotone
operator is important, as it guarantees well-definedness of the resolvent operator (cf. Lemma 2.39).

3Usually, this problem is considered in an infinite dimensional Hilbert space (or in even more general spaces).
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2.2.1 Gradient descent

Gradient descent is a classical first-order optimization algorithm for minimizing convex and differentiable
objective functions. Given a current iterate xn ∈ RN for n ≥ 0 the next iterate xn+1 ∈ RN is computed
explicitly in direction of the negative gradient of the objective function at the current iterate. The negative
gradient of the objective points “downhill”. Therefore, for appropriate step sizes the function value
reduces from xn to xn+1. The update step reads, in terms of a maximal monotone operator T = ∇f (for
a convex and differentiable function f ),

xn+1 = (id− λnT )(xn) or xn+1 = xn − λn∇f(xn) .

Sometimes the update step is also referred to as forward step. The gradient descent method converges for
suitable choices of λn > 0. If the gradient of the objective function, ∇f , is Lipschitz continuous with
Lipschitz constant L ≥ 0, it is easy to show convergence of (f(xn))n∈N for 0 < infn λn ≤ supn λn <
2/L. See, for example, [Nes04].

Example 2.19. Let us consider a very simple example. Consider a vector x ∈ RN and the discrete
derivative operator∇ : RN → RN as defined in Section 0.2. Moreover, let z ∈ RN . The goal is to find the
minimum of the function E : RN → R, E(x) = 1

2‖x− z‖2 + 1
2‖∇x‖2. The gradient is easily computed

as∇E(x) = x− z +∇>∇x and the Lipschitz constant for∇E is L ≤ 1 + 4. Therefore convergence of
the gradient descent method can be achieved for λ ∈ (0, 2/L). We initialize with x0 ∈ domE and iterate

xn+1 = xn − λ∇E(xn) = xn − λ(xn − z +∇>∇xn) = xn + λz − λ(id +∇>∇)(xn) .

In order to compute xn+1 only the current iterate xn must be known. This is different to methods operat-
ing with backward (implicit) steps, which we consider next.

For a general maximal monotone operator the (classical) gradient descent method is not easily appli-
cable4. In that case the classical algorithm for solving for x ∈ RN with 0 ∈ T (x) is the proximal point
algorithm.

2.2.2 Proximal point algorithm

The proximal point algorithm originates from the works of [Min62, Mar70] and became particularly
powerful with the general convergence results for monotone operators by Rockafellar [Roc76]. Under
the assumption of summable errors in the computation of the iterates, he proved weak convergence of the
sequence of iterates to a zero of a monotone operator. For details we also refer the reader to the thesis of
Eckstein [Eck89].

The formal update step of the proximal point algorithm for a maximal monotone operator T is

xn+1 ∈ (id + λnT )−1(xn) , (2.4)

where (id + λnT )−1 is the resolvent operator [Mor65]. The resolvent operator generalizes the proximity
operator for a convex function (Section 2.1.5) to the context of monotone operators. The update step
using the resolvent operator is sometimes denoted backward step or implicit step. In the special case
where T = ∇f for a convex and differentiable function f the next iterate can be found by (the non-linear
system of equations in the variable x)

xn+1 solves (id + λn∇f)(x) = xn .

4There are ways to deal with nondifferentiable functions in a kind of gradient descent framework. These methods are called
subgradient descent (according to [Ber99] it first appeared in [Sho85]; see for example [Ber99, Sec. 6.3]).
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Example 2.20. Let z, E,∇ be as in Example 2.19. Then the proximal point algorithm for finding 0 =
∇E(x) reads: Initialize x0 ∈ domE and iterate

xn+1 = xn − λ∇E(xn+1) = xn − λ(xn+1 − z +∇>∇xn+1)

by solving the linear system of equations (w.r.t. x)

xn+1 solves (id + λ(id +∇>∇))(x) = xn + λz .

For this example the algorithm converges for any λ > 0. In fact even for λ → ∞. If λ tends towards
infinity (informally) the previous linear system of equation reduces to x + ∇>∇x = z, which means
solving the first order optimality condition of the original problem directly—for convex functions the
global minimum is found.

Like in Example 2.20 solving the resolvent operator for obtaining the next iterate can be as hard as
the original problem. Therefore it is interesting to find approximations to the proximal point algorithm
for which the resolvent operator is easy to invert and for which the favorable properties of the proximal
point algorithm still hold. A way to modify the proximal point algorithm such that it becomes applicable
to many problems is by splitting methods.

2.2.3 Splitting methods

The starting point for splitting methods is the difficulty to use the proximal point algorithm in practice.
The idea is to approximate the backward step from the proximal point algorithm with operations that
combine the simplicity of forward (explicit) steps and the favorable convergence properties of backward
(implicit) steps. A maximal monotone operator T is usually expressed as a sum of two operators A and
B, i.e., T = A + B, where A and B are assumed to be “simple”. Simple is meant in the sense that the
resolvent operator is easy or efficient to compute, or a simple explicit step is performed.

Splitting algorithms for solving the problem of finding x ∈ RN such that 0 ∈ (A + B)(x) combine
forward and backward steps in different ways. It first appeared explicitly in the context of the proximal
point algorithm in [LM79]. Examples are the Peaceman–Rachford splitting algorithm [PR55] and the
Douglas–Rachford splitting algorithm [DR56], which show strong relations to the so-called alternating
direction method of multipliers, double-backward, forward–backward, etc. There are many splitting al-
gorithms and many relations among them. In the following, we focus on the so-called forward–backward
splitting algorithms [LM79, Gol64, LP66, Bru77]

xn+1 = (id + λnA)−1(id− λnB)(xn) .

In [Pas79] a convergence result in the general setting of maximal monotone operators A, B, and A + B
is given. Under suitable conditions, he proves weak convergence of the sequence of weighted averages
zn :=

∑n
i=1 λix

i/
∑n
i=1 λi to a zero of A+B. Convergence results for the forward–backward splitting

algorithm significantly improve when B is a single-valued Lipschitz continuous operator. An example
for such an operator is the gradient of a continuously differentiable function with Lipschitz continuous
gradient. In this case, [Tse91, Gab83] show convergence to a zero of A+B if λn < 2/L, where L is the
Lipschitz constant of B. In the special setting where A is the subdifferential of an indicator function of
a convex set—the proximal operator is equivalent to a projection—, the algorithm becomes the projected
gradient descent method [LP66, Dun81, Gol64]. The forward–backward splitting algorithm is also very
interesting for applications like sparse signal recovery [CW05, DDM04], image processing [RFP13], and
machine learning [Sra12, DS09]. Before we step forward to generalizations of the forward–backward
algorithm, we consider an example.
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Example 2.21. Let z, E,∇ be as in Example 2.19. We split E = E1 + E2 with E1(x) = 1
2‖x − z‖2

and E2(x) = 1
2‖∇x‖2. The monotone operators appearing in the update step of the forward–backward

algorithm are A = ∇E1 and B = ∇E2. Then the algorithm for finding 0 = (A+B)(x) reads: Initialize
x0 ∈ domE and iterate

xn+1 = xn − λ(∇E1(xn+1) +∇E2(xn)) = xn − λ(xn+1 − z +∇>∇xn) ,

which is equivalent to

xn+1 =
(xn − λ∇>∇xn) + λz

1 + λ
.

For this example, convergence is achieved by choosing λ ∈ (0, 2/L) where L = 4 is the Lipschitz
constant of B.

2.2.4 Heavy-ball method

The gradient method is certainly one of the most fundamental but also one of the most simple algorithms
to solve smooth convex optimization problems. In the last decades, the gradient method has been modified
in many ways. One of those improvements is to consider so-called multi-step schemes [Pol64, Nes04].
It has been shown that such schemes significantly boost the performance of the plain gradient method. A
particularly interesting multi-step scheme by Polyak [Pol64] is the following two-step method

xn+1 = xn − α∇f(xn) + β(xn − xn−1) .

It can be seen as a (time) discretization of its second order time continuous analogue, the so called Heavy-
ball with friction dynamical system,

ẍ(t) + γẋ(t) +∇f(x(t)) = 0 ,

which is an ordinary differential equation. It arises when Newton’s law is applied to a point subject to a
constant friction γ > 0 (of the velocity ẋ(t)) and a gravity potential f . This explains the naming Heavy-
ball method and the interpretation of β(xn − xn−1) as inertial force. [Pol64] proves local convergence
to a minimum of a function whose Hessian matrix is positive definite and bounded from above in a
neighborhood of the (local) minimum. Moreover, he proves a local convergence rate of q := (

√
L −√

l)/(
√
L +

√
l) when setting α = 4/(

√
L +

√
l)2 and β = q2, where (in modern terminology) L is

the (local) Lipschitz constant of the gradient and l is the (local) strong convexity parameter. Obviously,
for a function that has (globally) a Lipschitz continuous gradient and is strongly convex, Polyak’s result
implies global convergence. Compared to the gradient descent method, which arises for β = 0, this is a
significant improvement in the speed of convergence. Nowadays, it is known that the convergence rate
of the Heavy-ball method is optimal [Nes04] for a first order algorithm with global convergence for all
strongly convex functions with Lipschitz continuous gradient.

The conjugate gradient method reveals the same rate of convergence. In fact, the conjugate gradient
method for minimizing quadratic problems can be expressed as Heavy-ball method. Therefore, it can
be seen as a special case of the Heavy-ball method for quadratic problems. Nevertheless, there is an
interesting difference. The conjugate gradient method does not require additional knowledge about the
function parameters for such problems. They are computed online. However, the downside of the conju-
gate gradient method is that its nice theoretical properties do not generalize well to more general classes
of functions, where the Heavy-ball method does generalize.
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Like the modification of the gradient descent method to the forward–backward splitting algorithm, the
Heavy-ball method can be modified in the same way. This leads us to the generalization of the projected
Heavy-ball method

xn+1 = (I + α∂g)−1(xn − α∇f(xn) + β(xn − xn−1)) , (2.5)

where g is a (possibly nonsmooth) convex function. In Chapter 3 we investigate in detail the convergence
rate of this algorithm. We show that (xn)n∈N converges with optimal linear rate.

In [AA01, Alv03], the Heavy-ball method was extended to maximal monotone operators. In a subse-
quent work [MO03], it has been applied to a forward–backward splitting algorithm, again in the general
framework of maximal monotone operators. In terms of maximal monotone operators A and B, where
B is single-valued and Lipschitz continuous, the update step for the proximal inertial Heavy-ball method
can be written as:

yn = xn + β(xn − xn−1)

xn+1 = (id + αA)−1(yn − αB(xn))

Like for the forward–backward splitting algorithm, it can be shown that this method converges as long as
α < 2/L and β ∈ [0, 1), where L is the Lipschitz constant of B. The difference between this algorithm
and the forward–backward splitting is the point yn. For the method here B is still evaluated at the old
point xn. We do not show an example here, because the algorithm is as difficult to implement as the
forward–backward splitting method.

Other modifications of the Heavy-ball method are the following. In [APR14] a time second-order
dynamical system related to the Heavy-ball with friction system is studied. It is shown to be equivalent
to a coupled first-order system that becomes an inertial forward–backward splitting method when it is
discretized. The Heavy-ball method seems also appealing in the nonconvex setting. In [ZK93], it was
generalized to smooth nonconvex functions and in [OCBP14] (see Chapter 6) to a class of structured
nonsmooth nonconvex optimization problems. Modifications of the Heavy-ball method appear in the
convex setting for instance in the popular accelerated gradient method of Nesterov [Nes04, Nes13] (see
Section 2.2.5), where the difference is the computation of the gradient. While the Heavy-ball method uses
the point from the preceding iteration, Nesterov’s method computes the gradient at points that are extrap-
olated by the inertial force. On strongly convex functions, both methods are equally fast (up to constants),
but Nesterov’s accelerated gradient method converges much faster on convex functions [DT13].

2.2.5 Nesterov’s method and Fista

The difference between the Heavy-ball method (2.5) and FISTA (fast iterative shrinkage–thresholding
algorithm) [BT09a] is the evaluation of the gradient of the function. Where the Heavy-ball method uses
the gradient at the old point, FISTA uses the gradient of the extrapolated point. The update scheme for
FISTA reads

yn = xn + β(xn − xn−1)

xn+1 = (I + α∂g)−1(yn − α∇f(yn)) .
(2.6)

Different step size rules under different variants of this scheme were proposed [Nes83, Nes04, Tse08,
BT09a]. A simpler version of this was proposed by Nesterov [Nes83] (g ≡ 0), which was the first
method for the general class of smooth convex objective functions (with Lipschitz continuous gradient)
that obeys a convergence according to O(1/n2), where n is the iteration counter. For g proper convex
Nesterov [Nes13] and Beck and Teboulle [BT09a] proposed algorithms with the same convergence rate.
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Up to constants, the proved convergence rates for the residual of function values coincides with the lower
complexity bound for this class of functions, as proved by Nesterov [Nes04]. There are also strong
relations of their methods to so-called primal–dual approaches. See for example [LP14].

2.2.6 Primal–dual approach

Starting from the proximal point algorithm (2.4), we now derive the primal–dual algorithm by Chambolle
and Pock [CP11, PC11]. In (2.4), we replace the step-size factors λn by a symmetric, positive definite
matrix M , i.e.,

0 ∈ T (xn+1) +M−1(xn+1 − xn) . (2.7)

This matrixM can be considered as changing the metric that is used during the optimization. The primal–
dual algorithm emerges when we set

T =

(
∂g(xn+1) +K∗yn+1

∂f∗(yn+1)−Kxn+1

)
and M =

(
T −1 −K∗
−K Σ−1

)
, (2.8)

where f, g are convex functions, f∗ denotes the convex conjugate of f , K is a linear operator, K∗ its
adjoint operator, and T , Σ are symmetric, positive definite matrices containing the step sizes. If the
condition ‖Σ 1

2KT 1
2 ‖2 < 1 is satisfied, then [PC11, Thm. 1] proves convergence of the algorithm (2.7),

(2.8), i.e., 0 ∈ T (x̂, ŷ). Usually, T and Σ are chosen to be diagonal matrices, in order to keep evaluating
the proximal operator simple. Plugging (2.8) into 0 ∈ T (x̂, ŷ) yields

0 ∈
(
∂g(x̂) +K∗ŷ
∂f∗(ŷ)−Kx̂

)
or

{
−K∗ŷ ∈ ∂g(x̂)

Kx̂ ∈ ∂f∗(ŷ) ,

which is the first order optimality condition of the saddle point problem

min
x

max
y

g(x) + 〈Kx, y〉 − f∗(y) .

Finally this saddle point problem is solved by the general primal–dual algorithm proposed in [CP11,
PC11], which arises when combining (2.7) and (2.8):

xn+1 = (id + T ∂g)−1(xn − TK∗yn)

yn+1 = (id + Σ∂f∗)−1(yn + ΣK(2xn+1 − xn)) .
(2.9)

Although there are several other primal–dual algorithms [EZC10, HY12a, Con13, CP12, Vũ13], we focus
on (2.9) as it proved to be very efficient in the last years and will be used later in the thesis. It is particularly
efficient in large scale applications from image processing.

Example 2.22. Let z, E,∇ be as in Example 2.19. We set g(x) = 1
2‖x − z‖2 and f(∇x) = 1

2‖∇x‖2
and use f(∇x) = f∗∗(∇x) = maxy 〈∇x, y〉 − 1

2‖y‖2. The step size parameter matrices T and Σ
can be chosen as diagonal matrices with the constant diagonal τ and σ, respectively. Then, the step size
restriction is given by the condition στL2 < 1 whereL is the operator norm ofK = ∇, which isL =

√
4.

Then, the update step of the primal–dual algorithm reads

xn+1 =
(xn − τ∇>yn) + τz

1 + τ

yn+1 =
yn + σ∇(2xn+1 − xn)

1 + σ
.
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Chapter 3

iPiasco: inertial proximal algorithm
for strongly convex optimization

In this chapter, we present a Heavy-ball method (forward–backward splitting algorithm with additional
inertial term; see Section 2.2.4) for solving a strongly convex optimization problem of the form

min
x∈RN

f(x) + g(x) ,

in the Euclidean vector space RN of dimension N ∈ N. The objective function is composed of a smooth,
convex function f and a nonsmooth, convex function g. Additionally, we assume that the objective
function is strongly convex. On one hand, these assumptions are very restrictive, however, on the other
hand, this class of objective functions can be optimized very efficiently. As we will see in Chapter 7 such
problems can arise as subproblems for solving nonconvex problems. The knowledge about the structure
of the problem is used for deriving a convergence rate for the proposed algorithm. It is proved to be an
optimal algorithm with linear rate of convergence. For certain problems this linear rate of convergence is
better than the provably optimal rate of convergence for smooth strongly convex functions.

In the general case, the rate only depends on the Lipschitz constant L > 0 of∇f , the strong convexity
parameter l > 0 of f and the strong convexity parameter m > 0 of g. When g = δC or m = 0, this rate
coincides with the optimal rate found for the projected Heavy-ball method. Summarizing, the additional
proximal step does not degrade the known convergence rates.

A particularly interesting situation arises, when g is also smooth and has Lipschitz continuous gradient
∇g with constant M > 0. In this case, the function f + g may be split into f and g such that terms with
high Lipschitz constant enter g. We demonstrate that in some situations an appropriate splitting leads to
a convergence rate that is better than the optimal lower bound. This is possible thanks to the well defined
structure of our optimization problem. The optimal lower bound is only valid for black-box algorithms.

A numerical experiment shows and compares the efficiency of the proposed algorithm in practice
with other optimal methods. Finally, we apply iPiasco to the computer vision problems of denoising
and inpainting and compare its convergence against several other methods, e.g., the projected Heavy-ball
method. Large parts of this chapter are presented in [OBP15].
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3.1 Related work

In [Nes04], Nesterov derives lower efficiency bounds for first-order black-box optimization on different
classes of objective functions. If the objective function is nonsmooth, it is shown that the lower bound on
the convergence rate is O(1/

√
n). This bound is actually attained by the subgradient method [Sho85],

which is certainly the most simple algorithm for nonsmooth optimization. In [Nes05], it was shown
that if the nonsmooth objective function has a certain saddle-point structure (in contrast to black box
optimization), the convergence rate can be improved via smoothing to O(1/n). Algorithms that achieve
this rate are for example [Nes05, CP11, DDM04, Nes13, GM09, HY12b].

If the objective function is smooth (i.e. it has a Lipschitz continuous gradient) the lower efficiency
bound is O(1/n2). The first algorithm that achieved this rate was presented by Nesterov in [Nes83] and
generalized to composite objective functions or saddle-point problems in [CP11, BT09a, Nes83, Nes13,
GM09]. Finally, for the class of smooth and strongly convex functions, the lower efficiency bound is
given by O(ωn), where ω ∈ (0, 1) depends on the square root of the condition number of the objective
function. Algorithms that converge with the same rate are for example [CP11, Pol64, BDF07, HL12].

Related work of forward–backward splitting algorithms and the Heavy-ball method were already
discussed in Section 2.2.4.

3.2 The proposed algorithm

The objective function h : RN → R, h := f + g, is assumed to be proper lower semi-continuous (lsc),
extended valued and bounded from below by some value h > −∞. Moreover, let the objective be com-
posed of a proper lsc convex (possibly nonsmooth) function g : RN → R and a proper convex function
f : RN → R that is twice continuously differentiable on dom g and has Lipschitz continuous gradient on
dom g; and let f or g be strongly convex.

We propose Algorithm 1 including the definition of the step size parameters, which emerge from the
subsequent convergence analysis.

Algorithm 1. Inertial proximal algorithm for strongly convex optimization (iPiasco)

• Optimization problem: minx∈RN h(x) = minx∈RN f(x) + g(x) with

f ∈ S 2,1
l,L (dom g), L ≥ l ≥ 0 , g ∈ Sm, m ≥ 0, m+ l > 0 .

• Step-size parameter: Define α > 0 and β ∈ [0, 1) by

α =
4

(
√
l +m+

√
L+m)2 − 4m

, β =
(
√
m+ L−

√
m+ l)2

(
√
m+ L+

√
m+ l)2 − 4m

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update

xn+1 = (id + α∂g)−1(xn − α∇f(xn) + β(xn − xn−1)) . (3.1)
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3.2.1 Preliminaries

In order to derive the convergence result in this chapter, we need a few results beyonds those of Chapter 2.
The spectral radius of a matrix T , which is defined as the maximal magnitude of its eigenvalues

ρ(T ) := max{|λ||λ is eigenvalue of T} ,

is of importance. When the iteration matrix of an algorithm has only eigenvalues smaller than 1, i.e.,
the spectral radius is less than 1, the sequence induced by this iteration matrix converges. Moreover, the
matrix norm reveals an asymptotic relationship to the spectral radius of the matrix. This is an important
result from linear algebra (see, for example, [Pol87, Sec. 2.1]), which was originally proved by Gelfand
[Gel41].

Lemma 3.1 (Gelfand’s formula). It holds that ρ(A) = limn→∞ ‖An‖1/n, i.e., the spectral radius of
A gives the asymptotic growth rate of ‖An‖: For every ε > 0 there is c = c(ε) such that ‖An‖ ≤
c(ρ(A) + ε)n for all n ∈ N.

3.2.2 Convergence analysis

Let us now analyze Algorithm 1.

Lemma 3.2. Let a, b ∈ R. If

(1−
√

1− a)2 ≤ b ≤ (1 +
√

1− a)2 , (3.2)

then the matrix

T :=

(
a+ b −b

1 0

)
has two complex eigenvalues with squared magnitude b.

Proof. In order to obtain the eigenvalues of T , we compute the roots of the characteristic polynomial
v2 − (a+ b)v + b in the variable v. The eigenvalues v1, v2 are

v1,2 =
a+ b

2
±
√

(a+ b)2

4
− b .

Now, we try to find the condition for obtaining complex roots. The discriminant of the quadratic char-
acteristic polynomial needs to be negative. A few elementary transformation steps yield the condition
(b+ (a− 2))2 ≤ 4− 4a, which is equivalent to (3.2). Under the assumption that this inequality holds T
has two complex roots with squared magnitude

|v1,2|2 = v1,2v̄1,2 =

(
a+b

2 ±
√

(a+b)2

4 − b
)(

a+b
2 ∓

√
(a+b)2

4 − b
)

= b ,

which concludes the proof, where v̄1,2 denotes the complex conjugate.

Now, we are equipped to start with the analysis of the convergence rate of iPiasco as proposed in
Algorithm 1. For notational convenience, we define zn := (xn − x∗, xn−1 − x∗)>.
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Theorem 3.3. Let the functions f and g with parameter l, L, and m; and the step size parameter α and
β be as in Algorithm 1. Moreover, let (xn)n∈N be generated by Algorithm 1 and x∗ := limn→∞ xn be
the unique global optimum. Then, for every ε > 0 there is c = c(ε) such that

‖zn+1‖ ≤ c(q + ε)n‖zn‖ for all n ∈ N , where q =

√
m+ L−

√
m+ l√

m+ L+
√
m+ l

.

Proof. First, we note that x∗ ∈ domh exists and it is unique due to the properties of h. As x∗ is a
stationary point of h, hence 0 ∈ ∂h(x∗), x∗ is a fixed point of (id + α∂g)−1 ◦ (I − α∇f) ([BC11,
Proposition 25.1(iv)]), i.e.,

x∗ = (id + α∂g)−1(x∗ − α∇f(x∗) + β(x∗ − x∗)) .

Combining and (6.2) with the (1+αm)−1-Lipschitz continuity of the (strongly) convex function αg from
(2.2), we observe

‖xn+1 − x∗‖ ≤ m̃α‖(1 + β)(xn − x∗)− α(∇f(xn)−∇f(x∗))− β(xn−1 − x∗)‖ ,

where m̃α := (1 +αm)−1. As f is twice continuously differentiable and dom f is convex, there exists a
matrix B such that the following mean value theorem holds

∇f(xn)−∇f(x∗) =

(∫ 1

0

Bt dt

)
(xn − x∗), Bt := ∇2f(xn + t(x∗ − xn)) ,

where∇2f denotes the second derivative of f . Plugging both results together, we conclude

‖zn+1‖ ≤ sup
t∈[0,1]

‖Atzn‖, where At :=

(
m̃α((1 + β)I − αBt) −βIm̃α

I 0

)
.

Now, we analyze the spectral radius of the matrix At. As the decisive fact is that the eigenvalues of Bt
are in [l, L], which is independent of t, from now on we drop the subscript t. Denoting the eigenvalues of
B by λi, i = 1, . . . , N , it is not too difficult to show (using the right permutation matrix) that A is similar
to a block diagonal matrix with blocks of size 2× 2 of the form

Tλ :=

(
m̃α(1 + β − αλ) −m̃αβ

1 0

)
,

where from now on λ stands for one of the eigenvalues λi. Consequently, the spectral radius ofA is given
by the maximal spectral radius of Tλ for all λ.

Under the assumption that the spectral radius of A is less than 1, we can show the statement of
convergence using Lemma 3.1.

It remains to show that the setting of α and β yields ρ(A) < 1. If we set a = m̃α(1 − αλ) and
b = m̃αβ in Lemma 3.2, then the right inequality in (3.2) is trivially satisfied as b < 1. The left inequality
in (3.2) requires ρ(Tλ) =

√
m̃αβ ≥ |1−

√
1 + αλm̃α − m̃α|. Now, the next step is to determine α and

β such that (3.2) is met and the spectral radius becomes minimal.

Since λ ∈ [l, L], we have

(1−
√

1 + αλm̃α − m̃α)2 ≤ max{(1−
√

1 + αm̃αl − m̃α)2, (1−
√

1 + αm̃αL− m̃α)2} .

Hence, we determine α such that the right hand side is minimal1. Then, setting β such that m̃αβ equals
the right hand side (using the determined α) yields the best estimate for the convergence rate q =

√
m̃αβ.

1In general, this is analytically very challenging because m̃α also depends on α.
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For notational convenience, we define

%l,m(α) := 1−
√

1− 1− αl
1 + αm

.

Then, we have to determine α > 0 such that (%l,m(α))2 = (%L,m(α))2. It can be easily seen that
%l,m(α) = %L,m(α) is solved by α = 0, which is not feasible. The expression %l,m(α) = −%L,m(α) is
equivalent to (note that α > 0 and 1 + αm > 0)

2
√

1 + αm =
√
α(
√
l +m+

√
L+m) .

As both sides are positive, squaring and solving for α proves the expression for α. Then plugging-in the
computed α verifies the term for β.

Theorem 3.3 covers several special cases, which are interesting in their own right. In the following,
we state some of these special cases. The proofs directly follow from Theorem 3.3 by plugging-in the
parameters and some simple and brief calculation.

First we discuss the trivial case L = l. This yields q = 0 and the problem can be solved with a single
iteration. The step size parameters are α = 1/L and β = 0. The function f is a simple quadratic function
with circular level sets; The Lipschitz upper bound is exact. Therefore, the minimization problem

xn+1 = arg min
x
g(x) +

L

2
‖x− (xn − 1

L∇f(xn))‖2 ,

which is an equivalent representation of a single iteration step of iPiasco (6.2), coincides with the original
problem. This formulation shows that after the quadratic function f is minimized (by the step xn −
1
L∇f(xn)) evaluating the proximal term solves the whole problem.

If, additionally, m = 0, then a single gradient descent step with step size 1/L solves the problem.

In the following, we consider the special case m = 0 and l ≤ L. From [Nes04], the Heavy-ball
method is known as an optimal method for the class of strongly convex and two times continuously
differentiable functions with Lipschitz continuous gradient. Its convergence rate coincides with the esti-
mated lower bound from Nesterov. The next corollary reveals that adding a nonsmooth convex function g
to the function f iPiasco still shows the same convergence rate as the Heavy-ball method. Hence, in this
sense, iPiasco is optimal for the class of strongly convex (possibly nonsmooth) functions.

Corollary 3.4. Let the same assumptions hold as in Theorem 3.3, but with l > 0 (f strongly convex) and
m = 0 (g only convex). The quantities α, β, q in Algorithm 1 simplify to

α =
4

(
√
L+
√
l)2
, β =

(√
L−
√
l√

L+
√
l

)2

, and q =
√
β .

Then, for every ε > 0 there is c = c(ε) such that ‖zn+1‖ ≤ c(q + ε)n‖zn‖ for all n ∈ N.

Remark 3.1. Denoting Qf := L/l as the ratio between the Lipschitz constant for ∇f and the strong
convexity parameter for f , we can rewrite the spectral radius of the iteration matrix, denoted T here, for
Corollary 3.4 as

ρ(T ) =

√
Qf − 1√
Qf + 1

,

which establishes a relation between the conditioning of the objetive function and the convergence rate.
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Remark 3.2. The convergence rate of the Heavy-ball method is equivalent to the rate of the conjugate
gradient (CG) method. An advantage of CG is that it automatically determines the parameter α and β
in each iteration. On the other hand, unlike iPiasco, CG cannot handle an additional nonsmooth convex
term in the objective function.

There is also an interesting new variant of Algorithm 1, where only the function g is required to be
strongly convex. The convergence rate can benefit from an additional strongly convex term g.

Corollary 3.5. Let the same assumptions hold as in Theorem 3.3, but let only g be strongly convex and f
be convex, i.e., m > 0, l = 0, and L > 0. The quantities α, β, q in Algorithm 1 simplify to

α =
4

(
√
m+

√
L+m)2 − 4m

, β =
(
√
m+ L−√m)2

(
√
m+ L+

√
m)2 − 4m

,

and q =

√
m+ L−√m√
m+ L+

√
m
.

Then, for every ε > 0 there is c = c(ε) such that ‖zn+1‖ ≤ c(q + ε)n‖zn‖ for all n ∈ N.

Summarizing, we obtain optimal linear convergence for iPiasco in the case, where f is convex and
two times continuously differentiable, g is convex, and any of the two functions f or g is strongly convex,
additionally.

Let us discuss the results that we obtained so far more in detail. For a moment, suppose the func-
tion g ∈ S 1,1

m,M with convexity parameter m > 0 and Lipschitz constant M > 0. Then, the function
h is strongly convex, continuously differentiable and has a Lipschitz continuous gradient. The lower
complexity bound from [Nes04] reads

q(l, L,m,M) =

√
L+M −

√
l +m√

L+M +
√
l +m

,

which is increasing whenever M is increasing (limM→∞ q(l, L,m,M) = 1). As the convergence rate
for iPiasco, a value in (0, 1), is independent of the Lipschitz constant of∇g, a good decomposition moves
the term causing a high Lipschitz constant into the function g. It is clear that there is a certain valueM for
which the convergence rate of iPiasco outperforms the rate of the Heavy-ball method, see Figure 3.1. In
other words: iPiasco can beat the theoretical lower complexity bound from Nesterov [Nes04] for strongly
convex and twice differentiable functions with Lipschitz continuous gradient.

At first glance, this result seems to be an error, as it is impossible to outperform the theoretical lower
complexity bound. However, this bound holds true only for black-box algorithms. Here, we seemingly
very efficiently explore the composition of two functions contributing good properties to the objective.
Section 3.2.3.2 shows a practical example where this fact improves the performance.

3.2.3 Numerical analysis

Now, we consider the behavior of iPiasco when it is applied to Nesterov’s worst-case function for smooth
and strongly convex problems [Nes04]. Let Qh := Lh/lh > 1 be the condition number for the function
h with Lh > 0, the Lipschitz constant of ∇h, and lh > 0, the convexity parameter. Then, the worst-case
function from Nesterov reads

hwc(x) :=
lh(Qh − 1)

8

(
(x1)2 +

∞∑
i=1

(xi − xi+1)2 − 2x1

)
+
lh
2
‖x‖22 , (3.3)
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Figure 3.1: Convergence rates q for strongly convex and differentiable objectives with Lipschitz continuous gradient. Lower values
of q are better. Let f ∈ S 2,1

0,2 , i.e., l = 0 and L = 2. iPiasco makes use of the splitting h = f + g, g ∈ S 1,1
m,M , where the

parameters M and m are adapted according to the x-axis, i.e., the (inverse) condition number of h (left plot) and the (inverse)
condition number of g (right plot), respectively. Harder problems are closer to the left. In the case, where M is fixed and m tends
to 0, the convergence rates tend to 1, because h tends to be not strongly convex. On the other hand, when m is fixed and M is high
iPiasco is applicable, whereas the Heavy-ball method’s rate tends to 1 (cyan line in the right plot), because the Lipschitz constant
becomes unbounded. Observe, that the convergence rate for iPiasco is independent of M . Finally, for any condition numbers of
g not equal to 0 or 1 the convergence rate of iPiasco outperforms the Heavy-ball method. This is impressive, as the Heavy-ball
method coincides with the theoretical lower bound for this class of functions proved by Nesterov [Nes04] for black-box algorithms.

where we consider here ‖ · ‖2 = ‖ · ‖`2 , the norm in the space of infinite sequences. Figure 3.2 presents a
comparison of iPiasco to the Heavy-ball method and the conjugate gradient method based on this function.
The splitting of iPiasco is by setting g = lh

2 ‖x‖22 and f = h− g. The resulting parameters for estimating
the convergence rate are L = Lh, m = lh, and l = 0. The parameters for the Heavy-ball method (as a
special instance of iPiasco) are m = 0, L = Lh, and l = lh.

Since our algorithm can basically deal with the same class of composite objective functions as for ex-
ample studied in [Nes13], iPiasco can be seen as an improvement of Nesterov’s optimal gradient method
for minimizing strongly convex composite objective functions.

3.2.3.1 The dual Huber–ROF model

In this subsection, we consider the dual problem of the Huber norm regularized variant of the Rudin–
Osher–Fatemi model [ROF92] for image denoising. We define the decomposition

f(p) =
1

2
‖∇>p− λu0‖22, g(p) =

ε

2
‖p‖22 + δ{‖p‖∞≤1}(p) , (3.4)

where p ∈ R2N is the dual vector for the ROF problem, u0 ∈ RN is the noisy input image, λ, ε >
0, δ{‖p‖∞≤1} denotes the indicator function of the set {p ∈ R2N | ‖p‖∞ ≤ 1}, and ∇> denotes the
transposed of the gradient operator. Obviously, this model is strongly convex with modulus ε. In our
decomposition, g is strongly convex and f is two times continuously differentiable. The decomposition
defined above is suitable for iPiasco, which yields an optimal convergence rate for this class of problems.
If we shift the quadratic penalty term ε

2‖p‖22 from function g to the function f , we obtain another variant
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Figure 3.2: Comparison of the linear convergence rates on Nesterov’s worst-case function (3.3) for smooth, strongly convex prob-
lems using a problem size of “∞ ≈ 100000”. LEFT: lh/Lh = 0.5. RIGHT: lh/Lh = 0.1. As predicted by theory, the conjugate
gradient (CG) and the heavy ball (HB) method coincide with the theoretical lower bound. For larger values of lh/Lh, iPiasco is
a bit worse compared to CG and HB, but for smaller values of lh/Lh (harder problems), iPiasco basically coincides with CG and
HB. See also Figure 3.1. Note that Nesterov’s optimal method is significantly slower.

Figure 3.3: A denoising example with the dual Huber–ROF model (3.4). LEFT: Clean image. MIDDLE: Noisy image. RIGHT:
Solution using (3.4). The objective function is strongly convex and the result on the right is obtained using our optimal method for
this class of problems.

of iPiasco, which for the sake of discrimination is denoted iPiasco (projected). There is no best choice for
decomposing the dual Huber–ROF model. This is explained by the term ε

2‖p‖22: the Lipschitz constant
and the convexity parameter are the same (cf. Figure 3.1).

We compare our method against the optimal methods: TwIST [BDF07] and Primal–Dual [CP14]
(in this work a slightly better convergence rate for the primal–dual algorithm in [CP11] for strongly
convex and smooth problems is proved). Moreover, we compare against the linearly converging Al-
gorithm 2.2.11 from [Nes04], and the (regarding the convergence rate for this problem) suboptimal
methods FISTA [BT09a], a very recent algorithm with unknown convergence rate IFB [APR14] (pa-
rameters: aIFB = bIFB = L/4 and λIFB = 4/L; L is the Lipschitz constant of ∇f ), the primal–
dual Algorithm 3.5 from [CDV10] (denoted Primal–Dual-CDV10, with parameters: γCDV10 = 2/L and
λCDV10 = 0.75), and the proximal forward–backward splitting method in [CW05] (denoted ProxFB with
parameter γProxFB = 1.99/L and λProxFB = 0.99). Note that the differences in the computational cost
between all methods for one iteration are negligible.

In the following experiment we set λ = 0.05 and ε = 0.1. See Figure 3.3 for the result of this problem.
The theoretical estimates for the linear convergence rates are 0.8 for iPiasco, iPiasco (proj.), and TwIST,
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Figure 3.4: The three optimal methods iPiasco, iPiasco (proj.), and TwIST perform best on the dual Huber–ROF model (3.4).

10−2 10−4 10−6 10−8 10−10 10−12 10−14

iPiasco 25 48 71 92 114 135 157
iPiasco (proj.) 25 48 71 92 114 135 157

TwIST 28 52 74 96 117 139 160
Primal-Dual 36 78 120 162 dnc dnc dnc

Nesterov 36 79 121 162 dnc dnc dnc
Primal-Dual-CDV10 58 148 dnc dnc dnc dnc dnc

FISTA 52 dnc dnc dnc dnc dnc dnc
ProxFB 106 dnc dnc dnc dnc dnc dnc

IFB 108 dnc dnc dnc dnc dnc dnc

Table 3.1: Table corresponding to Figure 3.4. The first row shows error thresholds (for the normalized error). The entries in the
table show the number of required iterations to fall below the respective error threshold. “dnc” means that the threshold was not
reached within 200 iterations. The optimal methods iPiasco, TwIST, and iPiasco (proj.) clearly perform best.

0.943 for Nesterov’s algorithm, and 0.894 for Primal–Dual [CP14]. Figure 3.4 and Table 3.1 show that the
convergence of iPiasco (proj.), iPiasco, and TwIST are practically the same. This result also highlights
the importance of (optimal) convergence rates. The linearly converging algorithm from Nesterov and
Primal–Dual [CP14] perform equally well, but significantly worse than iPiasco. The methods FISTA,
IFB, and Primal–Dual–CDV10 from [CDV10] are clearly outperformed; They have suboptimal rates of
convergence.

3.2.3.2 An inpainting problem

Recently, [MW09] has shown that inpainting by a linear diffusion model is able to compete with jpeg for
lossy image compression, particularly for cartoon like images. We consider an approximation of their
reconstruction step defined by the decomposition

f(u) =
1

2
‖∇u‖22, g(u) =

1

2
λ‖c · (u− u0)‖22 +

1

2
ε‖u‖22 , (3.5)
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Figure 3.5: Convergence of the Heavy-ball method and iPiasco for the inpainting problem (3.5). The theoretical and practical
convergence of iPiasco is much better then the convergence of the Heavy-ball method. Note that the convergence rate of the Heavy-
ball method coincides with the optimal convergence rate determined by Nesterov [Nes04] for the general class of smooth strongly
convex objectives. Since we exploit the structure of the inpainting problem very well, we can achieve a better convergence rate.
Several other methods are clearly outperformed.

10−2 10−4 10−6 10−8 10−10 10−12 10−14

iPiasco 553 1202 1850 2496 3148 3801 4459
Heavy-ball 924 1909 2880 3851 4838 dnc dnc
Primal-dual 951 2122 3390 4595 dnc dnc dnc

FISTA 578 dnc dnc dnc dnc dnc dnc
Primal-dual-CDV10 dnc dnc dnc dnc dnc dnc dnc

IFB dnc dnc dnc dnc dnc dnc dnc
ProxFB dnc dnc dnc dnc dnc dnc dnc

Table 3.2: Table corresponding to Figure 3.5. The first row shows error thresholds (for the normalized error). The entries in the
table show the number of required iterations to fall below the respective error threshold. “dnc” means that the threshold was not
reached within 5000 iterations. Our method iPiasco clearly outperforms all other methods.

where “·” denotes the coordinate-wise product, u, c, u0 ∈ RN , and ci = 1 if pixel i of the original image
u0
i was stored and ci = 0 otherwise, i.e. the original pixel value u0

i is known only if ci = 1. The
linear operator implements a discrete gradient operator. The positive parameter λ allows for denoising
the original pixel values, and ε > 0 is a small numerical number to make the problem strongly convex.
This is a very difficult problem, which is related to Nesterov’s worst-case function.

Using the proposed decomposition (3.5) the Lipschitz constant of the gradient of f is L = 8, the
strong convexity parameter is l = 0, for g the Lipschitz constant is M = λ+ ε and the strong convexity
parameter is m = ε. As the (inverse) condition number of g is smaller than 1, the convergence rate of iPi-
asco is expected to be better than the optimal rate of the Heavy-ball method (cf. Figure 3.1). In fact by set-
ting ε = 10−4, λ = 10 the convergence rate for the Heavy-ball method is 0.995297, whereas the rate for
our iPiasco is 0.992954. The convergence of both methods is shown in Figure 3.5 and Table 3.2, together
with the several other methods mentioned in the following. The inpainting result is shown in Figure 3.6.
We compare also against other methods with no known or worse convergence rate. We evaluate the lin-
early converging primal–dual algorithm (Primal–Dual) from [CP14], FISTA [BT09a], IFB [APR14], the
primal–dual algorithm (Primal–Dual–CDV10) from [CDV10], and the proximal forward–backward split-
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Figure 3.6: An inpainting example [Veg], like in the reconstruction step of the image compression method [MW09]. LEFT: Original
image to be stored. MIDDLE: Coordinates (black pixels) where the original gray values are stored. RIGHT: Reconstruction
computed using iPiasco applied to (3.5).

ting method (ProxFB) from [CW05] with the same parameters as in the preceding subsection. Figure 3.5
does not show ProxFB as it performed almost identical to IFB.

Not only the theoretical rate of convergence for iPiasco is better than the one for the Heavy-ball
method and the other methods, but also the practical convergence is significantly better. Note that in-
creasing the parameter λ the convergence rate for the Heavy-ball becomes worse, whereas the conver-
gence rate of iPiasco is independent of λ. For λ → ∞ the Heavy-ball method can only be applied by
explicitly handling the constraints ui = u0

i for ci = 1 as boundary conditions in the gradient operator,
whereas iPiasco can be applied directly.
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Chapter 4

Basics of variational analysis

The term variational analysis as it is used in the title of this chapter is not to be confused with “calculus of
variation”. The calculus of variation builds around the minimization of functionals in infinite dimensional
spaces. Solutions to such a variational problem have the characteristic that the rate of change of the
functional, the directional derivative, is zero at a solution. In simple words the goal is to find a point,
for which the change of the functional is zero, when the point is moved infinitesimally (perturbation or
variation of the point). In finite dimensional spaces these are points where the derivative vanishes. A big
portion of the difficulties in the calculus of variation arises from constraints, which restrict the variation
of a point to feasible “directions”. Usually constraints are such that points can be varied along straight
lines or, at least, along differentiable curves.

We allow for more complicated types of variation. Let us consider an example. In this chapter
we introduce a notion of subgradients that generalizes the subgradient known from convex analysis.
Like for convex functions, it is a set-valued mapping. So, if we want ask questions about the variation
of subgradients, then a notion of set convergence is required. Moreover, to exploit full generality of
the concepts for nonconvex functions, convergence along sequences plays an important role. In fact
the definition of the (general) limiting subgradient is based on that. Its development requires a few
preliminary investigations. Sometimes it is not even clear whether a sequence (if it converges) can be
assigned a certain direction, which is fundamental for the corresponding theory from the calculus of
variations. Subgradients are fundamental to develop the celebrated Fermat’s rule for nonconvex functions,
which generalizes our understanding of optimality when minimizing such functions. For these types of
variation the concepts known from the calculus of variation must be revised.

The book by Rockafellar and Wets [RW98] provides a thorough introduction to this broader under-
standing of “variation” in finite dimensional spaces whereof this chapter reviews a few definitions and
results. As variational analysis is a huge branch in mathematics—the book just mentioned covers already
almost 700 pages—, we try to focus on a very compact presentation of the concepts that will be important
for further reading of this thesis. For statements whose proof requires the development of more concepts
we refer the interested reader to the statements in [RW98] on the spot.

The contribution of Sections 4.1 to 4.4 is a concise presentation of the theory that is required for
analyzing convergence of nonconvex optimization algorithms in Chapters 5 to 7. Theorems, examples
and figures1 in this part are taken from the book by Rockafellar [RW98], enlarged by a few more de-
tails, examples and figures. Section 4.5 collects results from several research articles about the theory
of Kurdyka–Łojasiewicz (KL) functions (and related concepts) in a concise manner and shows several

1Reproduced from the book by Rockafellar.
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examples. KL functions also play a crucial role in the converge analysis considered in the subsequent
chapters.

4.1 Set convergence

As mentioned above set convergence is key for the variational analysis considered here and in [RW98].
For notational convenience, we define

N∞ := {N ⊂ N|NrN finite} ↔ {subsequences of N containing all ν beyond some ν̄} ,
N#
∞ := {N ⊂ N|N infinite} ↔ {all subsequences of N} .

(4.1)

Loosely speaking, the first index set N∞ can be considered as a collection of neighborhoods of infinity,
whereas the second index set N#

∞ are the perforated neighborhoods of infinity, i.e., no matter how close
to infinity the sequence is considered, some numbers can be missing. Obviously, it holds N∞ ⊂ N#

∞.
We write limν→∞ when ν → ∞ with ν ∈ N, and limν→

N
∞ when ν → ∞ where ν runs through the

index set N . A simple example of N#
∞ is the index set of even (natural) numbers, which is not contained

in N∞. An example of N∞ is the union of the set of even (natural) numbers up to 1000 and all natural
numbers larger than 1000. It will be useful to have in mind that these index sets are dual in the sense that

N∞ = {N ⊂ N| ∀N ′ ∈ N#
∞ : N ∩N ′ 6= ∅} ,

N#
∞ = {N ⊂ N| ∀N ′ ∈ N∞ : N ∩N ′ 6= ∅} .

(4.2)

Theses prior considerations allow us to conveniently introduce the notion of set convergence.

Definition 4.1 (set convergence and outer and inner limit). For a sequence (Cν)ν∈N of subsets of RN ,
the outer limit is the set

lim sup
ν→∞

Cν := {x ∈ RN | ∃N ∈ N#
∞ : ∃xν ∈ Cν (ν ∈ N) : xν→

N
x} ,

while the inner limit is the set

lim inf
ν→∞

Cν := {x ∈ RN | ∃N ∈ N∞ : ∃xν ∈ Cν (ν ∈ N) : xν→
N
x} .

The limit of the sequence exists if the outer and inner limit sets are equal:

lim
ν→∞

Cν := lim sup
ν→∞

Cν = lim inf
ν→∞

Cν .

In this case, the sequence of sets Cν is said to converge to C := limν→∞ Cν , i.e., Cν → C. This notion
of convergence is known as Painlevé–Kuratowski convergence.

Consider a sequence (Cν)ν∈N of subsets of RN where Cν 6= ∅ for all ν. Then, the inner limit of
(Cν)ν∈N consists of all limit points of sequences with xν ∈ Cν and the outer limit of all cluster points of
such sequences. Therefore, lim infν→∞ Cν ⊂ lim supν→∞ Cν is clear. Figure 4.1 shows one example
where the set limit exists, and one where it does not exist, i.e., inner and outer limit do not coincide.
Before we show another representation of inner and outer limits, we consider a few examples.

Example 4.1. Let (Cν)ν∈N be a sequence of sets.

(i) For Cν := {(−1)ν} the limit does not exist as ν → ∞. It holds that lim infν→∞ Cν = ∅ and
lim supν→∞ Cν = {−1, 1}.
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C1 C2 C3

Cν

lim
ν→∞

Cν

C1

C2

C3

C4

Cν

Cν+1

lim inf
ν→∞

Cν

lim sup
ν→∞

Cν

Figure 4.1: Examples of limits of sets. LEFT: Convergence of (Cν)ν∈N. RIGHT: limn Cn does not exist. Where in the example
on the left side the inner and outer limit coincide, thus the sequence of sets converges, they differ for the right example.

C1C2Cν
lim
ν→∞

Cν

Figure 4.2: Visualization of the sets in Example 4.1(iii). The sequence of sets is given by the bold segments along the sine function.
The set Cν is a subset of the graph of the sine function covering half of a phase where the values in (−1, 1) are taken exactly once.
The inner and outer limit coincide, which implies convergence of the sequence of sets.

(ii) Let Cν := {(x, sin(νx)) ∈ R2|x ∈ R}. Then the limit exists and limν→∞ Cν = R × {0} is the
coordinate axis along the first dimension.

(iii) Let Cν := {(1/x, sin(2πx)) ∈ R2|x ∈ (ν − 1
4 , ν + 1

4 )}. See Figure 4.2 for intuition about the
sequence. For this sequence the limit is limν→∞ Cν = {0}× [−1, 1]. Note that the limit is a closed
set, though the elements of the sequence are not closed; For (xν , yν) ∈ Cν we have yν ∈ (−1, 1).

Example 4.2. (i) Let (Bρν (xν))ν∈N be a sequence of balls in RN . If xν → x and ρν → ρ, then
(Bρν (xν))ν∈N converges to Bρ(x).

(ii) Let A,B ⊂ RN be two nonempty sets and consider the sequence (Cν)ν∈N defined as Cν = A,
when ν is even, and Cν = B, otherwise. Then (Cν)ν∈N does not converge unless A and B
coincide. However the outer and inner limit can be determined as lim supν→∞ Cν = A ∪ B and
lim infν→∞ Cν = A ∩B, respectively.

(iii) The (constant) sequence (Cν)ν∈N with Cν = QN (set of all vectors with rational coordinates) for
all ν ∈ N converges to RN .
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Now, let us consider an equivalent representation of the outer and inner limit, which immediately
implies some properties for sets arising in the limit.

Proposition 4.2 (alternative representation of inner and outer set limits). Let (Cν)ν∈N be a sequence of
subsets of RN . Then, it holds that

lim sup
ν→∞

Cν =
⋂

N∈N∞
cl
⋃
ν∈N

Cν and lim inf
ν→∞

Cν =
⋂

N∈N#
∞

cl
⋃
ν∈N

Cν .

Proof. Define Ksup :=
⋂
N∈N∞ cl

⋃
ν∈N C

ν and K ′sup :=
⋂
N∈N∞

⋃
ν∈N C

ν . For x ∈ Ksup we want
to show that x ∈ lim supν→∞ Cν . By definition of Ksup for all N ∈ N∞ there exists a sequence
(xn)n∈N with xn ∈ ⋃ν∈N Cν such that xn → x. As such a sequence exists for all N ∈ N∞, we find
N ′ ∈ N#

∞ such that N ∩ N ′ 6= ∅ for all N ∈ N∞ (cf. (4.2)), which means that (xm)m∈N ′ ⊂ K ′sup.
Moreover, this selected subsequence converges to x and there exists another subsequence (also converging
to x) where each element of the sequence lies in a different element of (Cν)ν∈N. Thus, we conclude
x ∈ lim supν→∞ Cν . The same idea (using (4.2)) verifies the inverse inclusion. The second equality
works analogously.

Corollary 4.3 (set limits are closed). Let (Cν)ν∈N be a sequence of subsets of RN . Then, the inner and
outer limit lim infν→∞ Cν and lim supν→∞ Cν are closed. Moreover, in case of existence, limν→∞ Cν

is also closed.

Proof. Obvious from Proposition 4.2.

4.2 Tangent cone

Consider the variation of a point x̄ ∈ RN as in one of the plots in Figure 4.3. Variation of a point refers to
moving the point, which is only permitted within the feasible set. The point x̄ in plot on the left and the
middle of Figure 4.3 can be varied along a straight line or a continuously differentiable curve within the
feasible set C, and thereby, introduces a meaning of variation in a certain direction. Those two subfigures
show the classical ways of varying a point in a direction. However, the example on the right of Figure 4.3
requires a different notion of variation. In this subfigure, the set C is given by the graph of a sine function
of the form x 7→ x2 sin(1/x), which oscillates more and more approaching 0 with magnitude scaling as
x2. There is no (continuous) path away from 0 in which the point could be moved. However, the notion
of variation can be derived whenever a sequence converges to x̄ and all points xν along the sequence lie
in the feasible set. Convergence relative to a set C ⊂ RN is defined by

xν→
C
x̄ ⇔ xν → x̄ and xν ∈ C .

A sequence xν → x̄ converges from the direction dirw, if for some sequence τν ↘ 0 the vectors
(xν − x̄)/τν converge to w. Actually dirw is not just a symbol, it has a meaningful interpretation in the
so called horizon of RN . For details, we refer the reader to [RW98, Chapter 3]. Here, it is enough to
think of dirw as a vector in RN without a scale with the same direction as w—the concept is related to
homogeneous points in a projective space. Note the difference between w and dirw: the vector w has a
scale.

A related concept is that of a right derivative ξ′+(0) := limτ↘0
ξ(τ)−ξ(0)

τ of a vector-valued function
ξ : [0, ε] → RN with ξ(0) = x̄. The difference to the aforementioned directional convergence is that w
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w
xν := x̄+ τνw

x̄

C

x̄

C

C

x̄

x1

x2

xν

Figure 4.3: Different notions of convergence from a direction are shown. LEFT: Variation along a straight line. MIDDLE: Variation
along a smooth curve. RIGHT: Variation along a converging sequence. On the left and in the middle, the classical ways of varying
a point in a certain direction within the feasible set C are shown. On the right, the classical way of variation is not applicable.
The weaker form of variation along a sequence is required. Each point along the sequence (xν)ν∈N converging to x̄ relative to C
induces a sequence of difference vectors. A converging sequences ((xν − x̄)/τν)ν∈N where τν ↘ 0 defines a vector w and the
point x̄ can be varied in direction of w.

is a right derivative if for every sequence τν ↘ 0 in [0, ε] the sequence (ξ(τν) − ξ(0))/τν converges to
w. The definition of right derivatives does not require the function ξ to be continuous and (obviously not
differentiable), except at 0.

The following definition introduces a general concept of tangent vectors, which does not rely on the
restrictions of a straight line approximation or an approximation along a differentiable curve. Moreover,
it shows the difference between right derivatives and directional convergence along sequences.

Definition 4.4 (tangent vector and geometric derivability). A vector w ∈ RN is tangent to a set C ⊂ RN
at a point x̄ ∈ C, written w ∈ TC(x̄), if

xν − x̄
τν

→ w for some xν→
C
x̄, τν ↘ 0 .

Such a tangent vector w is derivable if there actually exists ξ : [0, ε] → C with ε > 0, ξ(0) = x̄ and
ξ′+(0) = w. The set C is geometrically derivable at x̄ if every tangent vector w to C at x̄ is derivable.

In other words, w ∈ TC(x̄) is a tangent vector if there exists a sequence xν→
C
x̄ that converges to x̄

from the direction dirw. The set of tangent vectors has some convenient properties.

Proposition 4.5 (tangent cone property). At any point x̄ of a set C ⊂ RN , the set TC(x̄) of all tangent
vectors is a closed cone (thus termed the tangent cone to C at x̄), so is the subset of TC(x̄) consisting of
derivable tangent vectors. Moreover, for the tangent cone holds that TC(x̄) = lim supτ↘0 τ

−1(C − x̄)
and the subset of derivable tangent vectors is expressible with “lim inf” in place of “lim sup”.

Proof. The cone property is trivial to verify and the closedness follows directly from the representation
as outer or inner limit, respectively, (see Corollary 4.3). The expressibility as outer or inner limit is clear
from the definition.

Remark 4.3. According to Proposition 4.5,C is geometrically derivable if and only if the sets τ−1(C − x̄)
converge as τ ↘ 0, i.e., lim supτ↘0 τ

−1(C − x̄) = lim infτ↘0 τ
−1(C − x̄).

Figure 4.4 shows examples for a geometrically derivable tangent cone. The following example clearly
separates general tangent vectors from those that are derivable.
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x1 TC(x1)

x2

TC(x2)

x3

TC(x3)

Figure 4.4: Example of a geometrically derivable set and three explicit constructions of derivable tangent cones. By Remark 4.3,
for all points, the tangent cone TC coincides with the derivable tangent cone.

Example 4.4. We consider the graph in R2, denoted C, of the function x 7→ |x| sin(log |x|) if x 6= 0 and
0 7→ 0, whose graph similar to the one on the right of Figure 4.3. Towards 0 it oscillates more and more,
however, here the magnitude of the waves scale as |x|. The graph is symmetric to x = 0.

Consider the sequence (xν)ν∈N defined by xν = exp(π/2)/ exp(2πν). It yields a sequence of points
on the graph ((xν , xν))ν∈N. Defining τν ↘ 0 by τν = xν we obtain

(xν , xν)− (0, 0)

τν
→ (1, 1) ∈ TC(x̄) .

Then for the tangent cone at x̄ = (0, 0) we have

TC(x̄) = {(w1, w2) ∈ R2| |w2| ≤ |w1|} .

The derivable cone consists only of (0, 0). For τ ↘ 0 the magnification τ−1(C − x̄) = τ−1C always
show the same (changing) local behavior around x̄ = (0, 0) and does not converge.

4.3 Normal cone

The counterpart of tangent vectors are normal vectors. Like for tangent vectors, different notions of
convergence induce different kinds of normal vectors, and like tangent vectors, normal vectors can be of
any length.

Definition 4.6 (normal vectors, normal cone). Let C ⊂ RN and x̄ ∈ C. A vector v is a regular normal
vector to C at x̄, written v ∈ N̂C(x̄), if

lim sup
x→
C
x̄

x 6=x̄

〈v, x− x̄〉
‖x− x̄‖ ≤ 0 . (4.3)

It is a (general) normal vector to C at x̄, written v ∈ NC(x̄), if there are sequences xν→
C
x̄ and vν → v

with vν ∈ N̂C(xν).
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x1
N̂C(x1) = NC(x1)

x2

N̂C(x2) = NC(x2)

x3N̂C(x3) = NC(x3)

x1NC(x1)NC(x1)

N̂C(x1) = {0}

Figure 4.5: Examples for normal cones and regular normal cones. LEFT: Normal and regular normal cone coincide. RIGHT:
Normal and regular normal cone differ.

Definition 4.7 (Clarke regularity). A set C ∈ RN is regular at one of its points x̄ ∈ C in the sense of
Clarke if it is locally closed at x̄ (i.e. V ∩ C is closed for some closed neighborhood V of x̄) and every
normal vector to C at x̄ is a regular normal vector, i.e., NC(x̄) = N̂C(x̄).

In analogy to the set of tangent vectors forming a cone, the set of normal vectors enjoys the same
property, which is shown in the following proposition. It allows us to call NC(x̄) the normal cone and
N̂C(x̄) the regular normal cone. In Figure 4.5 we show some examples. Moreover, the proposition yields
a relation between the regular normal cone and the tangent cone. This relation coincides with the usual
intuition about tangent and normal vectors at a point of a “nice” set (with smooth enough boundary).

Proposition 4.8 (normal cone property). At any point x̄ of a set C ⊂ RN , the set NC(x̄) of all normal
vectors is a closed cone, and so too is the set N̂C(x̄) of regular normal vectors, which in addition is
convex and characterized by

v ∈ N̂C(x̄) ⇔ 〈v, w〉 ≤ 0 for all w ∈ TC(x̄) . (4.4)

Furthermore,
NC(x̄) = lim sup

x→
C
x̄
N̂C(x) ⊃ N̂C(x̄) . (4.5)

Proof. The cone property is obvious. Closedness of NC(x̄) follows from (4.5) (and Corollary 4.3) and
for N̂C(x̄) it follows from (4.4). Moreover (4.4) implies convexity of N̂C(x̄) using Theorem 2.2 (inter-
sections of convex sets are convex). Since (4.5) is true by definition of the normal cone and the outer limit
of a sequence of sets, it remains to verify (4.4).

“⇒”: Let v ∈ N̂C(x̄) and w ∈ TC(x̄). Then, by definition of tangency there exist sequences (xν)ν∈N
and (τν)ν∈N such that wν := (xν − x̄)/τν → w and τν ↘ 0 when ν →∞. Due to (4.3), it holds that

〈v, w〉 = lim sup
ν→∞

〈v, wν〉 = lim sup
ν→∞

〈v, xν − x̄〉
‖xν − x̄‖

‖xν − x̄‖
τν

≤ 0 ,

which is the right hand side of (4.4).

“⇐”: Now, assume the right hand side of (4.4) holds, but v 6∈ N̂C(x̄). Due to (4.3) there exists
a sequence (xν)ν∈N with xν→

C
x̄ and xν 6= x̄ such that lim infν→∞ 〈v, xν − x̄〉/‖xν − x̄‖ > 0. As

wν := (xν − x̄)/‖xν − x̄‖ has the property ‖wν‖ = 1, there exists a converging subsequence (again
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TC(x1)
NC(x1)

N̂C(x1) = {0}

x1

x2

N̂C(x2) = NC(x2)

TC(x2)

N̂C(x3) = NC(x3)
x3

TC(x3)

Figure 4.6: Examples for the relation between the regular normal cone and the tangent cone.

denoted by (wν)ν∈N). The limit point of such a subsequence, denoted by w, belongs by definition to
TC(x̄). Plugging in yields the contradiction

0 < lim inf
ν→∞

〈v, xν − x̄〉
‖xν − x̄‖ = lim

ν→∞
〈v, wν〉 = 〈v, w〉 .

Figure 4.6 shows an example for the relation between the regular normal cone and the tangent cone.

The closedness of normal cones, which we have seen in Proposition 4.8, implies a favorable property.
It can be used to conclude if a normal vector arising as the limit of a sequence of normal vectors is a
normal vector.

Proposition 4.9 (limits of normal vectors). If xν→
C
x̄, vν ∈ NC(xν) and vν → v then v ∈ NC(x̄).

Proof. This is obvious, since {(x, v)| v ∈ NC(x)} is by definition the closure of {(x, v)| v ∈ N̂C(x)} in
C × RN , and therefore, it is closed relative to C × RN .

Finally, we want to show how the normal cones and the tangent cone behave for convex sets.

Theorem 4.10 (tangents and normals to convex sets). A convex set C ⊂ RN is geometrically derivable
at any point x̄ ∈ C, with

NC(x̄) = N̂C(x̄) = {v| 〈v, x− x̄〉 ≤ 0, ∀x ∈ C} ,
TC(x̄) = cl{w| ∃λ > 0 with x̄+ λw ∈ C} ,

intTC(x̄) = {w| ∃λ > 0 with x̄+ λw ∈ intC} .

Furthermore, C is regular at x̄ as long as C is locally closed at x̄.

Proof. Let K = {w| ∃λ > 0 with x̄+ λw ∈ C}. For any x ∈ C, it holds that x̄+ λ(x− x̄) ∈ C for all
λ ∈ [0, 1]. Therefore vectors w ∈ K correspond to λ(x− x̄) for some λ > 0. The vectors w are derivable
tangent vectors, since they arise as right derivatives of linear functions along a line segment joining xwith
x̄. Obviously, K ⊂ TC(x̄) and, by Definition 4.4, TC(x̄) ⊂ clK, thus TC(x̄) = clK and C is geometri-
cally derivable at x̄. (4.4) verifies the expression for N̂C(x̄). For v ∈ NC(x̄) there are sequences xν→

C
x̄
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and vν → v with vν ∈ N̂C(xν). For any x ∈ C, it holds that x− xν ∈ TC(xν), thus 〈vν , x− xν〉 ≤ 0,
and due to convergence of (xν)ν∈N and (vν)ν∈N, we have 〈v, x− x̄〉 = limν→∞ 〈vν , x− xν〉 ≤ 0.
Therefore, v ∈ N̂C(x̄), which implies that NC(x̄) = N̂C(x̄), as N̂C(x̄) ⊂ NC(x̄) is always true.

In order to verify the last equality, we consider K0 = {w| ∃λ > 0 with x̄ + λw ∈ intC} 6= ∅, an
open subset of K. We also have K ⊂ clK0 and conclude K0 = intK = int(clK) = intTC(x̄).

4.4 Subgradient

The concepts introduced in this chapter so far apply to sets (in an Euclidean space). Now, we transfer
them to functions. Like in convex analysis the epigraph of a function is suited for this project. Re-
member that the definitions epigraph (Definition 2.6), effective domain (Definition 2.8), proper function
(Definition 2.9), lower semi-continuity (Definition 2.21), relative continuity (Definition 2.22), Lipschitz
continuity (Definition 2.24), and set-valued mapping (Definition 2.29) are not specific to convex func-
tions.

Definition 4.11 (subdifferential regularity). A function f : RN → R is called subdifferentially regular at
x̄ if f(x̄) is finite and the epigraph epi f := {(x, t)|x ∈ dom f, t ≥ f(x)} is Clarke regular at (x̄, f(x̄))

as a subset of RN × R, i.e., epi f is locally closed and it holds Nepi f (x̄) = N̂epi f (x̄).

Due to the strong analogy between sets and function (via their epigraph), it is common to simply call
the function associated with a regular epigraph Clarke regular or simply regular. Local closedness of the
epigraph of a function corresponds to (local) lower semi-continuity. Note that Definition 4.11 does not
require continuity. A function can be subdifferentially regular at points where it is discontinuous.

We can now introduce the most important concept for our purposes from variational analysis: the
subgradient of a function. The subgradients that are defined in Definition 4.12 generalize the idea of
minorizing tangents to the epigraph of convex functions by requiring the property only locally (or in the
limit of certain sequences). Therefore it is a generalization of the subgradient for convex functions, which
we introduced in Definition 2.31. For differentiable functions it reduces to the well-known gradient of a
function (see Proposition 4.13).

Definition 4.12 (limiting subgradient, regular subgradient, horizon subgradient). For a function f : RN →
R and a point x̄ ∈ dom f

(i) the subgradient (or limiting subgradient) is defined by

∂f(x̄) = {v ∈ RN | ∃xν → x̄, f(xν)→ f(x̄), vν → v, vν ∈ ∂̂f(xν)} , (4.6)

which makes use of the regular subgradient defined by

∂̂f(x̄) =
{
v ∈ RN

∣∣∣ lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈x− x̄, v〉
‖x− x̄‖ ≥ 0

}
.

(ii) The horizon subgradient is defined by

∂∞f(x̄) = {v ∈ RN | ∃xν → x̄, f(xν)→ f(x̄), ∃λν ↘ 0 : λνvν → v, vν ∈ ∂̂f(xν)} .

69



CHAPTER 4. BASICS OF VARIATIONAL ANALYSIS

For a satisfactory theory, it is not enough to consider the regular subgradient only. For example
the function f : R → R, x 7→ −|x| has empty regular subgradient at 0. Of course, one could think
of introducing a supergradient for these functions (which is also done), however these concepts do not
satisfy all the needs of a robust calculus (see [RW98]). The limiting subgradient for the example f(x) =
−|x| is ∂f(0) = {−1, 1}. Before we consider the relation between subgradients and normal vectors
of the epigraph, we want to convince ourselves that subgradients are generalizations of gradients for
differentiable functions. In the following we abbreviate continuous differentiability with smoothness.

Proposition 4.13 (relation of gradient to subgradient).

(i) If f : RN → R is differentiable at x̄, then ∂̂f(x̄) = {∇f(x̄)}, and ∇f(x̄) ∈ ∂f(x̄).

(ii) If f : RN → R is smooth on a neighborhood of x̄, then ∂f(x̄) = {∇f(x̄)} and ∂∞f(x̄) = {0}.

(iii) Let f = g + h where g is finite at x̄ and h is smooth on a neighborhood of x̄, then ∂̂f(x̄) =

∂̂g(x̄) +∇h(x̄), ∂f(x̄) = ∂g(x̄) +∇h(x̄), and ∂∞f(x̄) = ∂∞g(x̄).

Proof. First, remember that lim inf is superadditive, i.e., for two sequences (aν)ν∈N, (bν)ν∈N in R holds
that lim infν→∞(aν+bν) ≥ lim infν→∞ aν+lim infν→∞ bν . However, convergence of (aν)ν∈N implies
lim infν→∞(aν + bν) = limν→∞ aν + lim infν→∞ bν .

(i) By definition ∇f(x̄) ∈ ∂̂f(x̄) holds. For uniqueness let v, v′ ∈ ∂̂f(x̄). Using v′ := ∇f(x̄) and
the preceding comment about lim inf we obtain

0 ≤ lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈x− x̄, v〉
‖x− x̄‖ = lim inf

x→x̄
x 6=x̄

〈x− x̄, v′ − v〉
‖x− x̄‖ .

By considering sequences (xν±)ν∈N with xν± = x̄± τν(v′ − v) for some τν ↘ 0 we conclude that
v = v′.

(ii) This follows directly from the continuity of∇f in a neighborhood of x̄.

(iii) ∂̂f(x̄) ⊃ ∂̂g(x̄) +∇h(x̄) is trivial, “⊂” follows by applying the inclusion “⊃” on g = f + (−h)

and noting that ∂̂h(x̄) is a singleton (set with exactly one element). Now, we verify ∂f(x̄) ⊃
∂g(x̄) + ∇h(x̄). Let vg ∈ ∂g(x̄) and (xν)ν∈N with xν → x̄, g(xν) → g(x̄), and vνg ∈ ∂̂g(xν)
with vνg → vg . Thanks to the smoothness of h in a neighborhood of x̄ we have ∇h(xν)→ ∇h(x̄)

and h(xν)→ h(x̄) as ν → ∞. As we already know that vνg + ∇h(xν) ∈ ∂̂f(xν), the inclusion
is verified. The inverse inclusion “⊂” follows in analogue to the case of the regular subgradient.
Finally, ∂∞f(x̄) = ∂∞g(x̄) is obvious from Item (ii).

At first glance one might assume that for a differentiable function f at x̄ also the limiting subgradient
is a singleton. However, this is only true if f is continuously differentiable in a neighborhood of x̄. The
following examples demonstrates this fact.

Example 4.5. Consider the function f : R→ R defined by f(x) = x2 sin(1/x) for x 6= 0 and f(0) = 0.
Then f is continuously differentiable on R r {0} with ∂f(x) = ∂̂f(x) = {∇f(x)} = {2x sin(1/x) −
cos(1/x)} and ∂∞f(x) = {0} for x 6= 0. Now consider x̄ = 0. The function f is differentiable at x̄ = 0

with ∂̂f(x̄) = {∇f(x̄)} = {0} and ∂∞f(x̄) = {0}. However, ∂f(x̄) = [−1, 1].

Another example, which shows that differentiability at a single point does not imply that the horizon
subgradient consists just of 0 is the following.

70



4.4. SUBGRADIENT

epi f

x1

N̂epi f (x1) = Nepi f (x1)

(v,−1); v ∈ ∂f(x1) = ∂̂f(x1)

(v, 0); v ∈ ∂∞f(x1)

x2

Nepi f (x2)

∂̂f(x2) = ∂f(x2) = {∇f(x2)}

∂∞f(x2) = {0}

x3N̂epi f (x3) = {0}

Nepi f (x3)

(v1,2,−1); ∂f(x3) = {v1, v2}

∂̂f(x3) = ∅

∂∞f(x3) = {0}

Figure 4.7: Relation between subgradients and normal cones as stated in Theorem 4.14. A function f with its epigraph is shown. At
the point x1 the epigraph of f is curved outward and, like in Figure 4.5, the normal cone and the regular normal cone coincide, thus
the same holds for the regular and the limiting subgradient. As the function f is continuously differentiable at x2, the regular and
the limiting subgradient are singletons (see Proposition 4.13). At x3 the regular normal cone is trivial (set containing only 0), so is
the regular subgradient trivial (empty set). The (general) normal cone consists of vectors from exactly two directions. Theorem 4.14
shows that the limiting subgradient consists of exactly two vectors.

Example 4.6. For the function f : R → R defined by f(x) = x2 sin(1/x2) for x 6= 0 and f(0) = 0, it
holds at x̄ = 0 that ∂̂f(x̄) = {∇f(x̄)} = {0}, ∂f(x̄) = (−∞,∞) and ∂∞f(x̄) = (−∞,∞).

Next, we will furnish a relation between the subgradients in Definition 4.12 and normal vectors of
the epigraph of a function. This relation will give more intuition about limiting subgradients. Moreover,
it allows us to easily prove that the limiting subgradient and the regular subgradient coincide for convex
functions with the usual notion of subgradients. Examples for the relation are shown in Figure 4.7.

Theorem 4.14 (subgradients from epigraphical normals). For f : RN → R and any point x̄ at which f
is finite, one has

∂̂f(x̄) = {v ∈ RN | (v,−1) ∈ N̂epi f (x̄, f(x̄))} ,
∂f(x̄) = {v ∈ RN | (v,−1) ∈ Nepi f (x̄, f(x̄))} ,

∂∞f(x̄) ⊂ {v ∈ RN | (v, 0) ∈ Nepi f (x̄, f(x̄))} .

The last relationship holds with equality when f is locally lsc at x̄, and then

Nepi f (x̄, f(x̄)) = {λ(v,−1)| v ∈ ∂f(x̄), λ > 0} ∪ {(v, 0)| v ∈ ∂∞f(x̄)} .

Proof. As the proof of this theorem would require several other concepts that play no role for the further
development in this thesis, we refer the interested reader to [RW98, Thm 8.9].

From this theorem and the properties of normal cones, we deduce some trivial consequences.

Corollary 4.15. Let f : RN → R be a function and let x̄ ∈ dom f . Then ∂f(x̄) and ∂̂f(x̄) are closed
sets and ∂̂f(x̄) is in addition a convex set. In general, it holds that ∂̂f(x̄) ⊂ ∂f(x̄).

Proof. Theorem 4.14 combined with Proposition 4.8 proves the statement.
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Corollary 4.16. Let f : RN → R be a function that is finite and locally lsc at a point x̄. Then ∂f(x̄) 6= ∅
or ∂∞f(x̄) contains a vector v 6= 0.

Proof. By assumption epi f is locally closed at its boundary points (x̄, f(x̄)). Therefore the normal cone
there cannot be just the zero cone. Then the statement follows from Theorem 4.14.

Combining Theorem 4.14 with Definition 4.11 yields a characterization of functions where the situa-
tion with limiting and regular subgradients is particularly simple (see [RW98, Cor. 8.11]).

Corollary 4.17. For a function f : RN → R and a point x̄ with f(x̄) finite and ∂f(x̄) 6= ∅, local lower
semi-continuity of f with ∂f(x̄) = ∂̂f(x̄) is a necessary condition for f being regular at x̄.

Proof. Since f is regular epi f is Clarke regular at (x̄, f(x̄)), which by Definition 4.7 means that N̂epi f (x̄, f(x̄)) =
Nepi f (x̄, f(x̄)). Moreover epi f is locally closed and therefore f is locally lsc. Then the statement fol-
lows with Theorem 4.14.

Proposition 4.18 (relation to subgradient of a convex function). For any proper, convex function f : RN →
R and any point x̄ ∈ dom f , one has

∂f(x̄) = {v| f(x) ≥ f(x̄) + 〈v, x− x̄〉 , ∀x} = ∂̂f(x̄) ,

∂∞f(x̄) ⊂ {v| 0 ≥ 〈v, x− x̄〉 , ∀x ∈ dom f} = Ndom f (x̄) .

The horizon subgradient inclusion is an equality when f is locally lsc at x̄ or when ∂f 6= ∅.

Proof. Theorem 4.10 can be applied, since epi f is convex. Due to Nepi f (x̄, f(x̄)) = N̂epi f (x̄, f(x̄))

follows ∂f(x̄) = ∂̂f(x̄) by Theorem 4.14. By definition holds that

N̂epi f (x̄, f(x̄)) = {(v, β)| 〈(v, β), (x, α)− (x̄, f(x̄))〉 , ∀(x, α) ∈ epi f} .
Plugging this into the relations in Theorem 4.14 verifies the first line. The relation of the horizon subgra-
dient follows by Theorem 4.14 and {v| (v, 0) ∈ Nepi f (x̄, f(x̄))} = {v| v ∈ Ndom f (x̄)}.

Now, let us consider a few examples. As we know the usual gradient and the subgradient for convex
function, we discuss examples of nonsmooth nonconvex functions only.
Example 4.7. The types of functions considered in this example appear in many applications from com-
puter vision, e.g. Section 6.2.2, Section 7.5 and subsequent sections. Note that subgradients are defined
only where the function takes finite values. Let 1 > ε > 0.

(i) Let 0 < p < 1 and fε : R2 → R be given by x = (x1, x2) 7→ (‖x‖22 + ε)p = (
√
x2

1 + x2
2 + ε)p.

For x 6= 0 the function is continuously differentiable and thus the subgradient is a singleton and
contains

∇fε(x) =
p
(

x1√
x2
1+x2

2

, x2√
x2
1+x2

2

)
(
√
x2

1 + x2
2 + ε)1−p

.

Let us considere the definition of the regular subgradient at x̄ = 0, which is the set of vectors v
satisfying

lim inf
x→x̄
x 6=x̄

fε(x)− fε(x̄)− 〈x− x̄, v〉
‖x− x̄‖2

= lim inf
x→0
x6=0

(‖x‖2 + ε)p − εp − 〈v, x〉
‖x‖2

= lim inf
x→0
x6=0

(‖x‖2 + ε)p − εp
‖x‖2

−
〈
v,

x

‖x‖2

〉
≥ 0 ,

(4.7)

72



4.4. SUBGRADIENT

where in the last expression the first term is independent of the direction from which x tends to 0
and the second is independent of the distance to 0. Consider a sequences xν → 0 from dir v given
by τν ↘ 0 and xν = τνv/‖v‖. Then (4.7) comes down to

lim inf
τν↘0

(τν + ε)p − εp
τν

≥ ‖v‖ ,

where the left hand side (if lim inf = lim) is the directional derivative of fε in direction v/‖v‖. In
the case of lim inf there is a concept of subderivatives, which is defined in [RW98, Def. 8.1] and
investigated further there. We mention it only in the scope of this example. Finally, we observe
lim infτ↘0

εp−(τ+ε)p

τ = limτ↘0
εp−(τ+ε)p

τ = pεp−1 and the above inequality is satisfied if ‖v‖ ∈
[0, pεp−1], which implies

∂̂f(0) = εp−1B1(0) ,

where B1(0) is the closed unit ball around 0 with radius 1. In order to determine the limiting
subgradient we consider the limits of subgradients (here gradients) along sequences tending to 0.
From the expression for ∇fε(x) follows that limits along such sequences are contained in ∂̂f(0),
which shows that ∂̂f(0) = ∂f(0).

(ii) Let f1, f2 : R→ R be two function defined by

f1(x) =

{
log(1 + x), if x ≥ −ε,
∞, otherwise,

and f2(x) = log(1 + |x|) .

The subgradients are given by

∂f1(x) = ∂̂f1(x) =

{
{ 1

1+x}, if x > −ε,
(−∞, 1

1−ε ], if x = −ε, and ∂∞f1(x) =

{
{0}, if x > −ε,
(−∞, 0], if x = −ε,

and

∂f2(x) = ∂̂f2(x) =


{ 1

1+x}, if x > 0,

{− 1
1−x}, if x < 0,

[−1, 1], if x = 0.

and ∂∞f2(x) = {0}, for all x .

As we already noticed in the convex setting, Lipschitz continuity is important in many cases. In the
following, we make use of a weaker property, namely local Lipschitz continuity. The (local) Lipschitz
constant that is associated with this continuity uniformly bounds a function in a certain neighborhood of
a point.

Definition 4.19 (Lipschitz continuity and local Lipschitz continuity). A function f : D → RM with
D ⊂ RN , N,M ∈ N, is called Lipschitz continuous on X ⊂ D if there exists L ≥ 0 such that

‖f(x)− f(x′)‖ ≤ L‖x− x′‖ for all x, x′ ∈ X .

Then L is called the Lipschitz constant of f on X .

The function f is locally Lipschitz continuous on X ⊂ D if for every point x ∈ X there exists a
neighborhood U of x such that f is Lipschitz continuous on U ∩X .

Although Lipschitz continuity is a rather weak assumption for a function, it has some useful conse-
quences for the work with subgradients.
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Proposition 4.20 (relation of horizon and limiting subgradient). Let f : RN → R be a locally lower
semi-continuous (lsc) function with finite value at x̄. Then the following statements are equivalent:

(i) f is locally Lipschitz continuous at x̄,

(ii) ∂∞f(x̄) = {0},

(iii) ∂f : x 7→ ∂f(x) is locally bounded at x̄,

(iv) ∂̂f : x 7→ ∂̂f(x) is locally bounded at x̄.

Proof. As the proof of this theorem would require several other concepts that play no role for the further
development in this thesis, we refer the interested reader to [RW98, Thm 9.13].

For composite functions as they will occur later, it is advantageous to have rules how the respective
subgradients are composed. We consider addition and composition of functions. The next proposition
relates the subgradient of a sum of functions to the sum of the subgradients of functions.

Proposition 4.21 (addition of functions). Suppose f = f1 + . . .+fm for proper, lsc functions fi : RN →
R, and let x̄ ∈ dom f . Then

∂̂f(x̄) ⊃ ∂̂f1(x̄) + . . .+ ∂̂fm(x̄) .

If the only combination of vectors vi ∈ ∂∞fi(x̄) with v1 + . . .+ vm = 0 is v1 = . . . = vm = 0, one also
has that

∂f(x̄) ⊂ ∂f1(x̄) + . . .+ ∂fm(x̄) .

If also each fi is Clarke regular at x̄, then f is Clarke regular at x̄ and

∂f(x̄) = ∂f1(x̄) + . . .+ ∂fm(x̄) .

Proof. As the proof of this theorem would require several other concepts that play no role for the further
development in this thesis, we refer the interested reader to [RW98, Cor. 10.9].

A simple example shows that the inclusions are proper.

Example 4.8. Consider the proper, lsc functions f1, f2 : R → R where f1(x) = |x| and f2(x) = −|x|.
Then f(x) = f1(x) + f2(x) = 0 and it holds that

∂̂f1(0) = [−1, 1], ∂̂f2(0) = ∅, ∂̂f(0) = {0}, ∂̂f1(0) + ∂̂f2(0) = ∅;
∂f1(0) = [−1, 1], ∂f2(0) = {−1, 1}, ∂f(0) = {0}, ∂f1(0) + ∂f2(0) = [−2, 2] .

Proposition 4.22 (extended chain rule). Let f(x) = F (G(x)) for a proper, lsc function F : Rm → R
and a locally Lipschitz continuous vector-valued function G : X → Rm, X ⊂ RN . Then, for x̄ ∈ X it
holds

∂̂f(x̄) ⊃ D̂∗G(x̄)[∂̂F (G(x̄))] =
⋃
{∂̂ 〈y,G〉 (x̄)| y ∈ ∂̂F (G(x̄))} .

If the only vector y ∈ ∂∞F (G(x̄)) with 0 ∈ ∂ 〈y,G〉 (x̄) is y = 0, one also has

∂f(x̄) ⊂ D∗G(x̄)[∂F (G(x̄))] =
⋃
{∂ 〈y,G〉 (x̄)| y ∈ ∂F (G(x̄))} ,

If in addition F is regular at G(x̄) and 〈y,G〉 is regular at x̄ for each y ∈ ∂F (G(x̄)), then f is regular
at x̄ and ∂f(x̄) = D∗G(x̄)[∂F (G(x̄))].
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Proof. We refer the interested reader to [RW98, Thm. 10.49].

Finally, we want to characterize an optimality condition for finding extremal points of a proper func-
tion. Like in the classical calculus (and also in convex analysis) Fermat’s rule yields such a necessary
first order optimality condition: the variation at extremal points vanishes. A point x̄ that satisfies the op-
timality condition in Theorem 4.23 is called a stationary point or a critical point. The following theorem
formalizes this optimality condition for a general function.

Theorem 4.23 (Fermat’s rule generalized). If a proper function f : RN → R has a local minimum at x̄,
then 0 ∈ ∂f(x̄).

Proof. As the function has a local minimum at x̄, it satisfies f(x) ≥ f(x̄) for all x in a certain neighbor-
hood of x̄. By Definition 4.12 it is 0 ∈ ∂̂f(x̄). Corollary 4.15, which states ∂̂f(x̄) ⊂ ∂f(x̄), proves the
statement.

A simple consequence is of Fermat’s rule is the following.

Corollary 4.24 (Fermat’s rule). Let f : RN → R be a proper function given as f = f0 + g, where f0 is
smooth, then 0 ∈ ∂f(x̄) corresponds to −∇f0(x̄) ∈ ∂g(x̄).

Proof. The statement is the combination of Theorem 4.23 with Proposition 4.13(iii).

4.5 Nonsmooth Kurdyka–Łojasiewicz inequality

Łojasiewicz established a main ingredient for proving convergence of bounded trajectories of the gradient
dynamical system on real analytic functions to a critical point [Łoj63], namely the “Łojasiewicz inequal-
ity”. For a real analytic function f : RN → R there exist some θ ∈ [ 1

2 , 1) such that |f − f(a)|θ/‖∇f‖
remains bounded around the critical point a ∈ RN . Extensions of the Łojasiewicz inequality are derived,
for example, in [Kur98] for smooth functions definable in an o-minimal structure (see Section 4.5.2), and
for nonsmooth definable functions in [BDLS07]. In [AB09, BDL06a, BDL06b] similar results to that
of Łojasiewicz are shown in the nonsmooth subanalytic setting: the “Kurdyka–Łojasiewicz inequality”.
Loosely speaking, it means that the limiting subgradient can be strictly separated from 0.

Simple, but important examples for such an o-minimal structure are semi-algebraic functions, which
we briefly introduce in Section 4.5.1. Sometimes semi-algebraic functions are considered as the smallest
nontrivial o-minimal structure. In fact, o-minimal structures are an axiomatic construction that preserves
the favorable properties of the semi-algebraic structure [dD98]. Another such structure that provides
interesting definable functions is constructed from globally subanalytic sets. It is important to note that,
as we will see in the following subsections, these are not only exotic concepts; Most of the functions
arising in optimization problems in practice are definable. In Theorem 4.35 we state the result that
establishes the Kurdyka–Łojasiewicz inequality for definable functions.

Using the Kurdyka–Łojasiewicz (KL) inequality several algorithms have been shown to converge
[CPR13, ABS13, AB09, ABRS10, THD09, OCBP14] even for nonconvex functions. In [ABS13] an
abstract convergence theorem for descent methods with certain properties is proved. We present an ex-
tension of this in Chapter 5. Summarizing, an algorithm with a certain descent property and a relative
upper bound on the (limiting) subgradient applied to a function with the KL property can be shown to
converge (under some additional mild conditions to the objective) to a stationary point.
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f

f(x)− f(x̂)

(x̂, f(x̂))
U

U ∩ {x| f(x̂) < f(x) < f(x̂) + η}

f(x̂) + η

ϕ

ϕ ◦ f

x
(x̂, f(x̂))

Figure 4.8: Example of the KL property for a smooth function. The composition ϕ ◦ f has a slope of magnitude 1 except at x̂.

Now, we formulate the Kurdyka–Łojasiewicz property as in [ABS13] and consider examples—the
ones mentioned above—in the subsequent subsections.

Definition 4.25 (Kurdyka–Łojasiewicz property). Let f : RN → R be an extended real valued function
and let x̂ ∈ dom ∂f . If there exists η ∈ (0,∞], a neighborhood U of x̂ and a continuous concave
function ϕ : [0, η) → R+ such that ϕ(0) = 0, ϕ ∈ C1((0, η)), and ϕ′(s) > 0 for all s ∈ (0, η), and for
all x ∈ U ∩ {x ∈ RN : f(x̂) < f(x) < f(x̂) + η} holds the Kurdyka–Łojasiewicz inequality

ϕ′(f(x)− f(x̂)) dist(0, ∂f(x)) ≥ 1 , (4.8)

then the function has the Kurdyka–Łojasiewicz property at x̂.

If, additionally, the function is lower semi-continuous and the property holds for each point in dom ∂f ,
then f is called a Kurdyka–Łojasiewicz function.

It is easy to see that the Kurdyka–Łojasiewicz property is satisfied for all nonstationary points [ABRS10,
Lem. 2]. For the purpose of intuition, it should be mentioned, that for smooth functions (with f(x̂) = 0)
(4.8) is equivalent to ‖∇(ϕ ◦ f)(x)‖ ≥ 1. This means, that after reparametrization via ϕ the gradient
∇f may be strictly separated from 0. In Figure 4.8 we show an example. For alternative interpretations,
including subgradient flows, we refer the interested reader to [BDLM10].

4.5.1 Semi-algebraic sets and functions

The first chapters of [BCR98] are a good reference for the introduction of real semi-algebraic functions.
We recap the definition and show a few basic results.

Definition 4.26 (semi-algebraic sets and functions). A subset S of RN is a real semi-algebraic set if it is
expressible as

S =

p⋃
j=1

q⋂
i=1

{x ∈ RN | fi,j(x) = 0, gi,j(x) < 0} ,

where fi,j , gi,j : RN → R, 1 ≤ i ≤ q, 1 ≤ j ≤ p, p, q ∈ N, are real polynomials.

A function f : RN → R is called a semi-algebraic function if its graph Graph f is a semi-algebraic
subset of RN+1. A set-valued mapping F : RN ⇒ RM is semi-algebraic if its graph GraphF is a
semi-algebraic subset of RN+M .
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A rather trivial result, which in view of Section 4.5.2, however, is worth mentioning, is the following.

Proposition 4.27 ([BCR98, Prop. 2.1.7]). Semi-algebraic subsets of R are exactly the finite unions of
points and open intervals (bounded or unbounded).

Example 4.9. (i) Polynomials are semi-algebraic.

(ii) Let Ωi ⊂ RN , i = 1, . . . ,K, be a finite partition of a set Ω ⊂ RN and all Ωi be semi-algebraic.
Then, a function that is defined by a polynomial on each set Ωi is semi-algebraic.

(iii) The absolute value | · | : R → R is semi-algebraic due to (ii) or, explicitly verified, since its graph
can be written as

Graph | · | = ({(x, y)| y − x = 0} ∪ {(x, y)| y + x = 0}) ∩ {(x, y)| y ≥ 0} .

(iv) The set defined by {(x, y) ∈ R2| y = exp(x)} is not semi-algebraic.

The favorable property of semi-algebraicity is its stability; For example, the finite union or finite inter-
section of semi-algebraic sets is semi-algebraic, or the composition of semi-algebraic functions is semi-
algebraic. The link between semi-algebraicity and o-minimal structures (Section 4.5.2) largely stems
from the following fact (see [BCR98, Thm. 2.2.1]), which is an important result that contributes to the
stability of semi-algebraicity.

Theorem 4.28 (Tarski–Seidenberg). Let S be a semi-algebraic subset of RN+1 and Π: RN+1 → RN
the projection on the space of the first N coordinates. Then Π(S) is a semi-algebraic subset of RN .

An obvious application of this Theorem is that the preimage of a semi-algebraic function is semi-
algebraic, i.e., if the function f : C → R defined on a set C ⊂ RN is semi-algebraic, then necessarily, C
is a semi-algebraic set, which is the projection of Graph f onto the first N coordinates. Theorem 4.28
implies some more stability results, which allow us to construct many semi-algebraic functions.

Proposition 4.29 ([BCR98, Prop. 2.2.2, Prop. 2.2.6, Prop. 2.2.7]). (i) The closure and the interior of
a semi-algebraic set are semi-algebraic.

(ii) The composition G◦F of semi-algebraic mappings F : A⇒ B and G : B ⇒ C is semi-algebraic,
where A, B, C are semi-algebraic sets.

(iii) For a semi-algebraic mapping F : A ⇒ B (with A, B semi-algebraic), S ⊂ A semi-algebraic
implies F (S) semi-algebraic. If T ⊂ B is semi-algebraic, then its inverse image F−1(T ) is also
semi-algebraic.

Before, we step forward to the next abstraction level in the following subsection, we conclude this
section with a few examples that are important for applications.

Example 4.10 ([BST14, Ex. 3–4]). (i) The sparsity measure ‖x‖0 := #{i ∈ {1, . . . , N}|xi 6= 0},
x ∈ RN , is semi-algebraic, where #A counts the number of elements in the set A.

(ii) The p-norm ‖·‖p with p > 0 is semi-algebraic for any rational number p, where ‖x‖pp =
∑N
i=1 |xi|p

for x ∈ RN . It is not semi-algebraic when p is irrational.

Example 4.11. (i) Let K be a linear operator K : RN → RM . Then for any semi-algebraic function
f the composition f ◦K is semi-algebraic. In particular x 7→ ‖Kx‖p is semi-algebraic.

(ii) Indicator functions of semi-algebraic sets are semi-algebraic.
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4.5.2 Functions definable in an o-minimal structure

We define o-minimal structures as in [BDLS07]. Compared to the definition in [dD98] we are only
interested in structures that contain semi-algebraic sets.

Definition 4.30 (o-minimal structure). Let O = {ON}N∈N be such that ON is a collection of subsets of
RN . The family O is an o-minimal structure over R, if it satisfies the following axioms:

(i) Each ON is a boolean algebra, i.e., ∅ ∈ ON and for each A,B ∈ ON also A ∪ B, A ∩ B and
RN rA belong to ON .

(ii) For all A ∈ ON the Cartesian products A× R and R×A belong to ON+1.

(iii) For all A ∈ ON+1 the projection onto the first N coordinates Π(A) belongs to ON .

(iv) ON contains the family of algebraic subsets of RN , i.e., every set of the form {x ∈ RN | p(x) = 0}
where p : RN → R is a polynomial function.

(v) The elements of O1 are exactly finite unions of points and (open) intervals.

A set A ⊂ RN is said to be definable (in O), if A belongs to ON . Analogue to the preceding
subsection, the property is transferred to a set-valued mapping via its graph. A set-valued mapping
F : RN ⇒ RM is said to be definable (in O) if GraphF is a definable subset of RN × RM .

Remark 4.12. The difference to the definition in [dD98] is that, instead of Item (iv), the following axioms
are required:

(iv)′ For all i 6= j in {1, . . . , N} the set {(x1, . . . , xN )> ∈ RN |xi = xj} is in ON .

(iv)′′ The set {(x1, x2) ∈ R2|x1 < x2} belong to O2.

However, these are simple consequences of Item (iv). Item (iv)′ is included in our definition as these sets
are constrained by polynomial equations. The sets in Item (iv)′′ can be seen as projection onto the first
two coordinates of {(x1, x2, x3) ∈ R× R× (−∞, 0)|x3 = x1 − x2} (constructible using Item (v)).

Obviously, semi-algebraic sets form such an o-minimal structure thanks to the theorem of Tarski–
Seidenberg. Before we introduce another important example, namely that of globally subanalytic sets, let
us briefly analyze some simple consequences of the axioms. Definable structures have the advantage of
being stable under various operations. We state the result and prove it as in [dD98, Chap. 1, Lem. 2.3]
and show a corollary, which follows immediately. Thereby, we make use of the fact that permutations of
the coordinates does not alter the definability ([dD98, Chap. 1, Lem. 2.2]), and that Definition 4.30(ii)
and (iii) can be applied iteratively.

Lemma 4.31. Let S ⊂ RM and let f : S → RN be a map that belongs toO. Then we have the following
properties:

(i) The domain of the function is necessarily a definable set: S ∈ OM .

(ii) For any definable set A ∈ OM , A ⊂ S, the image of the function is definable (f(A) ∈ ON ) and
the restriction of f to A belongs to O.

(iii) For a definable set B ∈ ON the preimage is definable, i.e., f−1(B) ∈ OM .

(iv) For an injective function f the inverse f−1 belongs to O.

78



4.5. NONSMOOTH KURDYKA–ŁOJASIEWICZ INEQUALITY

(v) If f(S) ⊂ T ⊂ RN and g : T → RP is a second map belonging to O, then the composition
g ◦ f : S → RP belongs to O.

Proof. Since f is definable, its graph is a definable subset of RM × RN .

(i) Use x ∈ S ⇔ ∃y ∈ RN : (x, y) ∈ Graph f and the projection axiom Definition 4.30(iii).

(ii) Since y ∈ f(A)⇔ ∃x ∈ A : (x, y) ∈ Graph f , permuting (x, y) does not change the definability,
and the projection axiom proves this fact.

(iii) The projection axiom shows that f−1(B) = {(x, y)| ∃y ∈ B : (x, y) ∈ Graph f} is definable.

(iv) Note that injectivity implies (y, x) ∈ Graph f−1 ⇔ (x, y) ∈ Graph f .

(v) Observe that Graph(g ◦f) is the projection of (Graph f×RP )∩ (RM ×Graph g) onto RM ×RP
and hence definable.

Corollary 4.32. Let S, T ⊂ RM , S ∩ T 6= ∅, and let f : S → RN , g : T → RN be maps that belongs to
O. Then pointwise addition and multiplication, f + g and f · g, restricted to S ∩ T belongs to O.

Although the structure of semi-algebraic function is already large and often enough for applications,
there are other structures of interest. As mentioned earlier, one of these is generated by globally subana-
lytic functions. Let us approach this concept by a definition.

Definition 4.33 (semi-analytic, subanalytic sets and functions).

(i) A subset S of RN is a real semi-analytic set if for each point in RN there exists a neighborhood V
such that

S ∩ V =

p⋃
j=1

q⋂
i=1

{x ∈ RN : fi,j(x) = 0, gi,j(x) < 0} ,

where fi,j , gi,j : V → R, 1 ≤ i ≤ q, 1 ≤ j ≤ p, are real analytic functions.

(ii) A subset S of RN is called subanalytic, if for each point in RN there exists a neighborhood V such
that S ∩ V = {x ∈ RN | ∃y ∈ RM : (x, y) ∈ D}, where D is a bounded semi-analytic subset of
RN × RM with M ≥ 1.

As before, a function is said to have one of these properties if its graph has it. Obviously, among
semi-algebraic, semi-analytic, and subanalytic sets the latter are the most general and comprises the
others. However, as the following example shows, subanalyticity does not satisfy the projection axiom,
and hence does not form an o-minimal structure, which does not mean that it is useless; we refer to
the book [Shi93] and [BM88]. Nevertheless, there exists a subset, called globally subanalytic sets (to
be defined soon), that induces an o-minimal structure. Though it is a proper subset, it provides enough
flexibility for our purposes.

Example 4.13 (from [BDL06a]). Consider the set A := {(1/(n + 1), n)|n ∈ N}. The projection of
A onto R × {0} is not subanalytic at 0. The arguments to verify this comes from [dDM96, Fact 1.10]:
A subanalytic set has locally only a finite number of connected components. Since the projected set
{1/(n+ 1)|n ∈ N} has a infinite number of connected components, A is not subanalytic at 0.
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Loosely speaking, in the preceding example the problem is the unboundedness of the set A. This
problem is solved when we consider globally subanalytic sets (as in [dDM96]) where such situations are
excluded. Define for N ∈ N the set CN := (−1, 1)N and τN by

τN (x1, . . . , xN ) :=

(
x1√

1 + x2
1

, . . . ,
xN√

1 + x2
N

)
∈ CN . (4.9)

Definition 4.34 (globally subanalytic). A subset S of RN is called globally subanalytic if its image under
τN is a subanalytic subset of RN .

Both, the globally subanalytic sets and the subanalytic sets comprise the semi-algebraic sets [Cos00].
In fact the inclusion is proper. For example the function exp |[−1,1] : [−1, 1] → R, the restriction of the
exponential function to the domain [−1, 1], is globally subanalytic (hence subanalytic), however it is not
semi-algebraic. Also the inclusion of globally subanalytic sets in the subanalytic sets is proper. Where all
real analytic functions are always subanalytic [dDM96, Fact 1.1], they may fail to be globally subanalytic,
as the next example shows.

Example 4.14. The graph of the sine function is subanalytic (even analytic), but not globally subanalytic.
While the first coordinate of

τN (x, sin(x)) =

 x√
1 + x2

,
sin(x)√

1 + sin2(x)

>

tends to 1, as x tends to∞, the second coordinate periodically changes between ±1/
√

2. In any neigh-
borhood of the point (1, 0)> there are infinitely many connected components, therefore the sine function
is not globally subanalytic.

The advantage of globally subanalytic sets is that they generate an o-minimal structure, whereas sub-
analytic function do not, as demonstrated in Example 4.13. The key for defining the o-minimal structure
is provided by the projection theorem (Gabrielov [Gab96]).

We want to note that there is an even “larger” structure that comprises the globally subanalytic struc-
ture. The extension that this “larger” structure introduces is the exponential function x 7→ exp(x) (thus,
by Lemma 4.31 also the logarithm) [Wil96, dD98]. Naturally, the question arises, why not to take the
largest structure that is available. The more information is known about the problem, the more properties
can be used, and therefore, faster algorithms can be expected for problems cast in the appropriate class.

Example 4.15. Thanks to the stability results of o-minimal structures, the following functions are easily
verified to be definable in one of the o-minimal structures introduced above. Let K : RN → R be a linear
operator, let p := p1/p2 ∈ Q, p1, p2 ∈ N, be a positive rational number, and λ ∈ R. Recap that finite
sums of such terms are automatically definable by Corollary 4.32.

(i) x 7→ |Kx|p/(1+|Kx|p) is definable since {(x, y) ∈ RN×R| y = Kx}, {(x, y) ∈ R2|xp1 = yp2},
{(x, y) ∈ R2| y = x/(1 + x)} = {(x, y) ∈ R2| (1 + x)y − x = 0}, {(x, y) ∈ R2| y = |x|} are
semi-algebraic sets. See also Examples 4.10 and 4.11. (This function appears in the iterations of
the iPiano algorithm for the application in Section 6.2.2.1.)

(ii) x 7→ min(|Kx|p, λ) is definable in the semi-algebraic structure, as it is piecewise algebraic—
with finitely many pieces. (This example includes the Mumford–Shah regularizer [MS89], i.e., a
truncated quadratic function.)
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(iii) c 7→ 1
2‖A−1Cu0 − u0‖22 with C = diag(c), where A is a positive definite matrix that linearly

depends on C, is semi-algebraic, since the norm function is semi-algebraic and the graph of the
inner function is defined by a (possibly large) system of polynomial equations. (This function
occurs in Section 6.2.2.2.)

(iv) x 7→ log(1 + |Kx|p) + δ[−λ,λ](Kx), where δ[−λ,λ] is an indicator function (Definition 2.19), is
definable in the globally subanalytic structure, as it is a bounded subanalytic function (actually
bounded analytic). (This function occurs in Section 7.5.)

(v) x 7→ log(1+ |Kx|p) is definable in the exp-extended globally subanalytic structure. (This function
also appears in Section 7.5.)

Finally, we state a crucial result for the convergence of the algorithms presented in Chapters 6 and 7.
The convergence analysis of these algorithms is based on the assumption that the objective function is a
KL function. The following theorem makes sure that there is a huge class of functions that naturally are
KL functions. We present the theorem in the formulation of [ABRS10, Thm. 14]. The proof can be found
in [BDLS07, Thm. 14].

Theorem 4.35 (Nonsmooth Kurdyka–Łojasiewicz inequality for definable functions). Any proper lower
semi-continuous function f : RN → R which is definable in an o-minimal structure O has the Kurdyka–
Łojasiewicz property at each point of dom ∂f . Moreover the function ϕ in Definition 4.25 is definable in
O.

If we consider the o-minimal structure of globally subanalytic sets, a parametrized version of the
Kurdyka–Łojasiewicz inequality holds. In [Kur98, Thm. ŁI] Kurdyka shows that for globally subanalytic
(differentiable) functions ϕ(s) = s1−θ may be chosen with θ ∈ (0, 1). We formulate as in [BDLS07,
Cor. 16] for nonsmooth functions.

Corollary 4.36 (Nonsmooth Kurdyka–Łojasiewicz inequality for subanalytic functions). Any proper
lower semi-continuous globally subanalytic function f : RN → R has the parametrized KL property
at each point of dom ∂f , i.e., for x̂ ∈ dom ∂f there exist ρ > 0, θ ∈ [0, 1), and a continuous definable
function χ : R+ → (0,∞) such that

|f(x)− f(x̂)|θ ≤ ρ‖ξ(x)‖ ,

whenever 0 < |f(x)− f(x̂)| ≤ χ(‖x‖) and ξ(x) ∈ ∂f(x) (with the convention that 00 = 0).

We conclude this chapter with an counterexample. If the function is definable but not globally suban-
alytic, Corollary 4.36 holds not true, in general.

Example 4.16. By Theorem 4.35 the function f(x) = exp(−1/x2) has the KL property, since it is de-
finable in the exp-extended globally subanalytic structure. However, it does not allow for a parametrized
representation, since for x→ 0 the expression

|f(x)|θ
|f ′(x)| =

1

2
x3 exp

(
1− θ
x2

)
is unbounded for any θ ∈ [0, 1).
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Chapter 5

An abstract convergence theorem for
descent methods

The Kurdyka–Łojasiewicz (KL) property has shown to be a powerful tool in the convergence analysis
of nonsmooth nonconvex optimization algorithms. As we have seen in Section 4.5, a broad class of
functions, e.g. tame function (includes semi-algebraic functions), reveals this property. Therefore, par-
ticularly for applications, assuming the objective function having this property should not be considered
as a severe restriction.

It was successfully applied for example in [CPR13, AB09, THD09, FGP14, OCBP14, BC14, BST14,
ABS13, ABRS10] to proof convergence of algorithms for nonconvex optimization problems. The proof of
convergence involving KL features seems to follow some general steps, which is raised to a more abstract
level in [ABS13]. Consider the minimization problem of a proper, lower semi-continuous (lsc) function
F ′ : RN → R and let (xn)n∈N be a sequence of iterates generated by some algorithm. Convergence of
this sequence to an optimum is shown, if it satisfies the following properties (a, b > 0 fixed):

(H1′) (Sufficient decrease condition). For each n ∈ N,

F ′(xn+1) + a‖xn+1 − xn‖2 ≤ F ′(xn) ;

(H2′) (Relative error condition). For each n ∈ N, there exists wn+1 ∈ ∂F ′(xn+1) such that

‖wn+1‖ ≤ b‖xn+1 − xn‖ ;

(H3′) (Continuity condition). There exists a subsequence (xnj )j∈N and x̃ such that

xnj → x̃ and F ′(xnj )→ F ′(x̃) , as j →∞ .

The convergence result that is obtained in [ABS13] can be used to easily verify convergence of several
algorithms. Explicitly, it is shown for an inexact gradient descent method, inexact proximal algorithm,
inexact forward–backward algorithm, and an inexact regularized Gauss-Seidel method.

Theorem 5.1 (Convergence of descent methods). Let f : RN → R be a proper lower semi-continuous
function. Consider a sequence (xn)n∈N that satisfies (H1′), (H2′), and (H3′).
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If f has the Kurdyka–Łojasiewicz property at the cluster point x̃ specified in (H3′), then the sequence
(xn)n∈N converges to x̄ = x̃ as n goes to infinity, and x̄ is a critical point of f .

Moreover the sequence (xn)n∈N has a finite length, i.e.,

∞∑
n=0

‖xn+1 − xn‖ ≤ ∞ .

In Chapter 7, we make also use of this result to show convergence of our majorization minimization
algorithm. A limiting fact of these algorithms is that the computation of the next iterate is based only
on the current one; No effects of over-relaxation or inertness are used. In this chapter, we modify the
abstract requirements (H1′)–(H3′) such that convergence of our Heavy-ball like algorithm (iPiano; see
Chapter 6), which is a two-step method, can be shown. The analysis is close to that in [ABS13]. Large
parts of this chapter are published in [OCBP14].

5.1 Inexact descent convergence result for KL functions

In the following, we prove an abstract convergence result for a sequence (zn)n∈N := (xn, xn−1)n∈N in
R2N , xn ∈ RN , x−1 ∈ RN , satisfying certain basic conditions, N := {0, 1, 2, . . .}. For convenience we
use the abbreviation ∆n := ‖xn − xn−1‖ for n ∈ N. We fix two positive constants a > 0 and b > 0
and consider a proper lower semi-continuous function F : R2N → R. Then, the conditions we require
for (zn)n∈N are as follows:

(H1) For each n ∈ N, it holds that
F (zn+1) + a∆2

n ≤ F (zn) .

(H2) For each n ∈ N, there exists wn+1 ∈ ∂F (zn+1) such that

‖wn+1‖ ≤ b

2
(∆n + ∆n+1) .

(H3) There exists a subsequence (znj )j∈N such that

znj → z̃ and F (znj )→ F (z̃) , as j →∞ .

Remark 5.1. Our proof and the proof in [ABS13] differ mainly in the calculations that are involved; the
outline is the same. There is hope to find an even more general convergence result, which comprises ours
and [ABS13].

Lemma 5.2. Let F : R2N → R be a proper lower semi-continuous function which satisfies the Kurdyka–
Łojasiewicz property at some point z∗ = (x∗, x∗) ∈ R2N . Denote by U , η and ϕ : [0, η) → R+ the
objects appearing in Definition 4.25 of the KL property at z∗. Let σ, ρ > 0 be such that B(z∗, σ) ⊂ U
with ρ ∈ (0, σ), where B(z∗, σ) := {z ∈ R2N : ‖z − z∗‖ < σ}.

Furthermore, let (zn)n∈N = (xn, xn−1)n∈N be a sequence satisfying Conditions (H1), (H2), and

∀n ∈ N : zn ∈ B(z∗, ρ)⇒ zn+1 ∈ B(z∗, σ) with F (zn+1), F (zn+2) ≥ F (z∗) . (5.1)

Moreover, the initial point z0 = (x0, x−1) is such that F (z∗) ≤ F (z0) < F (z∗) + η and

‖x∗ − x0‖ +

√
F (z0)− F (z∗)

a
+
b

a
ϕ(F (z0)− F (z∗)) <

ρ

2
. (5.2)
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Then, the sequence (zn)n∈N satisfies

∀n ∈ N : zn ∈ B(z∗, ρ),

∞∑
n=0

∆n <∞, F (zn)→ F (z∗), as n→∞ , (5.3)

(zn)n∈N converges to a point z̄ = (x̄, x̄) ∈ B(z∗, σ) such that F (z̄) ≤ F (z∗). If, additionally, Condi-
tion (H3) is satisfied, then 0 ∈ ∂F (z̄) and F (z̄) = F (z∗).

Proof. The key points of the proof are the facts that for all j ≥ 1:

zj ∈ B(z∗, ρ) and (5.4)
j∑
i=1

∆i ≤
1

2
(∆0 −∆j) +

b

a
[ϕ(F (z1)− F (z∗))− ϕ(F (zj+1)− F (z∗)))] (5.5)

Let us first see that ϕ(F (zj+1) − F (z∗)) is well defined. By Condition (H1), (F (zn))n∈N is non-
increasing, which shows that F (zn+1) ≤ F (z0) < F (z∗) + η. Combining this with (5.1) implies
F (zn+1)− F (z∗) ≥ 0.

As for n ≥ 1 the set ∂F (zn) is nonempty (see Condition (H2)) every zn belongs to domF . For
notational convenience, we define

Dϕ
n := ϕ(F (zn)− F (z∗))− ϕ(F (zn+1)− F (z∗)) .

Now, we want to show that for n ≥ 1 the following holds: if F (zn) < F (z∗) + η and zn ∈ B(z∗, ρ),
then

2∆n ≤ b
aD

ϕ
n + 1

2 (∆n + ∆n−1) . (5.6)

Obviously, we can assume that ∆n 6= 0 (otherwise it is trivial), and therefore (H1) and (5.1) imply
F (zn) > F (zn+1) ≥ F (z∗). The KL inequality shows wn 6= 0, and (H2) shows ∆n+ ∆n−1 > 0. Since
wn ∈ ∂F (zn), using the KL inequality and (H2), we obtain

ϕ′(F (zn)− F (z∗)) ≥ 1

‖wn‖ ≥
2

b(∆n−1 + ∆n)
.

As ϕ is concave and increasing (ϕ′ > 0), Condition (H1) and (5.1) yield

Dϕ
n ≥ ϕ′(F (zn)− F (z∗))(F (zn)− F (zn+1)) ≥ ϕ′(F (zn)− F (z∗))a∆2

n .

Combining both inequalities results in

( baD
ϕ
n) 1

2 (∆n−1 + ∆n) ≥ ∆2
n ,

which by applying 2
√
uv ≤ u+ v establishes (5.6).

As (5.1) only implies zn+1 ∈ B(z∗, σ), σ > ρ, we cannot use (5.6) directly for the whole sequence.
However, (5.4) and (5.5) can be shown by induction on j. For j = 0, (5.1) yields z1 ∈ B(z∗, σ) and
F (z1), F (z2) ≥ F (z∗). From Condition (H1) with n = 1, F (z2) ≥ F (z∗) and F (z1) ≤ F (z0), we
infer

∆1 ≤
√
F (z1)− F (z2)

a
≤
√
F (z0)− F (z∗)

a
, (5.7)

which combined with (5.2) leads to

‖x∗ − x1‖ ≤ ‖x0 − x∗‖ + ∆1 ≤ ‖x0 − x∗‖ +

√
F (z0)− F (z∗)

a
<
ρ

2
,

85



CHAPTER 5. AN ABSTRACT CONVERGENCE THEOREM FOR DESCENT METHODS

and therefore z1 ∈ B(z∗, ρ). Direct use of (5.6) with n = 1 shows that (5.5) holds with j = 1.

Suppose (5.4) and (5.5) are satisfied for j ≥ 1. Then, using the triangle inequality and (5.5), we have

‖z∗ − zj+1‖ ≤ ‖x∗ − xj+1‖ + ‖x∗ − xj‖
≤ 2‖x∗ − x0‖ + 2

∑j
i=1 ∆i + ∆j+1

≤ 2‖x∗ − x0‖ + (∆0 −∆j) + ∆j+1

2 ba [ϕ(F (z1)− F (z∗))− ϕ(F (zj+1)− F (z∗)))]
≤ 2‖x∗ − x0‖ + ∆0 + ∆j+1 + 2 ba [ϕ(F (z0)− F (z∗))] ,

which shows, using ∆j+1 ≤
√

1
a (F (zj+1)− F (zj+2)) ≤

√
1
a (F (z0)− F (z∗)) and (5.2), that zj+1 ∈

B(z∗, ρ). As a consequence (5.6), with n = j + 1, can be added to (5.5) and we can conclude (5.5) with
j + 1. This shows the desired induction on j.

Now, the finiteness of the length of the sequence (xn)n∈N, i.e.,
∑∞
i=1 ∆i < ∞, is a consequence of

the following estimation, which is implied by (5.5):

j∑
i=1

∆i ≤ 1
2∆0 + b

aϕ(F (z1)− F (z∗)) <∞ .

Therefore, xn converges to some x̄ as n → ∞, and zn converges to z̄ = (x̄, x̄). As ϕ is concave, ϕ′

is decreasing. Using this and Condition (H2) yields wn → 0 and F (zn) → ζ ≥ F (z∗). Suppose we
have ζ > F (z∗), then the KL inequality reads ϕ′(ζ − F (z∗))‖wn‖ ≥ 1 for all n ≥ 1, which contradicts
wn → 0.

Note that, in general, z̄ is not a critical point of F , because the limiting subdifferential requires
F (zn) → F (z̄) as n → ∞. When the sequence (zn)n∈N additionally satisfies Condition (H3), then
z̃ = z̄, and z̄ is a critical point of F , because F (z̄) = limn→∞ F (zn) = F (z∗).

Remark 5.2. The only difference from [ABS13] with respect to the assumptions is (5.1). In [ABS13],
zn ∈ B(z∗, ρ) implies F (zn+1) ≥ F (z∗), whereas we require F (zn+1) ≥ F (z∗) and F (zn+2) ≥
F (z∗). However, as Theorem 5.4 shows, this does not weaken the convergence result compared to
[ABS13]. In fact, Corollary 5.3, which assumes F (zn) ≥ F (z∗) for all n ∈ N and which is also
used in [ABS13], is key in Theorem 5.4.

The next corollary and the subsequent theorem follow as in [ABS13] by replacing the calculation with
our conditions.

Corollary 5.3. Lemma 5.2 holds true if we replace (5.1) by

η < a(σ − ρ)2 and F (zn) ≥ F (z∗) ∀n ∈ N .

Proof. By Condition (H1), for zn ∈ B(z∗, ρ), we have

∆2
n+1 ≤

F (zn+1)− F (zn+2)

a
≤ η

a
< (σ − ρ)2 .

Using the triangle inequality on ‖zn+1 − z∗‖ shows that zn+1 ∈ B(z∗, σ), which implies (5.1) and
concludes the proof.

The work that is done in Lemma 5.2 and Corollary 5.3 allows us to formulate an abstract convergence
theorem for sequences satisfying Conditions (H1), (H2), and (H3). It follows, with a few modifications,
as in [ABS13].
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Theorem 5.4 (Convergence to a critical point). Let F : R2N → R be a proper lower semi-continuous
function and (zn)n∈N = (xn, xn−1)n∈N a sequence that satisfies (H1), (H2), and (H3). Moreover, let F
have the Kurdyka–Łojasiewicz property at the cluster point x̃ specified in (H3).

Then, the sequence (xn)∞n=0 has finite length, i.e.,
∑∞
n=1 ∆n < ∞, and converges to x̄ = x̃ as

n→∞, where (x̄, x̄) is a critical point of F .

Proof. By Condition (H3), we have znj → z̄ = z̃ and F (znj )→ F (z̄) for a subsequence (znj )n∈N. This
together with the nondecreasingness of (F (zn))n∈N (by Condition (H1)), imply that F (zn)→ F (z̄) and
F (zn) ≥ F (z̄) for all n ∈ N. The KL property around z̄ states the existence of quantities ϕ, U , and η as
in Definition 4.25. Let σ > 0 be such that B(z̄, σ) ⊂ U and ρ ∈ (0, σ). Shrink η such that η < a(σ−ρ)2

(if necessary). As ϕ is continuous, there exists n0 ∈ N such that F (zn) ∈ [F (z̄), F (z̄)+η) for all n ≥ n0

and

‖x∗ − xn0‖ +

√
F (zn0)− F (z∗)

a
+
b

a
ϕ(F (zn0)− F (z∗)) <

ρ

2
.

Then, the sequence (yn)n∈N defined by yn = zn0+n satisfies the conditions in Corollary 5.3, which
concludes the proof.
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Chapter 6

iPiano: inertial proximal algorithm for
nonconvex optimization

The gradient method is certainly one of the most fundamental but also one of the most simple algorithms
to solve smooth convex optimization problems. In the last several decades, the gradient method has
been modified in many ways. One of those improvements are multistep schemes, which we discussed
in Sections 2.2.4 and 2.2.5. It has been shown that such schemes significantly boost the performance of
the plain gradient method. Triggered by practical problems in signal processing, image processing and
machine learning, there has been an increased interest in so-called composite objective functions, where
the objective function is given by the sum of a smooth function and a nonsmooth function with an easy-
to-compute proximal map. This initiated the development of the proximal gradient or forward–backward
method (see Section 2.2.3), which combines explicit (forward) gradient steps w.r.t. the smooth part with
proximal (backward) steps w.r.t. the nonsmooth part.

In this chapter, we combine the concepts of multistep schemes and the proximal gradient method to
efficiently solve a certain class of nonconvex, nonsmooth optimization problems. Although, the transfer
of knowledge from convex optimization to nonconvex problems is very challenging, it aspires to find
efficient algorithms for certain nonconvex problems. Therefore, we consider the subclass of nonconvex
problems

min
x∈RN

f(x) + g(x) ,

where g is simple (possibly nonsmooth and nonconvex) and f is a smooth (possibly nonconvex) function.
The sum f + g comprises nonsmooth, nonconvex functions. Despite the nonconvexity, the structure of
f being smooth and g being simple makes the forward–backward splitting algorithm well defined (cf.
[BST14, Prop. 2.2]). Additionally, an inertial force is incorporated into the design of our algorithm,
which we termed iPiano. Informally, the update scheme of the algorithm that will be analyzed is

xn+1 ∈ arg min
x

g(x) + 〈∇f(xn), x− xn〉+
1

2α
‖x− (xn + β(xn − xn−1))‖2 ,

which, for g being convex, is equivalent to1

xn+1 = (I + α∂g)−1(xn − α∇f(xn) + β(xn − xn−1)) ,

1In general the set of minimizers is only contained in the proximal map, arg minx g(x) + 1
2α
‖x − x̃‖2 ⊂ (I + α∂g)−1(x̃)

(see [RW98, Ex. 10.2]).
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where α and β are the step size parameters. This update rule is a generalization of the proximal Heavy-
ball method from Section 2.2.4 to nonconvex objective functions.

Setting β = 0 results in the forward–backward splitting algorithm, which has the nice property that in
each iteration the function value decreases. Our convergence analysis reveals that the additional inertial
term prevents our algorithm from monotonically decreasing the function values. Although this may look
like a limitation on first glance, demanding monotonically decreasing function values anyway is too strict
as it does not allow for provably optimal schemes. We refer to a statement of Nesterov [Nes04]: “In
convex optimization the optimal methods never rely on relaxation. Firstly, for some problem classes this
property is too expensive. Secondly, the schemes and efficiency estimates of optimal methods are derived
from some global topological properties of convex functions”2. The negative side of better efficiency
estimates of an algorithm is usually the convergence analysis. This is even true for convex functions. In
case of nonconvex and nonsmooth functions, this problem becomes even more severe.

Previous work. This chapter generalizes the results presented [OCBP14]. Where in [OCBP14] we
considered the sum of a smooth function f and a convex function g, in this chapter, we allow g to be
nonconvex. The only requirement is that the associated proximal map can be solved efficiently for the
global optimum. As this extension does not encounter severe challenges, we did not publish it separately
(only in this thesis). The disadvantage of the generality is that the step size parameters are more restricted.
In order to resolve this problem, we extend the convergence analysis in a way that more structure of g
is directly reflected in better step size parameters. The analysis also covers the benefit when g is even
strongly convex. Another extension of the results in [OCBP14] would be to replace the proximity function
(which is the squared Euclidean distance here), with a Bregman proximity function. As a Bregman
proximity function is assumed to be bounded from below and from above with a squared Euclidean
distance the extension is straightforward. The full nonconvex setting with Bregman proximity function is
addressed in [BCL14]. Other related work was already discussed in Section 2.2.4.

6.1 The proposed algorithm: iPiano

6.1.1 The optimization problem

We consider a structured nonsmooth, nonconvex optimization problem with a proper lower semi-continuous
extended valued function h : RN → R, N ≥ 1:

min
x∈RN

h(x) = min
x∈RN

f(x) + g(x) . (6.1)

The function f : RN → R is assumed to beC1-smooth (possibly nonconvex) withL-Lipschitz continuous
gradient on dom g, L > 0. Further, let the function g : RN → R be simple (possibly nonsmooth and
nonconvex) and prox-bounded, i.e., there exists λ > 0 such that eλg(x) := infy∈RN g(y)+ 1

2λ‖y−x‖2 >
−∞ for some x ∈ RN . Simple refers to the fact that the associated proximal map can be solved efficiently
for the global optimum. Furthermore, we require h to be coercive and bounded from below by some value
h > −∞.

The proposed algorithm, which is stated in Section 6.1.2, seeks a critical point x∗ ∈ domh of h,
which is characterized by the necessary first-order optimality condition 0 ∈ ∂h(x∗). In our case, this is
equivalent to

−∇f(x∗) ∈ ∂g(x∗) ,

2Relaxation is to be interpreted as the property of monotonically decreasing function values in this context. Topological proper-
ties should be associated with geometrical properties.

90



6.1. THE PROPOSED ALGORITHM: IPIANO

where ∂g denotes the limiting subdifferential in Definition 4.12.

In order to take advantageous of additional knowledge about g, like convexity, we extend the idea of
the strong convexity modulus (Definition 2.45) to nonconvex functions.

Definition 6.1 (semi-convex). A function g : RN → R is said to be semi-convex with modulus m ∈ R (or
is m semi-convex), if m is the largest value such that g(x)− m

2 ‖x‖2 is convex.

Remark 6.1. We do not assume g to be m semi-convex. However, under some conditions, m semi-
convexity allows us to choose larger step sizes.

Analogously to Lemma 2.46, we observe the following lemma:

Lemma 6.2. Let g : RN → R be a semi-convex function with modulusm ∈ R. Then, for any x̄ ∈ dom ∂g
it holds that

g(x) ≥ g(x̄) + 〈v, x− x̄〉+
m

2
‖x− x̄‖2 , for all v ∈ ∂g(x̄) and x ∈ dom g .

Proof. Rearrange the subgradient inequality (2.1) applied to g(x)− (m/2)‖x‖2 and make use of Propo-
sition 4.13(iii).

6.1.2 The generic algorithm

The generic formulation of iPiano is shown in Algorithm 2. It is a forward–backward splitting algorithm
incorporating an inertial force. In the forward step, αn determines the step size in the direction of the
gradient of the differentiable function f . The step in gradient direction is aggregated with the inertial force
from the previous iteration weighted by βn. Then, the backward step is a solution of the (generalized)
proximity operator for the function g with the weight αn. The prox-boundedness of g asserts that the

Algorithm 2. Inertial proximal algorithm for nonconvex optimization (iPiano)

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0. Moreover, define
sequences of step size parameter (αn)n∈N and (βn)n∈N.

• Iterations (n ≥ 0): Update

yn = xn + βn(xn − xn−1)

xn+1 ∈ arg min
x

g(x) + 〈∇f(xn), x− xn〉+
1

2αn
‖x− yn‖2

(6.2)

set of minimizers of (6.2) is nonempty and compact ([RW98, Thm. 1.25]) and makes the algorithm
well-defined.

Note that the update step (6.2) is equivalent to

xn+1 ∈ arg min
x∈RN

Gn(x)

Gn(x) := g(x) +

〈
∇f(xn)− βn

αn
(xn − xn−1), x− xn

〉
+

1

2αn
‖x− xn‖2

(6.3)
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and for g being convex equivalent to

yn = xn + βn(xn − xn−1)

xn+1 = (I + αn∂g)−1(yn − αn∇f(xn)) .
(6.4)

In order to make the algorithm specific and convergent, the step size parameters must be chosen
appropriately. What “appropriately” means will be specified in Section 6.1.3 and proved in Section 6.1.4.

6.1.3 Rules for choosing the step size

In this subsection, we propose several strategies for choosing the step sizes. This will make it easier to
implement the algorithm. One may choose among the following variants of step size rules depending on
the knowledge about the objective function. We introduce a flag variable σ ∈ {0, 1} to treat the case of g
being semi-convex with modulus m ∈ R (σ = 1) and g not being semi-convex (σ = 0) at the same time.
Moreover, if σ = 1 (i.e. g semi-convex), we focus on the case m < Ln, otherwise h would be convex.
This can easily be seen by applying Lemma 6.2 to g, the Descent Lemma 2.49 to f , and summing both
inequalities. As in Algorithm 2, we choose x0 ∈ domh and set x−1 = x0.

Constant step size scheme. The most simple step size scheme, which requires most knowledge about
the objective function, is outlined in Algorithm 3. All step size parameters are chosen a priori and are
constant.

Algorithm 3. Inertial proximal algorithm for nonconvex optimization with constant parameter
(ciPiano)

• Initialization: Choose β ∈ [0, 1+σ
2 ), set α < (1+σ−2β)/(L−σm), where L is the Lipschitz

constant of ∇f .

• Iterations (n ≥ 0): Update xn using (6.2) with αn = α and βn = β.

Remark 6.2. Observe that our law on α, β is equivalent to the law found in [ZK93] for minimizing a
smooth nonconvex function. Hence, our result can be seen as an extension of their work to the presence
of an additional nonsmooth simple function.

Backtracking. The case where we have limited knowledge about the objective function occurs more
frequently. It can be very challenging to estimate the Lipschitz constant of ∇f beforehand. Using back-
tracking the Lipschitz constant can be estimated automatically. A sufficient condition that the Lipschitz
constant at iteration n to n+ 1 must satisfy is

f(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2 . (6.5)

Although there are different strategies for determiningLn, the most common one is to define an increment
variable η > 1 and to look for the minimal Ln ∈ {Ln−1, ηLn−1, η

2Ln−1, . . .} satisfying (6.5). Some-
times, it is also feasible to decrease the estimated Lipschitz constant. A possible strategy is as follows: if
Ln = Ln−1, then search for the minimal Ln ∈ {η−1Ln−1, η

−2Ln−1, . . .} satisfying (6.5).

In Algorithm 4 we propose an algorithm with variable step sizes. Any strategy for estimating the
Lipschitz constant may be used. When changing the Lipschitz constant from one iteration to another, all
step size parameters must be adapted. The rules for adapting the step sizes will be justified during the
convergence analysis in Section 6.1.4.
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Algorithm 4. Inertial proximal algorithm for nonconvex optimization with backtracking (biPiano)

• Initialization: Choose δ ≥ c2 > 0 with c2 close to 0 (e.g. c2 := 10−6).

• Iterations (n ≥ 0): Update xn using (6.2), where Ln > 0 satisfies (6.5) and

βn =
1 + σ

2

b− 1

b− 1
2

, b :=
δ + Ln−σm

2

c2 + Ln−σm
2

, αn =
1 + σ − 2βn

Ln − σm+ 2c2
.

Lazy backtracking. Algorithm 5 presents another alternative to Algorithm 2. It is related to Algo-
rithms 3 and 4 in the following way. Algorithm 5 makes use of the Lipschitz continuity of ∇f in the
sense that the Lipschitz constant is always finite. As a consequence, using backtracking with only in-
creasing Lipschitz constants, after a finite number of iterations n0 ∈ N the estimated Lipschitz constant
will no longer change, and starting from this iteration the constant step size rules as in Algorithm 3 are
applied. Using this strategy, the results that will be proved in the convergence analysis are satisfied only
as soon as the Lipschitz constant is high enough and no longer changing.

Algorithm 5. Nonmonotone inertial proximal algorithm for nonconvex optimization with back-
tracking (nmiPiano)

• Initialization: Choose β ∈ [0, 1+σ
2 ), L−1 > 0, η > 1.

• Iterations (n ≥ 0): Update xn using (6.2), where Ln ∈ {Ln−1, ηLn−1, η
2Ln−1, . . .} is

minimal and satisfies (6.5) and αn < (1 + σ − 2β)/(Ln − σm).

General rule of choosing the step sizes. Algorithm 6 defines the general rules that the step size pa-
rameters must satisfy. It contains the Algorithms 3 to 5 as special instances. This is easily verified for
Algorithms 3 and 5. For Algorithm 4 the step size rules are derived from the proof of Lemma 6.3.

As Algorithm 6 is the most general algorithm, let us now analyze its behavior.

6.1.4 Convergence analysis

In all of what follows, let (xn)n∈N be the sequence generated by Algorithm 6 and with parameters satisfy-
ing the algorithm’s requirements. Furthermore, for more convenient notation we abbreviate Hδ(x, y) :=
h(x) + δ‖x − y‖2, δ ∈ R. Note, that for x = y it is Hδ(x, y) = h(x). Moreover, we introduce a flag
variable σ ∈ {0, 1} to treat the case of g being semi-convex (σ = 1) and g not being semi-convex (σ = 0)
at the same time, as in the preceding section.

Let us first verify that the algorithm makes sense. We have to show that the requirements for the
parameters are not contradictory, i.e., that it is possible to choose a feasible set of parameters. In the
following lemma, we will only show the existence of such a parameters set. However, the proof helps us
to formulate specific step size rules.

Lemma 6.3. For all n ≥ 0, in either case, m ≥ 2c2 + Ln and m < 2c2 + Ln, there exists parameters
δn ≥ γn, βn, and αn such that, givenLn > 0, the requirements in Algorithm 6 are satisfied (i.e., αn ≥ c1,
βn ≥ 0, δn ≥ γn ≥ c2, and (δn)n∈N monotonically decreasing).
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Algorithm 6. Inertial proximal algorithm for nonconvex optimization (iPiano)

• Initialization: Choose c1, c2 > 0 close to 0, x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update xn using (this is the same as (6.2))

yn = xn + βn(xn − xn−1)

xn+1 ∈ arg min
x

g(x) + 〈∇f(xn), x− xn〉+
1

2αn
‖x− yn‖2

(6.6)

where Ln > 0 is the local Lipschitz constant satisfying

f(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2 , (6.7)

and αn ≥ c1, βn ≥ 0 are chosen such that δn ≥ γn ≥ c2, which are given,

– if g is semi-convex with modulus m ∈ R, by

γn =
1

2

(
2− 2βn
αn

− (Ln −m)

)
and δn = γn +

βn
2αn

, (6.8)

– and in the general case, by

γn =
1

2

(
1− 2βn
αn

− Ln
)

and δn = γn +
βn

2αn
, (6.9)

and (δn)n∈N is monotonically decreasing.

Proof. By the algorithm’s requirements it is δn ≥ γn. The upper bound for βn and αn come from
rearranging γn ≥ c2.

First, we consider the nontrivial case σm ≤ Ln + 2c2. We observe

βn ≤
1 + σ

2
− αn

2c2 + Ln − σm
2

≤ 1 + σ

2
and αn ≤

1 + σ − 2βn
2c2 + Ln − σm

. (6.10)

The last statement follows by incorporating the descent property of δn. Let δ−1 ≥ c2 be chosen initially.
Then, the descent property of (δn)n∈N requires one of the equivalent statements

δn−1 ≥ δn ⇔ δn−1 ≥
1 + σ − βn

2αn
− Ln − σm

2
⇔ αn ≥

1 + σ − 2βn
Ln − σm+ 2δn−1

(6.11)

to be true. The only thing that remains to show is that there exist αn > c1 and βn ∈ [0, 1+σ
2 ) such that

the relations in (6.10) and (6.11) are fulfilled. Consider the condition for a nonnegative gap between the
upper and lower bounds for αn:

1 + σ − 2βn
Ln − σm+ 2c2

− 1 + σ − 2βn
Ln − σm+ 2δn−1

≥ 0 ⇔ δn−1 + Ln−σm
2

c2 + Ln−σm
2

≥ 1 + σ − βn
1 + σ − 2βn

.

Defining b := (δn−1 + Ln−σm
2 )/(c2 + Ln−σm

2 ) ≥ 1, it is easily verified that there exists βn ∈ [0, 1+σ
2 )

satisfying the equivalent condition
1 + σ

2

b− 1

b− 1
2

≥ βn . (6.12)
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As a consequence, the existence of a feasible αn follows, and the descent property for δn holds.

Now, we consider the case 2c2 +Ln − σm ≤ 0, i.e., σm ≥ Ln + 2c2, which can only arise if σ = 1.
If we choose βn = β ∈ [0, 1+σ

2 ), the requirement γn ≥ c2 is satisfied for any αn ≥ c1. The monotone
decreasingness of (δn)n∈N is fulfilled, for example, when choosing 2δ0 > maxn∈N Ln −m ≥ c2 and
setting αn = (2− β)/(2δn−1 + Ln −m), which implies δn = δn−1.

In the following proposition, we state a result which will be very useful. Although, iPiano does
not imply a descent property of the function values, we construct a majorizing function that enjoys a
monotonically descent property. This function reveals the connection to the Lyapunov direct method for
convergence analysis as used in [ZK93].

Proposition 6.4. (i) The sequence (Hδn(xn, xn−1))n∈N is monotonically decreasing and thus con-
verging. In particular, it holds that

Hδn+1
(xn+1, xn) ≤ Hδn(xn, xn−1)− γn‖xn − xn−1‖2 . (6.13)

(ii) It holds that
∑∞
n=0 ‖xn − xn−1‖2 <∞ and, thus, limn→∞ ‖xn − xn−1‖ = 0.

Proof. (i) Observe that by (6.3), we have Gn(xn+1) ≤ Gn(xn) = g(xn). If g is semi-convex with
modulus m ∈ R, then, using Lemma 6.2 with 0 ∈ ∂Gn(xn+1), it holds that Gn(xn+1) + 1

2 (m +
1/α)‖xn+1 − xn‖2 ≤ Gn(xn). Summarizing both inequalities using the flag variable σ (defined
in the beginning of Section 6.1.4), it holds that

Gn(xn+1) +
σ

2

(
m+

1

αn

)
‖xn+1 − xn‖2 ≤ Gn(xn) = g(xn) .

This and the quadratic upper bound from the Descent Lemma 2.49 imply

f(xn+1) + g(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2

+ g(xn)−
〈
∇f(xn)− βn

αn
(xn − xn−1), xn+1 − xn

〉
− 1

2

(
1 + σ

αn
+ σm

)
‖xn+1 − xn‖2 .

Using 2 〈a, b〉 ≤ ‖a‖2 + ‖b‖2 for vectors a, b ∈ RN , we have〈
βn
αn

(xn − xn−1), xn+1 − xn
〉
≤ βn

2αn

(
‖xn+1 − xn‖2 + ‖xn − xn−1‖2

)
.

Combining the two preceding results yields

h(xn+1) ≤ h(xn)− 1

2

(
1 + σ − βn

αn
− (Ln − σm)

)
‖xn+1 − xn‖2 +

βn
2αn
‖xn − xn−1‖2

and a simple rearrangement shows

h(xn+1) + δn‖xn+1 − xn‖2 ≤ h(xn) + δn‖xn − xn−1‖2 − γn‖xn − xn−1‖2 ,

which establishes (6.13) as δn is monotonically decreasing. Obviously, (Hδn(xn, xn−1))n∈N is
monotonically decreasing if and only if γn ≥ 0, which is true by the algorithm’s requirements.
By assumption, h is bounded from below by some constant h > −∞, hence (Hδn(xn, xn−1))n∈N
converges.
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(ii) Summing up (6.13) from k = 0, . . . , n yields (note that Hδk(x0, x−1) = h(x0))

n∑
k=0

γk‖xk − xk−1‖2 ≤
n∑
k=0

Hδk(xk, xk−1)−Hδk+1
(xk+1, xk)

= h(x0)−Hδn+1
(xn+1, xn) ≤ h(x0)− h <∞ .

Letting n tend to∞ and remembering that γn ≥ c2 > 0 holds implies the statement.

Remark 6.3. The function Hδ is a Lyapunov function for the dynamical system described by the Heavy-
ball method. It corresponds to a discretized version of the kinetic energy of the Heavy-ball with friction.

In the following theorem, we state our general convergence results of Algorithm 6.

Theorem 6.5. (i) The sequence (h(xn))n∈N converges.

(ii) There exists a converging subsequence (xnj )j∈N.

(iii) Any limit point x∗ := limj→∞ xnj is a critical point of (6.1) and h(xnj )→ h(x∗) as j →∞.

Proof. (i) This follows from the Squeeze theorem as for all n ≥ 0 it holds that

H−δn(xn, xn−1) ≤ h(xn) ≤ Hδn(xn, xn−1)

and thanks to Proposition 6.4(i) and (ii) it holds that

lim
n→∞

H−δn(xn, xn−1) = lim
n→∞

Hδn(xn, xn−1)− 2δn‖xn − xn−1‖2 = lim
n→∞

Hδn(xn, xn−1) .

(ii) By Proposition 6.4(i) and Hδ0(x0, x−1) = h(x0) it is clear that the whole sequence (xn)n∈N is
contained in the level set {x ∈ RN |h ≤ h(x) ≤ h(x0)}, which is bounded thanks to the coercivity
of h and h = infx∈RN h(x) > −∞. Using the Bolzano-Weierstrass theorem, we deduce the
existence of a converging subsequence (xnj )j∈N.

(iii) To show that each limit point x∗ := limj→∞ xnj is a critical point of (6.1) recall that the (limiting)
subgradient is closed (Corollary 4.15). For notational elegance, we abbreviate n′j := nj − 1 and
n′ := n− 1. Define

vj :=
xn
′
j − xn′j+1

αn′j
−∇f(xn

′
j ) +

βn′j
αn′j

(xn
′
j − xn′j−1) +∇f(xn

′
j+1).

As 0 ∈ ∂Gn′j (xn′j+1) yields an element in ∂g(xn
′
j+1), which, added to∇f(xn

′
j+1), equals vj , the

sequence (xnj , vj) ∈ Graph(∂h) := {(x, v) ∈ RN × RN | v ∈ ∂h(x)}, Furthermore, it holds that
x∗ = limj→∞ xnj and due to Proposition 6.4(ii), the Lipschitz continuity of∇f , and

‖vj − 0‖ ≤ 1

αn′j
‖xn′j+1 − xn′j‖ +

βn′j
αn′j
‖xn′j − xn′j−1‖ + ‖∇f(xn

′
j+1)−∇f(xn

′
j )‖

it holds limj→∞ vj = 0. It remains to show that limj→∞ h(xnj ) = h(x∗). By the closure property
of the subgradient ∂h it is (x∗, 0) ∈ Graph(∂h), which means that x∗ is a critical point of h.
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The continuity statement follows from (6.3),

g(xn
′+1) +

〈
∇f(xn

′
)− βn′

αn′
(xn

′ − xn′−1), xn
′+1 − xn′

〉
+

1

2αn′
‖xn′+1 − xn′‖2

≤ g(x) +

〈
∇f(xn

′
)− βn′

αn′
(xn

′ − xn′−1), x− xn′
〉

+
1

2αn′
‖x− xn′‖2 ,

which implies

g(xn
′
j+1) +

〈
∇f(xn

′
j )−

βn′j
αn′j

(xn
′
j − xn′j−1), xn

′
j+1 − x

〉

+
1

2αn′j

(
‖xn′j+1 − xn′j‖2 − ‖x− xn′j‖2

)
≤ g(x) .

Proposition 6.4(ii) and boundedness of∇f(xn
′
)− βn′

αn′
(xn

′ − xn′−1) yield lim supj→∞ g(xnj ) ≤
g(x). Invoking the lower semi-continuity of g yields limj→∞ g(xnj ) = g(x∗). Moreover, as f is
differentiable (thus continuous), we conclude limj→∞ h(xnj ) = h(x∗).

Remark 6.4. The convergence properties shown in Theorem 6.5 should be the basic requirements of any
algorithm. Very loosely speaking, the theorem states that the algorithm ends up in a meaningful solution.
It allows us to formulate stopping conditions, e.g., the residual between successive function values.

Now, using Theorem 5.4, we can verify the convergence of the sequence (xn)n∈N generated by Al-
gorithm 6. We assume that after a finite number of steps the sequence (δn)n∈N is constant and consider
the sequence (xn)n∈N starting from this iteration (again denoted by (xn)n∈N). For example, if δn is de-
termined relative to the Lipschitz constant, then as the Lipschitz constant can be assumed constant after a
finite number of iterations, δn is also constant starting from this iteration.

Theorem 6.6 (Convergence of iPiano to a critical point). Let (xn)n∈N be generated by Algorithm 6, and
let δn = δ and σm ≤ Ln for all n ∈ N. Then, the sequence (xn+1, xn)n∈N satisfies (H1), (H2), and
(H3) from Section 5.1 for the function Hδ : R2N → R ∪ {∞}, (x, y) 7→ h(x) + δ‖x− y‖2.

Moreover, if Hδ(x, y) has the Kurdyka–Łojasiewicz property at a cluster point (x∗, x∗), then the
sequence (xn)n∈N has finite length, xn → x∗ as n→∞, and (x∗, x∗) is a critical point of Hδ , hence x∗

is a critical point of h.

Proof. First, we verify that assumptions (H1), (H2), and (H3) are satisfied. We consider the sequence
zn = (xn, xn−1) for all n ∈ N and the proper lower semi-continuous function F = Hδ .

• Condition (H1) is proved in Proposition 6.4(a) with a = c2 ≤ γn.

• To prove Condition (H2), consider wn+1 := (wn+1
x , wn+1

y )> ∈ ∂Hδ(x
n+1, xn) with wn+1

x ∈
∂g(xn+1) +∇f(xn+1) + 2δ(xn+1−xn) and wn+1

y = −2δ(xn+1−xn). The Lipschitz continuity
of∇f and using 0 ∈ Gn(xn+1) (see (6.3)) to specify an element from ∂g(xn+1) imply

‖wn+1‖ ≤ ‖wn+1
x ‖ + ‖wn+1

y ‖
≤ ‖∇f(xn+1)−∇f(xn)‖ + ( 1

αn
+ 4δ)‖xn+1 − xn‖

+ βn
αn
‖xn − xn−1‖

≤ 1
αn

(αnLn + 1 + 4αnδ)‖xn+1 − xn‖ + 1
αn
βn‖xn − xn−1‖ .
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As αnLn ≤ 1 + σ − 2βn ≤ 2 and δαn = 1+σ
2 − 1

2αn(Ln − σm) − 1
2βn ≤ 1, setting b = 7

c1

verifies condition (H2), i.e., ‖wn+1‖ ≤ b(‖xn − xn−1‖ + ‖xn+1 − xn‖).

• In Theorem 6.5(iii) it is proved that there exists a subsequence (xnj+1)j∈N of (xn)n∈N such that
limj→∞ h(xnj+1) = h(x∗). Proposition 6.4(ii) shows that ‖xn+1 − xn‖ → 0 as n → ∞, hence
limj→∞ xnj = x∗. As the term δ‖x− y‖2 is continuous in x and y, we deduce

lim
j→∞

H(xnj+1, xnj ) = lim
j→∞

h(xnj+1) + δ‖xnj+1 − xnj‖ = H(x∗, x∗) = h(x∗) .

Now, the abstract convergence Theorem 5.4 concludes the proof.

The next corollary makes use of the fact that functions definable in an o-minimal structure (see
Section 4.5) have the Kurdyka–Łojasiewicz property Theorem 4.35. This holds for example for semi-
algebraic functions introduced in Section 4.5.1. The reader who is not familiar with the concept of
o-minimal structures can simply replace “definable” with “semi-algebraic” in the following corollary.

Corollary 6.7 (Convergence of iPiano for definable functions). Let h be a definable in an o-minimal
structure. Then, Hδ(x, y) is also definable. Furthermore, let (xn)n∈N, (δn)n∈N, (xn+1, xn)n∈N be as in
Theorem 6.6; and σm ≤ Ln for all n ∈ N. Then the sequence (xn)n∈N has finite length, xn → x∗ as
n→∞, and x∗ is a critical point of h.

Proof. As h and δ‖x− y‖2 are definable, Hδ(x, y) is definable and has the KL property (Theorem 4.35).
Then, Theorem 6.6 concludes the proof.

6.1.5 Convergence rate

We prove a global O(1/
√
n) convergence rate for ‖xn+1 − xn‖. We first define the error µn to be the

smallest squared `2 norm of successive iterates

µn := min
0≤k≤n

‖xk − xk−1‖2 .

Theorem 6.8. Algorithm 6 guarantees that for all n ≥ 0

µn ≤ c−1
2

h(x0)− h
n+ 1

.

Proof. In view of Proposition 6.4(i), and the definition of γn in (6.9), summing up both sides of (6.13)
for k = 0, . . . , n and using that δn > 0 from (6.9), we obtain

h ≤ h(x0)−
n∑
k=0

γk‖xk − xk−1‖2 ≤ h(x0)− (n+ 1) min
0≤k≤n

γkµn .

As it is γk > c2, a simple rearrangement concludes the proof.

Remark 6.5. A similar result can be found in [Nes13] for the case β = 0.
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Figure 6.1: LEFT: Contour plot of h(x) in (6.14). RIGHT: Energy landscape of the nonconvex function h(x). The four diamonds
mark stationary points of the function h.

6.2 Numerical experiments

In all of the following experiments, let u, u0 ∈ RN be vectors of dimension N ∈ N, where N depends
on the respective problem. In the case of an image N is the number of pixels. The remaining part of this
chapter is published in [OCBP14].

6.2.1 Ability to overcome spurious stationary points

Let us present some of the qualitative properties of the proposed algorithm. For this, we consider mini-
mizing the following simple problem

min
x∈RN

h(x) := f(x) + g(x) , f(x) =
1

2

N∑
i=1

log(1 + µ(xi − u0
i )

2) , g(x) = λ‖x‖1 , (6.14)

where x is the unknown vector, u0 is some given vector, and λ, µ > 0 are some free parameters. A
contour plot and the energy landscape of h in the case of N = 2, λ = 1, µ = 100, and u0 = (1, 1)>

is depicted in Figure 6.1. It turns out that the function h has four stationary points, i.e. points x̄, such
that 0 ∈ ∇f(x̄) + ∂g(x̄). These points are marked by small black diamonds. Clearly the function f is
nonconvex but has a Lipschitz continuous gradient with components

∇f(x)i = µ
xi − u0

i

1 + µ(xi − u0
i )

2
.

The Lipschitz constant of ∇f is easily computed as L = µ. The function g is nonsmooth but convex
and the proximal operator with respect to g is given by the well-known shrinkage operator, which we
computed in Example 2.16(iv). Let us test the performance of the proposed algorithm on the example
shown in Figure 6.1. We set α = 2(1− β)/L. Figure 6.2 shows the results of using the iPiano algorithm
for different settings of the extrapolation factor β. We observe that iPiano with β = 0 is strongly attracted
by the closest stationary points while switching on the inertial term can help to overcome the spurious
stationary points. The reason for this desired property is that while the gradient might vanish at some
points, the inertial term β(xn − xn−1) is still strong enough to drive the sequence out of the stationary
region. Clearly, there is no guarantee that iPiano always avoids spurious stationary points. iPiano is not
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Figure 6.2: FIRST ROW, FROM LEFT TO RIGHT: Results of using iPiano for four different starting points with β = 0. SECOND
ROW: Results for the same starting position as in the first row using iPiano with β = 0.75. While the algorithm without an inertial
term gets stuck in unwanted local stationary points in three of four cases, the algorithm with an inertial term always succeeds in
converging to the global optimum.

designed to find the global optimum. However, our numerical experiments suggest that in many cases,
iPiano finds lower energies than the respective algorithm without inertial term. A similar observation
about the Heavy-ball method is described in [Ber99].

6.2.2 Image processing applications

In this section, we demonstrate the applicability of the proposed algorithm to solving a class of nonconvex
regularized variational models. We present examples for natural image denoising and linear diffusion
based image compression. We show that iPiano can be easily adapted to all of these problems and yields
state-of-the-art results.

6.2.2.1 Student-t regularized image denoising

We investigate the task of natural image denoising. For this we exploit an optimized Markov random
field (MRF) model (see [CPRB13]) and make use of the iPiano algorithm to solve it. In order to evaluate
the performance of iPiano, we compare it to the well-known bound constrained limited memory quasi
Newton method (L-BFGS89) [LN89] 3. As an error measure, we use the energy difference

En = hn − h∗ , (6.15)

where hn is the energy of the current iteration n and h∗ is the energy of the true solution. Clearly, this
error measure makes sense only when different algorithms can achieve the same true energy h∗ which is
in general wrong for nonconvex problems. In our image denoising experiments, however, we find that all
tested algorithms find the same solution, independent of the initialization. This can be explained by the
fact that the learning procedure [CPRB13] also delivers models that are relatively easy to optimize, since
otherwise they would have resulted in a bad training error. In order to compute a true energy h∗, we run
the iPiano algorithm with β = 0.8 for enough iterations (∼1000 iterations). We run all the experiments
in MATLAB on a 64-bit Linux server with 2.53GHz CPUs.

3We make use of the implementation distributed at http://www.cs.toronto.edu/˜liam/software.shtml.
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The MRF image denoising model based on learned filters is formulated as

min
u∈RN

Nf∑
i=1

ϑiΦ(Kiu) + g1,2(u, u0) , (6.16)

where u and u0 ∈ RN denote the sought solution and the noisy input image respectively, Φ is the
nonconvex penalty function, Φ(Kiu) =

∑
p ϕ((Kiu)p), Ki are learned, linear operators with the corre-

sponding weights ϑi, and Nf is the number of the filters. The linear operators Ki are implemented as
two-dimensional convolutions of the image u with small (e.g. 7× 7) filter kernels ki, i.e. Kiu = ki ∗ u.
The function g1,2 is the data term, which depends on the respective problem. In the case of Gaussian
noise, g1,2 is given as

g2(u, u0) =
λ

2
‖u− u0‖22 ,

and for the impulse noise (e.g., salt and pepper noise), g1,2 is given as

g1(u, u0) = λ‖u− u0‖1 .
The parameter λ > 0 is used to define the tradeoff between regularization and data fitting.

We consider the following nonconvex penalty function, which is derived from the student-t distribu-
tion:

ϕ(t) = log(1 + t2) . (6.17)

Concerning the filters ki, for the `2 model (MRF-`2), we make use of the filters learned in [CPRB13]
by using a bilevel learning approach. The filters are shown in Figure 6.3(a) together with the correspond-
ing weights ϑi. For the MRF-`1 denoising model, we employ the same bilevel learning algorithm to train
a set of optimal filters specialized for the `1 data term and input images degraded by salt and pepper noise.
Since the bilevel learning algorithm requires a twice continuously differentiable model we replace the `1
norm by a smooth approximation during training. The learned filters for the MRF-`1 model together with
the corresponding weights ϑi are shown in Figure 6.3(b).

Let us now explain how to solve (6.16) using the iPiano algorithm. Casting (6.16) in the form of (6.1),
we see that f(u) =

∑Nf
i=1 ϑiΦ(Kiu) and g(u) = g1,2(u, u0). Thus, we have

∇f(u) =

Nf∑
i=1

ϑiK
>
i Φ′(Kiu) ,

where Φ′(Kiu) = [ϕ′((Kiu)1) , ϕ′((Kiu)2), . . . , ϕ′((Kiu)p)]
> and ϕ′(t) = 2t/(1 + t2). The proximal

map with respect to g simply poses pointwise operations. They are easily obtained combining Exam-
ple 2.16(i) and (iv) with Lemma 2.41. For the case of g2, it is given by up = (ûp + αλu0

p)/(1 + αλ),
and for g1 by up = max(0, |ûp − u0

p| − αλ) · sign(ûp − u0
p) + u0

p, for all p = 1, . . . , N . Now, we can
make use of our proposed algorithm to solve the nonconvex optimization problems. In order to evaluate
the performance of iPiano, we compare it to L-BFGS89. To use L-BFGS89, we merely need the gradient
of the objective function with respect to u. For the MRF-`2 model, calculating the gradients is straight-
forward. However, in the case of the MRF-`1 model, due to the nonsmooth function g, we cannot directly
use L-BFGS89. Since L-BFGS89 can easily handle box constraints, we can get rid of the nonsmooth
function `1 norm by introducing two box constraints.

Lemma 6.9. The MRF-`1 model can be equivalently written as the bound-constraint problem

min
w,v

Nf∑
i=1

ϑiΦ(Ki(w + v)) + λ 1>(v − w) s.t. w ≤ u0/2, v ≥ u0/2 . (6.18)
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(a) Learned filters for the MRF-`2 model
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(b) Learned filters for the MRF-`1 model

Figure 6.3: 48 learned filters of size 7× 7 for two different MRF denoising models. The first number in the bracket is the weights
ϑi, and the second one is the norm ‖ki‖2 of the filters.

Figure 6.4: Natural image denoising by using the student-t regularized MRF model (MRF-`2). LEFT: Clean image. MIDDLE:
Noisy image corrupted by additive zero mean Gaussian noise with σ = 25. RIGHT: Denoised image.

Proof. It is well-know that the `1 norm ‖u− u0‖1 can be equivalently expressed as

‖u− u0‖1 = min
t

1>t , s.t. t ≥ u− u0 , t ≥ −u+ u0 ,

where t ∈ RN and the inequalities are understood pointwise. Letting w = (u − t)/2 ∈ RN and
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Figure 6.5: Natural image denoising in the case of impulse noise by using the MRF-`1 model. TOP LEFT: Clean image. TOP
RIGHT: Noisy image corrupted by 25% salt & pepper noise. BOTTOM: Denoised image.

v = (u + t)/2 ∈ RN , we find u = w + v and t = v − w. Substituting u and t back into (6.16) while
using the above formulation of the `1 norm yields the desired transformation.

Figures 6.4 and 6.5 respectively show a denoising example using the MRF-`2 model, and the MRF-
`1 model. In both experiments, we use the iPiano version with backtracking (Algorithm 5) with the
following parameter settings:

L−1 = 1, η = 1.2, αn = 1.99(1− β)/Ln ,

where β is a free parameter to be evaluated in the experiment. In order to make use of possible larger
step sizes in practice, we use the following trick: when the inequality (6.5) is fulfilled, we decrease the
evaluated Lipschitz constant Ln slightly by setting Ln = Ln/1.05.

For the MRF-`2 denoising experiments, we initialized u using the noisy image itself; however, for
the MRF-`1 denoising model, we initialized u using a zero image. We found that this initialization
strategy usually gives good convergence behavior for both algorithms. For both denoising examples, we
run the algorithms until the error En decreases to a certain predefined threshold tol. We then record the
required number of iterations and the run time. We summarize the results of the iPiano algorithm with
different settings and L-BFGS89 in Tables 6.1 and 6.2. From these two tables, one can draw the common
conclusion that iPiano with a proper inertial term takes significantly fewer iterations compared to the case
without inertial term, and in practice β ≈ 0.8 is generally a good choice.

103



CHAPTER 6. IPIANO

10
0

10
1

10
2

10
−5

10
0

10
5

N

µ
N

 

 

iPiano, β = 0.8
O(1/N )

10
0

10
1

10
2

10
−5

10
0

10
5

N

µ
N

 

 

iPiano, β = 0.8
O(1/N )

Figure 6.6: Convergence rates for the MRF-`2 and -`1 models. The figures plot the minimal residual norm µn. LEFT: MRF-`2
model. RIGHT: MRF-`1 model. Note that the empirical convergence rate is much faster compared to the worst case rate (see
Theorem 6.8).

In Table 6.1, one can see that the iPiano algorithm with β = 0.8 takes slightly more iterations and a
longer run time to reach a solution of moderate accuracy (e.g., tol = 10−3) compared with L-BFGS89.
However, for highly accurate solutions (e.g., tol = 10−5), this gap increases. For the case of the nons-
mooth MRF-`1 model, the result is just the reverse. It is shown in Table 6.2, that for reaching a moderately
accurate solution, iPiano with β = 0.8 consumes significantly fewer iterations a shorter run time, and for
the solution of high accuracy, it still can save much computation.

Figure 6.6 plots the error µn over the number of required iterations n for both the MRF-`2 and MRF-
`1 models using β = 0.8. From the plots it becomes obvious that the empirical performance of the
iPiano algorithm is much better compared to the worst-case convergence rate ofO(1/

√
n) as provided in

Theorem 6.8.

The iPiano algorithm has an additional advantage of simplicity. The iPiano version without back-
tracking basically relies on matrix vector products (filter operations in the denoising examples) and sim-
ple pointwise operations. Therefore, the iPiano algorithm is well suited for a parallel implementation on
GPUs which can lead to speedup factors of 20-30.

6.2.2.2 Linear diffusion based image compression

In this example we apply the iPiano algorithm to linear diffusion based image compression. Recent
works [GWW+08, SWB09] have shown that image compression based on linear and nonlinear diffusion
can outperform the JPEG standard and even the more advanced JPEG 2000 standard, when the interpo-
lation points are carefully chosen. Therefore, finding optimal data for interpolation is a key problem in
the context of PDE-based image compression. There exist only a few prior works on this topic (see, e.g.
[MHW+11, HSW13]), and the very recent approach presented in [HSW13] defines the state-of-the-art.

The problem of finding optimal data for homogeneous diffusion based interpolation is formulated as
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iPiano with different β L-BFGS89
tol 0.00 0.20 0.40 0.60 0.80 0.95 T1(s) iter. T2(s)
103 260 182 116 66 56 214 34.073 43 18.465
102 372 256 164 94 67 257 40.199 55 22.803
101 505 344 222 129 79 299 47.177 66 27.054
100 664 451 290 168 98 342 59.133 79 32.143

10−1 857 579 371 216 143 384 85.784 93 36.926
10−2 1086 730 468 271 173 427 103.436 107 41.939
10−3 1347 904 577 338 199 473 119.149 124 48.272
10−4 1639 1097 697 415 232 524 138.416 139 53.290
10−5 1949 1300 827 494 270 569 161.084 154 58.511

Table 6.1: The number of iterations and the run time necessary for reaching the corresponding error for iPiano and L-BFGS89 to
solve the MRF-`2 model. T1 is the run time of iPiano with β = 0.8 and T2 shows the run time of L-BFGS89.

iPiano with different β L-BFGS89
tol 0.00 0.20 0.40 0.60 0.80 0.95 T1(s) iter. T2(s)
103 390 272 174 96 64 215 43.709 223 102.383
102 621 403 256 145 77 260 53.143 246 112.408
101 847 538 341 195 96 304 65.679 265 121.303
100 1077 682 433 247 120 349 81.761 285 130.846

10−1 1311 835 530 303 143 395 97.060 298 136.326
10−2 1559 997 631 362 164 440 111.579 311 141.876
10−3 1818 1169 741 424 185 485 126.272 327 148.945
10−4 2086 1346 853 489 208 529 142.083 347 157.956
10−5 2364 1530 968 557 233 575 159.493 372 169.674

Table 6.2: The number of iterations and the run time necessary for reaching the corresponding error for iPiano and L-BFGS89 to
solve the MRF-`1 model. T1 is the run time of iPiano with β = 0.8 and T2 shows the run time of L-BFGS89.

the following constrained minimization problem:

min
u,c

1

2
‖u− u0‖22 + λ‖c‖1 (6.19)

s.t. C(u− u0)− (I − C)Lu = 0 ,

where u0 ∈ RN denotes the ground truth image, u ∈ RN denotes the reconstructed image, and c ∈
RN denotes the inpainting mask, i.e. the characteristic function of the set of points that are chosen for
compressing the image. Furthermore, we denote by C = diag(c) ∈ RN×N the diagonal matrix with
the vector c on its main diagonal, by I the identity matrix and by L ∈ RN×N the Laplacian operator.
Compared to the original formulation [HSW13], we omit a very small quadratic term ε

2‖c‖22, because we
find it unnecessary in experiments.

Observe that if c ∈ [0, 1)N , we can multiply the constraint equation in (6.19) from the left by (I −
C)−1 such that it becomes

E(c)(u− u0)− Lu = 0 ,

where E(c) = diag(c1/(1− c1), . . . , cN/(1− cN )). This shows that problem (6.19) is in fact a reduced
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formulation of the bilevel optimization problem

min
c

1

2
‖u(c)− u0‖22 + λ‖c‖1 (6.20)

s.t. u(c) = arg min
u
‖Du‖22 + ‖E(c)

1
2 (u− u0)‖22 ,

where D is the nabla operator and hence −L = D>D.

Problem (6.19) is nonconvex due to the nonconvexity of the equality constraint. In [HSW13], the
above problem is solved by a successive primal–dual (SPD) algorithm, which successively linearizes
the nonconvex constraint and solves the resulting convex problem with the first-order primal–dual algo-
rithm [CP11]. The main drawback of SPD is, that it requires tens of thousands of inner iterations and
thousands of outer iterations to reach a reasonable solution. However, as we now demonstrate, iPiano can
solve this problem with higher accuracy in 1000 iterations.

Observe that we can rewrite problem (6.19) by solving u from the constraints equation, which gives
u = A−1Cu0, where A = C + (C − I)L. In [MBWF11], it is shown that the A is invertible as long
as at least one element of c is nonzero, which is the case for nondegenerate problems. Substituting back
the above equation back into (6.19), we arrive at the following optimization problem, which now depends
only on the inpainting mask c:

min
c

1

2
‖A−1Cu0 − u0‖22 + λ‖c‖1 . (6.21)

Casting (6.21) in the form of (6.1), we have f(c) = 1
2‖A−1Cu0 − u0‖22, and g(c) = λ‖c‖1. In order to

minimize the above problem using iPiano, we need to calculate the gradient of f with respect to c, which
is

∇f(c) = diag(−(I + L)u+ u0)(A>)−1(u− u0) . (6.22)

Finally, we need to compute the proximal map with respect to g(c) which is again given by a pointwise
application of the shrinkage operator, see Example 2.16(iv).

Now, we can make use of the iPiano algorithm to solve problem (6.21). We set β = 0.8, which
generally performs very well in practice. We additionally accelerate the SPD algorithm used in the
previous work [HSW13] by applying the diagonal preconditioning technique [PC11], which significantly
reduces the required iterations for the primal–dual algorithm in the inner loop.

Figure 6.7 shows examples of finding optimal interpolation data for the three test images. Table 6.3
summarizes the results of two different algorithms. Regarding the reconstruction quality, we make use of
the mean squared error (MSE) as an error measurement to be consistent with previous work; the MSE is
computed by

MSE(u, u0) =
1

N

N∑
i=1

(ui − u0
i )

2 .

From Table 6.3, one can see that the Successive PD algorithm requires 200 × 4000 iterations to con-
verge. iPiano needs only 1000 iterations to reach a lower energy. Note that in each iteration of the
iPiano algorithm, two linear systems have to be solved. In our implementation we use the MATLAB
“backslash” operator, which effectively exploits the strong sparseness of the systems. A lower energy
basically implies that iPiano can solve the minimization problem (6.19) better. Regarding the final com-
pression result, usually the result of iPiano has slightly less density but slightly worse MSE. Following
the work [MHW+11], we also consider the so-called gray value optimization (GVO) as a post-processing
step to further improve the MSE of the reconstructed images.
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(a) Test image (256× 256) (b) Optimized mask (c) Reconstruction

Figure 6.7: Examples of finding optimal inpainting mask for Laplace interpolation based image compression by using iPiano.
FIRST ROW: Test image trui of size 256× 256. Parameter λ = 0.0036, the optimized mask has a density of 4.98% and the MSE
of the reconstructed image is 16.89. SECOND ROW: Test image peppers of size 256× 256. Parameter λ = 0.0034, the optimized
mask has a density of 4.84% and the MSE of the reconstructed image is 18.99. THIRD ROW: Test image walter of size 256× 256.
Parameter λ = 0.0018, the optimized mask has a density of 4.82% and the MSE of the reconstructed image is 8.03.
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Test image Algorithm Iterations Energy Density MSE with GVO

trui iPiano 1000 21.574011 4.98% 17.31 16.89

SPD 200/4000 21.630280 5.08% 17.06 16.54

peppers iPiano 1000 20.631985 4.84% 19.50 18.99

SPD 200/4000 20.758777 4.93% 19.48 18.71

walter iPiano 1000 10.246041 4.82% 8.29 8.03

SPD 200/4000 10.278874 4.93% 8.01 7.72

Table 6.3: Summary of two algorithms for three test images.
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Chapter 7

On iteratively reweighted algorithms
for nonsmooth nonconvex optimization
in computer vision

Like in Chapter 6, we consider a structured nonsmooth and nonconvex optimization problem. Here, it is
of the form:

min
x∈X

F1(x) + F2(G(x)) , (7.1)

where F1 is a convex function, G is a coordinate-wise convex function and F2 is nonconvex. Compared
to the iPiano algorithm with convex function g, the method that is presented in this chapter is more
general. Unlike the function f in the iPiano algorithm, the function F2 is not required to have a Lipschitz
continuous gradient. The additional functionG that is explicitly modeled in (7.1) is suitable for computer
vision problems. It is not a restriction, as the identity map is feasible.

The structure of (7.1) differs from related convex problems, for which efficient algorithms are avail-
able, only in F2 ◦ G possibly being nonconvex. One would expect that such a strong analogy can be
exploited. Indeed, for the algorithm we propose in this chapter we can show some favorable proper-
ties, including convergence of the function values and under some more assumptions convergence of the
sequence of arguments. The numerical analysis demonstrates efficiency and robustness towards local
optima. At the same time, the algorithm allows us to deal with several interesting nonconvex problems in
image processing.

The proposed algorithm is in the fashion of classical majorization minimization algorithms. It gener-
ates and solves a sequence of convex optimization problems. The nonconvex part F2 is, at each iteration,
approximated by means of a majorizing convex surrogate function. Then, the resulting convex optimiza-
tion problem is solved. As a matter of fact, the convex surrogate function has a structure that is amenable
to efficient first-order methods for structured convex optimization. For example, in some cases, it permits
the usage of the iPiasco algorithm from Chapter 3 for solving the surrogate function.

Although the convex subproblems are known to converge, it is not trivial to prove the convergence for
the overall nonconvex problem. We show two convergence results. The first one establishes convergence
for a subsequence of the sequence generated by our algorithm. This result is easily obtained and mainly
stems from the fact that majorization minimization algorithms generate a sequence of nonincreasing
function values. The second result states the convergence of the whole sequence. It requires a more
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sophisticated analysis and some more assumptions like Lipschitz continuity of the gradient of F2. For a
subclass of Problem (7.1) satisfying these assumptions, convergence of the whole sequence of arguments
to a critical point is proved. One part of the stronger regularity assumption is that the objective is a KL-
function (see Section 4.5). This implies a sufficient descent property for gradient based methods also in
areas where the function is flat around local optima. Our approach to proof convergence is showing that
the requirements of [ABS13] (see Chapter 5) are satisfied.

In our numerical experiments the performance of the proposed algorithm is shown to be comparable
to related algorithms for convex optimization, e.g., gradient descent or forward–backward splitting algo-
rithms. Moreover, the proposed algorithm is easy to implement, which make it interesting for practical
applications.

Problems like (7.1) arise frequently in image processing, computer vision or machine learning. The
applicability of the iteratively reweighted `1 algorithm, which arises as a special case of the algorithm
presented in this chapter, is demonstrated in [ODPB13]. Whereas the focus in that work was the diversity
of applications such as denoising, deconvolution, depth map fusion, and optical flow, in this chapter we
concentrate on the difference of modeling concepts in denoising and optical flow estimation. However,
the concepts, how the nonconvex penalty functions are used, easily generalize to many other problems,
e.g., deconvolution, depth map fusion, stereo estimation, or superresolution. Replacing convex penalty
functions by nonconvex functions usually leads to better results. In particular, we analyze robust data-
terms and the usage of edge-enhancing nonconvex penalizers. As a special instance, we are the first to
propose a nonconvex extension of the total generalized variation regularizer [BKP10]. The total general-
ized variation (TGV) semi-norm is a convex penalizer that can reconstruct piecewise smooth functions.
Due to the convexity of the regularizer, first- and higher-order discontinuities are only preserved but not
enhanced. This may lead to over-smoothing effects in case of strong noise or weak data terms. It turns
out that this effect can be partly avoided by using nonconvex penalizers in the TGV semi-norm.

Large parts of this chapter are published in [ODBP15].

7.1 Related work

Gradient descent based methods Steepest Descent, Quasi-Newton or Newton methods [Nes04, NW06,
Ber99] are the classical approaches for general optimization and are also applicable in the nonconvex
setting as long as the objective is smooth enough. An alternative are hill-climbing methods [TM93],
annealing-type schemes [GG84], or graduated nonconvexity (GNC) [BZ87, Nik99]. However, efficiency
of these methods leaves room for improvement. The worst-case complexity bound for general nonconvex
problems derived in [Nes04] supports this statement. This means that there is only hope for efficient
algorithms when considering nonconvex optimization problems of a specific structure.

In convex optimization problems with structure led to several efficient algorithms like Douglas-
Rachford [DG64, EB92], forward–backward splitting [LM79, CW05, BT09a, Nes04], primal–dual ap-
proaches [CP11, PC11, HY12a], or augmented Lagrangian method [Ber99, Hes69, Pow69], which we
discussed in Section 2.2.

While it seems to be difficult to generalize primal–dual approaches to the nonconvex setting directly
[Val14, MSMC14], the augmented Lagrangian method is considered in [FW10, AFS13], the gradient
projection method in [LP66, Gol64, ABS13], or a forward–backward splitting in [FM81, Sra12, Nes13,
ABS13] were used for nonconvex optimization. In Chapter 6 the iPiano algorithm is introduced in the
nonconvex setting. In our numerical experiments we will consider this algorithm, because several al-
gorithms like gradient descent, projected gradient descent, the Heavy-ball method, and the forward–
backward algorithm are special cases of it.
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From another perspective, gradient descent method can also be interpreted as a majorization mini-
mization (MM) algorithm [BT09b, LHY00, HL04]. The iteration step of the gradient descent method
is equivalent to minimizing an isotropic quadratic upper bound—the quadratic upper bound that appears
in the Descent Lemma (see e.g. Lemma 2.49). This way many algorithms can be considered as spe-
cial instances of the MM algorithm. Also iPiano can be considered like that, see (6.3). Also expec-
tation maximization algorithms are MM algorithms [FH94, FH95, JF07]. The MM principle can also
be used for analytically estimating step size parameters for a given search direction (on a subspace)
[CIM11, CJPT13, FCP+14]. In this context majorizers are mostly quadratic functions.

An important sub-class of the MM algorithms related to our algorithm is by Geman and Reynolds [GR92].
They rewrote a (smooth) nonconvex potential function as the infimum over a family of quadratic func-
tions. This transformation suggests an algorithmic scheme that solves a sequence of quadratic prob-
lems, leading to the so-called iteratively reweighted least squares (IRLS) algorithm. This algorithm
quickly became a standard solver and hence, it has been extended and studied in many works, see
e.g. [VO98, NC07, DDFG10]. Convergence results can be found in [Idi01, AIG06].

The IRLS algorithm can only be applied if the nonconvex function can be well approximated from
above with quadratic functions. However, this does not cover interesting functions such as log(1 + |x|)
that are nondifferentiable at zero. Candes et al. [CWB08] tackled this problem by the so-called iteratively
reweighted `1 (IRL1) algorithm. It solves a sequence of nonsmooth `1 problems and hence can be seen as
nonsmooth counterpart to the IRLS algorithm. Originally, the IRL1 algorithm was proposed to improve
the sparsity properties in `1 regularized compressed sensing problems.

First convergence results for the IRL1 algorithm have been obtained by Chen et al. in [CZ13] for
a class of nonconvex `2-`p problems used in sparse recovery. In particular, they show that the method
monotonically decreases the energy of the nonconvex problem. Unfortunately, the class of problems they
considered is not suitable for typical computer vision problems, due to the absence of a linear operator
that is needed in order to represent spatial regularization terms.

In [ODPB13], the convergence analysis of [CZ13] was generalized to linearly constrained optimiza-
tion problems. This analysis made the algorithm and the theoretical results applicable to many computer
vision problems. In this chapter, the algorithm will be generalized further and the convergence analysis
will be extended a lot compared to [CZ13, ODPB13]. The convergence result is based on the analysis
of the abstract descent algorithm from Chapter 5 and requires the objective function to be a Kurdyka–
Łojasiewicz (KL) function. For details and references we refer to Section 4.5.

7.2 A class of optimization problems

We study a nonconvex optimization problem of a specific structure in a finite dimensional real vector
space X of dimension dim(X) = N ∈ N. The standard inner product and norm are denoted 〈·, ·〉 and
‖ · ‖2 := 〈·, ·〉, respectively. The optimization problem reads

min
x∈X

F (x) := min
x∈X

F1(x) + F2(G(x)) , (7.2)

with a lower semi-continuous (lsc), extended real-valued, proper function F : X → R where R :=
R ∪ {∞}. In addition we assume that F is bounded from below, i.e., infx∈X F (x) =: F > −∞.
We require that F1 : X → R is proper, lsc, convex. Note that we explicitly allow the function F1

to take on values at infinity, hence it can be for example the indicator function of a convex set. The
function G : X → X2 maps from X into another finite dimensional real vector space X2 with dimension
N2 := dim(X2) ≤ N . We assume each coordinate function Gi, i = 1, . . . , N2, to be convex. The
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function F2 : G(X)→ R we assume coordinate-wise nondecreasing, i.e., F2(x) ≤ F2(x+λei) whenever
x, x+ λei ∈ G(X) and λ > 0, where ei is the i-th standard basis vector of X2, i = 1, . . . , N2. We note
that coordinate-wise convexity of G gives very simple structure to the set G(X): it is Cartesian product
of intervals, each infinite on one or both ends.

Example 7.1 (Denoising). Image denoising (see also Chapter 1) is a simple example from image process-
ing that fits into the framework of (7.2). Given a noisy image f ∈ X the goal of denoising is to find the
image u ∈ X such that f = u+ h, where h ∈ X is the noise that deteriorated the recording. Commonly,
u instead of x denotes the optimization variable in image processing. The denoised image, i.e. the result,
can be sought as minimizer of

min
u∈X

λ‖u− f‖1 +
∑
i

log(1 + |(∇u)i|) ,

where λ ∈ R+ and |∇u| ∈ G(X) denotes, as described in Section 0.2, the vector composed of coordi-
nates |(∇u)i| :=

√
((∂xu)i)2 + ((∂yu)i)2, where ∂xu is a discrete implementation of the x-derivative

of the image (considered as a function R2 → R). The first term measures the discrepancy between
the measurements and the sought denoised image. It is called data-term and given by the proper, con-
vex (nonsmooth) function F1(u) = λ‖u − f‖1 in (7.2). The second term, called the regularization-
term invokes some prior knowledge about natural image statistics. The use of the nonconvex function
F2(y) =

∑
i log(1 + yi) on G(X) for the regularization-term stresses the general property of images of

being smooth and having some sharp jump discontinuities. Obviously, F2 is coordinate-wise nondecreas-
ing on G(X) (see Figure 1.3). The coordinate functions Gi(u) = |(∇u)i| are convex and make F2 ◦ G
nonsmooth.

Finding the global minimum of a nonsmooth nonconvex function, as in (7.2), is in general not feasible.
We hence only aim to find a critical point of the function F , i.e. x ∈ X : 0 ∈ ∂F (x), where ∂ denotes
the limiting-subgradient (Definition 4.12). Critical points are connected to local minima of the function
by Fermat’s rule (see Theorem 4.23).

7.3 Iterative convex majorization minimization

In this chapter, we study a sub-class of majorization minimization (MM) methods that is suitable for
solving the minimization problem (7.2). The idea of MM algorithms is to minimize majorizers of the
function instead of the function itself. The major challenge is the construction of majorizing functions
that are easier to minimize than the original function. Invoking only some weak assumptions about the
structure of the optimization problem (7.2) as done above, makes it possible to design such majorizing
functions.

We propose to majorize F2 with a convex function F x
n

2 that approximates F2 such that F x
n

2 ◦ G is
convex and meets F2 ◦G at xn. More formally, consider the generic Method 7. Nondecreasingness of F x2
provides convexity of the composition F x2 ◦G. As the above formulation is rather abstract, we exemplify
the algorithm.

Example 7.2. We consider a simplified problem of Example 7.1 and restrict X = X2 = R, G(x) = |x| :

min
x∈R

F (x) = min
x∈R

F1(x) + F2(x) = min
x∈R

2|x− 1|+ 1

2
log(1 + 25x2) . (7.5)

Figure 7.1 visualizes one update step using (7.4) at xn = −0.5. For details on how to choose the
surrogate function we refer to the specialized algorithms (here Algorithm 11) introduced in the following
subsections.
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Method 7. Iterative convex majorization minimization method

• Initialization: Choose a starting point x0 ∈ X with F (x0) <∞ and define a suitable family
of convex surrogate functions (F x2 )x∈X , such that for all x ∈ X holds F x2 ∈ F2,G(x), where

F2,G(x) :=

{
f : X2 → R

∣∣∣∣∣
f proper, convex,

f nondecreasing on G(X),
f(G(x)) = F2(G(x)),

∀y ∈ G(X) : f(y) ≥ F2(y)

}
. (7.3)

• Iterations (n ≥ 0): Update

xn+1 = arg min
x∈X

F1(x) + F x
n

2 (G(x)) . (7.4)
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Figure 7.1: Visualization of one update step (7.4) for optimization problem (7.5) at xn = −0.5. LEFT: Convex function F1.
MIDDLE: Nonconvex function F2 ◦G (red) and its convex majorizer F−0.5

2 ◦G (blue). RIGHT: The function F = F1 + F2 ◦G
(red) and its majorizer F−0.5 = F1 + F−0.5

2 ◦G (blue). The blue function in the right plot is to be minimized to obtain xn+1.

We call the Method 7 “generic”, because it still requires the choice of suitable convex surrogate
functions. As F1 is already convex, the approximation F x

n

2 of F2 is the focus of attention. A choice of
approximation follows from the following property of MM algorithms.

Proposition 7.1. Let (xn)n∈N be generated by Method 7 and let for all x ∈ X be F x2 ∈ F2,G(x). Then,
the sequence (F (xn))n∈N monotonically decreases and converges.

Proof. The proof directly follows from F being bounded from below by F and the definitions of xn and
F x

n

2 :

F ≤ F (xn+1) ≤ F1(xn+1) + F x
n

2 (G(xn+1)) ≤ F1(xn) + F x
n

2 (G(xn)) = F (xn) .

The sequence (F (xn))n∈N decreases and is bounded from below. Hence, it converges.

Clearly, at each iteration the value of the function F decreases at least as much as the value of the
majorizing function. This suggests to use surrogate functions whose minimum is minimal. Of course, it
could happen that another surrogate function with a higher minimum yields a lower value of the original
function, however, there is no guarantee. Finding the optimal approximation according to the criterion of
guaranteed maximal decrease of function values is hard. In general, a majorizer f ∈ F2,G(xn) that is not
the sum of F1 and another convex function can have a lower minimum than our approximation. However,
this better majorizer may be complex to construct and difficult to optimize. Thus, we aim to fulfill the
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criterion of guaranteed maximal decrease of function values in the class of surrogate functions that are
sum of F1 and another convex function. If we talk about optimal majorizers in the following, we mean
optimality according to the guaranteed decrease of function values in this class. These are majorizers
(constructed under certain conditions) with the lowest minimum.

The different algorithms that will be presented in the following section take into account the charac-
teristics of F2. Considering again Figure 1.3, it is obvious that there is no simple universal choice for
the surrogate function. For instance, close to 0 the nondifferentiable functions in Figure 1.3 may be well
approximated by the absolute value function, whereas this is a bad choice for the functions on the top
right of Figure 1.3. Different functions require different construction principles of the majorizer. In this
paper, we show constructions of majorizers, which address (7.2). Some of them are proved to be optimal
in the sense explained above. Method 7 serves as a tool to prove their convergence in a unified framework.
However, it covers many other possible constructions (thus also convergence) of majorizers that are not
explicitly presented here.

7.4 Iteratively reweighted convex algorithms

As the function F2 in the optimization problem (7.2) does not change, it may be possible to find a single
convex function that, weighted appropriately, can serve as majorizer for F2 at each step of the Method 7.
This is the principle of iteratively reweighted algorithms. The construction of majorizers according to this
principle is easier than for the very general Method 7 and allows for explicit algorithms. The reweighting
algorithms considered in the subsequent subsections are all special cases of the IRconvex Method 8,
which is an instance of Method 7.

Method 8. Iteratively reweighted convex method (IRconvex)

• Initialization: Define a convex function F c2 : G(X)→ RN ′2 , N ′2 ∈ N, and a family of vectors
(wx)x∈X such that

y 7→ 〈wx, F c2 (y)〉 ∈ F2,G(x), x ∈ X ,

and starting point x0 ∈ X with F (x0) <∞.

• Iterations (n ≥ 0): Update

xn+1 = arg min
x∈X

F1(x) +
〈
wx

n

, F c2 (G(x))
〉

(7.6)

Remark 7.3. As the optimization problem in (7.6) is independent of constants, y 7→ 〈wx, F c2 (y)〉 may be
in F2,G(x) only after adding a constant. Formally this could be achieved by setting F̃2

c
:= (F c2 , 1) and

w̃x := (wx, a), where a ∈ R. Being aware of it now, subsequently, we will simply neglect the constant.

7.4.1 Iteratively reweighted `1 algorithm

Algorithm 9, the iteratively reweighted `1 algorithm, will be shown to be optimal for the optimization
problem (7.2) in a certain sense, when F2 is concave on G(X). We denote here by ∂̄f := −∂(−f) the
limiting-supergradient, the analogue of the limiting-subgradient but for concave functions. The usage of
∂̄ instead of ∂ makes the Algorithm slightly more general. For F2 concave it is ∂F2(x) ⊂ ∂̄F2(x) on the
interior of G(X).
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Algorithm 9. Iteratively reweighted `1 algorithm (IRL1)

• Assumption: F2 is concave on G(X).

• Initialization: Define a family of vectors (wx)x∈X with

wx ∈ ∂̄F2(y), y = G(x), x ∈ X ,

and starting point x0 ∈ X with F (x0) <∞.

• Iterations (n ≥ 0): Update

xn+1 = arg min
x∈X

F1(x) +
〈
wx

n

, G(x)
〉

(7.7)

Remark 7.4. The functions x 7→
〈
wx

n

, G(x)
〉

may not be majorizers of F2. However, they become
majorizers when shifted by suitable constants which do not affect (7.7). The exact majorizer will be
considered in Proposition 7.2.

Example 7.5. We consider the same optimization problem as in Example 7.1. Obviously, F2(y) =∑
i log(1 + yi) is nondecreasing and concave on G(X) = [0; +∞), F1(u) = λ‖u − f‖1 and Gi(u) =

|(∇u)i| are convex. For un ∈ X the vectors wu
n

in Algorithm 9 read wu
n

i = 1/(1 + |(∇un)i|) which
is defined as |(∇un)i| :=

√
((∂xun)i)2 + ((∂yun)i)2, and the convex surrogate optimization problem in

(7.7) reads
min
u∈X

λ‖u− f‖1 +
∑
i

wu
n

i |(∇u)i| .

Each of these subproblems is a denoising problem with total variation regularization with coordinates
differently weighted.

As discussed before, in general, it is hard to construct the best surrogate function according to the
criterion of guaranteed maximal decrease of function values. However, assuming that F2 is concave on
G(X) it is possible and used in Algorithm 9.

Proposition 7.2. If F2,G(xn) is defined as in (7.3) and F2 is concave on G(X) and differentiable at
G(xn), then the optimal majorizer of F2 ◦G at xn

arg min
f∈F2,G(xn)

(
min
x∈X

f(G(x))

)
is given by

F̂2(y) = 〈∇F2(G(xn)), y −G(xn)〉+ F2(G(xn)).

Moreover, F1 + F̂2 ◦ G is also the optimal majorizer of F among majorizers of F corresponding to
majorizers of F2 ◦G from the class F2,G(xn).

Proof. Due to concavity of F2, the function F̂2 is a majorizer of F2. It also clearly fulfills all other
conditions to belong to the class F2,G(xn). On the other hand, for any convex function f such that
f(G(xn)) = F2(G(xn)) and f(y) ≥ F2(y) for all y ∈ G(X) we have f(y) ≥ F̂2(y) for all y ∈ G(X).
Indeed, suppose there exists y∗ such that f(y∗) < F̂2(y∗). Then differentiability of F2 at G(xn) implies
that there exists t∗ ∈ (0, 1) such that

t∗f(y∗) + (1− t∗)f(G(xn)) < F2(t∗y∗ + (1− t∗)G(xn)) ≤ f(t∗y∗ + (1− t∗)G(xn)).
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This contradicts convexity of f , hence, our supposition was not valid, and f(x) ≥ F̂2(x) for all x ∈ X .
Therefore, f(G(x)) ≥ F̂2(G(x)) for all x ∈ X , which immediately gives

min
x∈X

f(G(x)) ≥ min
x∈X

F̂2(G(x)),

i.e. F̂2 ◦G if the best majorizer of F2. Moreover, F1(x) + f(G(x)) ≥ F1(x) + F̂2(G(x)) for all x ∈ X
and hence F1 + F̂2 ◦G is also the optimal majorizer of F .

7.4.2 Iteratively reweighted tight convex algorithm

The iteratively reweighted `1 Algorithm 9 is optimal for a certain class of functions, but not applicable to
many other practically interesting cases, such as for example F2(|x|) = log(1+|x|2) (see Figure 1.3). The
reason is that close to 0 this prototype function is strongly convex and hence not majorized by tangents.
Fortunately, the structure of this function allows for simple and tight majorizers. Namely, let us consider
the class Fcc consisting of functions f : RN+ → R such that:

(i) f is additively separable, i.e. f(x1, . . . , xN ) = f1(x1) + . . .+ fN (xN ),

(ii) every fj is convex in the convexity region [0, rj ] and concave in the concavity region [rj , +∞) for
some rj ≥ 0.

For simplicity we also suppose that there exist left and right derivatives f ′j(r
−
j ) and f ′j(r

+
j ). Then for

f ∈ Fcc we denote sj = max
(
f ′j(r

−
j ), f ′j(r

+
j )
)

and define the following functions:

tj(xj) =

{
fj(xj), if xj ≤ rj ,
fj(rj) + sj(xj − rj), if xj > rj .

(7.8)

We set Tf (x) = (t1(x1), . . . , tN (xN ))> to be the vector of all these functions. Each tj majorizes corre-
sponding fj because in the convexity region these two functions coincide, while in the concavity region
tj majorizes the tangent fj(rj)+f ′j(r

+
j )(xj−rj) of the concave function fj . Moreover, each tj is convex

by construction. We hence can plug T into Method 8, yields Algorithm 10.

Algorithm 10. Iteratively reweighted tight convex algorithm (IRTight)

• Assumption: F2 ∈ Fcc.

• Initialization: Define a family of vectors wx defined for all i = 1, . . . ,dim(X2) by

wxi =

{
1, yi ≤ ri
(vx)i
t′i(yi)

, yi > ri
, vx ∈ ∂̄F2(y) , y = G(x), x ∈ X

and starting point x0 ∈ X with F (x0) <∞.

• Iterations (n ≥ 0): Update

xn+1 = arg min
x∈X

F1(x) +
〈
wx

n

, TF2(G(x))
〉

(7.9)

As we already have shown, the functions tj majorize corresponding fj . Weighting the functions with
wxi does not remove the majorization property. More precisely, if vi ∈ ∂̄fi(y0

i ), wi = vi · (t′i(y0
i ))−1,

then witi(yi) + fi(y
0
i )− witi(y0

i ) ≥ f(yi) for all yi.
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7.4.3 Iteratively reweighted Huber algorithm

Consider the same class of functions Fcc as in the previous subsection. In practice it is beneficial when
the majorizing function has simple analytic form. This may not be the case for tight convex majorizers
introduced above. However, a wide class of functions can be majorized with help of the Huber function,
which is defined as:

hε(‖x‖) =

{
1
2ε‖x‖2, if ‖x‖ ≤ ε
‖x‖ − ε

2 , otherwise.
(7.10)

We define Hε(y) := (hε(y1), . . . , hε(yK)), which applies (7.10) coordinate-wise. Supposing that F2 is
differentiable on an open superset of G(X), we can formulate Algorithm 11.

Algorithm 11. Iteratively reweighted Huber algorithm (IRHuber)

• Assumption: F2 ∈ Fcc.

• Initialization: Define a family of vectors wx defined for all i = 1, . . . ,dim(X2) by

wxi =
(∇F2(y))i
h′ε(yi)

, y = G(x), x ∈ X

and starting point x0 ∈ X with F (x0) <∞.

• Iterations (n ≥ 0): Update

xn+1 = arg min
x∈X

F1(x) +
〈
wx

n

, Hε(G(x))
〉

(7.11)

Example 7.6. Consider the optimization problem

min
u∈X

λ‖u− f‖1 + 1
2

∑
i

log(1 + |(∇u)i|2) ,

where the convention for |(∇u)i| is as in Example 7.5. The only difference to Example 7.5 is the square in
the second term. However, as mentioned already, this makes IRL1 an unsuitable choice (see Remark 7.7).
The term F2(G(x)) = 1

2

∑
i log(1 + |(∇u)i|2) with G(x) = |(∇u)i| is better approximated using the

Huber function, which is quadratic close to 0. Vice verse, approximating the function from Example 7.5
with the Huber function is also a bad choice.

Obviously, F2 is smooth and belongs to the class Fcc. In order to write down the surrogate function
we need to calculate the derivative of F2. For all i, it is (∇F2(y))i = yi/(1 + y2

i ). The weights are
chosen such that the surrogate function has the same slope as ∇F2 at un. As the Huber function has the
derivative (∇Hε(y))i = yi/ε, if |yi| ≤ ε, and (∇Hε(y))i = yi/|yi| otherwise, the weight vector wu

n

is
inferred as

wu
n

i =
max{ε, |(∇un)i|}

1 + |(∇un)i|2
.

Remark 7.7. Within our framework there are different ways to approximate the function F2(G(x)) =
log(1 + |x|2). We consider this in 1D here. The option we used in the preceding example corresponds to
setting G(x) = |x|, F2(y) = log(1 + y2) and approximating F2(y) using the Huber function. However,
we could also set G(x) = |x|2, F2(y) = log(1 + y) and approximate F2(y) as in the IRL1 algorithm.
Then, the (convex) surrogate function to be minimized in the IRL1 algorithm is F1(x) + wx

n

G(x) =
F1(x)+wx

n |x|2 and the approximation is by a quadratic function and hence worse than the approximation
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with the Huber function. This choice of G and F2 corresponds to the well-known iteratively reweighted
least squares algorithm (IRLS), which we will recap in Section 7.4.4.

A natural question arises: which of the two interpretations of the problem leads to better results. We
argue that setting G(x) = |x|, F2(y) = log(1 + y2) is better. In this case we can approximate F2(y)
by the Huber function Hε(y), and the corresponding approximation for G(x) = |x|2, F2(y) would be
Hε(
√
y). However, Hε(

√
y) in nonconvex and therefore not feasible for our iterative, convex algorithm

(Method 8). This suggests to always choose F2 and G such that G is as close as possible to |x| (i.e. “as
nonconvex as possible”). In this case F x

n

2 ◦G can better approximate F2 ◦G. For instance, IRHuber is a
better approximation than IRLS.

As the majorization property of IRHuber is not immediately clear in this setup, we prove a general
condition under which it holds and verify it for the preceding example.

Proposition 7.3. Suppose f : X → R and m : X → R, X ⊂ R open, are continuously differen-
tiable nondecreasing functions and there exists a nonincreasing function r : R → R+ such that f ′(x) =
r(x)m′(x). Then for every x0 ∈ R the functionmx0

(x) = r(x0)m(x)+f(x0)−r(x0)m(x0) majorizes
the function f .

Proof. Obviously, f(x0) = mx0
(x0) and f ′(x0) = m′x0

(x0). We then have for x > x0:

mx0(x)− f(x) =

x∫
x0

(
m′x0

(t)− f ′(t)
)
dt =

x∫
x0

((r(x0)− r(t))m′(t)) dt ≥ 0.

Similarly, for x < x0:

mx0(x)− f(x) = −
x0∫
x

(
m′x0

(t)− f ′(t)
)
dt = −

x∫
x0

((r(x0)− r(t))m′(t)) dt ≥ 0.

We now apply this proposition to the special case f(x) = log(1 + µx2), m(x) = hε(x). Since both
functions are symmetric, we only consider x ≥ 0. We then have:

f ′(x) =
2µx

1 + µx2
,

m′(x) = min
(x
ε
, 1
)

=

{
x
ε , 0 ≤ x ≤ ε,
1, x > ε,

r(x) =
f ′(x)

m′(x)
= 2µ

max(x, ε)

1 + µx2
,

r′(x) = 2µ

{
− 2µεx

(1+µx2)2 , 0 ≤ x ≤ ε,
1−µx2

(1+µx2)2 , x > ε.

Obviously, r is nonincreasing as soon as ε ≥ 1√
µ .
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Algorithm 12. Iteratively reweighted least squares algorithm (IRLS)

• Assumption: F2 ∈ Fcc.

• Initialization: Define a family of vectors wx defined for all i = 1, . . . ,dim(X2) by

wxi =
(∇F2(y))i

yi
, y = G(x), x ∈ X

and starting point x0 ∈ X with F (x0) <∞.

• Iterations (n ≥ 0): Update

xn+1 = arg min
x∈X

F1(x) +
〈
wx

n

, 1
2 (G(x))2

〉
, (7.12)

where the square is to be understood coordinate-wise.

7.4.4 Iteratively reweighted least squares algorithm

The well-known IRLS Algorithm does also arise as a special case of Method 8. We present it in Al-
gorithm 12 using our notation. Obviously, it is applicable at least to the same class of problems as
Algorithm 11. Thus, the majorization property is clear.

Example 7.8. Consider Example 7.6. Using the IRLS algorithm the weight vector wu
n

is given by

wu
n

i =
1

1 + |(∇un)i|2
.

However, the quadratic function is a worse approximation of the nonconvex norm than the Huber function.
We hence expect IRHuber to outperform IRLS.

7.4.5 Convergence analysis

Throughout the whole convergence analysis, let (xn)n∈N be a sequence generated by Method 7. We also
always suppose that the functions F, F1, F2, G fulfill the conditions stated in Section 7.2. We make
frequent use of the tools from variational analysis presented in Chapter 4. In addition, from now on we
assume F to be coercive (Definition 2.27).

Proposition 7.4. Let F be coercive, then the sequence (xn)n∈N is bounded and has at least one accumu-
lation point.

Proof. By Proposition 7.1, the sequence (F (xn))n∈N is monotonically decreasing, therefore the sequence
(xn)n∈N is contained in the level set

L(x0) := {x ∈ X|F (x) ≤ F (x0)} .

From coercivity of F we conclude boundedness of the set L(x0). This allows to apply the Theorem of
Bolzano-Weierstraß, which gives the existence of a converging subsequence and, hence, an accumulation
point.
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Additional assumptions. In order to prove convergence for the whole sequence (xn)n∈N, two addi-
tional assumptions are required. Let us discuss them.

(i) We assume that F2 has locally Lipschitz continuous gradient (see Definition 4.19) on a compact set
B containing all the points xn and that F x2 have globally Lipschitz continuous gradients on B for
all x ∈ X with a common Lipschitz constant L̃ ≥ 0. This assumption is less restrictive as it seems
to be. Many nonsmooth functions may be written as a sum of a function with locally Lipschitz
gradient and a convex function. Then, the convex part may be shifted to F1. This class of functions
was for example considered in [AFS13].

(ii) F1 + F x
n

2 ◦ G must be strongly convex (see Definition 2.45) with a constant independent of n.
Otherwise, the sum F1 + F x

n

2 ◦ G can have a plateau as local minimum, i.e., there is no unique
minimizer. This happens for example when F1(x) = |x − 1| and F x

n

2 (G(x)) = |x| for all xn ∈
[0, 1]. Our algorithm then has to choose from multiple equally good solutions and hence may not
converge. One standard way to resolve this problem is to add a proximity term c‖x − xn‖2 to the
convex surrogate problem (7.4) with arbitrarily small c > 0. This makes the surrogate problem
strongly convex and makes the algorithm converge to one solution from the plateau.

A technical assumption we make from now on is that F2 and F x2 for all x ∈ X are defined on open
sets comprising G(X) and continuously differentiable on G(X). In all practical cases this is clearly
fulfilled. The following properties then hold:

Lemma 7.5. Under the aforementioned conditions, it holds for all x̄ ∈ X

(i) and for all x ∈ X

∂(F x̄2 ◦G)(x) = ∂ 〈y,G〉 (x) with y = ∇F x̄2 (x) ,

∂(F2 ◦G)(x) = ∂ 〈y,G〉 (x) with y = ∇F2(x) ,

(ii) and for all x ∈ domF1 and all x ∈ X

∂(F1 + F x̄2 ◦G)(x) = ∂F1(x) + ∂(F x̄2 ◦G)(x) ,

∂(F1 + F2 ◦G)(x) = ∂F1(x) + ∂(F2 ◦G)(x) .

Proof. We verify the second equality for both items. The first one follows analogously.

(i) Since F2 is continuously differentiable on an open set containing G(X), for x ∈ X it holds that
∂∞F2(G(x)) = {0} [RW98, Ex. 8.8]. Continuous differentiability also yields regularity of F2 at
G(x) for x ∈ X [RW98, Ex. 7.28]. By assumption F2 is coordinate-wise nondecreasing, which
implies that 〈y,G〉 (x) with y = ∇F2(x) is a lsc., convex function. As a consequence, 〈y,G〉 (x) is
regular at x ∈ X , which verifies the conditions for equality in Proposition 4.22. As a side product,
F2 ◦G is regular for all x ∈ X .

(ii) Convexity of G implies its local Lipschitz continuity [RW98, Ex. 9.14] and, hence, also local
Lipschitz continuity of F2 ◦ G. Therefore, ∂∞(F2 ◦ G)(x) = {0} (see Proposition 4.20), which
together with convexity of F1 (hence ∂F1(x) = ∂̂F1(x)) and Clarke regularity of F2 ◦G at x (see
first point in this proof) ensures ∂F1(x)+∂(F2◦G)(x) = ∂(F1+F2◦G)(x) (see Proposition 4.21).
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Proposition 7.6. Let B be a bounded set containing all xn. Let F2 have locally Lipschitz continuous
gradient on B and let F x2 have globally Lipschitz continuous gradients on B for all x ∈ X with a
common Lipschitz constant L̃ ≥ 0. Let also F1 + F x

n

2 ◦G be strongly convex with convexity parameter
µ > 0 for all xn ∈ X . Then, the following holds

(i) F (xn+1) ≤ F (xn)− µ
2 ‖xn − xn+1‖2 for all n ∈ N,

(ii) there exists C > 0 such that for all n ∈ N there exists vn+1 ∈ ∂F (xn+1) fulfilling

‖vn+1‖ ≤ C‖xn+1 − xn‖ ,

(iii) and for any converging subsequence (xnj )j∈N with x̄ := limj→∞ xnj holds F (xnj ) → F (x̄) as
j →∞.

Proof. (i) The strong convexity of F1 +F x
n

2 ◦G provides for all v1 ∈ ∂F1(xn+1) and vn2 ∈ ∂(F x
n

2 ◦
G)(xn+1) the inequality

F1(xn+1)− F1(xn) + F x
n

2 (G(xn+1))− F xn2 (G(xn)))

≤
〈
v1, x

n − xn+1
〉

+
〈
vn2 , x

n − xn+1
〉
− µ

2
‖xn+1 − xn‖2 ,

As xn+1 is a minimizer of (7.4) and thanks to Lemma 7.5, we can choose v1 + vn2 = 0 ∈ ∂(F1 +
F x

n

2 ◦ G)(xn+1). Using F2(G(xn+1)) ≤ F x
n

2 (G(xn+1)) and F2(G(xn)) = F x
n

2 (G(xn)), we
conclude this part of the proof.

(ii) Local Lipschitz continuity of G (which follows from its convexity) and the gradient of F2 provides
their global Lipschitz continuity on B. We denote the corresponding Lipschitz constants by LG
and L respectively.

Using Lemma 7.5, we can select v1 ∈ ∂F1(xn+1) and vn2 ∈ ∂(F x
n

2 ◦G)(xn+1) such that

v1 + vn2 = 0 ∈ ∂(F1 + F x
n

2 ◦G)(xn+1) = ∂F1(xn+1) + ∂(F x
n

2 ◦G)(xn+1) .

Then, for all v2 ∈ ∂(F2 ◦G)(xn+1) it holds

‖v1 + v2‖ = ‖v1 + v2 − v1 − vn2 ‖ = ‖v2 − vn2 ‖ . (7.13)

Using the chain rule from Proposition 4.22 and Lemma 7.5, we have (define yn := ∇F xn2 (G(xn+1)))

∂(F x
n

2 ◦G)(xn+1) = ∂ 〈yn, G〉 (x) =
∑
i

∂(yni Gi)(x
n+1) =

∑
i

yni ∂Gi(x
n+1)

and, thus, we can decompose vn2 =
∑
i y
n
i ηi with ηi ∈ ∂Gi(xn+1). We then define v2 :=

∑
i yiηi,

where y := ∇F2(G(xn+1)). The combination of both decompositions together with the Lipschitz
continuity of G and [RW98, Prop. 9.24] yields

‖v2 − vn2 ‖ = ‖
∑
i

(y − yn)iηi‖ ≤ LG‖y − yn‖ . (7.14)

Now, using (7.13) and (7.14), the equality∇F2(G(xn)) = ∇F xn2 (G(xn)), the Lipschitz continuity
of ∇F2 and ∇F xn2 and noting that v1 + v2 ∈ ∂F (xn+1), the following estimation concludes this
part of the proof:

‖v1 + v2‖ ≤ LG‖y −∇F2(G(xn)) +∇F xn2 (G(xn))− yn‖
≤ (L+ L̃)LG‖G(xn+1)−G(xn)‖
≤ (L+ L̃)L2

G‖xn+1 − xn‖ ,
where the last transition follows from the Lipschitz continuity of G.
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(iii) Let (xnj )j∈N be a converging subsequence of (xn)n∈N. Define the sequences (v
nj
1 )j∈N and (v

nj
2 )j∈N

by 0 = v
nj
1 + v

nj
2 ∈ ∂F1(xnj ) + ∂(F x

nj−1

2 ◦ G)(xnj ), which by Lemma 7.5 coincides with
∂(F1 + F x

nj−1

2 ◦ G)(xnj ). Due to the local Lipschitz continuity of F x
nj−1

2 ◦ G Proposition 4.20
implies x 7→ ∂(F x

nj−1

2 ◦ G)(x) bounded, and therefore, the sequence (v
nj
1 )j∈N is bounded and

limj→∞
〈
v
nj
1 , x̄− xnj

〉
= 0. Using this, F lsc, F1 convex, and F2 ◦G locally Lipschitz continu-

ous, the following chain of inequalities concludes the proof (all limits are considered for j →∞):

F (x̄) ≤ lim inf F (xnj ) ≤ lim supF (xnj )
≤ lim supF1(xnj ) + lim supF2(G(xnj ))
= lim supF1(xnj ) + lim

〈
v
nj
1 , x̄− xnj

〉
+ F2(G(x̄))

= lim sup
(
F1(xnj ) +

〈
v
nj
1 , x̄− xnj

〉)
+ F2(G(x̄))

≤ F1(x̄) + F2(G(x̄)) = F (x̄) .

In [ABS13], an abstract convergence result for descent methods for semi-algebraic and tame problems
is proved (see Chapter 5). The notion of semi-algebraic functions and the KL property was introduced in
Section 4.5. In the following theorem, we benefit from their convergence analysis by simply proving our
algorithm to satisfy their assumptions.

Theorem 7.7. Let the assumptions be as in Proposition 7.6. Let the sequence (xn)n∈N be generated by
Method 7. If F has the Kurdyka–Łojasiewicz property at the cluster point x∗ := limj→∞ xnj , then the
sequence (xn)n∈N converges to x∗ ∈ X as n → ∞ and x∗ is a critical point of F . Furthermore, the
sequences (xn)n∈N has finite length

∞∑
n=0

‖xn − xn+1‖ <∞ .

Proof. The results of Proposition 7.4 and Proposition 7.6 are exactly the requirements of Theorem 5.1.
Applying this result proves the theorem.

7.5 Prototypes for computer vision applications

Many computer vision examples involve a linear operator in order to enforce spatial regularity of the
solution. For example, this can be achieved using the gradient operator. We consider the prototype of
inverse problems in computer vision

min
u∈X
‖Au− g‖qq + F2(G̃(Ku)) , (7.15)

where q ∈ {1, 2} and K : X → X may be any continuous linear operator (for example, gradient opera-
tor). Since in computer vision mostly the optimization variable, which often is an image, is denoted by u,
we adapt this notation from now on. In the original formulation (7.2), it is G = G̃ ◦K. Here, we further
assume G̃(0) = 0, and G̃(u)i ≥ 0. A common choice for K is the gradient operator∇ = (∂>x , ∂

>
y )> (∂x

is a matrix implementing forward differences in x-direction; analogue for ∂y) and for G̃ the length of a
vector G̃((∂xu)i, (∂yu)i) =

√
(∂xu)2

i + (∂yu)2
i . In the first term of (7.15), called the data-term, we de-

note by A : X → X1 a continuous linear operator and by X1 a finite dimensional real vector space. This
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linear operator maps into a space, where measurements g ∈ X1 are taken. The second term is denoted
the regularization-term. Nonconvex regularization functions F2 suitable for computer vision applications
were already shown in Figure 1.3. The prototypes for the function F2 ◦G are

u 7→ 1

p
‖G̃(Ku)‖pp,ε :=

1

p

∑
i

(G̃i(Ku) + ε)p, ε > 0, p ∈ (0, 1] (7.16)

u 7→ 1

µ
log(1 + µG̃(Ku)) :=

1

µ

∑
i

log(1 + µG̃i(Ku)), µ > 0 (7.17)

u 7→ 1

2µ
log(1 + µG̃(Ku)2) :=

1

2µ

∑
i

log(1 + µ(G̃i(Ku))2), µ > 0 . (7.18)

The first and the second functions F2 are concave and nondecreasing on G(X) but nondifferentiable, and
the third is nondecreasing and differentiable. These functions clearly fulfill differentiability and Lipschitz
continuity conditions required for our convergence analysis to hold. We now show that KL-property also
holds:

Proposition 7.8. Let F2 be one of the prototypes (7.16), (7.17), or (7.18), and let G̃ be semi-algebraic.
Then, the function F (u) = ‖Au− g‖qq + F2(G̃(Ku)) is a KL-function.

Proof. As G̃, K, and ‖Au − g‖qq are semi-algebraic (simple compositions of semi-algebraic functions),
it is enough to verify that F2 is definable in an o-minimal structure. However, thanks to the log–exp
structure [Wil96, dD98] (see Section 4.5), this fact is also clear for Prototypes (7.18), (7.17), and (7.16)
(note that (u+ε)p = exp(p log(u+ε)), u ≥ 0). Then, Theorem 4.35 implies that F has the KL-property
at any stationary point.

7.5.1 Total generalized variation regularization

Opposed to TV-regularization which is used very frequently and can be seen as basic knowledge, total
generalized variation (TGV) regularization was introduced only recently [BKP10]. The following intro-
duction to TGV will be given in the continuous setting. For details we refer to [BKP10].

TGV generalizes TV based on the dual formulation incorporating the space of k-tensors

T k(Rd) := {ξ : Rd × . . .× Rd → R : ξ is k-linear}
Symk(Rd) := {ξ : Rd × . . .× Rd → R : ξ is k-linear and symmetric} .

Let Ω ⊂ R2 be the image domain and u : Ω→ R be a function, then the TGV semi-norm of order k ≥ 1
with smoothness parameter α = (α0, . . . , αk−1) is defined by

TGV αk (u) := sup
{∫

Ω

udivk ϕdx
∣∣∣ϕ ∈ Ckc (Ω,Symk(R2)), ‖divl ϕ‖∞ ≤ αl, l = 0, . . . , k − 1

}
,

where Ckc (Ω,Symk(R2)) denotes the space of continuously differentiable symmetric k-tensor fields with
compact support in Ω, divk the generalization of the divergence operator to these tensor fields. For k = 1
the definition of TGV reduces to the dual formulation of the TV semi-norm.

Usually a primal formulation yields more intuition about a new concept. As in this chapter, we are
only interested in TGV α2 (u) we specify the order k = 2 in the following. Applying the Legendre-Fenchel
transform yields

TGV α2 (u) = inf
u1∈C1(Ω,Sym(R2))

α1‖∇u− u1‖1 + α0‖E(u1)‖1 ,
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where E denotes the symmetrized gradient operator E(u1) = (∇u1 +∇u>1 )/2, which is a 2× 2-matrix.
There is also an asymmetric version of TGV defined in the primal formulation as

asymTGV α2 (u) = inf
u1∈C1(Ω,T (R2))

α1‖∇u− u1‖1 + α0‖∇u1‖1 .

Note, that the primal formulation of semi-norm TGV α2 itself is stated as a minimization problem. How-
ever, when optimizing a function with TGV α2 as a regularizer, we consider the single minimization prob-
lem in the variables u and u1.

The main property of TGV α2 is the ability to reconstruct piecewise affine functions without penalty.
This makes TGV α2 favorable compared to TV, which can only reconstruct piecewise constant functions.
Considering the primal formulation, the intuition about the behavior of TGV α2 can be explained as fol-
lows. Note that u1 may be constant without increasing the norm. Then, u is allowed to be linear because
∇u may be constant (the constant of u1) without increasing the TGV semi-norm.

7.6 Experimental analysis

7.6.1 Implementation details

The convex subproblems arising for the nonconvex optimization problems that are considered in the
following can be solved efficiently, see Section 2.2. If not stated differently, we use the respective optimal
algorithm from [CP11] (see also Section 2.2.6). It has proved optimal convergence rate: O(1/en) when
F1 and F ∗2 (convex conjugate of F2) are uniformly convex, or when F1 is uniformly convex and F2 has
Lipschitz continuous gradient, O(1/n2) when F1 or F2 is uniformly convex and O(1/n) for the general
case.

Here, we focus on the (outer) nonconvex problem. Let (un,l) be the sequence generated by Method 8,
where the index l refers to the inner iterations for solving the convex problem, and n to the outer iterations.
Proposition 7.1, which proves (F (un,0)) to be monotonically decreasing, provides a natural stopping
criterion for the inner and outer problem. We verify every 10th inner iteration and stop as soon as

F (un,l) < F (un,0) or l > mi, (7.19)

where mi is the maximal number of inner iterations. For a fixed n, let ln be the number of iterations
required to satisfy the inner stopping criterion (7.19). Then, outer iterations are stopped when

F (un,0)− F (un+1,0)

F (u0,0)
< τ or

n∑
i=0

li > mo, (7.20)

where τ is a threshold defining the desired accuracy and mo the maximal number of iterations. The
difference in (7.20) is normalized by the initial function value to be invariant to a scaling of the energy.

In order to obtain a guarantee for a converging sequence of function values checking the decent prop-
erty is required. However, throughout the experiments we observed that a fixed number of 10 iterations
is a good choice and we can omit computing the energy.

Remark 7.9. As long as we can guarantee that the energy decreases we can expect a converging sequence
of function values. However, if the subproblem is not solved exactly, the convergence properties from
Theorem 7.7 are partially lost. The convergence theorem allows for inexact descent methods, i.e., it
allows for some errors in the evaluation of the subproblem. However the granted quantity of the error is
not addressed in the theorem. Therefore, we focus on the convergence of the energy values.
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Figure 7.2: Three (outer) iteration steps of the proposed algorithm to minimize the red nonconvex function. FROM LEFT TO RIGHT:
Outer iteration 1, 2, and 3. In each plot a few steps of the solver for the (inner) convex problem (minimization of the blue function)
are visualized. The red circle shows the point, in which the original function is approximated. Though there is a local minimum
close to the starting point, the algorithm jumps over it and finds the global optimum.

7.6.2 Competing method

We compare our algorithm against the iPiano algorithm, which we proposed in Chapter 6. We compare
against iPiano, because it has proved to be very efficient and it is applicable to similar problems as
considered in this chapter, namely to problems that can be decomposed as a sum of a (simple) convex
function and a function with Lipschitz continuous gradient. Moreover, iPiano finds special cases in the
NIPS algorithm [Sra12] when the inertial term is turned off, in the Heavy-ball method for differentiable
nonconvex problems [ZK93], or in the well-known gradient projection algorithm. Therefore, actually our
comparison is against several algorithms.

Assuming that our F2 ◦G has Lipschitz continuous gradient with constant L > 0, the update scheme
of iPiano using the notation here can be written as

un+1 = (I + α∂F1)−1(un − α∇(F2 ◦G)(un) + β(un − un−1)) . (7.21)

Due to the smoothness assumption to F2 ◦ G in this algorithm, when comparing to the proposed IRL1-
algorithm the nondifferentiable points must be smoothed.

7.6.3 Analysis of local minima

In this part, we experimentally study the sensitivity of our algorithm with respect to local stationary
points.

7.6.3.1 A one dimensional example

Here, we show that the proposed algorithm has the ability to avoid local minima. We consider the model
problem (see red function in Figure 7.2)

min
u∈R

λ|u− f |+ 1

2
log(1 + µ|u|2) ,

where f = 1, µ = 25, λ = 2. As it is F2(|u|) = 1
2 log(1 + µ|u|2), we use the iteratively reweighted

Huber Algorithm 11 (ε = 1) to find a minimum of this function. Figure 7.2 shows three outer iterations
of IRHuber initialized at u0 = −0.45. Depending on the initialization different local optima are reached.
Initializing u0 = ±0.4 the local maximum at u = 0.4 is found, for u0 ∈ (−0.4, 0.4) the left local
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µ = 1 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00
min. energy 92.39 369.69 592.51 683.67 683.67

PrimalDual-IRHuber 1.0000 1.0000 1.0000 1.0000 1.0000
iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0000 1.0000

µ = 50 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00
min. energy 124.80 559.76 1060.89 1984.31 5097.96

PrimalDual-IRHuber 1.0000 1.0000 1.0000 1.0000 1.0000
iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0000 1.0006

µ = 100 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00
min. energy 130.96 586.67 1118.07 2101.04 5945.98

PrimalDual-IRHuber 1.0000 1.0000 1.0000 1.0000 1.0000
iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0002 1.0050

µ = 250 λ = 0.10 λ = 0.50 λ = 1.00 λ = 2.00 λ = 5.00
min. energy 140.87 623.65 1189.83 2255.34 6986.61

PrimalDual-IRHuber 1.0000 1.0007 1.0007 1.0000 1.0000
iPiano, β = 0.7 1.0000 1.0000 1.0000 1.0014 1.0145

Table 7.1: Comparison of the final energy for our IRHuber algorithm compared to iPiano for the problem (7.22) and different
parameter settings with maximal 50000 iterations. min. energy is the minimal final energy value among the four methods. The
other values describe the multiplication factor to this minimal energy. In most experiments, IRHuber finds the lowest energy.

optimum is the solution, and initializing with u0 ∈ (−∞,−0.4)∪ (0.4,∞) the global optimum is found.
Although the algorithm can also converge to a local maximum, this is rarely the case. When we initialize
at u0 ∈ (−0.4, 0.4) the algorithm is already trapped to the left local minimum. However, different to
many other method it does not necessarily converge to the nearest local minimum.

7.6.3.2 A high dimensional example

In image processing, optimization problems usually have a very high dimensionality and it is not possible
to visualize the objective functions. Conclusions about whether the algorithm is attracted by local minima
or whether it is “robust” against local minima can only be drawn indirectly. If the energy value (function
value) corresponding to one algorithm is lower than with another, we conclude that the first algorithm
has found a better local minimum. This will be shown in the following example. In this experiment, we
consider the problem

min
u∈R6305

λ‖u− f‖1 +
1

2

∑
i

log(1 + µ|(∇u)i|2) (7.22)

and solve it using iPiano and our IRHuber (ε = 1/
√
µ) method. For all methods we fix a maximum of

50000 iterations and use the break condition (7.20) with τ = 10−12. Table 7.1 confirms that our algorithm
usually finds the lowest energy. The difference is more significant, the higher the values of λ and µ. For
larger µ the “nonconvexity” is stronger. For small λ the optimal result is constant, i.e. |(∇u)i| is small
everywhere and lies in the convexity region of log(1 + µy2). Thus the nonconvexity of the second term
is of little importance.

7.6.3.3 Robustness with respect to the initialization

We fix λ = 1 and µ = 1 and solve the optimization problem

min
u∈RN

λ‖u− f‖1 +
∑
i

log(1 + µ|(∇u)i|) (7.23)
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initialization
noisy

zero random
random with

image square of zero-valued
pixel

initial energy 45308.479 70803.569 116368.474 114674.008
final energy 23583.466 23575.354 23576.401 23576.01

Table 7.2: Initial and final energy values for the optimization problem (7.23) with λ = 1 and µ = 1. Numerically, the result values
slightly differ from each other. On average the difference is very small. Visually, different initializations yield very similar results.
This suggests that our algorithm is robust towards the initialization in this experiment.

Figure 7.3: Visualization of the experiment in (7.23). LEFT PAIR: Clean and noisy image. RIGHT PAIR: Results for two different
initializations, the zero image and the noisy image. As the corresponding energy values from Table 7.2 suggest, the result images
are visually close to each other.

starting from different initializations u0 using the iteratively reweighted `1 algorithm (Algorithm 9). Here
N = 154401. The noisy input image and the ground truth are shown on the left in Figure 7.3. The energy
values of the initialization and the final values are shown in Table 7.2. The energy values of the solutions
slightly differ.

The maximal difference of energy values is between initializing with the noisy image and initializing
with the zero image. The energy difference is approximately d ≈ 8.11. Let us consider what it means per
pixel on average and in the worst case. If we assume that this error is only caused by the data term, we
can conclude

d =

N∑
i=1

|ui − fi| ≥ N min
i
|ui − fi| ⇒ min

i
|ui − fi| ≤ d/N ≈ 5.25 · 10−5 .

This means that the average (minimal) error per pixel is bounded by approximately 5.25 · 10−5. Pixels
that cause an error that is higher than the minimal one reduce the upper bound for the error for all other
pixels. Considering the worst case only 8 pixel can have the maximal error of 1, which is the range of the
gray values. On the other hand, if we assume the error is solely by the regularization term, it holds

d =

N∑
i=1

log(1 + |yi|) ≥ N log(1 + min
i
|yi|) ⇒ min

i
|yi| ≤ exp(d/N)− 1 ≈ 5.25 · 10−5 .

Therefore, the energy difference could also be caused by an average (minimal) error for the gradient of
maximal 5.25 · 10−5. The worst case analysis shows that only 8.11/ log(2) ≈ 11 pixel can have an error
in the gradient of 1. These numbers suggest a small difference between the two solutions. The right pair
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Figure 7.4: Comparison of the energy decrease for problem (7.24) between Algorithm 10 (IRTight) and Algorithm 11 (IRHuber).
The legend is the same for both plots. The proximity operator arising in the convex optimization algorithm for IRTight is solved
analytically or using 1, 5 or 10 Newton iterations. The proximal operator for IRHuber can be solved analytically. Therefore, in
terms of runtime IRHuber is faster than IRTight, whereas in terms of iterations all methods perform equally well.

of image in Figure 7.3 visualizes this difference. In this experiment, the final results are very similar. The
error seems to be better reflected by the worst case analysis as it is concentrated on a few outliers.

Unfortunately, it is hard to generalize this observation. For input images with more noise or for
different parameter settings the results can differ more depending on the initialization. The main problem
is that the high dimensionality makes it hard to get an intuition about local minima and maxima. In the
following experiments, we always initialize with the noisy image.

7.6.4 Numerical comparison

The existence of local minima and the missing information about the global optimum for nonconvex
optimization problems complicates the evaluation. For all the following experiments, we agree on the
following evaluation: We use the method that achieves the lowest energy value and run it for 106 iter-
ations; we use the solution u106

to define E∗ := E(u106

). Then, we use the relative distance to this
“optimal” energy value and analyze the convergence of the sequence(

E(un)− E∗
E(u0)− E∗

)
n∈N

.

Note that, if the sequence does not convergence to E∗, then the sequence can still converge to another
local optimum. As we choose E∗ such that it is minimal among the methods under consideration, a
method that does not converge to E∗ only finds a higher energy.

Iteratively reweighted Huber vs. iteratively reweighted tight convex. First, we compare IRTight
(Algorithm 10) vs. IRHuber (Algorithm 11 with ε = 1/

√
µ as suggested at the end of Section 7.4.3) for

the optimization problem

min
u∈R154401

λ

2
‖u− f‖22 +

1

2µ

∑
i

log(1 + µ|(∇u)i|2) , (7.24)

where λ = 0.1, µ = 800, and f ∈ R154401 is the given noisy input image from Figure 7.5.
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Figure 7.5: Visualization of the experiment (7.24). FROM LEFT TO RIGHT: Clean image, noisy image deteriorated by Gaussian
noise, result of (7.24) with λ = 0.1, µ = 800, and the result of (7.24) with λ = 0.3, µ = 250.

The convergence plot of the energy is shown in Figure 7.4. IRHuber converges faster in terms of the
actual computation time than IRTight. This result is explained by the simple structure of the IRHuber
surrogate function. The proximity operator that arises in the convex surrogate problem for the IRHuber
can be solved analytically. For IRTight solving the proximity operator requires to find the zero of a cubic
polynomial in a certain interval. For IRTight {1,5,10} this proximity operator is solved using Newton’s
method with a maximum of 1, 5 or 10 iterations and break condition for the maximal absolute difference
of two successive iterates of 10−4. Closer to the optimal value the number of iterations required by
Newton’s method decreases due to the initialization. The analytic solution for the proximity operator
needs always the same time. In terms of iterations, all methods perform equally well.

Thanks to the simple structure of IRHuber, it is more efficient for regularization problems involving
terms log(1 + y2). Therefore, in the following experimental comparison, we consider IRHuber only.
However, we should keep in mind, that if the proximity operator in IRTight is easy to solve, it is a better
approximation and converges faster.

Iteratively reweighted Huber and reweighted least squares. We evaluate our algorithm in terms of
speed compared to iPiano (and its special case NIPS with β = 0). We consider the problem

min
u∈R154401

λ

2
‖u− f‖22 +

1

2µ

∑
i

log(1 + µ|(∇u)i|2) , (7.25)

where λ = 0.3, µ = 250, and f ∈ R154401 is the given noisy input image from Figure 7.5 (see the same
figure for the result image).

The Lipschitz constant required by iPiano is set to L = 8. Then, α = 2(1 − β)/L is set according
to the step size rules in Algorithm 5. Using Algorithm 11 and Algorithm 12, the (convex) surrogate
function is strongly convex and can be solved with linear convergence rate, which is optimal for this class
of problems. Algorithm iPiasco-IRHuber solves the primal problem using iPiasco (see Chapter 3) and
D-iPiasco-IRHuber solves the surrogate problem in the dual formulation. Analogously, iPiasco-IRLS
solves the primal problem arising in Algorithm 12 and D-iPiasco-IRLS the dual problem. CG-IRLS
solves the primal inner problem using conjugate gradient. In this experiment we do not show the result
of solving the inner problem with the optimal primal dual algorithm [CP11, Algorithm 3], because it
performed worse and the constants in the estimate for the linear convergence rate are suboptimal.

Figure 7.6 analyzes the differences in convergence depending on the number of inner iterations and
whether the inner problem is formulated as the primal or the dual problem. In general, we found 10 inner
iterations to be a good choice for the iteratively reweighted algorithms, though the optimal choice in this
particular example is 5 iterations. For IRLS, the best performance is achieved by solving the primal inner
problem, whereas for IRHuber is is advantageous to solve the dual problem.

Figure 7.7 shows the comparison of the energy decrease between IRHuber and IRLS. In terms of
actual computation time IRLS performs better. This is due to the split definition of the Huber function,

129



CHAPTER 7. ITERATIVELY REWEIGHTED CONVEX ALGORITHMS

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

time [s]

(E
(u

n
)-
E

∗ )
/
(E

(u
0
)-
E

∗ )

 

 
D-iPiasco-IRLS 1
D-iPiasco-IRLS 5
D-iPiasco-IRLS 10
D-iPiasco-IRLS 30
D-iPiasco-IRLS 50
iPiasco-IRLS 1
iPiasco-IRLS 5
iPiasco-IRLS 10
iPiasco-IRLS 30
iPiasco-IRLS 50

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

10
2

iteration n

(E
(u

n
)-
E

∗ )
/
(E

(u
0
)-
E

∗ )

 

 

O(1/n)
O(1/n2)
D-iPiasco-IRLS 1
D-iPiasco-IRLS 5
D-iPiasco-IRLS 10
D-iPiasco-IRLS 30
D-iPiasco-IRLS 50
iPiasco-IRLS 1
iPiasco-IRLS 5
iPiasco-IRLS 10
iPiasco-IRLS 30
iPiasco-IRLS 50

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

time [s]

(E
(u

n
)-
E

∗ )
/
(E

(u
0
)-
E

∗ )

 

 
D-iPiasco-IRHuber 1
D-iPiasco-IRHuber 5
D-iPiasco-IRHuber 10
D-iPiasco-IRHuber 30
D-iPiasco-IRHuber 50
iPiasco-IRHuber 1
iPiasco-IRHuber 5
iPiasco-IRHuber 10
iPiasco-IRHuber 30
iPiasco-IRHuber 50

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

10
2

iteration n

(E
(u

n
)-
E

∗ )
/
(E

(u
0
)-
E

∗ )

 

 

O(1/n)
O(1/n2)
D-iPiasco-IRHuber 1
D-iPiasco-IRHuber 5
D-iPiasco-IRHuber 10
D-iPiasco-IRHuber 30
D-iPiasco-IRHuber 50
iPiasco-IRHuber 1
iPiasco-IRHuber 5
iPiasco-IRHuber 10
iPiasco-IRHuber 30
iPiasco-IRHuber 50

Figure 7.6: Convergence depending on the solver used for the inner problem (primal or dual) and the number of inner iterations
(number in the figure’s legend). In general, 5-10 iterations is a good choice. In terms of actual computation time, for IRLS using the
primal of the inner problem yields the fastest convergence; for IRHuber it is the dual of the inner problem. Both convex surrogate
functions are solved with algorithms that have an (optimal) linear convergence rate.
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Figure 7.7: Comparison between IRLS, IRHuber, and iPiano. The iteratively reweighted algorithms perform best in this experiment.
Regarding actual computation time IRLS is the fastest, whereas regarding iterations IRHuber shows the best convergence rate.
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Figure 7.8: Comparison of the energy decrease for problem (7.26) between IRL1 and different parametrizations of iPiano. As our
algorithm can optimize the nonregularized energy in (7.26) it achieves a lower energy. The version PD-IRL1 no check does not
check the energy decrease but updates the weights every 10th iteration. It is the fastest in this experiment up to an accuracy of about
10−3, then PD-IRL1 takes over.

Figure 7.9: Visualization of the experiment (7.26). LEFT: Clean image. MIDDLE: Noisy image. RIGHT: Denoised image.

which additionally requires to distinguish two cases (norm less or greater than ε). As this extra compu-
tation cost does not matter in terms of the number of iterations, IRHuber converges the quickest in that
case. Regarding both, number of iterations and computation time, the iteratively reweighted algorithms
perform better than iPiano.

Iteratively reweighted `1 on TV-term. As mentioned before, our iteratively reweighted `1 algorithm
is not well suited for problems that have a quadratic behavior around 0. The cases where the IRL1
algorithm becomes interesting is beyond the applicability of iPiano, namely for instance when F2(|u|) =
log(1 + |u|). iPiano can only be applied to a smoothed version of F2. However, then, a different energy
is minimized. We evaluate the IRL1 algorithm on the following objective:

min
u∈R154401

‖u− f‖1 +
∑
i

log(1 + |(∇u)i|) (7.26)

and use log(1 + |(∇u)i|ε) for iPiano. The input f and the visual result are shown in Figure 7.9. The
numeric comparison against iPiano with backtracking (Algorithm 5) is shown in Figure 7.8. On one hand,
reducing the ε in the regularization of |(∇u)i|ε better approximates the original problem, but on the other
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Figure 7.10: Comparison of the energy decrease for problem (7.27) between our method and different parametrizations of iPiano.
As our algorithm can optimize the nonregularized energy it achieves a lower energy. Furthermore, as we solve a sequence of convex
problems, we can benefit from efficient convex programming algorithm like [CP11]. The version PD-IRL1 no check does not check
the energy decrease but updates the weights every 10th iteration. It is the fastest in this experiment.

hand, the problem is more difficult to solve for iPiano and needs many more iterations. The Lipschitz
constant for iPiano depends on ε and therefore directly influences the feasible step-sizes. The method
PD-IRL1 no check finds a worse local optimum than PD-IRL1 and iPiano (β = 0.7, ε = 10−8) with a
difference of about 10−3 to the “optimal” one E∗. It is faster in terms of actual computation time than
PD-IRL1 , because it does not have to compute the energy. PD-IRL1 achieves a better local optimum by
doing more iterations if required. IRL1 performs better than iPiano in terms of speed and, as it optimizes
the original energy achieves a higher accuracy.

Iteratively reweighted `1 on TGV-term. As a last numerical experiment we consider the total gener-
alized variation based model

min
u∈RN ,v∈R2N

λ

2
‖u− f‖22 +

(
α1

µ

∑
i

log(1 + µ|(∇u− v)i|) +
α0

µ

∑
i

log(1 + µ|(∇v)i|)
)
. (7.27)

The experiment is performed on an image whose 3D-mesh is shown on the top left in Figure 7.11. Its
dimension isN = 16384. We compare our IRL1 algorithm against the iPiano algorithm (Algorithm 5) on
an ε-regularized energy for the nonconvex TGV model in terms of convergence. The model parameters
are set to µ = 8, λ = 4, α1 = 0.5, and α0 = 1. In Figure 7.10 the energy decrease for different methods is
plotted. From the optimization viewpoint, it is well-known [BKP10, PZB11] that the TGV-regularization
model is a hard problem even in the convex case. In [PZB11], the problem is efficiently solved using
the primal dual algorithm [CP11], which is also used here for the convex surrogate problems. As for
our algorithm a sequence of convex problems arises, we can benefit from efficient convex programming
algorithms. Therefore, we observe a faster convergence for the IRL1 algorithm compared to iPiano.
The difference becomes more and more significant the smaller the ε is chosen for making the TGV
differentiable in 0.

7.6.5 Total generalized variation experiment

As the TGV-regularizer is developed only recently and first used in the nonconvex setting here, we per-
form another experiment with the energy model (7.27) where the focus is on accuracy. The right column
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Figure 7.11: Comparison of TGV regularization using the model (7.27) using a surface representation. TOP LEFT: Clean surface.
TOP MIDDLE: Noisy surface. TOP RIGHT: Solution using the convex TGV (PSNR: 35.825). BOTTOM ROW: Solutions with
nonconvex log-TGV as in (7.27). BOTTOM LEFT: Solution with iPiano using β = 0.75, ε = 10−4 (PSNR: 33.515). BOTTOM
MIDDLE: Solution with Piano using β = 0.75, ε = 10−8 (PSNR: 35.679). BOTTOM RIGHT: Solution using IRL1 (PSNR:
36.672). The comparison between the surfaces on the top right and on the bottom right shows that nonconvex penalizers are the
better choice, and the comparison between the surfaces of the bottom row shows the importance of solving the nonregularized
energy model. As the result with IRL1 has fewer spikes and the energy is smaller, it found a better local optimum.

of Figure 7.11 compares the convex TGV with the nonconvex TGV. For each of them, the parameters are
optimized with respect to the PSNR value, which is 35.835 for the convex model and 36.672 for the non-
convex model. Parameters for the convex model are λ = 1, α1 = 0.1, and α0 = 1 and for the nonconvex
model µ = 8, λ = 4, α1 = 0.5, and α0 = 1.

Nonconvex norms in the regularization are a good choice when (1) sharp discontinuities are desired
or (2) the properties of the regularizer (here the ability to reconstruct piecewise affine functions) are to be
enforced.

On the other hand, the comparison of the results in the second row of Figure 7.11 reveals the im-
portance of solving a nonregularized energy model. The result on the bottom right is nicely piecewise
smooth. The problem of several small outliers for the other two results of the second row does not arise in
the IRL1 algorithm as the first inner subproblem is the convex TGV-model which yields already a smooth
result. Then, in the next iterations discontinuities are enhanced again.

7.7 Optical flow estimation with nonconvex regularizers

In this section we show application examples of nonconvex energy models for the task of optical flow
estimation. The same modeling principles can be transferred directly to many other vision tasks, as
demonstrated in the conference paper [ODPB13], where examples on denoising, deconvolution, depth
map fusion, and optical flow estimation are shown. Here we focus on a more detailed analysis of optical
flow including nonconvex data terms and nonconvex regularizers and their effects.

Optical flow describes dense correspondences between a pair of images I(x, t) and I(x, t+ 1). Mod-
eling of variational optical flow usually consists of a regularization term and a data term. The first one
models the smoothness of the flow field. The data term measures the difference between the motion
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Figure 7.12: TOP LEFT: Image pair market6 0005 to market6 0006. TOP RIGHT: Ground truth flow. BOTTOM LEFT: Result with
LDOF [BM11] (EP: 13.18. BOTTOM RIGHT: An over-smoothed flow field (EP: 6.59. Considering only the quantitative result
shows that the method from (d) is better than (c). However, the over-smoothed result in (d) is practically useless compared to (c).

compensated second frame and the image of the first frame. A simple example is the difference of gray
values (brightness constancy assumption) ‖I(x + u(x), t + 1) − I(x, t)‖22, where u = (u1, u2)> is the
sought optical flow field. Since the unknown flow field is a variable of the generally nonconvex image,
the data term is nonconvex independent of the properties of the penalty function. In practice, this kind
of nonconvexity is dealt with by a Gauss-Newton scheme in combination with a continuation method
[BBPW04]1.

Previous works on variational optical flow estimation always employ a convex penalty function for
the data term and the regularizer. The results of the following experiments shall indicate that one can
benefit from rather using nonconvex penalties. Details, such as parameter optimization, the optimal
usage in conjunction with a continuation method, etc., need further investigation to compete with heavily
tuned methods on standard benchmark datasets. In the following, we present three ways to apply and
use the nonconvex penalties with the algorithm proposed in this chapter: a nonconvex penalty on the
brightness constancy assumption, a nonconvex regularizer, and a nonconvex penalty for integrating point
correspondences into variational methods.

The experiments are performed on image pairs (clean version) from the Sintel benchmark [BWSB12]2.
The standard quality measure of the Sintel benchmark is the average endpoint error. It is well-known that
average errors emphasize global properties of the flow fields while details, such as sharp discontinuities,
are under-represented. Figure 7.12 shows an example. This fact is disadvantageous for nonconvex regu-
larization penalties, which are particularly good for obtaining sharp discontinuities. For this reason, we
present mainly qualitative results but also report the endpoint errors.

7.7.1 Nonconvex data term: robust optical flow

Outliers in the data term, mostly caused by occlusion, are a major issue in optical flow estimation. There
are two aspects of this problem: detection of occluded points and interpolation of the flow field at these

1It cannot be approached well with our algorithm.
2The Sintel benchmark provides ground truth optical flow fields for a realistically rendered video. It provides three different

stages of this rendering process: albedo, clean, and final.
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Figure 7.13: TOP LEFT: Image pair bandage1 0011 to bandage1 0012. TOP RIGHT: Ground truth flow. BOTTOM LEFT: Final
data term weighting. BOTTOM RIGHT: Estimated flow field using (7.28). The weighting mask is part of the optimization using our
algorithm due to using a robust, nonconvex norm. It is not introduced separately. The algorithm automatically weights down the
brightness constancy assumption where it is violated (darker areas on the bottom left). Each color channel is weighted individually
and the corresponding color represents the weighting.

points. Nonconvex penalty functions allow for a straightforward approach to implicitly deal particularly
with the first aspect. The basic assumption for estimating the optical flow is the brightness constancy
(or color constancy) assumption. As it is typically not satisfied in occlusion areas, the penalty on the
brightness constancy should be reduced there. This is naturally achieved by nonquadratic penalties, which
implicitly weigh down the influence of points that contradict the constancy assumption. With convex
penalty functions, however, the effect is often not strong enough. With nonconvex penalty functions, the
influence of outliers can be reduced much more. In the limit, this approaches the algorithmic two-step
treatment, where outliers are first detected explicitly and then removed completely from the estimation
process.

As in occlusion areas the measured data is invalid, the optical flow field in these areas must be inferred
by prior knowledge like smoothness of the flow field. In a variational formulation, which seeks for a
global agreement of all constraints, the reduction of the penalty on the brightness constancy assumption
automatically assigns more importance to the regularization term in these areas. It is an open question
what is the best regularizer for this job. We consider regularization with total variation, which is easy to
use and preserves discontinuities. It could be easily replaced by some other, more complex prior.

We consider the following energy model:

min
u

∑
i

|(∇u)i|+
λ

µ

∑
i,k

log(1 + µ|(ρk(u))i|) , (7.28)

where ρk(u) = Ikt +(∇Ik)>(u−u0) implements the linearized brightness constancy assumption for the
color channel k ∈ {1, 2, 3}, and λ = 15, µ = 5.

We minimize the energy with the iteratively reweighted `1 algorithm. The algorithm generates an
automatic weighting for the data term. The weights are small where the brightness constancy assumption
does not hold, i.e., for outliers. The weighting is directly inferred from the cost function. The approach in
[ARS12] models occlusions explicitly, but in the end it comes down to a similar weighting. Figure 7.13
shows an example. As expected, the weighting on the bottom left in Figure 7.13 shows a reduction of the
penalty particularly in occlusion areas.
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Despite the quite good detection of the occlusion region due to the nonconvex penalty, the optical
flow of the arms still leaks into the background. This is due to the weak smoothness prior, which does
not take the direction of the occlusion into account. Future work on smoothness priors may exploit the
detected occlusion regions more effectively.

7.7.2 Nonconvex TGV regularized optical flow

Total variation is the most popular regularizer for the optical flow field. However, it penalizes also flow
fields that describe rotation and scaling motion. Total generalized variation deals with this problem, as
affine motion can be described without penalty. Therefore, we consider the variational model given by

min
u,v

λQ(I, u) + α1F2,1(|∇u− v|) + α0F2,0(|∇v|), (7.29)

where Q(I, u) is the quadratic fitting term from [WPB10] using normalized cross correlation, and F2,1,
F2,0 are (possibly different) nonconvex penalty functions. The model described in (7.29) can be used
to enforce the TGV-properties by using nonconvex norms. This yields highly desirable sharp motion
discontinuities as can be seen in the bottom row of Figure 7.14. The penalty on |∇v| can be seen as a
penalty on kinks in the flow field. Reducing the cost of sharp kinks by a nonconvex penalty often leads to
the fact that sharp discontinuities in the flow field are replaced by a linear transition with two sharp kinks.
Therefore, we set F2,0 = id.

7.7.3 Nonconvex integration of point correspondences

Current state-of-the-art methods [XJM12, BM11, WRHS13] usually incorporate a sparse or semi-dense
feature matching into the optimization procedure. In LDOF [BM11], the deviation of the estimated flow
field from these feature matches is penalized. The penalty is based on the `1-norm. Nonconvex norms are
more robust and can deal with more erroneous feature matches in a certain local area than the `1-norm.
In the following model, we propose to use a nonconvex penalty function for the deviation from the initial
feature matches:

min
u,v

λ‖Q(I, u)‖1 +
β

p
‖u− uFM‖p,ε + α1‖∇u− v‖1 + α0‖∇v‖1, (7.30)

where Q(I, u) is the quadratic fitting term from [WPB10] using normalized cross correlation, uFM are
sparse feature correspondences estimated like in [BM11], and p ≤ 1 determines the nonconvexity of the
feature matching penalizer. Figure 7.15 compares the convex vs. the nonconvex penalty term. In this
formulation, we evaluate a convex energy (cFMcTGV) with p = 1, ε = 0, λ = 1 and β = 2 versus
a nonconvex energy (ncFMcTGV) with p = 0.5, ε = 0.001, λ = 0.8 and β = 3. Both settings use
α1 = 0.2 and α0 = 1. All parameters were optimized for two challenging image pairs of the Sintel
optical flow benchmark [BWSB12]. The two image pairs are chosen complementary in the way feature
matches should be used. For market6 0005, many feature matches (bottom of the image) should be
considered as outliers, whereas for cave2 0015 the few correct feature matches on the dragon must be
used to capture the large motion. Our results show that feature matching driven optical flow methods can
benefit a lot from nonconvex penalty functions.
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Figure 7.14: TOP LEFT: Image pair mountain 0001 to mountain 0002. TOP RIGHT: Ground truth flow. MIDDLE AND BOTTOM
LEFT: Estimated flow field solving (7.29) (EP: 0.156) with λ = 0.3, α1 = 0.1, α0 = 1.0, F2,1 = ‖ · ‖2, F2,0 = ‖ · ‖2 and
a zoom. MIDDLE AND BOTTOM RIGHT: Flow field obtained with the nonconvex model (EP: 0.152) using parameters λ = 0.25,
α1 = 0.1, α2 = 1.0, F2,1(|x|) = 2 log(1 + 1

2
|x|), F2,0 = ‖ · ‖2 and a zoom. Using a nonconvex penalizer is beneficial and

yields sharp discontinuities.
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Figure 7.15: Result for two image pairs from the Sintel optical flow benchmark using the model (7.30). UPPER AND LOWER
BLOCK, TOP LEFT: Feature matches for market6 0005 and cave2 0015, respectively. BOTH BLOCKS, TOP RIGHT: Ground truth
flow. UPPER BLOCK, BOTTOM LEFT: cFMcTGV (EP: 11.78). UPPER BLOCK, BOTTOM RIGHT: ncFMcTGV (EP: 7.77). LOWER
BLOCK, BOTTOM LEFT: cFMcTGV (EP: 9.20). LOWER BLOCK, BOTTOM RIGHT: ncFMcTGV (EP: 8.79). The two image pairs
are chosen because they require a complementary usage of the feature matches, in market6 0005 matches at the bottom should
be considered as outliers, whereas in cave2 0015, the few matches on the dragon are important. With the algorithm proposed in
this chapter the usage of a robust penalty for the feature matching term is possible. Such a robust penalty is used for ncFMcTGV.
In cFMcTGV a `1-penalty is used. The parameters for both methods have been optimized. ncFMcTGV can deal with the two
complementary requirements of the feature correspondences much better than cFMcTGV.

138



Part II

Motion Segmentation
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Chapter 8

Introduction to motion segmentation

Figure 8.1: TOP ROW: Two images from a video shot. A color
based segmentation would not provide object regions. MIDDLE
ROW: Clustering of point trajectories indicates regions with simi-
lar motion. BOTTOM ROW: Segmentation based on these clusters
provides object regions. The segmentation results are obtained
with our method.

Bottom-up segmentation based on color can
successfully provide so-called superpixels—
small, homogenous regions, which are actively
used in many vision applications [AMFM11].
But what about the segmentation of a whole
object or meaningful parts of an object? For
example a person could wear clothes of very
different color; see Figure 8.1. How can a
bottom-up approach decide which of these re-
gions must be grouped together? Top-down
object priors can resolve such ambiguities, but
based on which data can these priors be learned
in the first place?

In this part of the thesis, the value of mo-
tion and the Gestalt principle of “common fate”
[Kof35] is reemphasized. Motion vectors are
typically more homogeneous within an object
region than color and texture. Consequently,
ambiguities in color based segmentation dis-
appear as soon as objects move. Studies with
formerly blind people indeed show that learn-
ing from moving objects is easier than learning
from static ones [OMG+09].

In this chapter, related work and the mo-
tivation of my research is discussed. The
foundation is the work of Brox and Malik
[BM10], which is considered in detail in Sec-
tion 8.2. Moreover, Sparse Subspace Clus-
tering [EV13] is summarized more intensively
than other lines of research in Section 8.3. As state-of-the-art method on the Hopkins155 benchmark
[TV07] it appears in the evaluation in Chapter 12.
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8.1 Related work

Two-frame optical flow. As a first step in the direction of motion segmentation we mention the classi-
cal approach of segmenting two-frame optical flow. While early approaches estimate the optical flow and
the segmentation independently [WA94, SM98], optical flow estimation and segmentation were later con-
sidered as a joint optimization problem [CS05, AK06, BBW06, SSB12]. Obviously, object segmentation
is only possible with such an approach, if the object motion is distinct and different from the back-
ground motion in all frames. Moreover, as pairs of frames are considered independently, the resulting
segmentations are not consistent over time. In Chapter 12 such a method where the optical flow and the
segmentation are computed independently is implemented as a baseline for comparison on the benchmark
that is introduced in Chapter 9. [XS05, PTZ08] approach these problems by combining motion analysis
with a learned appearance model. However, all these methods do not fully exploit the power of motion
for object segmentation.

Importance of long term analysis. There can be long periods during which a person is as static as a
pillar. Moreover, articulated objects do not move homogeneously. Arms and legs of a walking person
move in opposite directions. All this causes severe problems in typical motion segmentation approaches
based on two-frame optical flow. Tracking the interplay of the articulated parts over longer periods yields
the missing information about the overall motion. Hence, information about what is an object should
be analyzed over longer periods. Such long term analysis decreases the motion’s intra-object variance
relative to the inter-object variance. Moreover, motion information can be propagated to frames in which
the object is mainly static. This is a basic building block of the motion segmentation method from Brox
and Malik, see Section 8.2.

Superpixel based methods. A straight forward approach for obtaining a temporally consistent seg-
mentation is based on superpixels. There are many works that produce over-segmentations and con-
nect the emerging superpixels over time using optical flow and/or clustering methods [BT09c, GKHE10,
VAPM10, LASL11, GINC11, GCS12]. This yields dense, temporally consistent segmentations, but usu-
ally they remain as over-segmentations. It is not trivial to retrieve object regions from these results.
There are many challenges in tracking regions. This problem can be circumvented by interactive video
segmentation methods [BS07, PMC09], which however, require significant user input.

Clearly, some kind of tracking is necessary for such long term analysis. We found that pursuing a
“sparse to dense” strategy works best. There are several arguments in favor of point tracking like in
[BM10]. We introduce it in Section 8.2.1. Point tracking concentrates on the reliable and stable features.
Usually, superpixel are designed in a way such that homogeneous pieces are grouped. Hence, obviously,
the important information for tracking lies at the superpixels’ boundaries rather than in the interior. Also
superpixel that incorporate texture cues suffer from similar problems. Texture is, by definition, a repetitive
structure. Thus, matching of points inside a texture region is highly unstable. Although, in principle,
texture also deteriorates the optical flow quality. However, this issue is much weaker than for superpixel
trajectories. The image pyramid that is used in the optimization process for optical flow acts against
this issue and, usually, the regularizing term propagates the actual region’s motion from its boundary
to the interior. Another reason against the usage of superpixel trajectories stems from occlusion and
disocclusion areas. Due to these phenomena, which are present all the time, the shape of the superpixels
change dramatically. Therefore, in this thesis, we focus on methods based on point tracking like [BM10,
EV13].
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Multi-body factorization. A dominant paradigm for clustering point trajectories has emerged from the
technique of multi-body factorization [CK95, Gea98, BB91]. This approach is based on an affine camera
model. The coordinates along the point trajectories are collected as columns of a matrix. This matrix is
then decomposed into a matrix representing a 3D rigid body motion and a structure matrix. Trajectories
that belong to the same 3D rigid body motion must lie on the same linear or affine subspace.

Subspace clustering. More recent methods directly model the (linear) dependency of the data sam-
ples [YP06, EV13]. The problem of motion segmentation is cast as the problem of segmenting samples
drawn from a union of linear (or affine) subspaces. This allows defining affinities between trajectories
and the use of spectral clustering. For instance in [EV13] the dependency is modeled as an optimiza-
tion program where data points express themselves as linear combinations with a sparsity prior on the
representatives. In Section 8.3, the approach of [EV13] is explained in detail. In [LS09] the dimen-
sionality of the ambient space is explored and affinities are defined using angular information. A few
works also explore the projective dependency among the data samples [LKSV07, SSW08]. While ini-
tially all these techniques were very sensitive to noise, more recent models have solved this problem
[EV13, VTH08, LLY10, RTVM08, LLDS12, ZLPS11]. However, the main limitation remains the re-
quirement of a dominant subset of complete trajectories. Consequently, the methodology cannot deal
with strong occlusion and disocclusion, which hampers sincere long term motion analysis. This is a big
issue when it comes to the analysis of real world sequences where most flexibility is gained by considering
asynchronous trajectories. This fact is analyzed in the evaluation in Chapter 12.

Object segmentation by long term analysis of point trajectories. The work [BM10], Section 8.2,
has overcome this drawback and is able to successfully analyze asynchronous trajectories on several real
world video sequences. On the other hand, this new flexibility comes at the cost of a weaker analysis of
the trajectory similarities. Instead of affine motion, [BM10] relies on a translational motion model. At
first glance, this seems to be a severe restriction. However, as the considered point trajectories are much
more dense than the ones previously considered the loss by the simpler motion model is compensated.
Locally, every motion, even affine motions, are sticked together by translations. Nevertheless, the model
is not as accurate as it could be. Chapter 10 addresses this issue and proposes a solution that improves
their motion segmentation method.

As this work serves as the starting point for this thesis we ignore further details here and outline the
approach more in detail in Section 8.2.2.

Other works based on point trajectories. There are few works which analyze point trajectories with-
out the need to have a dominant subset of trajectories covering the full time line [SSZ06, BC06, CR09,
FRP09]. Apart from [BC06], which analyzes trajectories but runs the clustering on a single frame basis,
these methods provide temporally consistent clusters. The general idea of defining affinities between
trajectories has been used in traffic scenarios already in 1997 [BMCM97].

The methodology of Brox and Malik [BM10] inspired other works. In [LASL11] the affinities be-
tween point trajectories are additionally influenced by reasoning about occlusion. In [FS11] the similarity,
dissimilarity, and connectedness among trajectories is used to define affinities. In [FZS12] the (spectral)
embedding of the point trajectories as in [BM10] via spectral clustering is clustered in a different way:
instead of finding semantic motion clusters the goal is to is find motion discontinuities. In [FZZS12]
segmentation is combined with detection. [ZYC+12] transfered the knowledge about point trajectories to
region trajectories, and directly obtain a dense segmentation.
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Motion segmentation as means to an end. In some works, motion segmentation is not the primary
goal but a way to achieve a higher level goal. Ommer et al. [OMB09] couple motion segmentation with
a recognition task, in [WWR+13] tracking and detection is combined with geometric information for
3D scene modeling, [BSFC08] focuses on road scene understanding, in [WTG06] trajectory clustering is
used for learning traffic models, and [SALT09] reconstruct 3D point clouds for semantic segmentation
and object recognition.

8.2 Motion segmentation of Brox and Malik

The video segmentation method [BM10] is roughly composed of two steps: (1) tracking and (2) cluster-
ing; each is interesting and challenging in its own right, but is also a potential source for improvements.

(1) Tracking is closely related to motion estimation. For the object being tracked the correspondence
from one image to another is sought; this is the same as the motion estimation between the images:
the optical flow problem. Different to common tracking algorithms, which extract a sparse set of
feature points in both images and try to relate them, the method [BM10] uses the dense correspon-
dences from an optical flow algorithm. This allows it to track a rather dense set of points. Compared
to tracking patches, points are easier to track, as it is naturally “invariant” to, for example, rotation
or scaling.

(2) Moreover, any object can be represented by points. In order to obtain a segmentation of moving
objects the remaining step is to cluster the point tracks (point trajectories). Similarities based
on motion differences are estimated between them. Then, the desired clustering is obtained by
optimizing for groups with a high similarity of point trajectories.

Details are introduced in the following.

8.2.1 Point tracking

The goal of point tracking is to extract suitable points and to compute their trajectories along which they
appear in a video sequence I : Ω × [0, T ] → R. In the motion segmentation framework [BM10] point
trajectories are used to obtain an unsupervised segmentation of a video. Tracking points is easier than
tracking patches or objects. Nevertheless, groups of points can be used to represent objects, which is the
basic idea of their motion segmentation method and thus our further development.

8.2.1.1 Large displacement optical flow tracker

The simple but successful idea to obtain high quality point trajectories is the following. Points are tracked
based on a current state-of-the-art optical flow method; here we use large displacement optical flow from
[BM11]. This way, we benefit from all the progress made on optical flow estimation in the 30 years since
the Lucas-Kanade method [LK81] was presented, which is the basis for the KLT tracker [ST94]. In the
following, we coarsely describe the most important aspects of a point tracker. For more details we refer
the reader to [SBK10].

Initial points. Like in every tracker, a set of points is initialized in the first frame of a video. As
we build on a dense optical flow method, in principle, we could initialize with every pixel. However,
homogeneous areas can be problematic for variational optical flow. To put more emphasis on points that
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Figure 8.2: Two visualizations of the trajectories. LEFT: Current position of the tracked points together with their trajectories. The
subsampling factor was 16. RIGHT: Only the current position of the tracked points is shown. The subsampling factor was 4. In both
cases color shows for how long the points have been tracked as a percentage of the length of the shot (see color bar). Occlusion and
disocclusion prohibit permanent tracking.

can be tracked more reliably, we remove points that do not show any structure in their vicinity based on
the smaller eigenvalue of the structure tensor.

Let I0(x) := I(x, 0) ∈ C1(Ω,R) be the first frame of the video sequence and assume reflecting
boundary conditions for the image function. Then, the structure tensor is defined for x ∈ Ω as Sρ(x) :=

(kρ ∗ (J>I0 JI0))(x) ∈ R2×2, where the convolution is meant entry-wise (of the R2×2 matrix), JI0 is the
Jacobian matrix of the image function I0 at point x ∈ Ω and kρ : R2 → R is a compactly supported
Gaussian kernel with standard deviation ρ = 1. The criterion for excluding points x ∈ Ω for tracking is
λ2(x) < 1

8 |Ω|−1
∫

Ω
λ2(x′) dx′, where λ2(x) is the smaller eigenvalue of the structure tensor at point x.

As we will see in Section 8.2.2.2, the computational complexity of the motion segmentation method
is quadratic in the number of point trajectories. For efficiency reasons, we spatially subsample the initial
points. Figure 8.2 shows a subsampling by factor 4 on the right and 16 on the left side. Factors larger
than 12 result in loss of details as there are not enough points to cover small object parts. On the other
hand, factors smaller than 4 waste computation time, as smaller objects tend to be smoothed away by the
optical flow anyway.

Tracking. Each of the points x ∈ Ω can be tracked to the next frame t + 1 by using the optical flow
field wt : Ω→ R2 at frame t. The point in the next frame is given by x+wt(x). If x+wt(x) ∈ R2 rΩ,
i.e. wt maps x outside the image domain, the trajectory is stopped at frame t. In principle, any optical
flow method can be used here, yet many of the problems we find in motion segmentation are due to
shortcomings of the optical flow, e.g., large displacements, sharp discontinuities, and accuracy for the
occlusion detection. Hence, it is important to use a strong method. The approach from [BM11] combines
the subpixel accuracy of variational approaches with combinatorial feature matching, which allows to
capture large displacements. Moreover, an efficient GPU implementation [SBK10] computes the optical
flow between two 640 × 480 frames in less than 2 seconds. This also enables tracking in long, high
resolution sequences in a reasonable time.

Occlusion detection. Tracking has to be stopped as soon as a point gets occluded. This is very impor-
tant, as otherwise the point trajectory will share the motion of two different objects. Occlusion detection
is a common problem, considered especially in disparity estimation, but recently has also appeared more
often in conjunction with optical flow. We refer to a recent work [ARS12] and the references therein. In
tracking, occlusion is usually detected by comparing the appearance of local neighborhood of a tracked
point over time. In contrast, we detect occlusions by verifying the consistency of the forward and the
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frame t frame t+ 1

wt

ŵt

Figure 8.3: Forward–backward matching criterion. Each pixel in frame t is mapped to frame t+ 1 via the optical flow vector wt.
The backward map ŵt at the subpixel position is determined by bilinear interpolation. Concatenating the two mappings should
result in approximately the original position.

backward flow, as illustrated in Figure 8.3. Let ŵt : Ω → R2 be the backward flow from frame t + 1 to
frame t and let x, x+ wt(x) ∈ Ω. Then the trajectory with coordinate x is stopped if

|wt(x) + ŵt(x+ wt(x))|2 < 0.01(|wt(x)|2 + |ŵt(x+ wt(x))|2) + 0.5 .

In a non-occlusion case, the backward flow vector points in the opposite direction of the forward flow
vector. If this consistency requirement is not satisfied, the point is either getting occluded at t + 1 or the
flow was not correctly estimated. Both are good reasons to stop tracking this point at t. Since there are
always some small estimation errors in the optical flow, we grant a tolerance interval.

Occlusion comes together with the opposite phenomenon: disocclusion or scaling. To fill these areas
not covered by a trajectory yet, new trajectories are initialized in empty areas in each new frame using
the same strategy as for the first frame.

Sometimes, due to inaccurate optical flow, the occlusion check fails. Therefore, trajectories are also
stopped close to motion boundaries, which however fluctuates a little. In order to avoid drifting points
from one object to the other the following stopping criterion is additionally used

‖ Jwt(x)‖22 > 0.01|wt(x)|2 + 0.002 ,

where the norm on the left hand side is the matrix norm ‖ Jwt(x)‖22 = trace((J>wt Jwt)(x)).

A tracking example is shown in Figure 8.2. Some points on the man are tracked across all 75 frames.
However, most trajectories are newer due to disocclusion.

8.2.2 Object segmentation by long term analysis of point trajectories

The work of Brox and Malik [BM10] is based on asynchronous point trajectories obtained with the
optical flow supported point tracker [SBK10] which is outlined in Section 8.2.1. The most important
advantages of this tracker are that (1) it is based on dense optical flow and, therefore, up to 100% dense
point trajectories can be generated, (2) usually it provides reliable tracks covering several hundred frames
of a video, and (3) it is not sensitive towards occlusions; tracks are simply stopped.

In the remainder of this section, we recap the methods presented in [BM10] and improved in [OMB14].
The notation is from [OMB14].

8.2.2.1 Analysis of point trajectories

It is clear that, as the trajectories are asynchronous, the set of considered trajectories can not be restricted
to the complete ones only. Particularly, in video shots with fast motion and large occlusions this set could
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be even empty. The analysis of the trajectories’ motions must be defined on subsets of the video shot.
Therefore, the similarities (or affinities) between trajectories are defined between all pairs of trajectories
with overlapping frames, where both are visible. The transitivity of this procedure implicitly spreads the
information of similarity to all trajectories; There is knowledge about the similarity of trajectories even if
they live in disjoint time windows.

According to the Gestalt principle of common fate, high affinities are assigned to pairs of points that
move together. Clearly, motion is not always decisive for grouping objects, e.g., two horses galloping next
to each other move similarly and are considered as a single object. This reflects the basic assumption in
object level motion segmentation. As soon as one of the two horses stops there is the required information
needed for grouping them separately. This indicates that the actual information is found in the motion
dissimilarity.

Let A and B be two trajectories with coordinates (xAt , y
A
t ) and (xBt , y

B
t ), at frame t. According to

the previous discussion, we introduce the distance measure d(A,B) for a pair of trajectories A and B in
the common time window by exploiting their maximal dissimilarity, i.e., the maximal motion difference
among all frames of common visibility

d2(A,B) = max
t
dt(A,B) , (8.1)

and turn them into affinities via

w(A,B) = exp
(
−λd2(A,B)

)
. (8.2)

The scale parameter λ = 0.1 is fixed. This parameter leads us to another important issue, namely proper
normalization. So far the affinity model is based on the two assumptions that the motion estimates are
noise-free and all object motion is translational. Of course, both assumptions are not satisfied in real
sequences, so we face the problematic question: when is a motion difference just due to noise and when
is it significant enough to indicate different objects?

As this question is easier to answer if there is less noise, the first objective is to limit the noise that
should be expected. On the side of optical flow, we can add some more accuracy by averaging the motion
over time. This is done by approximating the derivatives ∂tA and ∂tB of two continuous spatio-temporal
curves, defined by the trajectories A and B, at time t with forward-differences over T = 5 frames:

∂tA(t) =
1

T
(xAt+T − xAt , yAt+T − yAt )> (8.3)

The same for B. If less than T common frames are available between A and B, then T is set to the
number of common frames for this pair. The exact choice of T is not critical. If T is chosen too large,
we might lose relevant motion differences, e.g., due to a swinging arm. At frame rates of 30fps, T = 5
corresponds to just 160ms, and it is unlikely that this will smooth out some significant motion detail.
Values of T = 10 and T = 15 were tested without any consistent positive or negative effect on the
results1.

A second source of noise is model noise due to the assumption that all object motion is translational.
Clearly, objects can undergo more complex motion. Figure 8.4 shows a failure case, where motion is
dominated by scaling. Pairwise distances only allow for verification of a translational model, whereas
an affine motion model would require distances computed for at least 4 trajectories at a time to verify if

1It is worth noting that temporal smoothing of the optical flow for the purpose of computing motion differences between trajec-
tories is uncritical, whereas such smoothing can have very negative effects on the optical estimation process in case of camera jitter.
The reason is that temporal smoothing during optical flow estimation hampers the correct matching of pixels. Such a problem does
not exist when analyzing motion differences.
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Figure 8.4: Sequence with dominant scaling motion that cannot be captured well enough by a local translational model. These
situations lead to an over-segmentation of the object.

they belong to the same group. This leads to a hypergraph and will be considered in Chapter 10. Here
we rather make use of the dense coverage of the image by trajectories and the fact that locally a higher
order motion model can be approximated by a translational model. Consequently, we can limit the effect
of model noise by damping the motion distance with the average spatial distance between trajectories A
and B.

The distance at frame t between two trajectories A and B is defined as

d2
t (A,B) = dsp(A,B)

|∂tA(t)− ∂tB(t)|2
σ2
t

, (8.4)

where σ2
t is a locally adaptive normalization factor that deals with the fact that despite the above measures

there is still some noise to be expected. The magnitude of the noise depends on the variation of the
motion in the image. A larger variation indicates fast higher order motion and hence more model noise.
Consequently, the distance should be normalized by the variance of the optical flow in the considered
image. The intuition behind this normalization is that a motion difference of two pixels is a lot when
there is hardly any motion in a scene, whereas the same motion difference is negligible in a scene with
fast motion.

If there is just one object and the background, normalization by the global flow variance is sufficient,
yet consider a scenario with one fast object and one slowly moving object. For the fast object, σ should be
large, otherwise the object might be split into multiple regions. For the slow object, σ should be smaller
to avoid that the object is merged with the background. This dilemma can be avoided by using a spatially
adaptive variance estimate that is computed for each point individually in a local neighborhood. For an
efficient computation of such local statistics we refer to [BC09].

8.2.2.2 Spectral clustering with spatial regularity

The pairwise affinities for n trajectories result in an n × n affinity matrix W . An (approximately)
optimal partitioning of the underlying graph is obtained via spectral clustering [SM00, NJW02]. Let
D = diag (dA|A = 1, . . . , n) be the n× n diagonal matrix with entries dA =

∑
B w(A,B). The eigen-

decomposition of the normalized graph Laplacian reads

V >ΛV = D−
1
2 (D −W )D−

1
2 . (8.5)

We keep the eigenvectors v0,v1, . . . ,vm corresponding to them+1 smallest eigenvalues λ0, λ1, . . . , λm
according to the threshold maxi λi < 0.2. The trivial solution λ0 = 0 with the constant eigenvector
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Figure 8.5: FROM LEFT TO RIGHT: Input frame from a video shot and the first 3 eigenvectors with range of values represented by
the colorbar. Clearly, the eigenvectors are not piecewise constant but show smooth transitions within the object regions. However,
discontinuities in the eigenvectors correspond to object boundaries very well. This information needs to be exploited in the final
clustering procedure.

v0 is omitted. Since the number of objects is expected to be significantly smaller than the number of
trajectories, i.e., m� n, the eigenvectors and eigenvalues can be efficiently computed using the Lanczos
method in O(n2). For further computations we normalize the eigenvectors’ range to [0, 1].

We also determine the number of clusters automatically (model selection). In the ideal case, i.e.,
clearly distinguishable translational motion and very few tracking errors, we obtain m piecewise con-
stant eigenvectors and clusters are easily obtained with k-means clustering. There is a large number of
model selection criteria in the literature, such as BiC or AiC, to automatically choose K in k-means clus-
tering. As long as sufficiently many eigenvectors are computed, which is usually guaranteed with our
conservative threshold on λ, such model selection will find a good number of clusters.

However, often the eigenvectors are not piecewise constant, as shown in Figure 8.5. Standard k-
means clustering is not suited for this setting as smooth transitions in the eigenvectors get approximated
by multiple constant functions and, thus, leads to an over-segmentation. This has a strong negative effect
on the correct choice of the number of clusters K.

As a remedy, we suggest minimizing an energy function that comprises a spatial regularity term. This
regularity term not only prefers spatially compact clusters, it also acts as a criterion for model selection.
Moreover, it takes edges in the eigenvectors into account. Let vAi denote the Ath component of the
ith eigenvector and vA the vector composed of the Ath components of all m eigenvectors. Index A
corresponds to a distinct trajectory. Let N (A) be the symmetrized set of 12 neighboring trajectories
based on the average spatial distance of trajectories. We seek to choose the total number of clusters K
and the assignments πA ∈ {1, ...,K} such that the following energy is minimized:

E(π,K) :=
∑
A

K∑
k=1

δπA,k|vA − µk|2λ + ν
∑
A

∑
B∈N (A)

1− δπA,πB
|vA − vB | . (8.6)

Increasing the parameter ν > 0 puts more weight on compact clusters and less over-segmentation. The
first term is the unary cost, where µk denotes the centroid of cluster k. The norm | · |λ is defined as

|vA − µ|2λ :=
∑
i

(vAi − µi)2/λi , (8.7)

i.e., each eigenvector is weighted by the inverse of the square root of its corresponding eigenvalue. This
weighting is common in spectral clustering as eigenvectors that separate more distinct clusters correspond
to smaller eigenvalues [BM98].

Clearly, if we do not add a penalty for additional clusters, each trajectory will be assigned its own
cluster. The second term in (8.6) serves as a regularizer by penalizing the spatial boundaries between
clusters. The δπA,πB is the Kronecker delta, which is 1 if the trajectories A and B are assigned to the
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Figure 8.6: Optimization procedure for minimizing (8.6) from [BM10]. LEFT: Best k-means proposal obtained for K = 9. Over-
segmentation due to smooth transitions in eigenvectors. CENTER: Remaining 5 clusters after choosing the best merging proposals.
RIGHT: Final segmentation after merging using affine motion models. Another cluster boundary that was due to the fast 3D rotation
of the left person has been removed. The only remaining clusters are the background, the two persons, and the articulated arm of
the left person.

same cluster, and 0, otherwise. The penalty is weighted by the inverse differences of the eigenvectors
along these boundaries. Consequently, cutting a smooth transition in the eigenvectors will induce much
higher cost than cutting along a strong discontinuity. This avoids splitting clusters at arbitrary locations
due to smooth transitions in the eigenvectors. The parameter ν steers the tradeoff between the two terms.

Minimizing (8.6) is problematic due to many local minima. In [BM10], (8.6) is minimized using a
heuristic k-means clustering. In [OMB14], we replace this heuristic optimization by iteratively solving
multi-label Markov Random fields. This method will be detailed in Section 11.3.

In [BM10], multiple runs of k-means or hierarchical 2-means clustering are executed with random
initialization. This generates several hypotheses for minimizing the first term in (8.6). The second term
enters the optimization by merging the hypotheses such that the energy decreases. After merging, a
gradient descent step is run to correct a few erroneous decisions. The whole optimization procedure is
executed for K ∈ {1, ..., 2m} clusters and the result with the smallest energy is used as “minimizer” of
(8.6). For details about how often k-means or 2-means is executed for each K we refer to [BM10].

Finally, in [BM10] and [OMB14] a postprocessing step is made. Clusters are merged according to
the mutual fit of their affine motion models estimated via least squares in each frame. The average fit
per frame is considered and merged greedily until a threshold is reached. This postprocessing step is not
absolutely necessary, but corrects a few over-segmentation errors. Figure 8.6 from [BM10] visualizes the
optimization procedure.

8.3 Subspace clustering

Among subspace clustering methods [EV13] is currently considered as the state-of-the-art. As we want to
compare against this work, we discuss it in more detail here. In the following, first, we derive the abstract
optimization problem of sparse subspace clustering, then, we cast the motion segmentation problem as
such.

In the subspace clustering problem a collection of N data points xj ∈ RD, j = 1, . . . , N , is modeled
by a union of (affine) subspaces Si, i = 1, . . . ,K of dimension dimSi = di, 0 < di < D. The difficulty
is that not only the subspaces are unknown, but also the assignments of data points to these subspaces
are unknown. There are several approaches to that problem [YP06, EV13, VTH08, LLY10, RTVM08,
LLDS12, ZLPS11, LS09] (see Section 8.1 for a more detailed distinction), however we focus on Sparse
Subspace Clustering (SSC), since practically it has proved to be among the best performing methods.
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8.3.1 Sparse subspace clustering

Although we assume that the bases of the subspaces are unknown, there is a way to model the subspaces.
SSC builds on the fact that the data points themselves describe their subspaces. Each data point xj ,
j = 1, . . . , N , can be written as a linear combination of all other data points

xj =

N∑
i=1

zijxi, zjj = 0, Z = (zi,j)i,j ∈ RN×N . (8.8)

For all points xi on a different subspace than xj the corresponding weight zij is zero. Obviously, it makes
sense to avoid xj being represented by xj , thus zjj = 0 is required, i.e. diagZ = 0. In Matrix notation:
let X ∈ RD×N collect data points X = (x1, . . . , xN ) and Z ∈ RN×N the coefficients of the linear
combinations. Then (8.8) is equivalent to

X = XZ, diagZ = 0 .

In [EV13], the property of X being representable by X is called self-expressiveness.

SSC seeks for a sparse representation within the (potentially) huge solution space. It is clear, that if
the subspaces comprise data points in general direction, then there exist sparse coefficient vectors Z∗j
(j-th column of Z) representing a data point xj with only points from the same subspace. According to
[EV13], this means that there is a subspace-sparse representation. Such a subspace-sparse representation
can be obtained by solving the following optimization problem

min
Z
‖Z‖1, s.t. X = XZ, diagZ = 0 and Z1 = 1 ,

where the last term Z1 = 1 models unit row-sum of Z (i.e. the entries in a row sum up to 1), which
accounts affine subspaces. Actually, one would like to minimize the `0-norm ‖Z‖0, however this problem
is NP-hard [AK98]. Therefore, the `1-norm, the tightest convex relaxation of the `0-norm is used. The
`1-norm also has the capability to find a sparse representation. Although the sparsity restricts the solution
space significantly there is still a lot of ambiguity.

Note that the derivation so far assumes clean data and no noise. In [EV13] it is shown in detail how
to cope with gaussian noise and outliers. We introduce this noise handling terms ad hoc here, since it is
intuitive. The final optimization problem reads

min
C,Z,E

‖Z‖1 +
λC
2
‖C‖22 + λE‖E‖1

s.t. X = XZ + E + C, diagZ = 0 and Z1 = 1 .

(8.9)

The constraint X = XZ + E + C grants a certain error for the representation of X . The penalty ‖C‖22
models gaussian noise in the data samples and the term ‖E‖1 allows for a sparse set of outliers. The
optimization problem is still convex and can be solved efficiently. For example in [EV13], it is solved
using the alternating direction method of multipliers. For details we refer to [EV13].

For motion segmentation the interesting part of the optimization problem is the representation matrix
Z. Entries with high value can be interpreted as stronger dependency of the respective data samples.
Therefore, the coefficient matrix Z can be used as affinity matrix. Spectral clustering on the symmetrized
matrix |Z|+ |Z>| yields the final assignment of data points to a subspace, where the absolute value here
is meant per entry.

151



CHAPTER 8. INTRODUCTION TO MOTION SEGMENTATION

8.3.2 Motion segmentation using sparse subspace clustering

Motion segmentation is considered as the task of segmenting a video shot of rigidly moving objects
[EV13]. Usually, the video shot is represented by a set of N ∈ N trajectories, which mainly contains
trajectories of the same length F ∈ N. The coordinates of the trajectory are collected as columns of a
matrix X = (x1, . . . , xN ) ∈ R2F×N , i.e., xi ∈ R2F is the column vector that concatenates the (x, y)-
coordinates of trajectory i ∈ {1, . . . , N} along F frames of the video. The matrix X is the RD×N matrix
of data samples or feature vectors from Section 8.3.1.

As an affine camera model is assumed, the trajectories lie on (at most) three dimensional affine sub-
spaces of R2F . The goal is to assign these feature vectors, i.e. the trajectories, to different subspaces
according to the underlying motion. In practice, there is always noise. Therefore, the optimization prob-
lem (8.9) is solved and a sparse representation matrix Z is obtained. As mentioned in Subsection 8.3.1,
in [EV13] spectral clustering is used to reveal the subspace assignments, which means the assignments
of each trajectory to a (dominant) motion model. For implementation details and a appropriate normal-
izations for practical applications, we refer to [EV13].
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Chapter 9

Motion segmentation benchmark

The problem of motion based object segmentation lacked a reasonably sized general benchmark. Before
the Berkeley Motion Segmentation (BMS) benchmark was published in [BM10] the only available dataset
was Hopkins 155 [TV07]. Unfortunately, both benchmarks come with obvious limitations.

Hopkins 155 is tailored to subspace clustering methods. In the beginning those methods only worked
in a perfect environment, i.e., there are no outlying or noisy trajectories and they are all complete. Al-
though now Hopkins 155 allows for synthetically added corruptions, the provided scenario is not realistic
enough. This is particularly true for the checkerboard sequences from this benchmark. Additionally,
the requirement of complete trajectories hides the challenge of occlusion detection and handling. We
will confirm this statement in Chapter 12, when we evaluate the state-of-the-art method (SSC) of Hop-
kins 155 on the extension of the BMS benchmark that is proposed in this chapter. Some of the more
realistic sequences from Hopkins 155 are used in the BMS benchmark, however, without providing man-
ually repaired trajectories.

The limitations of the BMS benchmark are clearly the number of sequences, the number of ground
truths, and the evaluation metric, which gives some freedom in the interpretation of the results. The BMS
dataset is dominated by moving cars and persons under more or less clean camera motion and moderate
occlusions. More details are discussed throughout this chapter. Large parts of this chapter are published
in [OMB14].

Since motion segmentation is among the hot topics in computer vision, progress is made quickly.
Although, the BMS benchmark cannot be considered as solved yet, a larger dataset with more variation
among the sequences and other challenges is needed. In this chapter, we present our extension of the BMS
dataset to the Freiburg Berkeley Motion Segmentation (FBMS) dataset, recapitulate the evaluation metric
introduced in [BM10], and propose our new evaluation metric which allows to judge the quantitative
quality of a method with a single number.

9.1 The Freiburg Berkeley Motion Segmentation dataset (FBMS)

The BMS benchmark introduced in [BM10] is composed of 26 video sequences. Among them are shots
from detective stories and 12 sequences from Hopkins 155. Several frames of each shot come with pixel-
accurate ground truth segmentation of moving objects. The ground truth annotation is consistent over
time, i.e., the label associated with an objects is the same in all frames where a ground truth segmentation
is provided. Due to the progress in motion segmentation new challenges are required. In order to avoid
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CHAPTER 9. MOTION SEGMENTATION BENCHMARK

stagnation in a field a benchmark must not be too simple, but also not too difficult. We extended the BMS
dataset by adding 33 sequences. The new sequences show more variation in

• the image resolution,

• the number of moving objects,

• the smoothness of the camera motion,

• the motion complexity (more non-translational motion), and

• occlusion, disocclusion of the objects.

Every 20th frame comes with ground truth, adding a total of 516 annotated frames to the benchmark. The
full dataset with 59 sequences and 720 annotated frames is publicly available at [FBM].

9.2 Evaluation metric provided in [BM10]

The evaluation tool introduced in [BM10] analyzes the (1) density, (2) the overall clustering error, (3) the
average clustering error, (4) the over-segmentation error, and (5) the number of extracted objects. These
numbers are computed for each video shot and averaged over all sequences.

(1) The density describes the percentage of points where a label has been estimated.

(2) The overall clustering error measures the percentage of wrongly labeled pixels. Thereby, the
assignments of estimated clusters and ground truth regions is optimized. A single ground truth
region may be assigned multiple times. In this case, a cost in terms of over-segmentation error is
paid.

(3) The average clustering error is very similar to the overall clustering error, but on a region basis in-
stead of a per-pixel basis. The labeling error is computed for each ground truth region individually,
and then, averaged across all regions.

(4) The over-segmentation error counts the number of merging steps of the estimated clusters to fit the
ground truth regions.

(5) The object count is the number of extracted objects measured by the number of regions covered
with less than 10% error. Background does not count as an object and is therefore subtracted for
each sequence.

Let us briefly discuss the weaknesses of these quantities.

The main issue with this evaluation method becomes obvious, when two methods with different ob-
jectives are to be compared. If one method produces a low clustering error and a high over-segmentation
error and the other method a higher clustering error but a lower over-segmentation error, it is not clear
which method should be rated as better. A second issue is the density. A method that densely labels
the background but does not try to label objects, easily achieves a high density and a low clustering er-
ror. However, little information is extracted. Such a method should not be considered a good method.
This evaluation metric clearly has the disadvantage that all 5 criteria have to be considered. Thereby, the
weighting of these criteria is a matter of taste and methods are not directly comparable.
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Figure 9.1: Illustration of the evaluation metric. FROM LEFT TO RIGHT: An under-segmentation, an unprecise segmentation, and an
over-segmentation. The ground truth is shown in the bottom row. The black lines show the cluster–region assignments and crosses
indicates clusters or regions that have not been assigned. Average precision, recall, and F-measure are (93.68%, 66.67%, 77.9%),
(98.22%, 80.31%, 88.36%), and (100.0%, 56.02%, 71.81%).

Over-fitting to a certain dataset is always an issue, especially when a first state of saturation is reached.
Intensive parameter tuning of a method on the BMS dataset can weaken the performance when other
videos are considered. This situation can hamper the progress in the field of motion segmentation in
videos. An appropriate splitting into a training set for parameter tuning and a test set for evaluation is
desirable. However, the BMS dataset is too small. Our extension comes with several new sequences and
allows for such a splitting of the dataset.

Next, the improved evaluation methodology presented in [OMB14] is explained. It unifies the evalu-
ation in a single representative number for the clustering quality and one for the density and thus allows
to compare methods that yield rather different results.

9.3 A new evaluation metric

The size of the new dataset allows for splitting it into a training set and a test set. We provide a fixed split
into a roughly equal number of sequences in both sets. The split was chosen such that typical challenges
appear in both sets.

We introduce an average region density, which is the average percentage coverage over all ground
truth regions by labels. For a dense method the density is 100%; sparse trajectory clustering leads to
lower densities depending on the spacing of the trajectories. By averaging over region densities rather
than on a per-pixel basis, we penalize uneven spatial coverage.

To compare segmentations with a different number of output regions, a metric must reflect the tradeoff
between accuracy (usually maximized by increasing the number of regions) and a good coverage of the
ground truth. In detection tasks, precision and recall have proven valuable to capture a similar tradeoff
between false positives and misses. Here we provide a definition of precision and recall for segmentation.
Let C be the set of pixels1 labeled by the computer algorithm and ci ⊂ C the subset assigned to cluster
i; gj ⊂ C be the corresponding subset of a ground truth region j, and let | · | denote the size of the set.

1The set of pixels includes all frames with ground truth annotation.
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The sets gj only contain those pixels of a ground truth region that have been labeled by the evaluated
computer algorithm. This allows a fair comparison of sparse and dense results on the basis of accuracy,
whereas the density is measured by the above density measure. Precision is defined as

Pi,j :=
|ci ∩ gj |
|ci|

, (9.1)

the ground truth fraction of a cluster, and recall as

Ri,j :=
|ci ∩ gj |
|gj |

, (9.2)

the fraction of a ground truth region covered by the cluster. They are defined for each pair of cluster i and
ground truth region j. The best assignment of clusters to ground truth regions is found by the Hungarian
method2, a one-to-one matching algorithm, where we maximize the F-measure

Fi,j :=
2Pi,jRi,j
Pi,j +Ri,j

(9.3)

over all assignments. In case there are fewer clusters than ground truth regions, we introduce empty clus-
ters. According to (9.2) their recall isR = 0, and we define P = 1. Unassigned clusters are ignored. Like
in a typical detection setting, precision measures the percentage of correctly assigned pixels, and recall
measures the covered fraction of the ground truth. However, since regions in a segmentation are disjoint,
a lower recall usually does not increase precision, as in a typical detection setting. Figure 9.1 illustrates
the effect of certain error classes on the metrics. Both an under-segmentation (leftmost example) and
an over-segmentation (rightmost example) lead to a reduction in recall. In the first case R = 0 because
one object is missed and in the second case because the assigned cluster covers only a small part of the
ground truth region. Recall is mainly affected by a bad model selection. Precision is mostly affected by
inaccurate clusters that overlap with multiple ground truth regions. The F-measure combines precision
and recall and allows the comparison of approaches that yield different number of clusters, whereas with
the evaluation metric in [BM10], it was unclear whether to prefer a result with lower pixel error or one
with a lower over-segmentation error. It is important to note that averages over precision and recall values
are computed on a per region basis rather than on a per pixel basis. The latter would put too much weight
on large background regions. The average F-measure always refers to the harmonic mean of the average
precision and average recall rather than the average of single region F-measures.

Finally, we report the total number of extracted objects, which we define as clusters with F-measure ≥
75%. This quantity is to indicate the number of objects that can be extracted with a certain accuracy from
a dataset. One region is subtracted per sequence to account for the background, i.e., at least two regions
must satisfy the above criterion to increase the counter. We refer to Figure 9.2 and Figure 9.3 to justify
the threshold of 75%, which is in any case disputable and could be adapted to the quality requirements of
an application.

2The complexity of the rectangular Hungarian method is O(mn2). Since the number of ground truth regions is fixed and
limited, we take n as the number of ground truth regions and m as the number of clusters.
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Figure 9.2: Justification for the F-measure threshold of 75% with the method in [OMB14]. LEFT: Training set. RIGHT: Test
set. Results are obtained with the sparse method and trajectory sampling 8. With a larger threshold, only very few objects pass the
criterion, with a smaller threshold, regions are allowed to be too inaccurate for being considered a meaningful object region; see
also Figure 9.3.

(96.4%, 90.2%, 93.2%) (92.3%, 63.9%, 75.6%)

(99.3%, 36.6%, 53.5%) (99.2%, 28.1%, 43.8%)

Figure 9.3: Qualitative justification for the F-measure threshold of 75%. Result for the first 10 frames and evaluation only on
the first frame. FROM LEFT TO RIGHT, TOP TO BOTTOM: Dense result based on a trajectory sampling of 4 overlayed to the first
frame of the sequence goats01, lion01, meerkats01, and cats02 with precision, recall, F-measure of the yellow region assignment.
The F-measure for the lion is just above the threshold. Only the heads of the meerkat and cat are covered. Consequently, their
F-measures are well below the threshold.
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Chapter 10

Higher order motion models and
spectral clustering

Pairwise
affinities

3-affinities

Figure 10.1: TOP ROW: A segmentation of point trajectories in a
video shot using [OB12], which is presented in this chapter. SEC-
OND AND THIRD ROW: Visualization of eigenvectors obtained
using spectral clustering. In the second row the underlying affin-
ity matrix compares the translational part of the motion [BM10],
and the third row also compares rotation and scaling [OB12]. The
eigenvectors of [OB12] are more piecewise constant than those
of [BM10], which shows the improved modeling of the motion in
[OB12].

The pairwise analysis of point trajectories in
[BM10] is one among the main drawbacks. It
work only because locally every motion can
be approximated by translations. Therefore,
the method relies on a rather dense sampling
of trajectories when considering such motions.
However, this inaccuracy in the modeling step
of the method introduces a systematic error.
Motions like scaling or rotation are always pe-
nalized, i.e., trajectories obeying such a mo-
tion do not naturally fall into the same cluster.
When the camera is zooming into the scene,
trajectories show a divergent motion and a
comparison of the translational portion implies
a splitting of the background. Visually, the dif-
ference can be inspected best in the eigenvec-
tors used in the spectral clustering. See Fig-
ure 10.1

Multi-body factorization methods, such as
[CK95, YP06, RTVM08, EV13], can incorpo-
rate (affine) higher order motion models easily,
but they require all trajectories to be roughly
of the same length. As motion across many
frames leads to significant occlusion/disocclusion phenomena, the factorization framework is restricted
to much shorter shots.

In this chapter, we are aiming for the best of both models: we keep the flexible comparison of tra-
jectories of various length, and we allow for higher order motion models that do not penalize rotation
and scaling anymore. Our approach can work with motion models of arbitrary order, though in our ex-
periments we have focused on in-plane rotation and scaling, i.e., 2D similarity transformations (without
reflections). To uniquely determine the parameters of such a model, two motion vectors are required.
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Obviously pairwise affinities are not applicable: a pair of motion vectors always fits a similarity trans-
formation perfectly. A third motion vector is required to decide on the compatibility of a triplet. Rather
than pairwise affinities we obtain tertiary affinities. The affinity matrix becomes an affinity tensor and the
underlying graph a hypergraph.

One way to cluster the affinity tensor is by approximation with an ordinary weighted graph. Usually,
reduction from a hypergraph to an ordinary graph can be interpreted as a projection. The projections ap-
plied in practice end up in setting the edge weights to the sum over all corresponding hyperedge weights.
We argue that at least in the case of motion segmentation this is not a good projection, because many
triplets in the hyperedge set will comprise multiple objects though the considered pair just covers a single
object. This can be particularly problematic in the case of small objects. For this reason, we propose a
regularized maximum projection which just requires one of the triplets to cover the same object. Since
hypergraphs come with a larger computational complexity than ordinary graphs, we also present a sub-
sampling strategy that leads to acceptable computation times while not losing the effect of the higher
order model. Once the affinities for the ordinary graph are computed, we apply spectral clustering with
spatial regularity as proposed in Section 8.2.2.2. Large parts of this chapter are published in [OB12].

10.1 Related work

As opposed to VLSI design, where hypergraph partitioning has been used for decades [AK95], hyper-
graphs have appeared in computer vision only recently [OB12, HLM09, ALZ+05]. One of the first papers
is the one by Agarwal et al. [ALZ+05], who analyzed a set of existing hypergraph partitioning methods
and showed their application to illumination invariant clustering of faces. Hypergraphs have also become
popular in conjunction with inference in higher order MRFs [KKT07, Ish09]. Like here, the goal of using
hypergraphs is to consider larger cliques. However, due to the Markov property, vertices are only locally
connected by hyperedges, which is in contrast to our method, where hyperedges cover the graph glob-
ally. Hypergraph clustering also appeared in bioinformatics [KHT09, THK09] and information retrieval
[GKR00, BTC+10].

For clustering a hypergraph, there are basically two different approaches. (1) tensor methods that
generalize matrix spectral clustering [SZH06, RP09, LS12] and (2) approximating a hypergraph with an
ordinary weighted graph [Gov05, CL09, ZHS07, ALZ+05]. While methods of type (1) are only appli-
cable to k-uniform hypergraphs, i.e., hypergraphs where each edge contains exactly k vertices, methods
of type (2) are only approximations to the hypergraph spectral clustering. In [HSJR13], the differences
between both methods in terms of the cut propery is discussed. Based on the Lovasz extension of the
hypergraph cut the total variation and other regularization functionals on a hypergraph are introduced,
which are important for semi-supervised learning methods.

[ALZ+05] needs to be mentioned separately again as a method of type (2). They discuss general
approximation (with a p-norm) of the hypergraph clustering, which also comprises, in a limiting case
(p → ∞), the maximum projection that we propose in this chapter. Previously, works are mainly con-
cerned with a general hypergraph formulation and consider applications as a proof of concept. In contrast,
our method comes with a specific application that requires hypergraphs, and we argue why the maximum
projection fits this application much better than the common average projection.

10.2 Hypergraph modeling

A hypergraph H = (V, E) consists of a vertex set V and a hyperedge set E of subsets of V . The number
of vertices and hyperedges is finite and given by the cardinality | · | of the respective set. A vertex v ∈ V
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Figure 10.2: Example of a hypergraph (left) and its incidence
relationships h (right), e.g., h(u1, e1) = 1 and h(u4, e2) =
0. A hypergraph describes the relation among an arbitrary num-
ber of vertices, here triples.

Figure 10.3: A hypergraph which shows the hyperedge weights
(ellipses) that are projected to the edge (line) between the ver-
tices u and v. The hyperedges incident with both vertices con-
tribute to the weight of the projected edge.

and a hyperedge e ∈ E are called incident if v ∈ e. We represent this relationship by an indicator function
h : V × E → {0, 1}. Figure 10.2 shows an example.

We focus on undirected, weighted, k-uniform hypergraphs, i.e., the ordering of vertices in a hyperedge
does not matter, each hyperedge e is assigned a weight wH(e) ∈ R+

0 and the number of vertices in a
hyperedge (the degree) δH(e) := |e| =

∑
v∈V h(v, e) = k is constant. In the special case of k = 2,

hypergraphs become ordinary graphs. As the weights of 2-hypergraphs are represented by an R|V |2 :=

R|V |×|V | affinity matrix, weights of k-uniform hypergraphs are represented by a R|V |k := R|V |×...×|V |
affinity tensor. For undirected hypergraphs the affinity tensor is a symmetric k-order tensor with non-
negative entries, where symmetry means that the entries of all index permutations are the same.

10.2.1 Projecting the hypergraph to its primal graph

To partition a hypergraph via spectral clustering, we project it to an ordinary graph. Therefore, we define
the primal graph that consists of the same vertex set as the hypergraph but its edge set connects each pair
of vertices incident with the same hyperedge.

Define the projection operator πwH : V ×V → R+
0 , which assigns to each pair of vertices a weight by

projecting the weights of all hyperedges incident with both of the vertices; see Figure 10.3. Appropriate
projection operators are positive, symmetric, and monotone [ALZ+05].

Based on such a projection operator, we can write the projection from an affinity tensor to an affinity
matrix as

ΠH : R|V |
k → R|V |×|V |,

wH 7→ ΠH(wH) := (πwH(u, v))u,v∈V .
(10.1)

The common projection is via summation:

πwH(u, v) =
∑
e∈E

wH(e)

δH(e)
h(u, e)h(v, e). (10.2)

It has been proposed, for instance, in [ALZ+05, ZHS07]. Let H := (h(u, e))u∈V,e∈E ∈ R|V |×|E| be the
incidence matrix and DE ∈ R|E|×|E| the hyperedge degree diagonal matrix. Then (10.2) can be written
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Figure 10.4: LEFT PAIR: max-projection vs.
∑

-projection if the edge covers a single object. One additional trajectory on the
object indicates that the motion model is consistent. The

∑
-projection yields the average affinity of all hyperedges, which is way

too low. RIGHT PAIR: max-projection vs.
∑

-projection if the edge covers two different objects. Both projections yield the optimal
affinity.

as HWD−1
E H>, which is the affinity matrix in [ZHS07]. This means that the hypergraph Laplacian in

[ZHS07] fits in this projection framework as a special case [ABB06].

[HSJR13] show shown that construction an ordinary graph with these weights implies that each cut
has the same value as the corresponding “true” hypergraph cut. For the proof and more details, we refer
to [HSJR13].

10.2.2 max-affinity projections for motion segmentation

In [ALZ+05] a class of functions parameterized by p ∈ R+ is proposed. For p = 1 this corresponds
to the

∑
-projection in (10.2). In the following, we will argue that a larger p, in particular p → ∞ that

corresponds to the maximum operator is more appropriate for motion segmentation.

In motion segmentation, the hypergraph’s vertices are point trajectories and the hyperedges are k-
tuples of these trajectories. For each k-tuple of trajectories we define an affinity based on their motion
similarity; details will follow in Section 10.3. According to the definition in (10.1), the max-projection
reads

πwH(u, v) = argmax
wH(e)
u,v∈e∈E

wH(e) l(e), (10.3)

where we include a weight l(e) that is the number of common frames of all trajectories in e. This
weighting treats longer, strongly overlapping trajectories as more reliable.

In Figure 10.4 let us analyze two important cases in the motion segmentation scenario: (1) both
vertices of a pairwise edge lie within a single object; (2) they cover two different objects. For simplicity,
we focus on hyperedges of degree 3. The first case reveals the advantage of projecting with the max-
operator: a single third vertex in the object is sufficient for a high affinity, whereas the

∑
-projection

leads to a bad compromise.

In the second case both vertices of the pairwise edge belong to different objects and we want the
affinity to be low. The motion model suggested by the two vertices is not compatible with one of two
object motions and so there is no hyperedge with a high affinity for this pair. Both projections lead to the
correct affinity.

These considerations are only valid in the noise-free case and if the motion subspaces do not overlap.
In contrast to the sum, the maximum operator is unstable. A single outlier or a non-empty cut of the
two motion subspaces will spoil the result in case (2). Both problems exist in practice. For this reason,
we must regularize the max-operator by adding the following condition: if the projection yields a high
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affinity, but 90% of the considered hyperedges have 0 affinity, we assign 0 affinity to the pairwise edge.
This condition makes the use of the max-operator stable enough for our motion segmentation task. Other
types of regularization are conceivable as well, e.g., an Lp-norm with a finite, sufficiently large p.

10.3 Computing hyperedge affinities

Let us briefly recap the motion segmentation situation required here. Let ci, i = 1, . . . , n, be n trajectories
in a video withM frames. Most trajectories do not cover allM frames due to occlusion/disocclusion. If a
trajectory ci exists at a frame t ∈ {1, . . . ,M}, it comes with pixel coordinates (x(t), y(t))

> at this frame.
Consider a k-tuple e of trajectories ci1 , . . . , cik . For each such tuple we compute a distance d : E → R+

0 ,
which is converted into an affinity via

wH(e) := exp (−λd(e)) (10.4)

with λ = 0.1.

10.3.1 Computing 3-distances

In our experiments we focus on 3-tuples. Like in [BM10], we compose the distance d for each triplet
(ci, cj , ck), i, j, k ∈ {1, . . . , n} of the distances d(t) in all common frames t, i.e., frames in which all
three trajectories are visible. For a fixed t ∈ {1, . . . ,M} we estimate the error of the underlying motion
model according to the change from frame t to t′ := t + 8. If less than 8 common frames are available
we restrict the computation to the common frames.

The incentive of considering three trajectories at a time is to have Euclidean translations, rotations,
and scalings without penalty. Formally, these movements can be described by the group of special simi-
larity transformations SSim(2). In contrast to the group of similarity transformations Sim(2) it excludes
reflections.

Let ci, cj be two of three trajectories. The motion model Ti,j(t) ∈ SSim(2) is described by a scaling
parameter s, a rotation matrix Rα, and the translation vector v := (v1, v2)>. These parameters can be
computed uniquely from the coordinates at frames t and t′ as follows:

s =
‖ci(t′)−cj(t′)‖
‖ci(t)−cj(t)‖

α = arccos

(
(ci(t′)−cj(t′))>(ci(t)−cj(t))
‖ci(t′)−cj(t′)‖‖ci(t)−cj(t)‖

)
v = 1

2 ((ci(t
′) + cj(t

′))− sRα (ci(t) + cj(t))) .

(10.5)

We can test how well the third trajectory ck fits this transformation by the `2-distance ‖Ti,jck(t)−ck(t′)‖.
Obviously, the motion model could be computed also from ci, ck or from cj , ck. As illustrated on the

right in Figure 10.5 the choice of the pair has a large impact on the distance. One could also consider
estimating the optimum model from all three trajectories in the least-squares sense, as shown on the
left in Figure 10.5. However, this reduces the distance of an incompatible triplet such that it cannot be
distinguished from noise in a compatible one anymore. For this reason, we pick the maximum distance
among all 2-tuples (u, v) ∈ {(i, j) , (i, k) , (j, k)} with the third trajectory cw, w ∈ {i, j, k}r {u, v}:

d(t)(i, j, k) := max d
(t)
ratio(u, v) ‖Tu,vcw(t)− cw(t′)‖. (10.6)
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Figure 10.5: LEFT: Fitting a linear model to three points via least squares. Even though the points do not fit a line, the total error
(in red) is small. RIGHT: A line is fit to all pairs of points and the error is measured based on how well the third point fits the line.
The maximum discrepancy among all tuples clearly indicates that the points do not fit a common model.

If the three trajectories do not fit the same model, it will be very large leading to a clear separation of
motion clusters. The weight

d
(t)
ratio(i, j) :=

(
1
2

(
‖ci(t)−cj(t)‖
‖ci(t)−ck(t)‖ +

‖ci(t)−cj(t)‖
‖cj(t)−ck(t)‖

)) 1
4

. (10.7)

is introduced to avoid numerical problems. When a motion model Ti,j(t) is estimated based on very
nearby trajectories, small numerical errors can cause large errors at the location of distant trajectories.

Like in [BM10] we normalize distances with the optical flow variance in the image and weight them
by the spatial distance of trajectories. For the final distance of the 3-tuple we take the maximum distance
over all common frames d(i, j, k) = maxt d

(t)(i, j, k).

10.3.2 Higher order affinities

The above framework extends easily to more general motion models. For instance, distances based
on an affine motion model could be computed from 4-tuples of trajectories. While this fits 3D rigid
motions even better, it also further increases the computational costs. With 3-affinities we have cubic
complexity O

(
3n3
)
. The complexity of a k-tuple is O

(
nkk

)
, where the factor k is due to the maximum

in (10.6). In the next section, we present a sampling strategy that reduces the complexity of 3-affinities
to O

(
n2
)

without significant degradation compared to the full model. While k-affinities with k > 3
are an interesting future option, they also come with other issues. For example, as 3D rotations lead to
self-occlusion, trajectories are usually too short for a more complex model to show advantages. This is
why we consider only 3-affinities in the remainder of this chapter.

10.4 Sampling strategy

We propose a combination of deterministic and random sampling to reduce the number of hyperedges
to be considered, which makes the approach tractable in case of large numbers of trajectories. For each
pairwise edge, we sample hyperedges comprising both vertices of the edge and one additional vertex.
For both vertices in each pairwise edge, we take the 12 spatially nearest neighbours and, additional, 30
vertices randomly as third vertex. It is worth noting that we sample only over the third vertex, whereas
the graph is spanned globally over all trajectories, which is in contrast to MRF approaches. The mixture
of deterministic and random sampling ensures finding enough relevant triplets.

We verified this in a synthetic experiment shown in Figure 10.6. The results for the full hypergraph,
where all possible triplets are considered, and two sampling strategies are reported in Table 10.1.

The evaluation shows that sampling degrades the accuracy only a little when some objects are much
smaller than others. In some special cases, sampling is even advantageous. If the smaller objects cover
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Figure 10.6: Two synthetic experiments with 100 trajectories and 3 regions of different motion and size (rotation, translation,
scaling). In the experiment we reduced the size of the left and right region successively to 25, 20, . . ., 5, 4, and 3 trajectories
simulating the effect of small objects and a large background.

25 20 15 10 5 4 3

full 100 100 100 84 96 100 99
rnd 100 100 100 99.6 97.8 94.8 96
rnd+nn 100 100 100 100 97.2 97.6 96.3

Table 10.1: Results of the experiment in Figure 10.6. The number of trajectories in the left and the right cluster is given in the
first row. The table shows the percentage of correctly clustered trajectories for the full graph (full), random sampling (rnd) with
12 samples, and a combination (rnd+nn) of 4 random samples and 4 nearest neighbors at a time. The results on rnd and rnd+nn
are averaged over 10 evaluations. Sampling does not affect the accuracy much, even for small objects, but reduces the complexity
considerably.

exactly 10% of all trajectories, 90% of all triplets comprise a vertex outside the object and, thus, yield
0 affinity. Since our regularized max-projection treats this situation erroneously as outlier, it assigns 0
affinity to the pairwise edge in case of the full graph. For the random sampling, it is sufficient to have 2
(> 12

10 ) triplets covering the object. Since only a small subset of the pairwise edges needs high affinities,
sampling such a subset is very likely. Of course this probability decreases as the object shrinks. In order to
improve the performance in object segmentation (cf. Table 10.2), where certain compactness assumptions
hold, we complement the random sampling by a deterministic nearest neighbor sampling.

10.5 Evaluation

We compare to multi-body factorization [RTVM08] and the translational motion model from [BM10] on
the benchmark dataset introduced in [BM10]. We used the evaluation code provided with the benchmark.
Results are shown in Table 10.2. The benchmark and the evaluation method are reviewed in Section 9.2,
where we introduce an extension to it. The evaluation on the larger dataset is postponed to Chapter 12,
where several other methods are included in the evaluation.

We use the same tracker as in [BM10] which allows to adjust the density. We run the tracker with
4- and 8-spacing, meaning that, the tracker samples only every 4th or 8th pixel, respectively, in each
direction.

Performance differences become clearly visible when considering all frames. As already shown by
[BM10], multi-body factorization cannot deal with large occlusions, and this shows in the numbers.
Comparing the pairwise affinities [BM10] to our higher order model reveals a significant improvement of
50% in the overall error. The higher quality also shows in more objects being extracted correctly (defined
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Figure 10.7: FROM LEFT TO RIGHT: Frame 46 of marple8, result with pairwise affinities, triplet result.

Figure 10.8: FROM LEFT TO RIGHT: Frame 21 of cars5, result with pairwise affinities, triplet result.

Figure 10.9: TOP ROW: Result on marple8 obtained with the proposed method and a spatial subsampling of 8. BOTTOM ROW:
Dense interpolation of this result using [OB11]; see Chapter 11.

Figure 10.10: FROM LEFT TO RIGHT: Frame 65 of marple13, result with
∑

-projection, our result (max-projection).
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Density
overall
error

average
error

over-
segmentation

extracted
objects

ALC corrupted [RTVM08] 0.99% 5.32% 52.76% 0.10 15
ALC incomplete* [RTVM08] 3.29% 14.93% 43.14% 18.80 5
pairwise affinities [BM10] 3.31% 6.52% 27.29% 2.12 29
pairwise affinities* [BM10] 3.28% 6.59% 26.69% 1.44 27∑

-projection* (rnd+nn) 3.22% 5.36% 20.08% 2.08 31
max-projection* (rnd+nn) 3.22% 4.48% 22.34% 1.84 31

pairwise affinities [BM10] 0.79% 6.78% 25.48% 1.73 30∑
-projection (rnd+nn) 0.78% 6.12% 22.71% 2.31 30

max-projection (rnd) 0.77% 7.32% 32.95% 1.92 22
max-projection (rnd+nn) 0.78% 4.33% 21.96% 1.58 34

Table 10.2: Evaluation on the Berkeley motion segmentation benchmark (see Chapter 9) using all available frame. Entries marked
with “*” are evaluated without the sequence marple7. The upper part of the table reports on a 4-spacing, the lower part on an
8-spacing. (rnd) refers to a purely randomized sampling using 54 samples. (rnd+nn) uses 30 random samples and for each vertex
the 12 spatial nearest neighbors.

by [BM10] as regions with less than 10% error minus the background region). Figures 10.7 and 10.8
show a qualitative comparison.

We also compared the proposed max-projection to the
∑

-projection that is used by previous works
on hypergraph partitioning, e.g., in [ALZ+05]. The

∑
-projection performs better than just the pairwise

affinities, but only the max-projection can fully exploit the higher order affinities. In fact, most of the
increase in performance is not due to the use of hypergraphs as such, but due to hypergraphs in conjunc-
tion with the right projection method. Figure 10.10 shows an advantage of our max-projection over the∑

-projection with respect to the leakage problem explained in Figure 10.4.

Figure 10.9 shows our result for marple8 and a dense segmentation obtained using the code from
[OB11]; This method is presented in Section 11.4.2.

Thanks to the sampling, the computational complexity is still in O
(
n2
)
, yet practical computation

times increase over the translational model. While clustering the whole sequence of cars1 with 4850
trajectories runs in 50s on a single core with pairwise affinities, 3-affinities require 48 minutes. The
computation of affinities can be perfectly parallelized on the GPU though. With an expected speedup of
about 50× this would result in approximately 3s per frame, which is well tractable also in a large scale
task.

Other real world examples. The Berkeley motion segmentation benchmark focuses mainly on transla-
tional motion. Hence, we collected some additional videos with more complex motion and compare our
method to [BM10].

The advantage of higher order motion models becomes very clear in Figure 10.11. It is not possible
to describe the rotation of the windmill sails with pairwise affinities. Consequently, trajectories are either
treated as outliers and are removed completely, or they lead to over-segmentation. The higher order model
can handle this example easily. The same effect can be seen in Figure 10.12. Although the 3D rotation
of the monkey is not without penalty in our 3-affinity model, the penalty with pairwise affinities is even
larger. Figure 10.13 shows a very difficult sequence with camera zoom. Some ducks move in a very
similar manner and there is strong articulation. Pairwise affinities lead to a single cluster. In contrast,
3-affinities can capture the moving ducks quite well.
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Figure 10.11: UPPER ROW: Windmill with rotating sails. BOTTOM LEFT: Result with pairwise affinities [BM10]. BOTTOM RIGHT:
Our result with 3-affinities.

Figure 10.12: FIRST ROW: Monkey that lies in the beginning, stands up, and turns to the other side. SECOND ROW: Result
with pairwise affinities [BM10] for the first and last frame. THIRD ROW: Our result with 3-affinities. This examples shows that
3-affinities also better fit 3D rotations than pairwise affinities, though not explicitly modeled.
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Figure 10.13: FIRST AND SECOND ROW: A family of ducks passing the camera. While they are moving away, the camera starts
zooming on them. Finally the mother vanishes behind a green box. Pairwise affinities cannot model the zooming motion of the
camera properly. This results in a single cluster comprising the ducks and the background. OTHER ROWS: Our 3-affinities are
invariant to scaling. The ducks can be separated from the background. The method even separates most of the single ducks.
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Chapter 11

Clustering the affinity graph

Figure 11.1: Clustering of the affinity graph and propagating the segmentation to each pixel.

While Chapter 10 focuses on the improvement of the similarity measure between trajectories, this
chapter deals with the actual clustering of trajectories. The starting point is an affinity graph describing
the relations of the sparse set of trajectories like in [BM10] or Chapter 10. The goal of this chapter is a
dense segmentation of a video sequence. We proceed in two steps: (a) clustering point trajectories and
(b) propagating the segmentation frame-by-frame to each pixel.

Although tracking could be made dense by densely sampling and propagating trajectories, fundamen-
tal problems avoid the success of this approach. Optical flow is not reliable in homogeneous areas and,
even more severe, computing spectral clustering on a dense set of trajectories is too slow.

(a) The clustering of point trajectories is considered as the problem of clustering an undirected
weighted graph, where the nodes represent the trajectories and edges are weighted by the estimated affini-
ties. Considering the noise-free case, i.e., the motion analysis yields a perfect fit for trajectories on the
same object and 0 for edges between different objects, spectral clustering would generate piecewise con-
stant eigenvectors. This situation would make the clustering trivial as the objects could be obtained by
thresholding the eigenvectors. In practice there are always noise and estimation errors. This results in
eigenvectors being piecewise smooth instead of piecewise constant and more advanced clustering meth-
ods are required. The image in the center of Figure 11.1 shows clustered point trajectories represented in
a certain frame of the video sequence.

(b) The second step is that of going from the image in the center of Figure 11.1 to the right one. This
interpolation task seems to be easy at first glance. Humans can easily do it. However, a closer look at
the labeled trajectories reveals several challenges. The point trajectories do not cover some of the most
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critical areas, especially near object boundaries. Those trajectories that exist near object boundaries are
often assigned wrong labels because the underlying optical flow is imprecise in occlusion areas. Finally,
in large homogeneous areas there is hardly any label information. The segmentation approach presented
in this chapter will exploit cues that are complementary to motion, namely color and texture, to propagate
the label information to the missing areas.

After discussing some related work, we introduce a general model for clustering and segmentation.
Although it is stated in and motivated from continuous quantities, Section 11.3 shows that a direct trans-
lation into discrete terms yields a model for clustering trajectories. Trajectories are assigned labels based
on the eigenvectors arising from spectral clustering. Considering the clustered trajectories in each frame
and seeking for assigning a label to each pixel is subject of Section 11.4, where two different approaches
are proposed. Large parts of this chapter are published in [OB11, OMB14].

11.1 Related work

The difficulty in the setting of trajectory clustering is that there are only pairwise relationships. This
problem is different to semi-supervised learning where some labels for some nodes are known, i.e., there
is an unary term besides the pairwise term. Nevertheless, the problem also requires some regularization in
order to avoid a trivial assignment of labels. This leads to the so-called balanced cuts like normalized cut,
minimum cut, or Cheeger cut. The regularization is imposed by certain ratios between the clusters [DH73,
PSL90, HK91, SM00]. Unfortunately the balanced k-cut problem is NP-hard [SM00] and therefore only
certain relaxations are solved. We refer the interested reader to [RMH14] and references therein, which
is a reference that shows recent advances for continuous relaxations of balanced cuts.

One of the most famous and frequently used relaxations is spectral clustering [SM00], which relaxes
the normalized cut. A good tutorial can be found in [vL07] and a standard reference for advanced details
is [Chu97]. Spectral clustering seeks for the eigenvectors of the graph Laplacian, which is constructed
from the affinities between the trajectories in our context. These eigenvectors provide a feature for each
node in a graph. Based on these features unary potentials can be derived. In standard spectral clustering,
k-means clustering on these features is used. However, as the number of clusters must be known a priori,
we need a more advanced clustering method. [BM10] proposes to minimize a certain energy that serves
as objective for the selection of the right number of clusters, which we have seen in Section 8.2.2.2. For
minimizing this energy, which also appears in this chapter, a hierarchical k-means clustering technique
is proposed in [BM10]. However, at this stage many other methods could be used to cluster the feature
vectors, e.g. agglomerative and divisive clustering algorithms [JD88], Markov Random Fields (MRFs)
[GG84], or variational methods [MS89, BZ87]. In this chapter, we consider a model based on MRFs.
Indeed, if we fix a certain number of labels the problem that is considered for clustering trajectories in
this chapter becomes a multi-label MRF, which we solve using Fast-PD [KT07, KTP08].

The problem of spreading out the label information from the sparse set of trajectories is related to in-
teractive segmentation, where the user draws a few scribbles into the image and the approach propagates
these labels to the non-marked areas. Several techniques based on graph cuts [BFL06], random walks
[Gra06], and intermediate settings [SG07] have been proposed. The latest techniques are built upon vari-
ational convex relaxation methods [UPT+08, PCCB09, LBS09, NBRC10], which avoid the discretization
artifacts typical for classical MRFs defined on a graph.

Interactive segmentation is different to the problem considered here in two ways. First, the labels are
generated by an unsupervised approach and are likely to be erroneous, whereas interactive segmentation
relies on the correctness of the user’s input. This means, we do not have an interpolation but an approxi-
mation problem. For this reason, we do not follow the typical approach of estimating appearance statistics
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from the annotated areas combined with a typical region based segmentation. Second, user annotation
provides dense finite annotation areas, whereas trajectory labels constitute single points spread over the
image. It is not immediate that a variational model acting on such infinitesimally small labels makes
sense in the continuous limit.

Our model is also related to image compression with anisotropic diffusion [GWW+08], where only
a small set of pixel values is kept and the original image is sought to be restored by running a diffusion
process on this sparse representation.

On the task of dense motion segmentation, there are many recent works that produce over-segmentations
using superpixels, label propagation by optical flow, or other clustering methods [BT09a, GKHE10,
VAPM10, LASL11]. These over-segmentations do not provide object regions. User interactive video
segmentation methods can avoid over-segmentation, but are no longer unsupervised [BS07, PMC09].

11.2 Multi-label segmentation

Let us first describe the underlying fundamental multi-label segmentation model for all methods in this
chapter: the Potts model. The presentation is inspired by [CCP12], however, we do not seek for the most
general formulation. The task of finding such a multi-label segmentation is a minimal partition problem.
The objective is to find a partitioning of the image domain Ω ⊂ R2 (assume open and bounded) into
disjoint regions E1, . . . , EK ⊂ Ω, such that the region interface length Per and the cost for a weighting
function f ∈ L2(Ω,RK+ ), i.e. f = (f1, . . . , fK) : Ω→ RK+ is Lebesgue square-integrable, is minimized.
For a precise definition of Per, we refer the interested reader to [CCP12, Sec. 2.2]. The generic Potts
energy reads

min
E1,...,EK

1

2

K∑
k=1

Per(Ek; Ω) +

K∑
k=1

∫
Ek

fk(x) dx

s.t.
K⋃
k=1

Ek = Ω, Ek ∩ Ek′ = ∅, ∀k 6= k′.

(11.1)

The constraints are meant up to Lebesgue-negligible sets. Unfortunately, the minimization of this energy
is NP-hard. However, there are relaxations of the energy, which lead to a tractable convex problem. A
detailed discussion about different relaxations for the minimal partition problem can be found in [CCP12].
Here, we only briefly derive the most common relaxation that allows for efficient optimization. In order
to do so for each k = 1, . . . ,K the set Ek is represented by its characteristic function uk = χEk ,
which is 1 inside Ek and 0 outside. These characteristic functions are collected in a single label function
u = (u1, . . . , uK) : Ω → {0, 1}K . We assume that u ∈ BV (Ω, {0, 1}K) lies in the space of functions
with finite bounded variation and

∑K
k=1 uk(x) = 1 holds for almost every (a.e.) x ∈ Ω. These functions

allow for measuring the perimeter (or total interface) using the total variation. Recalling that the total
variation (TV) of a characteristic function TV(uk) is a representation for the contour length of region Ek
we obtain the following classical relaxation of the Potts energy

min
u∈L2(Ω,RK+ )

TV(u) +

K∑
k=1

∫
Ω

uk(x)fk(x) dx

s.t. uk(x) ∈ {0, 1}, ∀k,
K∑
k=1

uk(x) = 1, a.e. x ∈ Ω ,

(11.2)
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where TV(u) is an appropriate generalization of TV to multi-valued functions (see [CCP12]) that is set
to ∞, if u ∈ L2(Ω,RK+ ) r BV (Ω, {0, 1}K) or if not

∑K
k=1 uk(x) = 1 (for almost every x ∈ Ω).

We use TV(u) =
∑
k TV(uk) =

∑
k

∫
Ω
|Duk|, where Duk is the distributional derivative. For uk ∈

C1(Ω,R+), the total variation simplifies to
∫

Ω
|∇uk(x)| dx.

Problem (11.2) is still very difficult and in fact nonconvex. However, a simple relaxation of the range
of uk to its convex envelope [0, 1] copes with the remaining difficulties. Now, the relaxed, convex energy
can be solved efficiently and, as it is convex, a global optimum u∗ is found. Backprojecting the minimizer
u∗ at each point x ∈ Ω to the set {0, 1}K under the constraint that only one label is assigned to 1 via

û∗k(x) =

{
1, if k = argmaxk′{u∗k′(x)|k′ = 1, ...,K}
0, otherwise,

(11.3)

yields an approximate solution û∗ to the original Potts energy. For the two-label case, the thresholding
theorem [CEN06] ensures global optimality for the original energy. In the general multi-label case, the
integer solution is not necessarily a global optimum, but there is a computable upper bound [CPKC11].

As a special case of the Potts model there is the piecewise constant Mumford–Shah model1 [MS85].
It arises when setting

fk(x) = λ(I(x)− ck)2, (11.4)

where ck ∈ R+ is the mean value of region Ek, λ > 0 weights between penalizing the contour length of
each region and the data fidelity given by f , and I(x) is the intensity gray value at pixel x ∈ Ω.

11.3 Trajectory segmentation

In this section we consider the segmentation or clustering of trajectories. In this case the domain is
discrete and the previous Section 11.2 has to be interpreted in the discrete setting. It becomes a multi-
label MRF problem on an undirected weighted graph. Although, essentially, the model is the same as in
[BM10], which we recapitulated in Section 8.2.2.2, the strategy for solving it is different. For the reader’s
convenience, we briefly define the model here again and shed light on the relation to Section 11.2.

Let us describe formally the undirected, weighted graph. The nodes represent trajectories and the
edge set connects each node A with 12 nodes of the symmetrized set of its spatially nearest neighbors
A′ ∈ N (A). Furthermore, each trajectory or node is associated a feature vA that is given by the Ath
components of the eigenvectors v1, . . . ,vm, i.e., vA = (vA1 , . . . , v

A
m)> ∈ Rm and vAi denotes the Ath

component of the ith eigenvector. The eigenvalues corresponding to those eigenvectors are λ1, . . . , λm ∈
R. As already described in (8.5) in the noise free case these eigenvectors would be piecewise constant.
However, in practice the eigenvectors are piecewise smooth as shown in Figure 8.5. We seek to choose
the assignments πA ∈ {1, ...,K} such that the cartoon Mumford–Shah-like energy

E(π,K) :=
∑
A

K∑
k=1

δπA,k|vA − µk|2λ + ν
∑
A

∑
B∈N (A)

1− δπA,πB
|vA − vB | (11.5)

is minimized, where ν > 0, µk ∈ Rm denotes the centroid of cluster k and the norm | · |λ is defined, for
µ ∈ Rm, as

|vA − µ|2λ :=
∑
i

(vAi − µi)2/λi . (11.6)

1Sometimes called the cartoon limit of the Mumford–Shah model.
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Increasing the parameter ν > 0 puts more weight on compact clusters and less over-segmentation. (11.5)
is the same minimization problem as in (8.6).

Minimizing (11.5) is difficult. As the centroids are unknown the energy is nonconvex and has many lo-
cal minima. Therefore, the solution depends on the initialization. We found that the following determinis-
tic initialization strategy works well. We start with an equidistant initial labeling, i.e., for k ∈ {1, . . . ,K}
all trajectories Ai with index (k− 1) nK ≤ i ≤ k nK are initially assigned πAi = k, where n is the number
of trajectories. In each iteration we update the centroids µk and optimize the label assignments. If the
centroid is fixed, the problem of finding the assignments can be computed efficiently, e.g., using FastPD
[KT07, KTP08].

Let us consider the similarity of the energy (11.5) and the general multi-label segmentation framework
in (11.1) when the centroids µk are fixed. The integration over the image domain Ω can be transformed
into the summation over all nodes A of the graph by considering the integration with respect to the
counting measure of the discrete domain of the graph (the nodes). Setting fk(A) = |vA − µk|2λ relates
the data-term of (11.5) to the one in (11.1). Considering the regularization term in (11.5) the similarity to
(11.1) comes from the relation of the TV-norm for binary images and the perimeter of the set represented
with the binary values. On a discrete domain the TV-norm is the summation over all edges and measuring
the term 1−δπA,πB with 1, if trajectoryA andB are assigned to different clusters, and 0 otherwise. While
the TV-norm in the continuous domain can measure the length of diagonal “edges” in the 2D-domain with√

2, this is not possible for a graph, where all edges are measured as 1. This is the metrication error that
is usually observed for discrete optimization methods. The weighting of the edges with 1/|vA − vB |
can be considered as a different metric for measuring the perimeter of the respective region, i.e., the
interface between trajectories A with πA = k and trajectories B with πB = j, j 6= k. If the feature
vA of a trajectory is very different to the feature vB the weight for measuring the perimeter is small,
which attracts region boundaries. Finally, the constraints in (11.1) are automatically fulfilled because
each trajectory is assigned a single cluster.

11.4 From sparse to dense labels

11.4.1 The Potts model

We cast the problem of making the sparse set of labels dense as optimization of a Potts model (11.1), or to
be more precise the relaxed version (11.2). In the setting here, the weighting function f in the data term
is determined by the semi-sparse set of given labels. Defining the set Lk of coordinates x ∈ Ω occupied
by a trajectory with label k, let fk(x) = 0 if x ∈ Lk and fk(x) = α otherwise. Thereby, α ∈ R+ is a
positive weight, penalizing region Ek′ to contain x ∈ Lk, where k 6= k′. If α→∞, regions are forced to
enclose only points of a single label. As we can expect some erroneous trajectory labels, smaller values
for α are used and labels can be corrected, as demonstrated in Figure 11.2. The α values may depend
on the confidence in correctness of trajectory labels and on the cardinality of

⋃K
k=1 Lk, i.e., the tracking

subsampling factors 4, 8, or 16. Accordingly we set α to 200, 500, or 1000.

So far, we neglected the problem that (11.2) is defined using integrals and a pointwise characterization
on a Lebesgue-negligible set does not influence the value of the integral. In order to cope with this issue,
we assume that labels are given on a certain set of unit Lebesgue measure around x ∈ Lk.

Ideally, jumps in the label function should be located at image edges, i.e., where the gradient of the
(sufficiently smooth) image function I : Ω→ R3 is high. Therefore, the TV-term in (11.2) is replaced by
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CHAPTER 11. CLUSTERING THE AFFINITY GRAPH

Figure 11.2: Labels given by trajectories are penalized by a certain weight, and, thus, can be corrected in the variational optimization.
LEFT: Input image. MIDDLE: Sparse point trajectory labels. RIGHT: Dense segmentation via minimization of a Potts model.

the image-driven weighted TV regularization

TVg(u) =

K∑
k=1

∫
Ω

g |Duk|
uk∈C1(Ω,R+)

=

K∑
k=1

∫
Ω

g(x)|∇uk(x)| dx , (11.7)

where g(x) = 1/
√∑3

i=1 |∇Ii(x)|2 + ε2. The parameter ε = 10−3 serves as a stabilizing parameter for
homogeneous areas. This regularizer can be interpreted as ordinary total variation measure in the metric
induced by the image as a Riemannian manifold. Numerically we solve this optimization problem using
the primal–dual algorithm from Section 2.2.6.

In order to obtain the desired image partitioning, the minimizer u∗ of the convex energy (11.2) (with
(11.7)) is reprojected to the discrete label space {0, 1}K according to (11.3).

11.4.2 A hierarchical approach

Solving the relaxed Potts model (11.2) using a gradient based approach requires the spreading of label
information from the sources given by the labeled trajectories to the pixels without label. Particularly
in homogeneous regions, where only few pixels are labeled the label information must be transported
over long distances. Also noise and unimportant structure hamper the spreading and highly influence
the convergence. To overcome this problem, we propose a hierarchical model. The finest level in this
hierarchy corresponds to the Potts model from Section 11.4.1. Additional levels make use of superpixels
obtained with the approach from [AMFM11]. The representation on the left in Figure 11.3 illustrates the
continuous hierarchy. The right part of Figure 11.3 shows the corresponding discrete graph structure for
helping readers who prefer to think in discrete terms.

Each level i = 0, ..., N , in our variational model represents a sufficiently smooth, Lebesgue integrable
function that is partitioned into M i superpixels Ωim,m = 1, ...,M i. For i = 0 we have the functions u0

and I0 as defined for the single-level model. For i > 0 we have the corresponding piecewise constant
functions ui and Ii, where Ii(x) = 1

|Ωim|
∫

Ωim
I0(x′)dx′ ∈ R3 takes the mean color of the correspond-

ing superpixel Ωim. The idea behind these additional auxiliary functions at coarser levels is to define a
propagation process that better adapts to the image structures at multiple scales.
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11.4. FROM SPARSE TO DENSE LABELS

Figure 11.3: Illustration of the multi-level model. LEFT: Continuous model, where each level is a continuous function. Coarser
levels are piecewise constant according to their superpixel partitioning. RIGHT: Corresponding discrete graph structure in terms of
pixels/superpixels showing the linkage between levels. Our model is in fact not a graph, as each level is continuous.

We extend the single-level energy from (11.2) accordingly:

min
u∈L2(Ω,RN+1×K)

E(u) = min
u

K∑
k=1

∫
Ω

u0
k(x)fk(x)ρ(x) dx+

N∑
i=0

TVgi(u
i)

+

N∑
i=1

∫
Ω

ḡi(x)

K∑
k=1

|uik(x)− ui−1
k (x)| dx

(11.8)

s.t. uk(x) ≥ 0, ∀k,
K∑
k=1

uk(x) = 1, a.e. x ∈ Ω ,

where u := (u0
1, ..., u

0
K , u

1
1, ..., u

1
K , ..., u

N
1 , ..., u

N
K) ∈ L2(Ω,RN+1×K) denotes the label function of the

whole hierarchy. The first term is identical to the single-level model, except for an additional weighting
function ρ : Ω → R, which will be explained later. Label sources exist only in the finest level. They
propagate their information to the coarser levels via the third term, which connects successive levels. The
level diffusivity functions ḡi have the same meaning as the spatial diffusivities gi, but are defined based
on the color distance between levels

ḡi(x) :=
1√∑3

j=1 |Iij(x)− Ii−1
j (x)|2 + ε2

, ε = 0.001 (11.9)

rather than the image gradient. The second term in (11.8) is a straightforward extension of the corre-
sponding term in the single-level model.

What is the effect of the additional levels? The superpixels at coarser levels lead to regions with
constant values Ii. Consequently, ∇Ii(x) = 0 within a superpixel, which leads to infinite diffusivities2

gk. In other words, within a superpixel, label information is propagated with infinite speed across the
whole superpixel. Thanks to the connections between levels, this also affects points on the next finer level.
Rather than traveling the long distance on the fine level hindered by noisy pixels and weak structures,
information can take a shortcut via a coarser level where this noise has been removed.

The hierarchy comes with the great advantage that we need not choose the “correct” noise level,
which just might not exist globally. Instead, we consider multiple levels from the superpixel hierarchy

2These diffusivities are only made finite for numerical reasons by means of the regularizing constant ε.
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Figure 11.4: Evolution of the label functions uk1 on all three levels simultaneously. Intermediate states after 30, 300, 3000, and
30000 iterations with the SOR method are shown. For this visualization we did not use the cascadic multigrid strategy, which
requires far fewer iterations to converge.

and integrate them all into our model. In theory, it is advantageous to have as many levels as possible.
For computational reasons, however, it is wise to focus on a small number of levels. Our experiments
indicate that three levels are already sufficient to benefit from the hierarchical model (see Figure 11.6).
Figure 11.4 visualizes the propagation of label sources throughout such a 3-level hierarchy.

Figure 11.5: Difference between a discrete (top) and a continuous
model (bottom). The discrete model shows block artifacts since
its discretization error does not converge to 0 for finer grids sizes.

Since we formulated the hierarchy as a con-
tinuous, variational model rather than a com-
mon discrete, graphical model, we have the ad-
vantage that we do not suffer from discretiza-
tion artifacts. This is shown in Figure 11.5,
where we compare our continuous model to
an implementation based on the graph struc-
ture. Even though, in the implementation the
model is solved on discrete pixel data, this
discretization is consistent, i.e., the discretiza-
tion error decreases as the image resolution in-
creases. Moreover, a rotation of the grid does
not change the outcome. These natural proper-
ties are missing in discrete models.

In (11.8) we have introduced a weighting
function ρ that allows for weighting certain tra-
jectories higher. The incentive is that the approach in [BM10] tends to produce wrong labels close to
object boundaries due to inaccuracies of the optical flow in such areas. Hence, it makes sense to increase
the influence of labels that are far away from object boundaries, whereas labels close to these boundaries
should get less influence. Since we do not yet know the object boundaries, the distance is approximated
by the Euclidean distance to the superpixel boundaries ∂Ωm at the coarsest level, which can be computed
very efficiently [FH04]. Based on these distances we define

ρ(x) :=
dist(x, ∂Ωm)

1
|Ωm|

∑
x∈Ωm

dist(x, ∂Ωm)
(11.10)
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11.4. FROM SPARSE TO DENSE LABELS

Figure 11.6: LEFT COLUMN: Two frames from the tennis sequence. SECOND COLUMN: Sparse labels [BM10]. THIRD COLUMN:
Single-level model. Since there is no label information in the area between the legs and no direct connection to other parts of the
tennis court, the single-level model can only interpolate the labels on the legs. RIGHT COLUMN: Thanks to the better information
flow inside superpixels and nonlocal diffusivities, the multi-level model can handle this hard case correctly. Remaining problems
are due to incorrect motion clustering of the feet in [BM10] and must be approached there.

with x ∈ Ωm. This includes a normalization of the distance by the size and shape of the superpixel. In
large homogenous regions, where optical flow estimation is most problematic, ρ increases slowly with the
distance. In small superpixels, indicating textured areas, even points close to the boundary are assigned
large weights.

An example where the hierarchical approach has a strong positive effect is shown in Figure 11.6.
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Chapter 12

Evaluation

In this chapter we evaluate the methods that were introduced in Chapters 8, 10 and 11 and compare them
with other established methods on the FBMS-59 benchmark presented in Chapter 9. Large parts of this
chapter are published in [OMB14].

12.1 Experimental setup

In order to demonstrate that there are challenges in the field of motion segmentation that cannot be
properly handled by any previous methodology, we evaluated the approaches from [OB12] and [OMB14],
together with the factorization method in [RTVM08] which can deal with incomplete trajectories (ALC),
the current state-of-the-art subspace clustering method: sparse subspace clustering [EV13] (SSC1 and
SSC), and a naive baseline method based on two-frame optical flow (Naive). SSC is the standard SSC
and SSC1 is an embedding of SSC into our motion segmentation framework where the only difference to
our method is the computation of the affinity matrix. The approaches from [OB12] and [OMB14] are:

• the sparse trajectory clustering based on pairwise affinities MoSegSparse as in [OMB14] (see Sec-
tion 8.2.2 with the improvements in Section 11.3),

• the sparse trajectory clustering based on higher order affinities MoSegHO as in [OB12] (see Chap-
ter 10)

• the corresponding dense results MoSegDense,

• and MoSegHODense by applying Section 11.4.1.

For ALC and SSC the correct number of labels is provided. Whereas SSC yields a segmentation
with exactly this number of labels, ALC uses this number just as a prior. SSC1 uses the model selection
strategy from our framework. For all these methods, the same trajectories with an 8 sampling were used
as input. In case of ALC, we randomly subsampled these trajectories by another factor 8 because the
method is very slow. The trajectories for SSC1 and SSC consist of the subset of complete trajectories
only.

The baseline method Naive was set up as follows: in the first frame, K reference flow vectors are
chosen randomly, where K is set to the ground truth number of objects. All other flow vectors are
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Figure 12.1: Precision–recall graph for the evaluation on all sequences; see also Tab. 12.1. LEFT: Training set. RIGHT: Test set. ’s’
denotes the sparse clustering result, ’d’ the dense segmentation. The number indicates the subsampling rate of the trajectories. The
proposed approach performs significantly better than previous approaches. Embedding affinities by SSC into the presented approach
improves over the traditional SSC framework. This shows that the definition of affinities and the model selection framework both
contribute to the performance.

assigned to the closest reference vector based on the Euclidean distance. In all subsequent frames, the
random flow vectors are replaced by the mean flow vector from the previous frame’s segmentation with
some inertia to account for noise.

For ALC we used the default parameters that came with the code. For all other methods we coarsely
optimized the parameters on the training set by a manual search before running the final version on the
test set.

Figure 12.1 and Table 12.1 show the results on the FBMS-59 dataset using the new evaluation method
proposed in Chapter 9. The performance on the test and training set is quite similar. This shows that over-
fitting is not an issue for the evaluated methods. A separate training and test set of reasonable size should
avoid methods that over-fit also in the long run. By using the dataset, researchers must agree on running
their method on the test set only once and on not using it for parameter optimization.

12.2 Comparison

Comparison to previous methods and the baseline. The results in Table 12.1 and Figure 12.1 show
that the presented framework (MoSegSparse, MoSegDense, MoSegHO, MoSegHODense) clearly out-
performs all other methods. The main reason is that SSC1, SSC, and ALC cannot handle occlusions.
SSC1 and SSC work only on the subset of complete trajectories, which reduces the density but also the
F-measure considerably. Many objects are missed completely because they are not covered by any com-
plete trajectory. While ALC can deal with incomplete trajectories, it fails when trajectories have little
overlap. In contrast to SSC1 and SSC, the density stays high but the F-measure is not better. Also the
baseline method based on two-frame optical flow performs poorly, especially on longer sequences. It
cannot separate an object from the background if there is no clear motion difference in some frames or in
the case of articulated motion.

Comparison sparse vs. dense results. The presented dense segmentation inherits the temporal con-
sistency from the long term analysis of sparse trajectories. A comparison to the sparse result shows that
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Training set (29 sequences)
D P R F F ≥ 75%

all frames
MoSegSparse (4) 3.71% 82.33% 64.26% 72.27% 17/65
MoSegDense (4) 100.0% 81.50% 63.23% 71.21% 16/65
MoSegSparse (8) 0.87% 85.10% 62.40% 72.0% 17/65
MoSegSparse∗ (8) 0.87% 79.02% 58.49% 67.22% 14/65
MoSegDense (8) 100.0% 84.21% 58.67% 69.16% 15/65
MoSegHO (8) 0.83% 81.55% 59.33% 68.68% 16/65
MoSegHODense (8) 100.0% 80.0% 56.99% 66.58% 13/65
MoSegSparse (16) 0.20% 86.51% 59.39% 70.43% 15/65
MoSegDense (16) 100.0% 83.27% 50.56% 62.91% 8/65
ALC 0.09% 60.73% 37.24% 46.18% 0/65
SSC1 0.17% 81.11% 36.17% 50.03% 7/65
SSC 0.17% 65.12% 32.29% 43.17% 5/65
Naive 100.0% 44.29% 51.54% 47.64% 2/65

Test set (30 sequences)
D P R F F ≥ 75%

all frames
MoSegSparse (4) 3.95% 76.15% 61.11% 67.81% 22/69
MoSegDense (4) 100.0% 74.91% 60.14% 66.72% 20/69
MoSegSparse (8) 0.92% 79.61% 60.91% 69.02% 24/69
MoSegSparse∗ (8) 0.92% 78.54% 55.29% 64.90% 16/69
MoSegDense (8) 100.0% 78.42% 57.32% 66.23% 17/69
MoSegHO (8) 0.9% 82.11% 64.67% 72.35% 27/65
MoSegHODense (8) 100.0% 81.19% 58.83% 68.22% 19/65
MoSegSparse (16) 0.22% 85.41% 58.98% 69.77% 20/69
MoSegDense (16) 100.0% 82.08% 49.78% 61.97% 9/69
ALC 0.09% 50.83% 37.62% 43.24% 0/69
SSC1 0.17% 81.62% 42.80% 56.16% 11/69
SSC 0.17% 63.98% 34.61% 44.92% 3/69
Naive 100.0% 40.77% 45.35% 42.94% 1/69

Table 12.1: Results on training (upper block) and test set (lower block). Acronyms are D: average region density, P: average
precision, R: average recall, F: F-measure and F ≥ 75%: extracted objects. Numbers are given for the sparse clustering and the
dense segmentation with trajectory sampling rate given in parentheses. Details for ALC, SSC1, SSC and Naive are discussed in the
text.
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Figure 12.2: Example of an articulated object from the benchmark dataset video shot bear02 with 458 frames and 24 annotated
images. TOP ROW: Dense segmentation obtained with the variational model from the point trajectories in the bottom row overlayed
with the input images (precision: 98.1%, recall: 74.7%, F-measure: 84.8%). BOTTOM ROW: Clustered point trajectories (preci-
sion: 98.9%, recall: 78.4%, F-measure: 87.5%). Clearly, articulated motion leads to an over-segmentation of the object, yet the
clusters could also indicate reasonable object parts.

filling the gaps between the trajectories comes with a small loss in performance. Only with a very coarse
subsampling of 16, performance drops significantly. Dense segmentation is clearly a harder task, as can
be seen in Figure 12.3. While the sparse segmentation just omits the difficult leg area of the cat, the dense
segmentation is forced to decide for a label.

Model selection. We also evaluated the effect of model selection. On first glance it is surprising that the
results with automatic model selection (SSC1) are consistently better than those where the correct number
of objects is provided (SSC). We believe that this is due to imperfect trajectories that do not allow the
detection of all ground truth objects. If affinities propose a bad segmentation, then the constraint to yield
a given number of clusters can be counterproductive, while the automatic model selection adapts to such
situations. We also ran a variant of our method (marked with ∗) where we replaced the optimization over
K by the correct number of clusters. This number provides only an upper bound, since the regularization
could still remove some of the K clusters. This version performed worse than the version with automatic
model selection.

Effect of the sampling rate of trajectories. The density of trajectories has a similar effect on model
selection as the regularization parameter ν: sparser trajectories lead to fewer clusters. This is because
smaller object parts are no longer covered by sufficiently many trajectories to support a separate cluster.
This reduces the over-segmentation of articulated objects like the bear in Figure 12.2. On the other hand,
smaller objects will be missed if trajectories are too sparse. We found that decreasing the subsampling
from 4 to 2 does not help in capturing smaller objects anymore. A deeper analysis indicates that the optical
flow is the limiting factor. Since for smaller objects the region area over the contour length gets smaller,
misplaced discontinuities in the optical flow have a strong effect and hamper motion segmentation.

Pairwise vs. higher order affinities The motion model with higher order affinities MoSegHO can
capture similarity transformations. For sequences where such general motion is present, we observe
better results with MoSegHO than with the pairwise model MoSegSparse. A particularly interesting
phenomenon is camera zooming. It can be described as a scaling motion. In Chapter 10 examples are
shown where the higher order affinities have a high impact in the accuracy. The downside of more general
motion model is the overlap of the subspaces of motions. For example a (discrete) rotation motion can
have points that can be confused with another translational motion. Such effects make the pairwise model
perform better on some sequences than the higher order model.
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Figure 12.3: Example of a partially occluded object from the video shot cats05 with 87 frames and 6 annotated images. TOP ROW:
Dense segmentation obtained with the variational model from the point trajectories in the bottom row overlayed with the input
images (precision: 64.0%, recall: 52.8%, F-measure: 57.8%). BOTTOM ROW: Clustered point trajectories (precision: 65.0%,
recall: 54.2%, F-measure: 59.1%). Although the trajectories on the cat are short due to occlusions, there is enough temporal
overlap to assign trajectories on the cat to the same cluster across most of the obstacles.

Figure 12.4: Example of a sequence with large perspective background motion from the video shot horses01 with 500 frames and
26 annotated images. TOP ROW: Dense segmentation obtained with the variational model from the point trajectories in the bottom
row overlayed with the input images (precision: 94.8%, recall: 93.4%, F-measure: 94.1%). BOTTOM ROW: Clustered point
trajectories (precision: 95.1%, recall: 95.3%, F-measure: 95.2%). The horse is seen from different viewpoints and the background
changes completely. Nonetheless, there are two temporally consistent clusters, one for the horse and one for the background.

Computational cost. Trajectory subsampling has a positive effect on the computational cost for our
methods. For subsampling rates of 4, 8, and 16, the average computation times of the clustering for
MoSegSparse are 6s, 800ms, and 600ms per frame, respectively. Although the complexity of computing
the affinities for MoSegHO is actually cubic, it can be reduced to quadratic complexity by a clever sam-
pling strategy (see Section 10.3.2). However, the constant factor in the complexity estimate depends on
the number of neighbors sampled for each pairwise edge, which is 54. Computation of the forward and
backward flow takes on average 20s per frame on the CPU or 2s per frame on the GPU. The dense seg-
mentation on average adds 1s per frame on the GPU. Such low computation times allow the application
to scale to large video datasets on commodity hardware.

Articulated objects. The qualitative results show that the method is applicable to quite a general set of
sequences and can deal with many challenges. Figure 12.2 highlights the possibility to deal with artic-
ulated motion. Strong articulation usually leads to an over-segmentation of the object, as the articulated
parts are assigned to separate clusters. This can be a desired effect. The current parameter setting for
the dense segmentation tends to smooth out these smaller parts, but these can be modified if necessary.
A limitation of the method can be observed for feet that stay on the ground for a long time and then get
occluded before they move. These limbs are assigned to the background because a true long term analysis
of their motion is hampered by the occlusion.

185



CHAPTER 12. EVALUATION

Partial occlusion. In contrast, partial occlusion of larger objects usually is not a problem, as shown
in Figure 12.3. Although the cat is occluded several times, the visible parts show sufficiently similar
motion to keep the whole object in the same cluster. Only at the very end of the sequence the overlap of
trajectories is too small and the cluster gets split temporally. Strong occlusion due to changing viewpoint
can also be handled, as shown in Figure 12.4. The viewpoint changes by almost 180 degree, i.e., hardly
any part of the horse in the first frame is visible in the last one. Also the background changes completely.
In contrast to many methods from literature, the proposed way to define affinities can handle this case
easily.
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Chapter 13

Conclusion and future work

In Part I, we introduced and analyzed the convergence of several new algorithms for convex and noncon-
vex optimization. For a certain class of nonsmooth and strongly convex functions iPiasco was proposed
in Chapter 3, which we have shown to have an optimal rate of convergence. Nonconvex algorithms were
proposed in Chapters 6 and 7. We proved their convergence. In several computer vision problems their
efficiency was verified experimentally. For example, they allow to efficiently optimize the optical flow
problem in the presence of nonconvex penalty terms. Due to the wide range of applicability of optical
flow, potential improvements of it also affect higher level computer vision tasks like the motion segmen-
tation method that we considered in Part II. We proposed a motion based object level video segmentation
method. It is the current state-of-the-art and outperforms other methods in several aspects. In Chapter 10
the model accuracy for the motion analysis between trajectories was increased. Moreover, the clustering
of the eigenvectors associated with the trajectories via spectral clustering was improved in Chapter 11.
Finally, in Chapter 11, we presented a way to assign object labels to each pixel in a video shot by propa-
gating the information from the labeled trajectories. Chapter 12 shows that our improvements outperform
several other methods on our new benchmark that was presented in Chapter 9.

In the following, let us discuss the contributions and related future work.

iPiasco. iPiasco can be seen as proximal Heavy-ball method. It incorporates some inertial force into the
current (forward) gradient step and applies a backward step. The backward step, which is equivalent to
solving the proximal map for a convex function, allows for nonsmooth objective functions. Regarding the
convergence rate, we prove that the additional nonsmooth convex term in the objective does not influence
the convergence; It is optimal like for the Heavy-ball method. If we invoke some more structure of
the objective function, then iPiasco can perform better than the best first-order black-box optimization
algorithm that solves all smooth strongly convex functions equally well.

iPiasco in infinite dimensional setting. As future work, it would be interesting to understand the
requirement of twice differentiability for the smooth term of the objective function in the proof of conver-
gence in more detail. Possibly there are ways to circumvent this requirement and to relax it to functions
with Lipschitz continuous gradient. In fact, this issue requires the objective function to be defined in a
finite dimensional space. Apart from that, the proof of the optimal convergence rate seems to be suitable
for generalization to infinite dimensional Hilbert spaces.

Unified abstract convergence theorem. In Chapter 5 we have proved an abstract theorem for conver-
gence of (inertial) descent methods for nonconvex objectives. This work was motivated by an analogous
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result for abstract descent methods. As the actual technique of the proof is the same and the under-
standing of proving convergence using the Kurdyka–Łojasiewicz property recently improved significantly
[BST14], I believe that soon there will be a convergence theorem that unifies both.

iPiano. iPiano is formally also a proximal Heavy-ball method. It applies to functions that can be written
as a sum of a smooth, nonconvex function and a nonsmooth, nonconvex, simple function. Compared to
the publication of iPiano in [OCBP14], where the nonsmooth part is required to be convex and simple,
the analysis in this thesis allows for nonconvex simple functions. The convergence analysis is made such
that the more structure is known the larger the step sizes that can be used. iPiano is proved to be efficient
for computer vision tasks like denoising or image compression.

iPiano for bilevel optimization problems. The problem of image compression arises from a bilevel
optimization problem. The structure of this problem is particularly simple, as it allows us to explicitly
solve for the solution of the lower level problem. However, there are situations where this is not possible.
Nevertheless, for some problems techniques like implicit differentiation can be used to obtain a descent
direction on the loss function of the higher level problem. iPiano is a promising algorithm for such
problems. In some examples, we have already seen that it is comparable with L-BFGS.

Convergence rates. As we have also seen in the experiments for iPiano, the (simple) convergence rate
that we found is quite loose. iPiano performs usually much better than the rate O(1/

√
N) on the residual

of the iterates. It would be interesting to find better convergence rates, which seems to be particularly
difficult in the nonconvex setting. The issue about convergence rates is also true for IRconvex.

IRconvex. The iteratively reweighted convex algorithms (IRconvex) apply to the most general class of
problems considered in this thesis. They arise as a special instance of the principle of majorization mini-
mization for which we proved convergence. Key for majorization minimization methods is the construc-
tion of suitable majorizers of the objective function that are easier to optimize than the original problem.
A relatively simple class of majorizers can be constructed by fixing a simple function and multiplying
it with a weight in order to transform it into a majorizer. IRconvex arises in this way. Examples are
the well known iteratively reweighted least squares algorithm or the iteratively reweighted `1-algorithm,
which we considered among others more in detail. In many experiments the efficiency of the reweight-
ing algorithms is shown. As an application in computer vision we considered the optical flow problem.
However, the principles of optical flow can easily be transferred to many other problems like denoising,
deconvolution, super-resolution, etc..

Optical flow with nonconvex penalty terms. Optical flow estimation is a difficult nonconvex prob-
lem even for convex penalty functions. In theory, it is known that nonconvex penalty terms, which are
considered to be more robust, are the better choice than convex ones. However, their optimization is
challenging. Using IRconvex the optimization with nonconvex penalty terms is easier. Unfortunately, we
could only show the potential improvement when using nonconvex penalty terms. In order to incorporate
these techniques into current state-of-the-art algorithms for optical flow further investigation is required.
The intrinsic nonconvexity of the data-term (correspondence term) in optical flow makes it difficult to
benefit from the theoretical advantages that come from nonconvex penalty terms.

Higher order motion models. In the experiments on higher order motion models a benefit in the pres-
ence of complex motions is shown. The main disadvantage of using higher order affinities is the computa-
tional complexity of evaluating triplets of trajectories. It is quite slow compared to the pairwise analysis,
though our proposed sampling strategy already reduces the runtime significantly.
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Evaluating triplets on the GPU. It is hard to reduce the complexity of estimating the affinities be-
tween triplets, however the computations are independent. Transferring the data to the GPU and process-
ing the triplets in parallel would speed up the computation significantly. On contemporary GPUs a speed
up factor of about 50 can be expected. This would make the approach applicable also to large datasets.

Dense motion segmentation. We proposed two models to propagate the label information from the
semi-dense set of trajectories to unlabeled areas. The segmentation model is essentially a Potts segmen-
tation model, where the labels given at the trajectories serve as sources for a label, and compact regions
(weighted with the magnitude of the image gradient) are sought. The hierarchical model uses more visual
cues of the underlying image, like texture, than the single level model. However, on average the per-
formance of the single level model, which can be solved faster, is only little worse than the hierarchical
model. On large datasets like the FBMS that we proposed, the single level model seems to be sufficient.

More advanced segmentation models. In recent years, the Potts segmentation model was improved in
several ways that are also interesting for video segmentation. Cues that could help our motion segmenta-
tion method are for example the proportion priors introduced in [NSC13], spatially varying distributions
[NC13], or moment constraints like in [KC11]. Although these models focus on segmenting images
given user information, the transfer to unsupervised label information from clustering point trajectories is
conceptually straightforward. However, in order to benefit in practice from such models an experimental
investigation is required.

Long term motion segmentation. The motion segmentation method that we investigate in this thesis is
founded in the work of Brox and Malik [BM10]. By reasoning about motion similarities of trajectories in
a video sequence over a long time a robust and consistent segmentation of objects is achieved. The long
term aspect even allows to cluster objects that are static for a certain time. The method naturally deals with
a moderate amount of (partial) occlusion by a transitivity property of the affinities. Spectral clustering
coupled with a model selection method allows to automatically determine the number of objects that are
present in a video shot. In experiments we have also seen that the method performs better with model
selection than with the right number of clusters given as a hard constraint. Small errors can be better
coped with, if some additional clusters may be generated. This is particularly true for articulated objects
where the number of clusters depends on the goal of the user.

Extracting articulated parts. The issue about articulated objects is interesting. It could be desirable
to extract individual (articulated) parts as separate clusters. Currently the parameters of the motion seg-
mentation method are such that fewer clusters, i.e., whole objects, are usually preferred. One could think
of a hierarchical procedure, which extracts the whole object first, and then tries to partition it into its
articulated parts. This would give valuable information about an object and, for example, is likely to be
beneficial for object detectors trained with this information.

Track repair and continuation. As mentioned above, the motion segmentation method that we con-
sidered can deal only with partial occlusions. Therefore it is not a secret that legs usually cause problems.
The leg of a walking person that is further away from the camera often gets occluded completely and
trajectories have to be stopped. This results in leg areas being not clustered at all or to be merged with
the background. As the period of occlusion is rather short and the occluded trajectories move only little,
there is hope to continue trajectories through occlusion and to detect them in the disocclusion area again.
If trajectories can be extended, there is no need to generate new trajectories at those points and, therefore,
also the runtime of the method could be affected positively.
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de la Recherche Scientifique.

[Low85] D.G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Publishers,
Norwell, MA, USA, 1985.

[LP66] E.S. Levitin and B.T. Polyak. Constrained minimization problems. USSR Computational
Mathematics and Mathematical Physics, 6:1–50, 1966.

[LP14] D. Lorenz and T. Pock. An inertial forward–backward algorithm for monotone inclusions.
ArXiv e-prints, 1403.3522, March 2014.
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[Mor65] J.J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la S. M. F., 93:273–
299, 1965.

[MS85] D. Mumford and J. Shah. Boundary detection by minimizing functionals, I. In Proc. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 22–26,
San Francisco, CA, June 1985. IEEE Computer Society Press.

[MS89] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and asso-
ciated variational problems. Communications on Pure and Applied Mathematics, 42:577–
685, 1989.
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