~

Computing Summaries'
for Interprocedural Analysis'

Ashish Tiwari

Tiwari@csl.sri.com

Computer Science Laboratory
SRI International
Menlo Park CA 94025
http://www.csl.sri.com/ tiwari

Joint work with Sumit Gulwani, Microsoft Research

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 1

4 N
\Outlineof thisTaIkI

e The Assertion Checking Problem

e Example
e Interprocedural Analysis
e A methodology for interprocedural backward analysis

e Special Cases: Abstract domains defined by
o Linear Arithmetic

o Uninterpreted Symbols

e Conclusion

. /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 2

Assertion Checking Problem'

Given a program P annotated with an assertion ¢

verify that ¢ evaluates to true in every run of P

P e P, P = setof all programs in some programming model

-
M

K
KA
|

set of all assertions in some assertion language

This problem 1s undecidable for even simple P and ¢

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 3

-

}

-

X o=
y ==
hile
X
y

}

PO { // inputs:
u -

VvV -

(*){
X + 1 ;
:y_]_;

// return X,y

An Example'

P |

U,V X.=Uu

/

Ashish Tiwari, SRI

Computing Procedure Summaries for Interprocedural Analysis: 4

-

main() {

u =0 ;

V I=n ;
Call PO ;

u = x + 1 ;
vV =Y,
Call PO ;

assert(x + y ==

-

An Example

n+1)

main : i

-
l

Call P()

y
u=x+1

Y
Vi=y

Y
Call P()

'

assert(x+y=n+l)

/

Ashish Tiwari, SRI

Computing Procedure Summaries for Interprocedural Analysis: 5

/ ‘ Program M odel I \

Programming Model in the example:

e Assignments: = :=e, x ="

e Nondeterminisitic conditionals: 1f (*)
e Join: Control flow merge

e Procedure call node: Call P()

w’l \v’l v & V2 l\v’
T =€ x =7 True False Call P'()
4 l 4 l V1 W U} l‘l’

(a) Assignment (b) Non-deterministic (¢) Non-deterministic (d) Join Node (e) Procedure

\ Node Assignment Node Conditional Node Call Node/

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 6

~

/ ‘Known Resultson Assertion Checking'

Nodes | Expr. Lang. | Complexity | Ref.

(a)-(d) Lin Arith PTime [Karr 77,...]

(a)-(d) UFS PTime [(Gulwani,Necula 04),
(Miiller-Olm, Riithing, Seidl)]
(a)-(d) UFS + LA co-NP-hard | [Gulwani,T. 06]

(a)-(d)* | UFS + LA decidable [Gulwani, T. 06]

For generalizations of above results to other abstract domains and program
models, see [Gulwani, T. VMCAI 07]

\W hat about program models with procedure calls? /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 7

4 N
'New Results'

Present a general framework for interprocedural analysis

Nodes | Expr. Lang. | Complexity | Ref.

(a)-(e) | Lin Arith PTime [Miiller-Olm and Seidl 04,
this paper]

(a)-(e) | Unary UFS PTime [this paper]

(a)-(e) | UFS Open

Some results on interprocedural analysis on UFS abstraction, but under
restrictions, given by Miiller-Olm, Seidl, and Steffen (ESOP’05)

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 8

‘ |nter procedur al Analysis'

Two approaches for interprocedural analysis:
1. Inlining

2. Computing Summaries

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 9

4 N

‘Interprocedural Analysis. InIiningI
PO { main() {
[U+ ve==n+l] u = 0;
o V I= n;
o call PQ:
while (*) { oo 5
X++ V.-= Y
) [u+v=n+l]
\ y==- call PO:;
__ [x +y == n+l]
1 L x+y==nl assert(x + y == n+l)
}

. /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 10

-

|nterprocedural Analysis: Inlining
main() {
0O ==
PO { y F:nOT "
[Uu+v==n]l]) ’
w = u- V I= n;
Ly [u+v==n]
o Call PQ;
L T ty=nl] [X +1 +y == n+l]
while (*) { U "= x + 1-
X++ T ’
. V IZ Y;
y Y=o [u+ v ==n+1]
L Call PQ;
L x+y=nl [x +y == n+1]
¥ assert(x + y == n+l)

. ’ ,/

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 11

/ ‘ | nter procedural Analysis'

Inlining: Re-analyzes P()

Summary Computation: Compute a summary of a procedure just once and

use 1t to backward propagate across Call P() nodes

In the example, we required:

[?7] CallP) [z+y=n+1]
(7] CallP) [2+y=n]

Main idea: Propagate back a set of generic assertions

\For example: ax + Sy = v

~

/

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 12

4 | | N
Generic Assertlonsl

Assertion that involves context-variables apart from regular program
variables.

Examples of context-variables and their possible instantiations:

a(-) — f(f(), 2(), —+1
B(c1,-2) = 2(ca) + 2, f(ea, f(c2))

A generic term: a(x) + 6(y)

A generic assertion: a(x) + B(y) =~

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 13

‘ Complete Set of Generic Assertions'

A is a complete set of generic assertions if,

for any generic assertion A, there exists As € A s.t.

Al — AQO’

Expr. Lang. | Complete Set

Lin. Arith. | {> ..y aiz; = o}
Unary UFS | {a(z1) = B(x2) | 1,220 €V, 1 Z 22}

We need a finite complete set of generic assertions

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 14

\Computing Procedure Summaries'

Summary := {(¢;, 4;) | [¢;] Call PO [A4;], A; € A}

Method to compute procedure summaries:
1. WP based backward propagation over generic assertions

2. For procedure call nodes: requires matching current @) with an assertion in
A and using its current summary

[A wga@-] CallP() | B;

if (¢}, A;) is in current summary of P() and B; = A;0;.

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 15

/ ‘Computing Summaries. Linear Arithmetic' \

P() { P() {
[true] la = ==0,au+ fv==1]
T = U; L= U;
Y = Y 1= 0;
a(z+1)+ 6y —1) ==1, la =B ==0,
ar + fy == 7] ar + By == 9]
while (¥) { while (*) {
T + +; T+ +;
Yy — = Y
} }
oz + By ==] lax + By == 1]
} }
\Summary. {la==BNau+pBv==", ar+ [y ==7)} /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 16

‘Computing Summaries. Linear Arithmetic'

e Termination: There can be at most k2 + k 4 1 independent facts over the

variables {a;z;, «;, v} wherei,j € {1,...,k}
e Since every fact is a linear equation over these k% + k + 1 variables

e Complexity of interprocedural assertion checking: O(nk1)
where n = number of program points and k = live variables

e Assuming arithmetic operations take O(1) time

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 17

/ ‘Using Summaries. Linear Arithmetic' \

main() {
0 +n == n]
u = 0;
V= Mn;
1—-1==0, u+v==n]
Call P(): 1,81, n
x4+ 1+y==n+1]
u:=x + 1;
vi=y;
1—-1==0,u+v==n+1]
Call P(); la—1,0—1,vy—n+1
[z +y==n+1]

assert(x +y ==n-+1)
L /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 18

/ Computing Summaries. Unary UFSI \

The same general idea works.

e Complete Set of Generic Assertions: {a(z) == ((y) | x,y € V'},
« and (3 are strings over the unary symbols

e Backward propagation gives generic assertions: {«(C(x)) == B(D(y))}

e Termination: Any finite set of such assertions is essentially equivalent to a

set containing at most two equations

e Summary:

{(Way, a(z) == B(y)) | 2,y €V, [Pay] Call PO [a(z) == B(y)]}

where 1), contains at most k(k — 1)/2 + 1 equations

e All this takes polynomial number of string operations

\However, programs can succinctly represent really large strings /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 19

Computing Summaries. Unary UFS. Large Strings'

Consider the n procedures Py, ..., P, _1:

Pi(z;) { t :== Pi—1(xs); i := Pi—1(t); return(y;); }
Po(x0) { yo := fxo; return(yo); }

The summary of procedure F; is:

(== f> A B=¢, az; == By)

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 20

Computing Summaries. Unary UFS: Representatioh I

e SCFGs: singleton context-free grammars
A CFG where each nonterminal represents exactly one (terminal) string.

e An SCFG can represent strings in an exponentially succinct way
e We use SCFGs to represent strings during our interprocedural analysis

e Plandowski (1994) showed that equality (largest common prefix) checking
of two strings represented as SCFGs can be done in PTime

e Summaries can be computed in time O(nk%Ty,s.(n)) on the abstraction of
unary symbols.

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 21

Computing Summaries. General Case'

Interprocedural analysis on a logical lattice defined by T'h:

e Finite complete set of generic assertions

e Finite essential ascending chain property: Every increasing sequence of
generic assertions (over k£ regular variables) finitely essentially converges

What is essential equivalence?

In case of non-deterministic programs, do not need to distinguish between ¢
and Unif (¢)

1 is essentially equivalent to 1)’ if 1o and 1)’o have the same set of unifiers
for every o that assigns context variables to a ground term with holes

- /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 22

/ 'Conclusion I \

Presented a general framework for interprocedural analysis

Nodes | Expr. Lang. | Complexity | Ref.
(a)-(e) | Lin Arith PTime [Miiller-Olm and Seidl *04,
this paper]
(a)-(e) | Unary UFS PTime [this paper]
(a)-(e) | UFS Open
Main 1deas:

e Summary computation requires dealing with context variables

e Context unification can be used to simplify assertions to essentially

\equivalent assertions for non-det programs /

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 23

