Computing Summaries

for Interprocedural Analysis

Ashish Tiwari
Tiwari@csl.sri.com

Computer Science Laboratory
SRI International
Menlo Park CA 94025
http://www.csl.sri.com/~tiwari

Joint work with Sumit Gulwani, Microsoft Research

Outline of this Talk

- The Assertion Checking Problem
- Example
- Interprocedural Analysis
- A methodology for interprocedural backward analysis
- Special Cases: Abstract domains defined by
- Linear Arithmetic
- Uninterpreted Symbols
- Conclusion

Assertion Checking Problem

Given a program P annotated with an assertion ϕ verify that ϕ evaluates to true in every run of P
$P \in \mathbf{P}, \quad \mathbf{P}:=$ set of all programs in some programming model
$\phi \in \Phi, \quad \Phi:=$ set of all assertions in some assertion language

This problem is undecidable for even simple \mathbf{P} and Φ

An Example

```
P() { // inputs: u,v
    x := u ;
    y := v ;
    while (*) {
        x := x + 1 ;
        y := y - 1 ;
        }
        // return x,y
    }
```


An Example

```
main() {
    u := 0 ;
    V := n ;
    Call P() ;
    u := x + 1 ;
    V := Y ;
    Call P() ;
    assert(x + y == n+1)
}
```


Ashish Tiwari, SRI
Computing Procedure Summaries for Interprocedural Analysis: 5

Program Model

Programming Model in the example:

- Assignments: $x:=e, x:=$?
- Nondeterminisitic conditionals: if (*)
- Join: Control flow merge
- Procedure call node: Call P()

Known Results on Assertion Checking

Nodes	Expr. Lang.	Complexity	Ref.
(a)-(d)	Lin Arith	PTime	$[$ Karr 77,...]
(a)-(d)	UFS	PTime	$[($ Gulwani,Necula 04),
			(Müller-Olm, Rüthing, Seidl)]
(a)-(d)	UFS + LA	co-NP-hard	[Gulwani,T. 06]
(a)-(d)*	UFS + LA	decidable	[Gulwani,T. 06]

For generalizations of above results to other abstract domains and program models, see [Gulwani, T. VMCAI 07]

What about program models with procedure calls?

Ashish Tiwari, SRI
Computing Procedure Summaries for Interprocedural Analysis: 7

New Results

Present a general framework for interprocedural analysis

Nodes	Expr. Lang.	Complexity	Ref.
(a)-(e)	Lin Arith	PTime	[Müller-Olm and Seidl ’04,
			this paper]
(a)-(e)	Unary UFS	PTime	[this paper]
(a)-(e)	UFS	Open	

Some results on interprocedural analysis on UFS abstraction, but under restrictions, given by Müller-Olm, Seidl, and Steffen (ESOP'05)

Interprocedural Analysis

Two approaches for interprocedural analysis:

1. Inlining
2. Computing Summaries

Interprocedural Analysis: Inlining

$$
\begin{aligned}
& \text { P() \{ } \\
& \text { [} u+v==n+1] \\
& \mathrm{x}:=\mathrm{u} \text {; } \\
& \mathrm{y}:=\mathrm{v} \text {; } \\
& \text { [} \mathrm{x}+\mathrm{y}=\mathrm{n}+1 \text {] } \\
& \text { while (*) \{ } \\
& \text { x++; } \\
& \mathrm{y}^{--} \text {; } \\
& \text { \} } \\
& {[\mathrm{x}+\mathrm{y}=\mathrm{n}+1 \text {] }} \\
& \text { \} }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{main}()\{ \\
& \mathrm{u}:=0 ; \\
& \mathrm{v}:=\mathrm{n} ; \\
& \mathrm{Call} \mathrm{P}() ; \\
& \quad[\mathrm{x}+1+\mathrm{y}=\mathrm{n}+1] \\
& \mathrm{u}:=\mathrm{x}+1 ; \\
& \mathrm{v}:=\mathrm{y} ; \\
& \quad[\mathrm{u}+\mathrm{v}==\mathrm{n}+1] \\
& \mathrm{Call} \mathrm{P}() ; \\
& \quad[\mathrm{x}+\mathrm{y}=\mathrm{n}=\mathrm{n}+1] \\
& \operatorname{assert}(\mathrm{x}+\mathrm{y}==\mathrm{n}+1)
\end{aligned}
$$

Interprocedural Analysis: Inlining

```
P() {
    [ u + v == n ]
    x := u;
    y := v;
    [ x + y == n ]
    while (*) {
        x++;
        y--;
    }
    [ x + y == n ]
}
```

Call P();

$$
[x+1+y==n+1]
$$

$$
u:=x+1 ;
$$

$$
\mathrm{v}:=\mathrm{y} ;
$$

$$
[\mathrm{u}+\mathrm{v}==\mathrm{n}+1]
$$

Call $P() ;$

$[\mathrm{x}+\mathrm{y}==\mathrm{n}+1$]
assert ($\mathrm{x}+\mathrm{y}=\mathrm{n}+1$)
\}

Ashish Tiwari, SRI
Computing Procedure Summaries for Interprocedural Analysis: 11

$$
\begin{aligned}
& \text { main() \{ } \\
& {[\mathrm{n}+0==\mathrm{n}]} \\
& \text { u : }=0 \text {; } \\
& \mathrm{v} \text { : }=\mathrm{n} \text {; } \\
& {[\mathrm{u}+\mathrm{v}==\mathrm{n}]}
\end{aligned}
$$

Interprocedural Analysis

Inlining: Re-analyzes P()
Summary Computation: Compute a summary of a procedure just once and use it to backward propagate across Call P() nodes

In the example, we required:

$$
\begin{array}{lll}
{[?]} & \text { Call } \mathrm{P}() & {[x+y=n+1]} \\
{[?]} & \text { Call } \mathrm{P}() & {[x+y=n]}
\end{array}
$$

Main idea: Propagate back a set of generic assertions
For example: $\alpha x+\beta y=\gamma$

Generic Assertions

Assertion that involves context-variables apart from regular program variables.

Examples of context-variables and their possible instantiations:

$$
\begin{aligned}
\alpha(--) & \mapsto f(f(--)), 2(--), \ldots+1 \\
\beta(--1,--2) & \mapsto 2(--1)+--2, f(--1, f(--2))
\end{aligned}
$$

A generic term: $\alpha(x)+\beta(y)$

A generic assertion: $\alpha(x)+\beta(y)=\gamma$

Complete Set of Generic Assertions

\mathcal{A} is a complete set of generic assertions if, for any generic assertion A_{1}, there exists $A_{2} \in \mathcal{A}$ s.t.

$$
A_{1}=A_{2} \sigma
$$

Expr. Lang.	Complete Set

Lin. Arith. $\quad\left\{\sum_{i \in V} \alpha_{i} x_{i}=\alpha\right\}$
Unary UFS $\quad\left\{\alpha\left(x_{1}\right)=\beta\left(x_{2}\right) \mid x_{1}, x_{2} \in V, x_{1} \not \equiv x_{2}\right\}$

We need a finite complete set of generic assertions

Computing Procedure Summaries

$$
\text { Summary }:=\left\{\left(\psi_{i}, A_{i}\right) \mid\left[\psi_{i}\right] \text { Call } \mathrm{P}()\left[A_{i}\right], \quad A_{i} \in \mathcal{A}\right\}
$$

Method to compute procedure summaries:

1. WP based backward propagation over generic assertions
2. For procedure call nodes: requires matching current ψ with an assertion in \mathcal{A} and using its current summary

$$
\left[\bigwedge_{i} \psi_{i}^{\prime} \sigma_{i}\right] \operatorname{Call~P()}\left[\bigwedge_{i} B_{i}\right]
$$

if $\left(\psi_{i}^{\prime}, A_{i}\right)$ is in current summary of P() and $B_{i}=A_{i} \sigma_{i}$.

Computing Summaries: Linear Arithmetic

$$
\begin{aligned}
& \mathrm{P}()\{ \\
& \quad \begin{array}{l}
{[\text { true }]} \\
\\
x:=u ; \\
y:=v \\
\\
{[\alpha(x+1)+\beta(y-1)==\gamma} \\
\\
\alpha x+\beta y==\gamma] \\
\text { while }(*)\{ \\
\quad x++; \\
\\
\quad y--; \\
\\
\} \\
\}
\end{array} \quad[\alpha x+\beta y==\gamma] \\
& \}
\end{aligned}
$$

```
P()\(\{\)
    \([\alpha-\beta==0, \alpha u+\beta v==\gamma]\)
    \(x:=u\);
    \(y:=v ;\)
    \([\alpha-\beta==0\),
    \(\alpha x+\beta y==\gamma]\)
    while (*) \{
        \(x++;\)
        \(y--;\)
    \}
    \([\alpha x+\beta y==\gamma]\)
\}
```

Summary: $\{(\alpha==\beta \wedge \alpha u+\beta v==\gamma, \quad \alpha x+\beta y==\gamma)\}$

Computing Summaries: Linear Arithmetic

- Termination: There can be at most $k^{2}+k+1$ independent facts over the variables $\left\{\alpha_{i} x_{j}, \quad \alpha_{i}, \gamma\right\}$ where $i, j \in\{1, \ldots, k\}$
- Since every fact is a linear equation over these $k^{2}+k+1$ variables
- Complexity of interprocedural assertion checking: $O\left(n k^{10}\right)$ where $n=$ number of program points and $k=$ live variables
- Assuming arithmetic operations take $O(1)$ time

Using Summaries: Linear Arithmetic

$$
\begin{aligned}
& \operatorname{main}()\{ \\
& \qquad[0+n==n] \\
& \quad u:=0 ; \\
& v:=n ; \\
& {[1-1==0, u+v==n]} \\
& \text { Call } \mathrm{P}() ; \quad \quad / \alpha \mapsto 1, \beta \mapsto 1, \gamma \mapsto n \\
& {[x+1+y==n+1]} \\
& u:=x+1 ; \\
& v:=y ; \quad[1-1==0, u+v==n+1] \\
& \quad \operatorname{Call~P}() ; \quad / / \alpha \mapsto 1, \beta \mapsto 1, \gamma \mapsto n+1 \\
& {[x+y==n+1]} \\
& \text { assert }(x+y==n+1)
\end{aligned}
$$

Computing Summaries: Unary UFS

The same general idea works.

- Complete Set of Generic Assertions: $\{\alpha(x)==\beta(y) \mid x, y \in V\}$, α and β are strings over the unary symbols
- Backward propagation gives generic assertions: $\{\alpha(C(x))==\beta(D(y))\}$
- Termination: Any finite set of such assertions is essentially equivalent to a set containing at most two equations
- Summary:
$\left\{\left(\psi_{x y}, \alpha(x)==\beta(y)\right) \mid x, y \in V, \quad\left[\psi_{x y}\right]\right.$ Call P()$\left.[\alpha(x)==\beta(y)]\right\}$ where $\psi_{x y}$ contains at most $k(k-1) / 2+1$ equations
- All this takes polynomial number of string operations

However, programs can succinctly represent really large strings

Computing Summaries: Unary UFS: Large Strings

Consider the n procedures P_{0}, \ldots, P_{n-1} :

$$
\begin{aligned}
& P_{i}\left(x_{i}\right)\left\{t:=P_{i-1}\left(x_{i}\right) ; y_{i}:=P_{i-1}(t) ; \operatorname{return}\left(y_{i}\right) ;\right\} \\
& P_{0}\left(x_{0}\right)\left\{y_{0}:=f x_{0} ; \operatorname{return}\left(y_{0}\right) ;\right\}
\end{aligned}
$$

The summary of procedure P_{i} is:

$$
\left(\alpha==f^{2^{i}} \wedge \beta=\epsilon, \quad \alpha x_{i}==\beta y_{i}\right)
$$

Computing Summaries: Unary UFS: Representation

- SCFGs: singleton context-free grammars A CFG where each nonterminal represents exactly one (terminal) string.
- An SCFG can represent strings in an exponentially succinct way
- We use SCFGs to represent strings during our interprocedural analysis
- Plandowski (1994) showed that equality (largest common prefix) checking of two strings represented as SCFGs can be done in PTime
- Summaries can be computed in time $O\left(n k^{6} T_{\text {base }}(n)\right)$ on the abstraction of unary symbols.

Computing Summaries: General Case

Interprocedural analysis on a logical lattice defined by $T h$:

- Finite complete set of generic assertions
- Finite essential ascending chain property: Every increasing sequence of generic assertions (over k regular variables) finitely essentially converges

What is essential equivalence?
In case of non-deterministic programs, do not need to distinguish between ϕ and Unif (ϕ)
ψ is essentially equivalent to ψ^{\prime} if $\psi \sigma$ and $\psi^{\prime} \sigma$ have the same set of unifiers for every σ that assigns context variables to a ground term with holes

Conclusion

Presented a general framework for interprocedural analysis

Nodes	Expr. Lang.	Complexity	Ref.
(a)-(e)	Lin Arith	PTime	[Müller-Olm and Seidl '04,
			this paper]
(a)-(e)	Unary UFS	PTime	[this paper]
(a)-(e)	UFS	Open	

Main ideas:

- Summary computation requires dealing with context variables
- Context unification can be used to simplify assertions to essentially equivalent assertions for non-det programs

